
Passive and Active Testing of Linear Functions

Over the Boolean Hypercube?

Abbas Mehrabian

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada
amehrabi@uwaterloo.ca

Abstract. One of the motivations for property testing is the idea that test-
ing can provide a fast preprocessing step before learning. In the standard

property testing, the algorithm is able to query the objective function on
any point of its choice, whereas in most machine learning applications, the
data points are not chosen by the algorithm, but appear randomly from some
distribution. In the passive property testing model, the data points appear
randomly from some distribution, and are automatically labelled. Recently
Balcan et al. [1] introduced the more realistic active property testing model,
in which the algorithm receives a sample of reasonable size of points, and
then asks for the label of sample points of its choice. We study the problems
of active and passive property testing of linear functions from Z

n

2 to Z2 un-
der the uniform distribution. We show that the query complexity for passive
testing is Ω(n) and O(n+ ε−1), and the query complexity for active testing
is Ω(n/ log n) and O(n/(ε log n)), where ε > 0 is the error parameter.

Keywords: active property testing, linear functions, boolean hypercube

1 Introduction

One of the motivations for property testing is the idea that testing can provide a
fast preprocessing step before learning. For instance, if one wants to learn a linear
threshold function that approximates some unknown function f , one can quickly
test whether f is ‘close’ or ‘far’ from being a linear threshold function, and then
either proceed to the learning step (with confidence) or extend its set of hypotheses.
Refer to Ron [6] for a comprehensive survey on property testing results that could
be useful in machine learning applications.

In the standard property testing, the algorithm is able to query the unknown
function on any point of its choice. However, in most machine learning applications,
data points are not chosen by the algorithm, but appear randomly from some dis-
tribution. Hence the standard property testing model is not very realistic.

In the passive property testing model, the data points appear randomly from
some distribution, which makes the model more realistic. However, in this model all

? This is a ‘Type 2. Ongoing Research Work’ submission to ICALP 2013 Satellite Workshop
on Learning Theory and Complexity

data points are automatically labelled, i.e., it is assumed that seeing an unlabelled
data point is as costly as seeing a labelled data point. In many applications, sampling
from the domain is not very expensive, but labelling a sample point is expensive.
For instance, in the problem of machine learning for medical diagnosis, it is cheap to
sample a patient from the set of all patients, but running a medical test on a patient
is much more expensive. The active property testing model, introduced very recently
by Balcan, Blais, Blum, and Yang [1], was developed to capture such a setting. In this
model, which is motivated by the notion of active learning, the algorithm receives a
sample of reasonable size of points, and then asks for the label of sample points of
its choice.

One of the first problems studied in (standard) property testing was testing linear
functions. In this manuscript, we study the problems of active and passive property
testing of linear functions from Z

n
2 to Z2. To the best of our knowledge, no results

regarding these problems have appeared in the literature. Our main results are the
following two theorems.

Theorem 1. The query complexity for passive testing of linear functions from Z
n
2

to Z2 under the uniform distribution is Ω(n) and O(n + ε−1), where ε > 0 is the
error parameter.

Theorem 2. The query complexity for active testing of linear functions from Z
n
2 to

Z2 under the uniform distribution is Ω(n/ logn) and O(n/(ε logn)), where ε > 0 is
the error parameter.

In Section 2 we formally define the testing models. In Section 3 we review known
results on standard property testing of linear functions. In Sections 4 and 5 we prove
Theorems 1 and 2, respectively. Finally, in Section 6 we mention possible extensions
of results and potentials for future work.

2 The Models

Let A be a domain. For a probability distribution D over A, we write X
d
∼ D

if X is a random variable distributed as D. For two functions f, g : A → B and a
distribution D over A, let

distD(f, g) := P
X

d
∼ D

[f(X) 6= g(X)] .

Note that the distance is always in [0, 1]. For the rest of this manuscript, we assume
that D is the uniform distribution, and so we drop the subscript D and simply write
dist(f, g). Let P be a property of all functions from A to B; that is, P defines a
subset of all such functions. For a function f : A → B, let

dist(f, P) := inf{dist(f, g) : g ∈ P} .

One can think of dist(f, P) as the minimum number of points in which the value of
f must be changed so that a function in P is obtained.

In the following definitions, A is a domain, B is a range, and P is a subset of all
B-valued functions over A.

Definition 1 (Standard Property Testing [7, 4]). A standard property tester
with query complexity q for property P is a randomized decision algorithm that given
a distance parameter ε > 0 and query access to an unknown function f : A → B,
asks the value of f on q points, and satisfies the following.

– If f ∈ P , then accepts with probability at least 2/3.
– If dist(f, P) > ε, then rejects with probability at least 2/3.

Definition 2 (Passive Property Testing [4, 5]). A passive property tester with
query complexity s for property P is a randomized decision algorithm that is given a
distance parameter ε > 0 and the values of f on s sample points chosen independently
and uniformly at random from A, and satisfies the following, where the probabilities
are taken over the sample points and the internal coin flips of the algorithm.

– If f ∈ P , then accepts with probability at least 2/3.
– If dist(f, P) > ε, then rejects with probability at least 2/3.

Definition 3 (Active Property Testing [1]). An active property tester with
sample complexity s and query complexity q for property P is a randomized decision
algorithm that given a distance parameter ε > 0 and s sample points chosen inde-
pendently and uniformly at random from A, asks the value of f on q of the sample
points, and satisfies the following, where the probabilities are taken over the sample
points and the internal coin flips of the algorithm.

– If f ∈ P , then accepts with probability at least 2/3.
– If dist(f, P) > ε, then rejects with probability at least 2/3.

Remark 1. In general we have

query complexity in standard model ≤ query complexity in active model

≤ query complexity in passive model .

Remark 2. An active tester whose sample complexity equals the domain size, has
almost the same query complexity as a standard tester. However, we are interested
in active testers with sample complexity significantly smaller than (usually polylog-
arithmic in) the domain size.

Let Ln denote the set of all linear functions from Z
n
2 to Z2. We denote the domain,

Z
n
2 , by D and denote the set {1, 2, . . . , n} by [n]. All logarithms are in natural base.

3 Standard Testing

Definition 4 (Linear function). Let G and H be two groups. A function f : G →
H is linear if for every x, y ∈ G we have f(x+ y) = f(x) + f(y).

Linearity testing was the first property testing problem studied, though the term
‘property testing’ was not used at that time. Blum, Luby, and Rubinfield [3] proved
the following theorem in 1993.

Theorem 3. The query complexity of testing linear functions is Θ(1/ε).

Here we prove a special case of this theorem: when the domain is Z
n
2 and the

range is Z2. Note that in this case the VC-dimension of the set of linear functions
is n, so a tester requires significantly less queries than a learner. The tester runs
Algorithm 1, which is very simple. The difficulty lies in the analysis.

Algorithm 1 Standard property tester for linear functions from Z
n
2 to Z2

Require: f : Zn

2 → Z2 and ε > 0
1: for i = 1 to 2/ε do

2: Uniformly and independently select X,Y ∈ Z
n

2 .
3: If f(X) + f(Y) 6= f(X + Y) then reject.
4: end for

5: If no iteration caused rejection, then accept.

Clearly the query complexity of Algorithm 1 is Θ(1/ε). To show correctness, we
need to show two things:

(a) If f ∈ Ln, then Algorithm 1 accepts with probability at least 2/3.
(b) If dist(f,Ln) > ε, then Algorithm 1 rejects with probability at least 2/3.

Item (a) is obvious, since any linear function passes all tests in line 3 successfully.
Hence if f ∈ Ln, then Algorithm 1 accepts with probability 1. Item (b) follows
immediately from the following lemma.

Lemma 1. There exists an absolute constant ξ > 0 such that the following is true.
Let f : Zn

2 → Z2 be arbitrary. If we choose X,Y ∈ Z
n
2 independently and uniformly

at random, then we have

P [f(X) + f(Y) 6= f(X + Y)] ≥ ξ dist(f,Ln) .

Blum et al. [3] proved Lemma 1 with ξ = 2/9. Three years later, Bellare et al. [2]
proved using Discrete Fourier analysis that ξ = 1 works as well. We prove that
Lemma 1 is true with ξ = 1/7. This follows from Lemma 4 in Section 5.

Now, let f be a function with dist(f,Ln) > ε. Then by Lemma 1 (say with ξ = 1),
in every iteration of Algorithm 1, the algorithm rejects in line 3 with probability at
least ε. Moreover, the iterations are independent. Hence, the probability that the
algorithm accepts is at most (1 − ε)2/ε ≤ exp(−ε)2/ε < 1/3, and this concludes the
proof of (b) and of Theorem 3.

4 Passive Testing

In this section we prove Theorem 1, starting with the upper bound. The passive
tester is illustrated in Algorithm 2. Note that the query complexity of Algorithm 2
is clearly O(n+ 1/ε). To show correctness, we need to show two things:

Algorithm 2 Passive property tester for linear functions from Z
n
2 to Z2

Require: f : Zn

2 → Z2 and ε > 0
1: S ← 12n elements from Z

n

2 chosen independently and uniformly at random
2: if S contains n linearly independent elements b1, b2, . . . , bn then

3: Define g : Zn

2 → Z2 as g(x) :=
∑

n

i=1
〈x, bi〉f(bi).

4: else

5: accept

6: end if

7: for i = 1 to 2/ε do

8: Uniformly and independently select Y ∈ Z
n

2 .
9: If f(Y) 6= g(Y) then reject.
10: end for

11: If no iteration caused rejection, then accept.

(a) If f ∈ Ln, then Algorithm 2 accepts with probability at least 2/3.
(b) If dist(f,Ln) > ε, then Algorithm 2 rejects with probability at least 2/3.

We first prove (a). Notice that if f is a linear function, then it is uniquely deter-
mined by its effect on a linear basis. Namely, if {b1, b2, . . . , bn} is a set of n linearly
independent vectors in D, then

∀x ∈ D : f(x) =

n
∑

i=1

〈x, bi〉f(bi) .

Hence if f is linear, then either Algorithm 2 accepts in line 5, or else the function
g would be equal to f on all points, and thus Algorithm 2 passes all tests in line 9,
and this proves (a).

Now, we turn to proving (b). Assume that dist(f,Ln) > ε. First, it is not hard to
show that the probability that line 5 is reached is at most 1/6. In fact, the expected
number of random vectors to choose from D uniformly at random in order to span
the space is at most 2n, and the claim follows by applying Markov’s inequality.

Now, since g is linear and dist(f,Ln) > ε, we have dist(f, g) > ε. Thus every Y
chosen in line 8 causes rejection with probability at least ε. As the Y ’s are chosen
independently, the probability that the algorithm passes all tests in line 9 is at most
(1 − ε)2/ε ≤ exp(−ε)2/ε < 1/6. Applying the union bound completes the proof of
(b) and the upper bound in Theorem 1.

For proving the lower bound in Theorem 1 we will need a lemma.

Lemma 2. Let F be the set of all functions f : D → Z2. Suppose that an adversary
chooses a function f either uniformly at random from Ln, or uniformly at random
from F . For every linearly independent set {x1, . . . , xk} ⊆ D, there is no algorithm
that given the labelled data set ((x1, f(x1)), (x2, f(x2)), . . . , (xk, f(xk))) can deter-
mine, with probability at least 3/5, whether f is chosen from Ln or F .

Proof. If f is chosen randomly from F , then all the 2k possible label vectors (f(x1),
f(x2), . . . , f(xk)) are equally likely to show up. Hence, the probability that any
particular label vector (f(x1), f(x2), . . . , f(xk)) comes up for the tester is 2−k.

On the other hand, if f is chosen randomly from Ln, then again all the 2k possible
label vectors (f(x1), f(x2), . . . , f(xk)) are equally likely to show up. The reason is
that the set {x1, x2, . . . , xk} can be extended to a linear basis (x1, x2, . . . , xk, xk+1,
xk+2, . . . , xn). Each prescribed {0, 1}-vector (f1, f2, . . . , fn) determines exactly one
linear function, namely f(z) =

∑

〈z, xi〉fi, which takes the prescribed values on the
basis. This means that there are exactly 2n−k linear functions that take the value
f(xi) on all xi, for all 1 ≤ i ≤ k. Since the total number of linear functions is 2n,
the probability that the particular label vector (f(x1), f(x2), . . . , f(xk)) comes up
for the tester is 2n−k/2n = 2−k. ut

Now, we show that the query complexity for passive testing is at least n/2, com-
pleting the proof of Theorem 1. Let k = n/2 and let X1, X2, . . . , Xk be vectors
chosen independently and uniformly at random from D. For a given nonempty A ⊆
{1, 2, . . . , k}, we have P

[
∑

i∈AXi = 0
]

= 2−n . Hence, by the union bound, the prob-
ability that there exists some nonempty A ⊆ {1, 2, . . . , k} satisfying

∑

i∈A Xi = 0 is

at most 2k−n = 2−n/2. This means that, in particular, with probability larger than
5/6, the sample points given to the tester are linearly independent. So by Lemma 2,
if the tester wants to distinguish between a randomly chosen linear function and a
randomly chosen function, then its error would be at least 5

6×
3
5 = 1

2 . This completes
the proof, as a uniformly chosen random function is

(

1
4

)

-far from Ln with probability
1− o(1).

5 Active Testing

In this section we prove Theorem 2. We start by giving an active tester with query
complexity O(n/ε logn). The idea of the algorithm is similar to the idea for the
standard tester (Algorithm 1): the tester tries to find a set (x1, x2, . . . , xm) with
∑

xi = 0, queries the values of f on these points, and checks that
∑

f(xi) =
0. However, as the tester cannot choose the xi’s, it should try to find a linearly
dependent set (of as small cardinality as possible) in the sample. The following
lemma essentially determines how small a linearly dependent set can one expect
in a sample with polynomial size. For a positive integer s, Us denotes the uniform
distribution over Ds.

Lemma 3. Let w, δ > 0 be constants, s = n1+δ and q = wn/ logn. Also let

(X1, X2, . . . , Xs)
d
∼ Us.

(a) If w > log(2)/δ, then with probability approaching 1 as n goes to infinity,
there is a subsequence (Y1, Y2, . . . , Yq) of (X1, X2, . . . , Xs) with

∑q
i=1 Yi = 0.

(b) If w < log(2)/δ, then with probability approaching 1 as n goes to infinity, for
every 1 ≤ q′ ≤ q and every subsequence (Y1, Y2, . . . , Yq′) of (X1, X2, . . . , Xs) we have
∑q′

i=1 Yi 6= 0.

Proof. (a) Assume that w > log(2)/δ. Let m =
(

s
q

)

and let A1, A2, . . . , Am be all

the subsets of [s] of size q. Define {0, 1}-valued random variables Z1, Z2, . . . , Zm

as follows. For 1 ≤ i ≤ m, let Zi = 1 if and only if
∑

j∈Ai
Xj = 0. Notice that

∑m
i=1 Zi > 0 if and only if there is a subsequence (Y1, Y2, . . . , Yq) of (X1, X2, . . . , Xs)

with
∑q

i=1 Yi = 0. Let Z =
∑m

i=1 Zi. Hence we only need to show that P [Z = 0]
approaches zero as n goes to infinity.

It is easy to see that E [Zi] = P [Zi = 1] = 2−n and thus by linearity of expecta-
tion,

E [Z] = m2−n =

(

s

q

)

2−n ≥

(

s

q

)q

2−n = exp (n(wδ − log 2 + o(1))) ,

which approaches infinity as n goes to infinity, as wδ > log 2.
Next we compute the variance of Z. It is not hard to show that for every i 6= j

we have P [Zi = Zj = 1] = 2−2n, which means that the covariance of Zi and Zj is
zero. Consequently,

Var [Z] =

m
∑

i=1

Var [Zi] = m2−n
(

1− 2−n
)

= E [Z]
(

1− 2−n
)

< E [Z] .

Finally, Chebyshev’s inequality gives

P [Z = 0] ≤ P [|Z −E [Z] | ≥ E [Z]] ≤
Var [Z]

E [Z]
2 <

1

E [Z]
,

which approaches zero as n goes to infinity. Thus, with probability approaching 1 as
n goes to infinity, we have Z > 0, and the proof is complete.

(b) We omit the proof, which uses linearity of expectation and some straightfor-
ward calculations as in part (a). ut

Before proceeding to describing the tester, let us say why part (b) of Lemma 3
together with Lemma 2 imply the lower bound in Theorem 2. Consider an active
tester that is given an unlabelled sample S of size nc for some fixed c, and assume
that, the query complexity is o(n/ logn). Note that by Lemma 3(b), with probability
larger than 5/6 every subset of S of size o(n/ logn) is linearly independent. Assume
that the tester asks the value of f on a set A ⊆ S of size o(n/ logn), In particular,
with probability larger than 5/6, the set A is linearly independent. So by Lemma 2,
if the tester wants to distinguish between a randomly chosen linear function and a
randomly chosen function, then its error would be at least 5

6×
3
5 = 1

2 . This completes
the proof, as a uniformly chosen random function is

(

1
4

)

-far from Ln with probability
1− o(1).

Now, we describe the active tester. The tester is illustrated in Algorithm 3. The
sample complexity of Algorithm 3 is O(n2/ε), i.e., polylogarithmic in the domain
size, and the query complexity of Algorithm 3 is O(n/ε logn). To show correctness,
we need to show two things:

(a) If f ∈ Ln, then Algorithm 3 accepts with probability at least 2/3.
(b) If dist(f,Ln) > ε, then Algorithm 3 rejects with probability at least 2/3.

Item (a) is obvious, as any linear function passes all the tests in lines 7 and 8.

Algorithm 3 Active property tester for linear functions from Z
n
2 to Z2

Require: f : Zn

2 → Z2 and ε > 0
1: m← n/ log n.
2: for i = 1 to 16/ε do

3: Sample a set S of size n2 from Z
n

2 .
4: if there exist x1, x2, . . . , xm ∈ S with

∑
m

i=1
xi = 0

AND there exist y1, y2, . . . , ym−1 ∈ S with
∑

m−1

i=1
yi = 0 then

5: choose an m-tuple (X1, X2, . . . , Xm) ∈ Sm with
∑

m

i=1
Xi = 0 uniformly at ran-

dom.
6: choose an (m− 1)-tuple (Y1, Y2, . . . , Ym−1) ∈ Sm−1 with

∑
m−1

i=1
Yi = 0 uniformly

at random.
7: if

∑
m

i=1
f(Xi) 6= 0 then reject.

8: if
∑

m−1

i=1
f(Yi) 6= 0 then reject.

9: end if

10: end for

11: If no iteration caused rejection, then accept.

To prove (b), we need a definition and a lemma. Let k be a positive integer, and
let f : D → Z2 be arbitrary. Define ε0(f) := 0 and

εk(f) := P
(X1,X2,...,Xk+1)

d
∼ Uk+1

[

k+1
∑

i=1

f(Xi) 6= f

(

k+1
∑

i=1

Xi

)]

.

The following lemma is the key for proving (b).

Lemma 4. For every f : D → Z2 and every k > 0 we have

dist(f,Ln) ≤ 7max{εk(f), εk−1(f)} . (1)

Notice that letting k = 1 gives dist(f,Ln) ≤ 7max{ε1(f), ε0(f)} = 7ε1(f), which
implies Lemma 1 with ξ = 1/7. Thus Lemma 4 is, in a certain sense, a generalization
of Lemma 1. We remark that one cannot hope to give a generalization of Lemma 1
as is, namely one cannot prove that for every positive integer k there exists an ηk
such that dist(f,Ln) ≤ ηkεk(f). To see this, let f be the constant 1 function. Then
dist(f,Ln) = 1/2, however, for every even k we have εk(f) = 0.

Before proving Lemma 4, let us show that it implies item (b) above. Assume
that dist(f,Ln) > ε. Then in each iteration of Algorithm 3, the condition in line 4 is
true with probability at least 7/8 by Lemma 3(a). Conditional on this, at least one
of the tests in lines 7 and 8 fail with probability at least max{εm−2, εm−3} ≥ ε/7
by Lemma 4. Thus each iteration fails with probability at least ε/7 × 7/8 = ε/8.
Since the iterations are independent, the probability that the tester accepts is at
most (1 − ε/8)16/ε ≤ exp(−2) < 1/3.

The rest of this section is devoted to the proof of Lemma 4. Ron [6] presented a
proof of Lemma 1 with ξ = 1/6. The proof of Lemma 4 here follows the line of that
proof, except that the proof of one of the sub-lemmas, namely Lemma 7, requires an
extra step. Fix a function f : D → Z2 and a positive integer k, and let εk = εk(f)

and εk−1 = εk−1(f). For a point x ∈ D and a sequence A ∈ D
k, define

VA(x) :=
∑

a∈A

f(a) + f

(

x+
∑

a∈A

a

)

.

Note that if f was linear then we would have VA(x) = f(x) for all A and x ∈ D.
One can think of VA(x) as the ‘vote that A casts’ on the value of f(x). Note that,
indeed,

εk = εk(f) = P
(X,A)

d
∼ U1×Uk

[f(X) 6= VA(X)] .

Also, define the function g : D → Z2 as follows. For x ∈ D, let g(x) = 0 if

P
A

d
∼ Uk

[VA(x) = 0] ≥ 1/2 ,

and let g(x) = 1 otherwise. Note that g is the majority vote taken over all A ∈ D
k.

That is, we have g(x) = 0 if and only if most of the A ∈ D
k ‘believe’ that f(x) must

be zero. Therefore, for every x ∈ D we have P
A

d
∼ Uk

[VA(x) = g(x)] ≥ 1/2.

The proofs of Lemmas 5 and 6 below are very similar to the proofs of Lemma 3.3
and Claim 3.5 in Ron [6], respectively, thus we omit them.

Lemma 5. We have dist(f, g) ≤ 2εk.

Lemma 6. For every x ∈ D we have P
A

d
∼ Uk

[VA(x) 6= g(x)] ≤ 2εk.

Lemma 7. If 6εk + εk−1 < 1, then g is a linear function.

Proof. Assume that 6εk + εk−1 < 1 and let x, y ∈ D be arbitrary, and we show

g(x + y) = g(x) + g(y). For this, let A = (T1, T2, . . . , Tk−1, S)
d
∼ Uk, and let

B = (T1, T2, . . . , Tk−1, S + x). Note that B
d
∼ Uk. We show that with positive

probability (over the k-tuple A) all of the following four events happen:

g(x) =

k−1
∑

i=1

f(Ti) + f(S) + f

(

k−1
∑

i=1

Ti + S + x

)

(2)

g(y) =
k−1
∑

i=1

f(Ti) + f(S + x) + f

(

k−1
∑

i=1

Ti + S + x+ y

)

(3)

g(x+ y) =
k−1
∑

i=1

f(Ti) + f(S) + f

(

k−1
∑

i=1

Ti + S + x+ y

)

(4)

0 =

k−1
∑

i=1

f(Ti) + f(S + x) + f

(

k−1
∑

i=1

Ti + S + x

)

(5)

Equation (2) just means that g(x) = VA(x), which is wrong with probability at
most 2εk by Lemma 6. Equation (3) just means that g(y) = VB(y), which is wrong
with probability at most 2εk by Lemma 6. Equation (4) just means that g(x+ y) =
VA(x+y), which is wrong with probability at most 2εk by Lemma 6. Equation (5) is

wrong with probability exactly εk−1 by the definition of εk−1. As 6εk+εk−1 < 1, with
positive probability (where the probability is taken over the k-tuple A) all equations
(2)–(5) are true, hence there exist certain (t1, t2, . . . , tk−1, s) for which (2)–(5) are
true, which implies (by adding them up) that g(x) + g(y) + g(x+ y) = 0. ut

We now have all the ingredients to prove Lemma 4.

Proof (of Lemma 4). Let f : D → Z2 and k > 0. We need to show that (1) holds.
If max{εk(f), εk−1(f)} ≥ 1/7, then (1) obviously holds as dist(f, P) is bounded
by one for any function f and any property P . Therefore we may assume that
max{εk(f), εk−1(f)} < 1/7. Hence the function g is linear by Lemma 7. But then
by Lemma 5,

dist(f,Ln) ≤ dist(f, g) ≤ 2εk ≤ 7max{εk(f), εk−1(f)} ,

and this completes the proof. ut

6 Future Work

First of all, there is a additive (respectively, multiplicative) gap of O(1/ε) in Theo-
rem 1 (respectively, Theorem 2) and closing these gaps is left as an open problem. It
would be interesting to extend the upper bounds in Theorems 1 and 2 to arbitrary
underlying distributions, instead of just the uniform distribution. My conjecture
is that both theorems are true for any distribution. Notice that the lower bounds
extend automatically.

Another possible direction is to extend the domain and range. For any two groups
G and H , one can define the property of ‘being linear’ for functions from G to H , and
indeed the standard property testing result, Theorem 3, works in this general setting.
It would be interesting to extend Theorems 1 and 2 to arbitrary groups, instead of
just Z

n
2 and Z2. Although in property testing settings the query complexity seems

to be the important parameter, it would also be interesting to investigate time
complexities of Algorithms 2 and 3.

References

1. M.-F. Balcan, E. Blais, A. Blum, L. Yung. Active property testing. In Proceedings of
FOCS 2012 (available on arXiv:1111.0897).

2. M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing over
characteristic two. IEEE Transactions on Information Theory, 42(6):1781–1795, 1996.

3. M. Blum, M. Luby, and R. Rubinfield. Self-testing/correcting with applications to
numerical problems. Journal of the ACM, 47:549–595, 1993.

4. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learn-
ing and approximation. Journal of the ACM, 45(4):653–750, 1998.

5. M. Kearns and D. Ron. Testing problems with sub-learning complexity. Journal of

Computer and System Sciences, 61(3):428–456, 2000.
6. D. Ron. Property testing: a learning theory perspective. Foundations and trends in

machine learning, Vol. 1, No. 3 (2008), pp. 307–402.
7. R. Rubinfield and M. Sudan. Robust characterization of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

