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Complexity analysis in computer science examines worst-case scenarios. If
an algorithm solves a problem, are there instances of the problem space that
require the algorithm to consume an extraordinary amount of resources before
outputting their solutions?

This work deals with the open question about how to de�ne learning
paradigms in order to best analyze the complexity of learning algorithms, in
the particular case of algorithms that aim at learning formal languages. For
reasons that are mostly due to the type of models infered, the formalization of
identi�cation in the limit [3] is often used in this �eld. Several re�nements of
Gold's �rst formalization have been de�ned with the aim to introduce e�ciency
bounds to strengthen learning results obtained in this identi�cation in the limit
framework. A widely used one is named identi�cation with polynomial time and
data [2], where the algorithm updates its hypothesis in a time polynomial in the
size of the available data, and is required to admit a characteristic sample whose
size is polynomial in the size of the learning target. (A sample S is characteristic
if the algorithm is ensured to converge to a representation of the learning target
on any sample containing S).

However, there exist classes of languages identi�able in the limit by algo-
rithms which return representations that are exponentially smaller than their
characteristic samples. There is an intuition that these algorithms, by �nding
correct, compact representations of observed data are doing something right,
and that a de�nition of the complexity of learning algorithms should view such
algorithms favorably.

This work proposes a modi�ed paradigm. We de�ne structurally complete

sets and instead consider the property that a characteristic sample of a lan-
guage L be polynomial in the size of a minimal structurally complete set for L.
While the previous re�nement is not centered on the target language but on its
selected representation, which is an important shift in perspective, this new for-
malization focuses the attention on the strings you can obtain using the target
representation.

Formally, the newly designed paradigm is de�ned as follows:

De�nition (Polynomial Structurally Complete Identi�cation). A class
L of languages is identi�able in polynomial time and structurally complete data

for a class R of representations if and only if there exist an algorithm A and two
polynomials p() and q() such that:



1. Given a sample S for L ∈ L of size m, A returns a hypothesis H ∈ R in
O(p(m)) time ;

2. For each representation R of a language L ∈ L, there exists a characteristic

sample CS whose size is in O(q(k)), where k is the size of the smallest
structurally complete set for R.

Where a characteristic sample is a set of data such that on any sample that
contains it, the algorithm outputs an hypothesis that is correct. The notion of
structurally complete set is the following:

De�nition (Structually Complete Set). Given a generative grammar G, a
structurally complete set (SCS) for G is a set of data SC such that for each
production α → β, there exists an element x ∈ SC, an element γ ∈ I and two
elements η, τ ∈ (Σ ∪N)∗ such that γ ⇒∗ ηατ ⇒ ηβτ ⇒∗ x.

Where a generative grammar is a device de�ned by a tuple < Σ,N,P, I > where
Σ is the alphabet of the language, N is a set of variables usually called non-
terminals, P ⊂ (N ∪Σ)∗× (N ∪Σ)∗ is the set of generative rules, I is the �nite
set of axioms, which are elements of (Σ ∪N)∗. The language it represents is the
strings over Σ that can be derived from an element of I using the rules of P (⇒
is the derivation relation, and ⇒∗ its symetric and transitive closure).

We conjecture that most algorithms whose characteristic sample is known
to be polynomial in the size of the target representation will also admit a char-
acteristic sample polynomial in the size of the smallest structurally complete
set. This is the case for instance for the well-known RPNI algorithm [4] that
learns regular languages from positive and negative examples. Moreover, some
algorithms whose characteristic sample are not polynomial in the size of the
grammar can admit a characteristic sample that is polynomial in the size of the
smallest structurally complete set. This is the case for instance of the algorithm
SGL that learns the substitutable context-free languages [1].
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