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Motivation I

The similarity between objects is a fundamental notion in everyday
life. It is also fundamental to many data mining and machine learning
algorithms, especially clustering algorithms. Most often the similarity
between objects is measured by a domain-specific distance measure
based on features of the objects.

For example, the distance between pieces of music can be measured
using features like rhythm, pitch, or melody, that is, features that do
not make sense in any other domain. Such methods need special
knowledge about the application domain for extracting the relevant
features beforehand.
This is not only difficult, it also runs the risk of being biased. Another
consequence is that data mining algorithms tend to have many
parameters by which the algorithm’s sensitivity to certain features can
be controlled, or, put differently, must be tuned.
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Motivation II

As a radically different approach, the paradigm of parameter-free data
mining has emerged.

Its main characteristic is that the algorithms have no parameters and
that essentially the same algorithm can be applied in all areas. The
most promising approach to this paradigm uses Kolmogorov
complexity theory as its basis. In the past decade, various researchers
developed the so-called normalized information distance (NID) in a
series of steps. We follow Vitányi, Balbach, Cilibrasi and Li to
explain these steps.
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The Normalized Information Distance I

In the following we consider binary strings x ∈ {0, 1}∗ and use λ for
the empty string. We totally order all binary strings according to their
length and within the same length lexicographically.
We write `(x) to denote the length of x, thus `(x) = blog(x+ 1)c.
For any string x we denote by x the string x = 1`(x)0x, called the
self-delimiting encoding of x. The set {x | x ∈ {0, 1}∗} then is a prefix
set, that is, no element of it is prefix of another element. Prefix sets
have an important property, namely they satisfy the Kraft inequality,
i.e., ∑

x∈S
2−`(x) 6 1 , for any prefix set S ⊆ {0, 1}∗ .
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The Normalized Information Distance II

Partial functions whose domain is a prefix set are called prefix
functions. They are important for defining Kolmogorov complexity.
Defining a pairing function 〈x,y〉 = xy and extending it in the usual
way to n-tuples, it suffices to consider functions of one argument.

Consider a function ϕ and two strings p and x such that ϕ(p) = x.
We interpret p as a description of x by means of the description
language ϕ. The length of a shortest description p is called the
complexity of the string x with respect to ϕ.

Definition

Let ϕ be a partial recursive function. The conditional complexity
(with respect to ϕ) of x given y is defined by

Cϕ(x|y) = min{`(p) | ϕ(y,p) = x} ,

and the unconditional complexity of x by Cϕ(x) = Cϕ(x|λ).

The Normalized Information Distance and its Applications Using Graph Cuts c©Thomas Zeugmann



Introduction The NID, NCD, and GD Clustering Theory Some Experiments with GD Missing Data Conclusions

The Normalized Information Distance II

Partial functions whose domain is a prefix set are called prefix
functions. They are important for defining Kolmogorov complexity.
Defining a pairing function 〈x,y〉 = xy and extending it in the usual
way to n-tuples, it suffices to consider functions of one argument.

Consider a function ϕ and two strings p and x such that ϕ(p) = x.
We interpret p as a description of x by means of the description
language ϕ. The length of a shortest description p is called the
complexity of the string x with respect to ϕ.

Definition

Let ϕ be a partial recursive function. The conditional complexity
(with respect to ϕ) of x given y is defined by

Cϕ(x|y) = min{`(p) | ϕ(y,p) = x} ,

and the unconditional complexity of x by Cϕ(x) = Cϕ(x|λ).

The Normalized Information Distance and its Applications Using Graph Cuts c©Thomas Zeugmann



Introduction The NID, NCD, and GD Clustering Theory Some Experiments with GD Missing Data Conclusions

The Normalized Information Distance II

Partial functions whose domain is a prefix set are called prefix
functions. They are important for defining Kolmogorov complexity.
Defining a pairing function 〈x,y〉 = xy and extending it in the usual
way to n-tuples, it suffices to consider functions of one argument.

Consider a function ϕ and two strings p and x such that ϕ(p) = x.
We interpret p as a description of x by means of the description
language ϕ. The length of a shortest description p is called the
complexity of the string x with respect to ϕ.

Definition

Let ϕ be a partial recursive function. The conditional complexity
(with respect to ϕ) of x given y is defined by

Cϕ(x|y) = min{`(p) | ϕ(y,p) = x} ,

and the unconditional complexity of x by Cϕ(x) = Cϕ(x|λ).

The Normalized Information Distance and its Applications Using Graph Cuts c©Thomas Zeugmann



Introduction The NID, NCD, and GD Clustering Theory Some Experiments with GD Missing Data Conclusions

The Normalized Information Distance III

Theorem

There is a partial recursive function ϕ0 such that for all partial
recursive functions ϕ there is a constant c with

Cϕ0(x|y) 6 Cϕ(x|y) + c for all x, y .

While simple and elegant, the notion of Cϕ0 has some oddities, e.g.,
Cϕ0(xy) is in general not upper-bounded by the sum of Cϕ0(x) and
Cϕ0(y). To overcome these oddities it is beneficial not to consider all
partial recursive functions but only the prefix functions.

Theorem

There is a partial recursive prefix function ψ0 such that for all partial
recursive prefix functions ψ there is a constant c with

Cψ0(x|y) 6 Cψ(x|y) + c for all x, y .
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The Normalized Information Distance IV

We write K(x|y) and K(x) instead of Cψ0(x|y) and Cψ0(x|λ),
respectively and refer to K as the Kolmogorov complexity.

Note that in contrast to Cϕ0 , all shortest programs that “occur” in K
constitute a prefix set. This implies that we can concatenate any such
two programs and still recognize them as two distinct programs. This
allows the construction of a program that simulates two other
programs and combines their output while being only a constant
number of bits larger than the concatenation of the original two
programs.
The following theorem summarizes major properties of K.
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The Normalized Information Distance V

Theorem

(1) K is not partial recursive.

(2) K(x) 6 `(x) + 2 log `(x) +O(1) for all x.

(3) K(x,y) 6 K(x) + K(y|x) +O(1) for all x, y.

(4) Up to an additional term of O(1): for all x, y

K(x,y) = K(x) + K(y|〈x,K(x)〉) = K(y) + K(x|〈y,K(y)〉)

(5) Up to an additional term of O(logK(xy)):

K(x,y) = K(x) + K(y|x) = K(y) + K(x|y) for all x, y .
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The Normalized Information Distance VI

All programs that can be identified as shortest ones by K form a prefix
set. By the Kraft inequality we then have∑

x

2−K(x) 6 1 .

So, we can regard the quantities 2−K(x) as quantities very similar to
probabilities.

Let us come back now to our goal to define minimal information
distance. This should be the length of the shortest program for a
universal computer to transform x into y and y into x. Note that we
cannot use K(y|x) itself, since K(λ|x) is small for all x but intuitively,
a random string is far from the empty string.
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The Normalized Information Distance VII

The asymmetry of the conditional complexity K(y|x) can be
overcome by using K(y|x) + K(x|y) but the resulting metric will
overestimate the information required to translate between x and y in
case there is some redundancy between the information required to
get x from y and from y to x. Thus, we define:

Definition

The max distance between x and y is E(x,y) = max{K(x|y), K(y|x)}.
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The Normalized Information Distance VIII

Note that E satisfies the density conditions, i.e.,∑
y : y6=x

2−E(x,y) 6 1 and
∑
x : x 6=y

2−E(x,y) 6 1 ;

(that means that there is at most a certain, finite number of objects y
at a distance d from x).
Moreover, E is upper semicomputable.
Furthermore, we define:

Definition

An admissible information distance is a total, possibly asymmetric,
nonnegative function on the pairs x, y of binary strings that is 0 if and
only if x = y, is upper semicomputable, and satisfies the density
requirement (1).
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The Normalized Information Distance IX

Theorem

The function E with E(x,y) = max{K(x|y), K(y|x)} is an admissible
information distance and a metric. It is minimal in the sense that for
every admissible information distance D we have
E(x,y) 6 D(x,y) +O(1).

The latter theorem shows that the information distance E is is
universal in that among all admissible distances it is always least. That
is, it accounts for the dominant feature in which two objects are alike.
For that reason E is also called the universal information distance.
Many admissible distances are absolute, but if we want to express
similarity, then we are more interested in relative ones. Thus, we have
to normalize the universal information distance E(x,y) to obtain a
universal similarity distance. It should give a value of 0 when objects
are maximally similar and distance 1 when they are maximally
dissimilar.
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The Normalized Information Distance X

Definition

The normalized information distance between two strings x and y is
defined as

NID(x,y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
.

Remarks: Dividing by max{K(x), K(y)} is not the most obvious idea
for normalizing E, but the more obvious ideas fail:

Divide by the length. Then no matter whether we divide by the
sum or maximum of the length, the triangle inequality is not
satisfied.
Divide by K(x,y). Then the distances will be 1/2 whenever x
and y satisfy K(x) ≈ K(y) ≈ K(x|y) ≈ K(y|x). But in this
situation, x and y are completely dissimilar, and we would
expect distance values of about 1.
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The NID and the NCD

Theorem (M. Li et al.)

The normalized information distance NID(x,y) takes values in the
range [0, 1] and is a metric, up to ignorable discrepancies.

Since the NID is defined via K, it is not computable. To apply this idea
to real-world data mining tasks, standard compression algorithms,
such as gzip, bzip2, or PPMZ, have been used as approximations
of K. This yields the normalized compression distance (NCD).

Definition

The normalized compression distance between two strings x and y is
defined as

NCD(x,y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
,

where C is any given data compressor.
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The NCD

Note that the compressor C has to be computable and normal in order
to make the NCD a useful approximation.

Definition

A compressor C is said to be normal if it satisfies the following
axioms for all strings x, y, z and the empty string λ.

(1) C(xx) = C(x) and C(λ) = 0; (identity)

(2) C(xy) > C(x); (monotonicity)

(3) C(xy) = C(yx); (symmetry)

(4) C(xy) + C(z) 6 C(xz) + C(yz); (distributivity)

up to an additive O(logn) term, with n the maximal binary length of
a string involved in the (in)equality concerned.
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Google Distance I

Given a collection of documents like the WWW, we define the
probability of a term or a tuple of terms by counting relative
frequencies. So, for a tuple of terms X = (x1, x2, . . . , xn), where each
term xi is an ASCII string, we set

pwww(X) = pwww(x1, x2, . . . , xn) = (1)

# web pages containing all x1, x2, . . . , xn
# relevant web pages

.

Conditional probabilities can be defined likewise as

pwww(Y|X) = pwww(Y�X)/pwww(X) ,

where X and Y are tuples of terms and � denotes the concatenation.
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Google Distance II (Example)

Let x be a string, e.g. x = “abnormal”.

p(x) =
# web pages containing x

# relevant web pages

What are the relevant web pages?

for Japanese

Conditional probabilities:

p(“axiom"|“abnormal") =
# “axiom” and “abnormal” and “the”

# “abnormal” and “the”
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Google Distance II (Example)

Let x be a string, e.g. x = “abnormal”.
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?

for English

Conditional probabilities:

p(“axiom"|“abnormal") =
# “axiom” and “abnormal” and “the”

# “abnormal” and “the”
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Google Distance III

Although the probabilities defined in this way do not satisfy the Kraft
inequality, we may still define complexities

Kwww(X) = − log
(
pwww(X)

)
and

Kwww(Y | X) = Kwww(Y�X) − Kwww(X) .

Then we use the NID in order to define the web distance of two
ASCII strings x and y,

dwww(x,y) =
Kwww(x�y) − min

{
Kwww(x),Kwww(y)

}
max

{
Kwww(x),Kwww(y)

} (2)

We call dwww the Google distance.
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Clustering I

Using the NCD or the Google distance results in computing a distance
matrix d(x,y)x,y∈X, where X = (x1, . . . , xn) is the relevant data list.
However, many widely used clustering programs work with
similarities, e.g., for spectral clustering one has to perform the
following steps:

distance similarity Laplacian spectrum clustering

For performing the step distance similarity we used a Gauss kernel

s(x,y) = e− 1
2σ2 ·d(x,y)2

The kernel has to be chosen appropriately and the clustering is quite
sensitive to this choice.
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Questions

It is therefore natural to ask:

Questions
Can we work directly with distances instead of using similarities?

What has to be changed to achieve this goal?
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Recalling What We have Done
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Normalized Min-cut

The resulting problem is called normalized min-cut and known
to be NP-hard.

Spectral clustering can be related to approximating the
normalized min-cut (cf. Yu and Shi (2003)).

Spectral clustering needs time O(n3).
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Looking at Distances
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Maximum-cut

The resulting problem is called maximum-cut and known to be
NP-hard.

We need a new approximation method (this is done below via
maximum-cut  IP  SDP.)

Semidefinite programming (abbr. SDP) needs time O(n3) if
there are two clusters, and O(n6) if there are k > 2 clusters.
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Spectral Clustering I

Observation: Spectral decomposition of a similarity matrix gives a
clustering!

Example: The matrix
1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

 has eigenvectors


0 1 −1 0 0
0 1 1 0 0
1 0 0 −1 1
1 0 0 −1 1
1 0 0 0 −2


and eigenvalues

(
3 2 0 0 0

)

Theory indicates that this works also with noise.

Theory indicates that one should normalize the matrix before spectral
analysis ⇒ Laplacian
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Spectral Clustering II

Algorithm Spectral clustering of a word list
Input: word list X = (x1, x2, . . . , xn), number of clusters k
Output: clustering c ∈ {1, . . . ,k}n

1. for x,y ∈ X, compute Google relative frequencies pwww(x),
pwww(x,y)

2. for x,y ∈ X, compute complexities Kwww(x), Kwww(x,y)

3. compute distance matrix D =
(
dwww(x,y)

)
x,y∈X

4. compute σ = mean(D)/
√

2

5. compute similarity matrix A =
(

exp(−1
2d

www(x,y)2/(2σ2))
)

6. compute Laplacian L = S− 1
2AS− 1

2 , where Sii =
∑
jAij and

Sij = 0 for i 6= j

7. compute top k eigenvectors V ∈ Rn×k

8. cluster V using kLines (Fischer and Poland (2004))
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Semidefinite Programming I

Given a weighted graph G = (V ,D) with vertices
V = {x1, . . . , xn} and edge weights D = {dij > 0 | 1 6 i, j 6 n}

which express pairwise distances, a k-way-cut is a partition of V
into k disjoint subsets S1, . . . ,Sk.

Here k is assumed to be given.

We define A(i, j) = 0 if
∃`[1 6 ` 6 k, 1 6 i, j 6 n and i, j ∈ S`] and A(i, j) = 1,
otherwise.

The weight of the cut (S1, . . . ,Sk) is defined as

n∑
i,j=1

dijA(i, j) .
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Semidefinite Programming II

The max-k-cut problem is the task of finding the partition that
maximizes the weight of the cut.
Let

Sd = {x ∈ Rd+1 | ‖x‖2 = 1}

be the d-dimensional unit sphere, and let a1, . . . ,ak ∈ Sk−2 be the
vertices of a regular simplex.
Then the inner product ai · aj = − 1

k−1 whenever i 6= j.

Hence,
finding the max-k-cut is equivalent to solving the following integer
program:

IP: maximize k−1
k

∑
i<j

dij(1 − yi · yj)

subject to yj ∈ {a1, . . . ,ak} for all 1 6 j 6 n.
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Semidefinite Programming III

Frieze and Jerrum (1997) propose the following semidefinite program
(SDP) in order to relax the integer program:

SDP : maximize k−1
k

∑
i<j

dij(1 − vi · vj)

subject to vj ∈ Sn−1 for all 1 6 j 6 n and

vi · vj > − 1
k−1 for all i 6= j (necessary if k > 3).

The constraints vi · vj > − 1
k−1 are necessary for k > 3 because

otherwise the SDP would prefer solutions where vi · vj = −1,
resulting in a larger value of the objective.
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Illustration
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Math-Med-Finance: an Example Data Set

axiom, average, coefficient, probability,

continuous, coordinate, cube, denominator,

disjoint, domain, exponent, function, histogram,

infinity, inverse, logarithm, permutation,

polyhedra, quadratic, random, cancer, abnormal,

abscess, bacillus, delirium, betablocker,

vasomotor, hypothalamic, cardiovascular,

chemotherapy, chromosomal, dermatitis, diagnosis,

endocrine, epilepsy, oestrogen, ophthalmic,

vaccination, traumatic, transplantation, nasdaq,

investor, obligation, benefit, bond, account,

clearing, currency, deposit, stock, market, option,

bankruptcy, creditor, assets, liability,

transactions, insolvent, accrual, unemployment
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Complexities for the Math-Med-Finance Data

Large complexities are white, small complexities black
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Distances for the Math-Med-Finance Data

The block structure is already visible.
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Similarities for the Math-Med-Finance Data

The block structure is again visible.
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Laplacian for the Math-Med-Finance Data

The block structure is clearly visible.
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Eigenvector Plot for the Math-Med-Finance Data

 0
first eigenvector of the Laplacian

-0.2
 0

 0.2
 0.4

second eigenvector of the Laplacian

 0
 0.2
 0.4

third eigenvector of the Laplacian

So, there is one error, i.e., “average” which assigned to the
financial terms instead of the mathematical terms.
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Kernel matrix after SDP for the Math-Med-Finance Data

The block structure is clearly visible, again “average” is in the
financial terms.
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Colors-Nums data set

purple,three,blue,red,eight,
transparent,black,white,small,six,
yellow,seven,fortytwo,five,
chartreuse,two,green,one,zero,orange,four

This data set is from Cilibrasi and Vitányi. “small” is supposed to
be a number and “transparent” a color.

Spectral clustering indicates that there are three clusters,
“fortytwo” forms a singleton group, and “white” and
“transparent” are misclustered as numbers.
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Colors-Nums with SDP

Clustering with SDP gives a slightly different result: Here, best
results are obtained with k = 2 clusters, in which case only
“fortytwo" is wrongly assigned to the colors.

So, SDP is clearly better here.
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People data set

Takemitsu,Stockhausen,Kagel,Xenakis,

Ligeti,Kurtag,Martinu,Berg,Britten,

Crumb,Penderecki,Bartok,Beethoven,

Mozart,Debussy,Hindemith,Ravel,

Schoenberg,Sibelius,Villa-Lobos,Cage,

Boulez,Kodaly,Prokofiev,Schubert,

Rembrandt,Rubens,Beckmann,Botero,Braque,

Chagall,Duchamp,Escher,Frankenthaler,

Giacometti,Hotere,Kirchner,Kandinsky,

Kollwitz,Klimt,Malevich,Modigliani,

Munch,Picasso,Rodin,Schlemmer,Tinguely,

Villafuerte,Vasarely,Warhol,Rowling,

Brown,Frey,Hosseini,McCullough,Friedman,

Warren,Paolini,Oz,Grisham,Osteen,

Gladwell,Trudeau,Levitt,Kidd,Haddon,

Brashares,Guiliano,Maguire,Sparks,
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People data set cont.

Roberts,Snicket,Lewis,Patterson,Kostova,

Pythagoras,Archimedes,Euclid,Thales,

Descartes,Pascal,Newton,Lagrange,Laplace,

Leibniz,Euler,Gauss,Hilbert,Galois,

Cauchy,Dedekind,Kantor,Poincare,Godel,

Ramanujan,Wiles,Riemann,Erdos,Thomas Zeugmann,Jan

Poland,Rolling,Stones,

Madonna,Elvis,Depeche,Mode,Pink,Floyd,

Elton,John,Beatles,Phil,Collins,

Toten,Hosen,McLachan,Prinzen,Aguilera,

Queen,Britney,Spears,Scorpions, Metallica,Blackmore,

Mercy

We have five groups of each 25 (more or less) famous people: composers,
artists, last year’s bestseller authors, mathematicians (including the authors
of the present paper), and pop music performers.
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Eigenvalue Plot for People data set

 0
 0.2
 0.4
 0.6
 0.8

 1
eigenvalues of the Laplacian: people

The eigenvalue plot shows clearly five clusters.
From the 125 names, 9 were not clustered into the intended groups using the
spectral method. The highest number of incorrectly clustered names (4
misclusterings) occurred in the least popular group of the mathematicians
(but our two names were correctly assigned).
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Spectral Clustering of People data set

We also observed that the spectral clustering gets disproportionately
harder when the number of clusters increases: Clustering only the first
50, 75, and 100 names gives 0, 2, and 5 clustering errors, respectively.

We also tried clustering the same data set w.r.t. the Japanese web sites
in the Google index, this gave 0, 1, 4, and 16 clustering errors for the
first 50, 75, 100, and 125 names, respectively.
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SDP Clustering of People data set

Clustering with SDP gives better results here: 0, 0, 1, and 4 clustering
errors for the first 50, 75, 100, and 125 names, respectively.

(
. .
^)
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Japanese Terms

The last data set consists of 20 Japanese terms from finance and 10
Japanese terms from computer science (taken from glossaries):

�<,ºÿ,¶m,�Ø,*¡,°�,Ñ),o�,Ç(,üe,¡?,
*¡,=-,8ú,�Ñ,ò
Ø,4»,AÕ',	¡<8,©ï,
Þï,;Ïæ�,;Ï'.,¢p,Ñ<,Âp,b�,Ö�,��,
�S.
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Eigenvalue Plot for Japanese Terms

 0
 0.2
 0.4
 0.6
 0.8

 1
eigenvalues of the Laplacian: Japanese

The eigenvalue plot does not clearly indicate the correct number of
k = 2 clusters.
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Results for Japanese Terms

When using k = 2, only the term “°�" (which means
“environment") is non-intendedly grouped with the computer science
words by the spectral clustering.

But look into GJITEN
Matches in English-main:
°�(K�M�F) (n) environment; circumstance; (P);
Matches in Computer-dict: °�(K�M�F) environment;
So, maybe our clustering is not wrong either!!

SDP clustering gives the same result here.
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Missing Distances (Math-Med-Finance Data)

The Normalized Information Distance and its Applications Using Graph Cuts c©Thomas Zeugmann



Introduction The NID, NCD, and GD Clustering Theory Some Experiments with GD Missing Data Conclusions

Missing Data: Mean Values Substituted
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Missing Data: Some Experiments
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Conclusions

Using the Google distance as approximation of the NID and
some state-of-the-art methods in machine learning, it was
possible to automatically separate lists of terms into clusters
which make sense. We obtained similar results for the NCD.
Our methods are theoretically quite well founded, basing on the
theories of Kolmogorov complexity on the one hand and graph
cut criteria and spectral clustering or semidefinite programming
on the other hand.
The SDP clustering is the more direct approach, as it needs less
steps. Also, it yields slightly better results. However, it is
computationally more expensive than spectral clustering. ⇒ Bad
if k > 4.
Both methods are much faster than the computationally
expensive phylogenetic trees used by Cilibrasi and Vitányi
(2006).
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Thank you!
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