
TCS -TR-A-04-01

TCS Technical Report

Combinatorial Item Set Analysis Based on

Zero-Suppressed BDDs

by

Shin-ichi Minato and Hiroki Arimura

Division of Computer Science

Report Series A

December 8, 2004

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs

Shin-ichi Minato
Division of Computer Science

Hokkaido University
North 14, West 9

Sapporo 060-0814, Japan

Hiroki Arimura
Division of Computer Science

Hokkaido University
North 14, West 9

Sapporo 060-0814, Japan

December, 8, 2004

(Abstract) Manipulation of large-scale combina-
torial data is one of the important fundamental
technique for web information retrieval, integra-
tion, and mining. In this paper, we propose a
new approach based on BDDs (Binary Decision Di-
agrams) for database analysis problems. BDDs are
graph-based representation of Boolean functions,
now widely used in system design and verification
area. Here we focus on Zero-suppressed BDDs (ZB-
DDs), a special type of BDDs, which are suitable
for handling large-scale sets of combinations. Us-
ing ZBDDs, we can implicitly enumerate combi-
natorial item set data and efficiently compute set
operations over the ZBDDs. We present some en-
couraging experimental results of frequent item set
mining problem for practical benchmark examples,
some of which have never been generated by previ-
ous method.

1 Introduction

Manipulation of large-scale combinatorial data is
one of the fundamental technique for web infor-
mation retrieval integration, and mining[16]. In
particular, frequent item set analysis is important
in many tasks that try to find interesting patterns
from web documents and databases, such as as-
sociation rules, correlations, sequences, episodes,
classifiers, and clusters. Since the introduction by
Agrawal et al.[2], the frequent item set and asso-
ciation rule analysis have been received much at-
tentions from many researchers, and a number of
papers have been published about the new algo-

rithms or improvements for solving such mining
problems[7, 9, 17].

In this paper, we propose a new approach based
on BDDs (Binary Decision Diagrams) for database
analysis problems. BDDs are graph-based repre-
sentation of Boolean functions, now widely used in
system design and verification area. Here we focus
on Zero-suppressed BDDs (ZBDDs), a special type
of BDDs, which are suitable for handling large-
scale sets of combinations. Using ZBDDs, we can
implicitly enumerate combinatorial item set data
and efficiently compute set operations over the ZB-
DDs.

For a related work, FP-Tree[9] is recently re-
ceived a great deal of attention because it supports
fast manipulation of large-scale item set data using
compact tree structure on the main memory. Our
ZBDD-based method is a similar approach to han-
dle sets of combinations on the main memory, but
will be more efficient in the following points:

• ZBDDs are a kind of DAGs for representing
item sets, while FP-Trees are tree representa-
tion for the same objects. In general, DAGs
can be more compact than trees.

• ZBDD-based method provides not only com-
pact data structures but also efficient item set
operations written in a simple mathematical
set algebra.

We present some encouraging experimental results
of frequent item set mining problem for practical
benchmark examples, some of which have never
been generated by previous method.

1

2 Shin-ichi Minato and Hiroki Arimura

Recently, the data mining methods are often dis-
cussed in the context of Inductive Databases[4, 12],
the integrated processes of knowledge discovery. In
this paper, we place the ZBDD-based method as a
basis of integrated discovery processes to efficiently
execute various operations finding interest patterns
and analyzing information involved in large-scale
combinatorial item set databases.

2 BDDs and ZBDDs

2.1 BDDs

BDD is a directed graph representation of the
Boolean function, as illustrated in Fig. 1(a). It
is derived by reducing a binary tree graph repre-
senting recursive Shannon’s expansion, indicated in
Fig. 1(b). The following reduction rules yield a
Reduced Ordered BDD (ROBDD), which can effi-
ciently represent the Boolean function. (see [5] for
details.)

• Delete all redundant nodes whose two edges
point to the same node. (Fig. 2(a))

• Share all equivalent sub-graphs. (Fig. 2(b))

ROBDDs provide canonical forms for Boolean
functions when the variable order is fixed. Most
research on BDDs are based on the above reduc-
tion rules. In the following sections, ROBDDs will
be referred to as BDDs (or ordinary BDDs) for the
sake of simplification.

As shown in Fig. 3, a set of multiple BDDs can
be shared each other under the same fixed variable
ordering. In this way, we can handle a number of
Boolean functions simultaneously in a monolithic
memory space.

Using BDDs, we can uniquely and compactly
represent many practical Boolean functions includ-
ing AND, OR, parity, and arithmetic adder func-
tions. Using Bryant’s algorithm[5], we can effi-
ciently construct a BDD for the result of a binary
logic operation (i.e. AND, OR, XOR), for given a
pair of operand BDDs. This algorithm is based on
hash table techniques, and the computation time

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.

Figure 1: BDD and binary tree for F = (a∧ b)∨ c.

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Figure 2: Reduction rules of ordinary BDDs

is almost linear to the data size unless the data
overflows the main memory. (see [14] for details.)

Based on these techniques, a number of BDD
packages have been developed in 1990’s and widely
used for large-scale Boolean function manipulation,
especially popular in VLSI CAD area.

2.2 Sets of Combinations and ZBDDs

BDDs are originally developed for handling
Boolean function data, however, they can also be
used for implicit representation of sets of combina-
tions. Here we call “sets of combinations” for a set
of elements each of which is a combination out of
n items. This data model often appears in real-
life problems, such as combinations of switching
devices(ON/OFF), fault combinations, and sets of
paths in the networks.

A combination of n items can be represented by
an n-bit binary vector, (x1x2 . . . xn), where each
bit, xk ∈ {1, 0}, expresses whether or not the item
is included in the combination. A set of combina-
tions can be represented by a list of the combina-

Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs 3

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a ⊕ b
F3 = b
F4 = a ∨ b

Figure 3: Shared multiple BDDs.

0

0

x
1

Jump

f f

Figure 4: ZBDD reduction rule.

tion vectors. In other words, a set of combinations
is a subset of the power set of n items.

A set of combinations can be mapped into
Boolean space by using n-input variables for each
bit of the combination vector. If we choose any one
combination vector, a Boolean function determines
whether the combination is included in the set of
combinations. Such Boolean functions are called
characteristic functions. The set operations such
as union, intersection, and difference can be per-
formed by logic operations on characteristic func-
tions.

By using BDDs for characteristic functions, we
can manipulate sets of combinations efficiently.
They can be generated and manipulated within a
time roughly proportional to the BDD size. When
we handle many combinations including similar
patterns (sub-combinations), BDDs are greatly re-
duced by node sharing effect, and sometimes an
exponential reduction benefit can be obtained.

Zero-suppressed BDD (ZBDD)[13, 15] is
a special type of BDDs for efficient manipulation
of sets of combinations. ZBDDs are based on the
following special reduction rules.

S(abc):
abc S
000 0
100 1
010 1
110 0
001 0
101 0
011 0
111 0

S(abcd):
abcd S
0000 0
1000 1
0100 1
1100 0
0010 0
1010 0
0110 0
1110 0
0001 0
1001 0
0101 0
1101 0
0011 0
1011 0
0111 0
1111 0

0 1

a a

b

c

d

11

1

1

0

0

0

0
b bb

c
1

1

1
1

1

0

00

00

S(abcd)
S(abc)

S(abc)
S(abcd)

0 1

a

b
1

1

0

0

BDD ZBDD

Figure 5: Example of ZBDD effect.

Figure 6: Explicit representation by ZBDD.

• Delete all nodes whose 1-edge directly points
to the 0-terminal node, and jump through to
the 0-edge’s destination, as shown in Fig. 4.

• Share equivalent nodes as well as ordinary
BDDs.

Notice that we do not delete the nodes whose two
edges point to the same node, which used to be
deleted by the original rule. The zero-suppressed
deletion rule is asymmetric for the two edges, as
we do not delete the nodes whose 0-edge points
to a terminal node. It is proved that ZBDDs are
also gives canonical forms as well as ordinary BDDs
under a fixed variable ordering.

Here we summarise the features of ZBDDs.

• In ZBDDs, the nodes of irrelevant items (never
chosen in any combination) are automatically

4 Shin-ichi Minato and Hiroki Arimura

deleted by ZBDD reduction rule. In ordi-
nary BDDs, irrelevant nodes still remain and
they may spoil the reduction benefit of sharing
nodes. (An example is shown in Fig. 5.)

• ZBDDs are especially effective for represent-
ing sparse combinations. For instance, sets of
combinations selecting 10 out of 1000 items
can be represented by ZBDDs up to 100 times
more compact than ordinary BDDs.

• Each path from the root node to the 1-terminal
node corresponds to each combination in the
set. Namely, the number of such paths in the
ZBDD equals to the number of combinations
in the set. In ordinary BDDs, this property
does not always hold.

• When no equivalent nodes exist in a ZBDD,
that is the worst case, the ZBDD structure
explicitly stores all items in all combinations,
as well as using an explicit linear linked list
data structure. An example is shown in Fig. 6.
Namely, (the order of) ZBDD size never ex-
ceeds the explicit representation. If more
nodes are shared, the ZBDD is more com-
pact than linear list. Ordinary BDDs have
larger overhead to represent sparser combina-
tions while ZBDDs have no such overhead.

Table 1 shows the most of primitive operations
of ZBDDs. In these operations, ∅, 1, P.top are exe-
cuted in a constant time, and the others are almost
linear to the size of graph. We can describe various
processing on sets of combinations by composing of
these primitive operations.

3 ZBDD-based Database Analy-
sis

In this section, we discuss the method of manipu-
lating large-scale item set databases using ZBDDs.
Here we consider binary item set databases, each
record of which holds a combination of items cho-
sen from a given item list. Such a combination is
called a tuple (or a transaction).

For analyzing those large-scale tuple databases
efficiently, basic problems of data mining, such as

Table 1: Primitive ZBDD operations
“∅” Returns empty set. (0-termial

node)

“1” Returns the set of only null-
combination. (1-terminal node)

P .top Returns the item-ID at the root
node of P .

P .offset(v) Selects the subset of combinations
each of which does not include item
v.

P .onset(v) Selects the subset of combinations
including item v, and then delete v
from each combination.

P .change(v) Inverts existence of v (add / delete)
on each combination.

P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but

not in Q.)

P .count Counts number of combinations.

Table 2: Statistics of typical benchmark data.

Data name #I #T avg|T | avg|T |/#I
T40I10D100K 942 100,000 39 4.14%
mushroom 119 8,124 23 19.32%
BMS-WebView-1 497 59,602 2 0.40%
basket 13,103 41,373 9 0.06%

frequent item set mining[3] and maximum frequent
item set mining[6], are very important and they
have been discussed actively in last decade. Re-
cently, graph-based methods, such as FP-Tree[9],
are received a great deal of attention, since they
can quickly manipulate large-scale tuple data by
constructing compact graph structure on the main
memory. ZBDD technique is a similar approach to
handle sets of combinations on the main memory,
so we hope to apply ZBDD-based method effec-
tively in this area.

Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs 5

Figure 7: ZBDD vector for tuple-histogram.

3.1 Property of Practical Databases

Table 2 shows the basic statistics of typical bench-
mark data[7] often used for data mining/analysis
problems. #I shows the number of items used in
the data, #T is the number of tuples included in
the data, avg|T | is the average number of items per
tuple, and avg|T |/#I is the average appearance ra-
tio of each item. From this table, we can observe
that the item’s appearance ratio is very small in
many cases. This is reasonable as considering real-
life problems, for example, the number of items in a
basket purchased by one customer is usually much
less than all the items displayed in a shop. For an-
other example, the number of links from one web
page is much less than all the web pages in the net-
work. This observation means that we often handle
very sparse combinations in many practical data
mining/analysis problems, and in such cases, the
ZBDD reduction rule is extremely effective. If the
average appearance ratio of each item is 1%, ZB-
DDs may be more compact than ordinary BDDs
up to 100 times. In the literature, there is a first
report by Jiang et al.[10] applying BDDs to data
mining problems, but the result seems not excellent
due to the overhead of ordinary BDDs. We must
use ZBDDs in stead of ordinary BDDs for success
in many practical data mining/analysis problems.

3.2 Tuple-Histograms based on ZBDDs

A Tuple-histogram is the table for counting the
number of appearance of each tuple in the given
database. In practical databases, the same tuple
often appears many times. For example, ”BMS-

WebView-1” in Table 2 includes 59,602 records,
and the most frequent tuple appears 1,533 times
in the records. The top 10 frequent tuples appears
8,404 times in total. (Shares 14% in the records.)

Here we present a method of representing tuple-
histograms by using ZBDDs. Since ZBDDs are
representation of sets of combinations, a simple
ZBDD distinguishes only existence of each tuple in
the databases. In order to represent the numbers
of tuple’s appearances, we decompose the number
into m-digits of ZBDD vector {F0, F1, . . . , Fm−1}
to represent integers up to (2m − 1), as shown in
Fig. 7. Namely, we encode the appearance num-
bers into binary digital code, as F0 represents a set
of tuples appearing odd times (LSB = 1), F1 rep-
resents a set of tuples whose appearance number’s
second lowest bit is 1, and similar way we define
the set of each digit up to Fm−1.

In the example of Fig. 7, The tuple frequen-
cies are decomposed as: F0 = {abc, ab, c}, F1 =
{ab, bc}, F2 = {abc}, and then each digit can be
represented by a simple ZBDD. The three ZBDDs
are shared their sub-graphs each other.

Now we explain the procedure for construct-
ing a ZBDD-based tuple-histgram from given tuple
database. We read a tuple data one by one from
the database, and accumulate the single tuple data
to the histogram. More concretely, we generate a
ZBDD of T for a single tuple picked up from the
database, and accumulate it to the ZBDD vector.
The ZBDD of T can be obtained by starting from
“1” (a null-combination), and applying “Change”
operations several times to join the items in the
tuple. Next, we compare T and F0, and if they
have no common parts, we just add T to F0. If
F0 already contains T , we eliminate T from F0 and
carry up T to F1. This ripple carry procedure con-
tinues until T and Fk have no common part. Af-
ter finishing accumulations for all data records, the
tuple-histogram is completed.

Using the notation F.add(T) for addition of a
tuple T to the ZBDD vector F , we describe the pro-
cedure of generating tuple-histogram FT for given
database D.

FT = 0
forall T ∈ D do

6 Shin-ichi Minato and Hiroki Arimura

Figure 8: Tuple-histogram to pattern-histogram.

FT = FT .add(T)
return FT

When we construct a ZBDD vector of tuple-
histogram, the number of ZBDD nodes in each
digit is bounded by total appearance of items in
all tuples. If there are many partially similar tu-
ples in the database, the sub-graphs of ZBDDs are
shared very well, and compact representation is ob-
tained. The bit-width of ZBDD vector is bounded
by log Smax, where Smax is the appearance of most
frequent items.

Once we have generated a ZBDD-based tuple-
histogram, it is easy to extract the set of frequent
tuples which appears more than α times. By en-
coding the given threshold α into binary code, we
can compose an algorithm of bit-wise arithmetic
comparison between α and FT based on ZBDD op-
erations. After execution of those ZBDD opera-
tions, the result of frequent tuples can be obtained
as a ZBDD. The computation time is almost linear
to total ZBDD size.

3.3 Pattern-Histograms based on ZB-
DDs

In this paper, a pattern means a subset of items
included in a tuple. A pattern-histogram is the ta-
ble for counting the number of appearance of each
patterns in any tuple in the given database. An
example is shown in Fig. 8.

In general, a tuple of k items includes 2k pat-
terns, so computing a pattern-histogram is much
harder than computing a tuple-histogram. In many

Figure 9: ZBDDs for a tuple and all sub-patterns

cases, it is difficult to generate a complete pattern-
histogram for a practical size of tuple database.
Therefore, conventional methods extract only fre-
quent patterns which appears more than α-times,
for a given thresholds α, within a feasible compu-
tation time and space[7].

Using the ZBDD-based data structure, we may
have more compact representation than previ-
ous methods, as a number of similar patterns
can be shared in ZBDDs, and in some cases,
this makes possible to generate complete pattern-
histograms which have never succeeded in pre-
vious methods. Figure 9 shows a ZBDD for
a tuple T = abcde with five items and a
ZBDD representing a set of all 32 patterns P =
{1, a, b, c, d, e, ab, ac, bc, cd, abc, . . . , abcde} included
in T . Clearly we can see that 2k patterns in a k-
item tuple can be represented by only k nodes of
ZBDDs. As well as generating tuple-histograms,
we can generate pattern-histograms by accumulat-
ing such a single ZBDD P for a set of patterns
one by one, Here we summarise the procedure for
computing a pattern-histogram FP from a given
database D as follows.

FP = 0
forall T ∈ D do

P = T

forall v ∈ T do
P = P ∪ P.onset(v)

FP = FP .add(P)
return FP

Unfortunately, ZBDDs grows larger as repeat-
ing accumulations, and eventually may overflow

Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs 7

the memory for some large examples. While tuple-
histgrams are bounded by the total items in the
tuples, pattern-histograms are not bounded and so
many patterns will be generated.

However, if we have succeeded in generating
a ZBDD-based pattern-histogram for a given in-
stance, we can enjoy very powerful data processing
by using efficient ZBDD operations. It is interest-
ing and important how large-scale instances we can
generate complete pattern-histograms. The exper-
imental results will be shown in later section.

In addition, we present an alternative procedure
for generating ZBDD-based pattern-histograms.
We can generate a pattern-histgram FP from a
complete tuple-histogram FT .

FP = FT

forall v ∈ FT do:
FP = FP .add(FP .onset(v))

return FP

We have not determined which algorithm is faster
in practical environments. Anyway, the final form
of ZBDD vectors must be the same if the two algo-
rithms are computing for the same instance.

3.4 Utilities of Tuple/Pattern-
Histograms

Once we generate tuple-/pattern-histograms us-
ing ZBDDs, various operations can be executed
efficiently. We show several examples in this
section. Suppose that we have obtained F :
{F0, F1, . . . , Fm−1}, the ZBDD vector representing
a tuple- or pattern-histogram.

• We can efficiently extract a subset of tu-
ples/patterns including a given item or sub-
pattern P .

S =
⋃

Fk

forall v ∈ P do:
S = S.onset(v).change(v)

return S

Inversely, we can extract a subset of tu-
ples/patterns not satisfying the given condi-
tions. It is easily done by computing

⋃
Fk−S.

Table 3: Generation of tuple-histograms.

Data name #T total|T | |ZBDD| Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
T40I10D100K 100,000 3,960,507 3,396,395 895.0
chess 3,196 118,252 40,028 1.4
connect 67,557 2,904,951 309,075 58.1
mushroom 8,124 186,852 8,006 1.5
pumsb 49,046 3,629,404 1,750,883 188.5
pumsb star 49,046 2,475,947 1,324,502 123.6
BMS-POS 515,597 3,367,020 1,350,970 895.0
BMS-WebView-1 59,602 149,639 46,148 18.3
BMS-WebView-2 77,512 358,278 198,471 138.0
accidents 340,183 11,500,870 3,877,333 107.0

After extracting a subset, we can quickly count
a number of tuples/patterns by using a prim-
itive ZBDD operation S.count. The compu-
tation time is linearly bounded by ZBDD size,
not depending on the amount of tuple/pattern
counts.

• For given α, we can extract all frequent tu-
ples/patterns appearing more than α times.
Computation time is almost linear to the
ZBDD size. Repeating this procedure with dif-
ferent α’s, we can determine the threshold αm

to pick up the top m frequent tuples/patterns.
After generating ZBDD-based histograms, it is
quite easy to extract frequent sets with differ-
ent α’s, while previous methods need almost
recomputing again for each α.

• From ZBDD-based histograms, we can effi-
ciently calculate indexes, such as Support and
Confidence, which are often used in proba-
bilistic/statistic analysis and machine learning
area.

A feature of ZBDD-based method is to construct
powerful data structure on the main memory, and
we can interactively execute various queries to the
database. Moreover, it is very interesting that the
queries can be specified by mathematical set oper-
ations.

8 Shin-ichi Minato and Hiroki Arimura

Table 4: Pattern-histogram for “mushroom”.

ZBDD nodes Time(s) #Pattern
513,762 214.0 (> 2G)

Table 5: FP-Tree-based method for “mushroom”.

Threshold α Time(s) #Pattern
81 22.60 91,273,269
40 67.96 295,117,613
16 244.06 1,176,182,553
8 494.05 1,983,493,667
4 891.31 (> 2G)
1 1,322.48 (> 2G)

4 Experimental Results

For evaluation of our method, we conducted
experiments to construct ZBDD-based tuple-
and pattern-histograms for typical benchmark
examples[8] used in data mining/analysis prob-
lems.

We used a Pentium-4 PC, 800MHz, 512MB of
main memory, with SuSE Linux 9. We can deal
with up to 10,000,000 nodes of ZBDDs in this
machine. Table 3 shows the results of generat-
ing tuple-histograms. In this table, #T shows the
number of tuples, total|T | is the total of tuple sizes
(total appearances of items), and |ZBDD| is the
number of ZBDD nodes for the tuple-histograms.
We can see that tuple-histograms can be con-
structed for all instances in a feasible time and
space. The ZBDD sizes are almost same or less
than total|T |.

On the other hand, we succeeded in construct-
ing the complete pattern-histogram within a given
memory space, only for “mushroom”, which is a rel-
atively small instance (Table 4). In this case, the
pattern-histogram requires about 65 times more
ZBDD nodes than the tuple-histogram for the same
data. In other words, if the tuple-histogram can be
generated in a space tens or more times smaller
than main memory size, it may be possible to gen-
erate a complete pattern-histogram in the main
memory.

The “mushroom” pattern-histogram is implic-
itly representing at least 2,000,000,000 patterns.
(The counter overflows the range of 32-bit inte-
gers.) The number of ZBDD nodes are 4,000 times
smaller than number of patterns. This shows a
great benefit of compression ratio obtained by ZB-
DDs.

To compare with a previous method, we applied
a frequent pattern mining program based on FP-
Tree[9], to extract the set of frequent patterns ap-
pearing more than α times, for the same exam-
ple “mushroom”. The results are shown in Ta-
ble 5. For smaller α’s, more patterns are extract,
and the computation time increases up to hun-
dreds or thousands of seconds. Notice that the
FP-Tree-based method only extracts a set of fre-
quent patterns for a given α, but does not gener-
ates a complete histogram for all possible patterns.
Our ZBDD-based method generates a complete his-
togram for all patterns in 214 seconds, and it cor-
responds to computing frequent pattern sets for all
α’s at once. Consequently, ZBDD-based method
is especially effective for handling the sets of huge
number of patterns.

5 Conclusion

In this paper, we presented a new method of us-
ing ZBDDs for database analysis problems. Our
work is just starting now, and we have many future
works to be considered, such as ZBDD variable or-
dering problem for reducing graph size, and more
efficient implementation of ZBDD set operations.

We expect that it would be too memory-
consuming to construct ZBDDs of the complete
pattern-histograms for the large-scale benchmarks,
besides “mushroom”. However, hopefully we will
be able to handle those practical size of databases
by using well-known improvement techniques, such
as preprocessing of pruning not frequent items
and patterns, or handling only maximum item set
data[6], etc. ZBDD-based method will be useful
as a fundamental techniques for various processing
of database analysis, and will be utilized for web
information retrieval and integration.

Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs 9

Acknowledgment

This research is partially supported by Grant-in-
Aid from Ministry of Education, Culture, Sports,
Science and Technology Japan.

References

[1] Akers, S. B., Binary decision diagrams, IEEE
Trans. Comput., C-27, 6 (1978), 509–516.

[2] R. Agrawal, T. Imielinski, and A. N. Swami, Min-
ing Association rules between sets of items in large
databases, In P. Buneman and S. Jajodia, edtors,
Proc. of the 1993 ACM SIGMOD International
Conference on Management of Data, Vol. 22(2) of
SIGMOD Record, pp. 207–216, ACM Press, 1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen
and A. I. Verkamo, Fast Discovery of Association
Rules, In Advances in Knowledge Discovery and
Data Mining, MIT Press, 307–328, 1996.

[4] J.-F. Boulicaut, Proc. 2nd International Workshop
on Knowledge Discovery in Inductive Databases
(KDID’03), Cavtat-Dubrovnik, 2003.

[5] Bryant, R. E., Graph-based algorithms for Boolean
function manipulation, IEEE Trans. Comput., C-
35, 8 (1986), 677–691.

[6] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A
Maximal Frequent Itemset Algorithm for Transac-
tional Databases, In Proc. ICDE 2001, 443–452,
2001.

[7] B. Goethals, “Survey on Frequent Pattern Min-
ing”, Manuscript, 2003.
http://www.cs.helsinki.fi/u/goethals/
publications/survey.ps

[8] B. Goethals, M. Javeed Zaki (Eds.), Frequent
Itemset Mining Dataset Repository, Frequent
Itemset Mining Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/data/

[9] J. Han, J. Pei, Y. Yin, R. Mao, Mining Fre-
quent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach, Data Mining
and Knowledge Discovery, 8(1), 53–87, 2004.

[10] L. Jiang, M. Inaba, and H. Imai: A BDD-based
Method for Mining Association Rules, in Proceed-
ings of 55th National Convention of IPSJ, Vol. 3,
pp. 397-398, Sept. 1997, IPSJ.

[11] Lee, C. Y., Representation of switching circuits by
binary-decision programs, Bell Sys. Tech. Jour., 38
(1959), 985–999.

[12] H. Mannila, H. Toivonen, Multiple Uses of Fre-
quent Sets and Condensed Representations, In
Proc. KDD, 189–194, 1996.

[13] S. Minato: Zero-suppressed BDDs for set manip-
ulation in combinatorial problems, In Proc. 30th
ACM/IEEE Design Automation Conf. (DAC-93),
(1993), 272–277.

[14] S. Minato: “Binary Decision Diagrams and Appli-
cations for VLSI CAD”, Kluwer Academic Pub-
lishers, November 1996.

[15] S. Minato, Zero-suppressed BDDs and Their Ap-
plications, International Journal on Software Tools
for Technology Transfer (STTT), Springer, Vol. 3,
No. 2, pp. 156–170, May 2001.

[16] Ricardo Baeza-Yates, Berthier Ribiero-Neto,
“Modern Information Retrieval”, Addison Wesley,
1999.

[17] M. J. Zaki, Scalable Algorithms for Association
Mining, IEEE Trans. Knowl. Data Eng. 12(2),
372–390, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 841.890]
>> setpagedevice

