
TCS -TR-A-05-02

TCS Technical Report

Reputation Extraction Using Both Structural and

Content Information

by

H. Hasegawa, M. Kudo and A. Nakamura

Division of Computer Science

Report Series A

February 17, 2005

Hokkaido University
Graduate School of

Information Science and Technology

Email: atsu@ist.hokudai.ac.jp Phone: +81-011-706-6806
Fax: +81-011-706-7832

Reputation Extraction Using Both Structural and Content
Information

Hiroyuki Hasegawa
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

hase@main.ist.hokudai.ac.jp

Mineichi Kudo
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

mine@main.ist.hokudai.ac.jp

Atsuyoshi Nakamura
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

atsu@main.ist.hokudai.ac.jp

Abstract

We propose a new method of extracting texts related
to a given keyword from Web pages collected by a
search engine. By combining structural pattern match-
ing and text classification, texts related to a given key-
word such as reputations of a given restaurant can be
extracted automatically from Web pages in unfixed
sites, which is impossible by conventional wrappers.
According to our cross validation results on extracting
reputations of a given Ramen shop from Web pages
collected by a search engine, our method achieved
79.3% precision and 56.6% recall by allowing accept-
able errors.

1. INTRODUCTION

What do you use to get information when you want to find

a nice restaurant that serves a certain kind of dishes? Today,

many people will answer that they use WWW (World Wide

Web). Actually, you may find a restaurant easily through

WWW, but it is difficult to judge whether the found restau-

rant really suits your taste. Maybe, most people try to judge

based on its reputations, which are also found in WWW.

Though there are restaurant-evaluation sites in which you

can find a lot of reputations on restaurants, you cannot ob-

tain enough reputations from one such site for minor restau-

rants. Then, you have to collect their reputations from sev-

eral sites until enough information is obtained. But this is

not an easy task because not all pages that contain a restau-

rant name contain its reputation, and even such pages that

contain a reputation of a target restaurant may be very large

pages with a lot of irrelevant information including informa-

tion of other restaurants.

.

The problem we address in this paper is extraction of

texts that have a certain relation with a given keyword from

all Web pages that contain the keyword. Given a restau-

rant name, extracting texts that are its reputations from all

Web pages retrieved by a search engine is one example of

the problem. This problem would be easy if the Web pages

from which reputations are extracted were those in a num-

ber of fixed sites that use fixed formats. In such case, simple

wrappers such as LR wrapper [8] and TreeWrapper [9] can

extract such pairs of a keyword and its related text by pattern

matching around them. But by fixing sites from which repu-

tations are extracted, sometimes enough information cannot

be obtained though there is a lot of information in other

sites. Besides, new information that is obtainable from new

sites can never be extracted by doing so. However, extrac-

tion from unfixed sites is difficult, for example, LR wrapper

and TreeWrapper cannot be constructed because there are

no common patterns around the parts to be extracted.

Extraction from unfixed sites can be done to some ex-

tent by constructing a wrapper that uses a set of consistent

patterns (rules), namely, each of which correctly extract in-

formation from some pages but does not wrongly extract in-

formation from any pages [4]. But there may be no such set

of patterns. For example, consider a case that a restaurant

name and its reputation are written in the first and the third

columns in one table while a restaurant name and how to

access to it are written in those columns in another table. If

all the patterns around the columns are the same in the two

tables, it is impossible to create a consistent pattern unless

conditions on the contents of the third column are also in-

1

corporated into the created pattern. Content-based pattern

matching is easy if contents always appear in the same for-

mat like email addresses and telephone numbers, but it is not

so trivial when contents are given by free texts.

To overcome this difficulty, we propose a method that

combines pattern matching and text classification. In our

method, given a keyword, candidates of related texts are ex-

tracted by pattern matching using a set of patterns that re-

lates a keyword to a target text, then predicted target texts

are selected from the candidates by text classification. We

also propose a learning method of a set of patterns and a text

classifier from a training data.

In our method, each pattern is represented by a simple

DOM-tree that consists of a root node and two paths leading

to the leaves, one is a node for a keyword and the other is

a node for a target text. This pattern DOM-tree is similar

to that used by TreeWrapper [9] and Ltagpath [4], but our

pattern matching allows elastic matching as considered by

Zaki [12] in the context of frequent-tree mining, that is, two

nodes of parent-child relation in a pattern tree can also match

such two nodes as the relation between them is not parent-

child but ancestor-descendant. By allowing this matching,

we can construct more general patterns from training data.

Using general patterns is important because only a few target

texts are extracted by using patterns that are too specific

and non-target texts extracted by pattern matching can be

filtered out by text classification.

We propose a method of learning a set of above patterns,

by which common pattern DOM-trees are obtained for each

subset of positive training DOM-trees that have the same

tag for the node containing target texts and also have the

same tag for the least common ancestor of a node contain-

ing a given keyword and the node containing target texts.

Common pattern DOM-trees can be obtained by using the

sequencial mining algorithm AprioriALL [1] several times.

In the text classification phase, any classifier [2] can be

used. Negative training data for learning a classifier are au-

tomatically generated from training data by using a set of

patterns created in the previous phase. we adopted support

vector machine (SVM) [11] as a classifier in our experiments

because its good performance was reported [6].

According to our cross validation results on extracting

reputations of a given Ramen shop from Web pages collected

by a search engine, our method achieved 79.3% precision and

56.6% recall by allowing acceptable errors.

1.1 Other Related Work

As a wrapper using SVM, there is a method proposed by

Kashima and Koyanagi [7]. Their use of SVM is not text

classification but tree classification, and they use a special

kernel for tree structure. Their method make use of tree

structure only, so it seems to be difficult to extract target

information from unfixed sites.

The method proposed by Ikeda, Yamada and Hirokawa

[5] is one method that uses not only tree structure but also

text information in a target text node. But they used text

information in order to extract a part of a text in a text node

by detecting template strings like LR wrapper does.

Tateishi, Ishiguro and Fukushima [10] developed a rep-

utation search engine by using natural language processing

technique. Their engine extracts reputation sentences from

documents and does not use any special features of HTML

documents.

2. PROBLEM STATEMENT

A rooted tree T = (V, B) is a connected acyclic graph with

a set V of vertices and a set B of directed edges (NT,i, NT,j) ∈

V ×V that represent parent-child relation, which satisfies the

condition that every vertex but just one vertex (root) has

just one parent vertex. For a tree, a vertex and an edge

are called a node and a branch, respectively. An ordered

tree T = (V, B,�) is a rooted tree (V, B) with partial order

‘�’ on V representing a sibling relation, where the order is

defined just for all the pair of siblings, children having the

same parent. A (simplified) DOM-tree, a representation of

an HTML document in document object model, is an ordered

tree T in which each node NT has two attribute tag and text.

We assume tha a value of a tag attribute is an element in a

label set L and a value of a text attribute is a string that

is a sequence of characters in a character set Σ. We also

assume that a text attribute of NT is not null only when a

tag attribute of NT is “#text”1.

1In HTML, the tag “#text” does not exist, but here we as-
sume that all text nodes in a DOM-tree have this tag at-
tribute value.

2

html

title

#text

My favorite restaurant

head body

strong

#text

Little Sapporo

br

#text

Best Sushi restaurant in the world

big font

<html>

<head><title> My favorite restaurant </title></head>

<body bgcolor="yellow">

<big> Little Sapporo </big>

Best Sushi restaurant in the world

</body>

</html>

Figure 1: Example of a DOM-tree and the HTML document it represents

An example of a DOM-tree and the HTML document it

represents are shown in Figure 1. Note that nodes in our

DOM-tree do not have other attributes like the attribute

“bgcolor” for the node with the tag “body”2.

An id of a node NT is its position in the depth-first traver-

sal of the tree T . In this paper, we let the depth-first traver-

sal mean the unique one in which siblings are passed in the

partial order ‘�’.

The parent-child relation, which is defined by a set B

of branches, induces another partial order ‘≤’, an ancestor-

descendant relation, by extending the relation so as to satisfy

reflexivity and transitivity. If NT,i and NT,j are not compa-

rable in order ‘≤’, NT,j is said to be a left-collateral of NT,i

when the id of NT,i is larger than the id of NT,j and a right-

collateral of NT,i when the id of NT,i is smaller than the id

of NT,j

A part-tree S of a tree T is a connected subgraph of T . A

node id of a part-tree S of a tree T is not its position in the

depth-first traversal of the tree S, but the same as the id of

its correspondence in T . Each tree T is assumed to have an

unique id. In addition to such an unique id, each part-tree S

of a tree T has a tree id that is the id of T .

We use notations shown in Table 1 throughout the paper.

In this paper, we address the following problem.

Problem 2.1. Let a training data set D be a set of triples

(W, T, N∗
T), where W is a keyword, T is a DOM-tree that has

text nodes containing W , and N∗
T is a node in T that has a

target relation with W or N∗
T is null when there are no such

nodes in T . For a given D, learn a function f of a keyword

W and a DOM-tree T that outputs a node in T that has a

target relation with a keyword W .

Relation between a restaurant and its reputation is an

example of a target relation. In this paper, we set a node N∗
T

2TreeMiner [9] uses those attributes.

T .root root of T

T .id id of T

S.treeid tree id of S

NT .tag tag of NT

NT .text text of NT

NT .parent parent of NT

NT .firstchild first child of NT

NT .nextsibling next sibling of NT

NT .prevsibling previous sibling of NT

NT .id id of NT

contain(s0, s1) boolean function that is true if and only
if s1 appears in s0

duplicate(NT) copied node of NT

s.first first element of s

x.value value of x

x.next next element of x

append(s, u) append a list element with value u to s

Table 1: Notations used in this paper for a tree T , a
part-tree S, a node NT of T , strings s1 and s2, a list
s and its element x.

of a training data (W,T, N∗
T) to the least common ancestor of

all the text nodes that have a target relation with a keyword

W .

3. METHOD

3.1 Prediction Function

A function f to be learned makes a prediction by using

three functions fpat, fcon and fdec. The function fpat is

a function of a keyword W and a DOM-tree T that outputs

a candidate node set {NT,1, NT,2, ..., NT,k} that may have a

target relation between W . We call fpat a pattern-matching

function because the function winnows the candidates by pat-

tern matching. The function fcon is a function of a node NT

that outputs a label 1 or −1 based on the attributes of the

node. Here as attributes, we use the ones extracted from the

texts that are contained in the subtree rooted by the node.

So, we call fcon a content-based function. The function fdec

is a function of a set {(NT,1, l1), (NT,2, l2), ..., (NT,k, lk)}, where

each pair is composed of a node NT,j and a label lj , and out-

3

puts one node NT,j for j ∈ {1, 2, ..., k} or null. We call fdec

a decision function. In this paper, we fix a function fdec to

the function that outputs the node of the smallest id among

those having the positive label.

Then, a function f is defined as follows.

f(W,T) = fdec({(NT , fcon(NT)) : NT ∈ fpat(W, T)})

3.2 Pattern-Matching Function

A function fpat selects all the nodes in a DOM-tree T

of which structural relation to a keyword W matches one of

patterns in a set P. A pattern is a pair of a pattern tree P

and its leaf distance r. A pattern tree P is a simple DOM-

tree that consists of a root node and two paths leading to the

leaf nodes, a keyword node KP whose tag is “#text” and a

target node CP . Here3, we restrict pattern trees to the ones

in which KP appears before CP , that is, KP .id < CP .id. The

structural relation of a node NT to a keyword W matches a

pattern (P, r) if and only if there is a one-to-one mapping

φ from the set of nodes in P to the set of nodes in T that

satisfies the following six conditions for all nodes NP,1 and

NP,2 in P .

1. target matching: NT = φ(CP)

2. Label preserving: NP,1.tag = φ(NP,1).tag

3. Keyword matching: contain(φ(KP).text, W)

4. Ancestor-descendant relation preserving: If node

NP,1 is a child of node NP,2, node φ(NP,1) is a descen-

dant of node φ(NP,2).

5. Sibling relation preserving: φ(KP).id < φ(CP).id.

6. Acceptable distance: |φ(KP).id − φ(CP).id| ≤ r

An example of a pattern tree P and a matching function φ

are shown in Figure 2. Note that the matching satisfying the

above 6 conditions is elastic, and the nodes with tag “big”

and tag “font” can be jumped over in the matching.

3.2.1 Implementation

An implementation of fpat is shown in Figure 3. In

the implementation, text nodes that contain the keyword

3Extension for allowing the reverse order is easy, but a related
text appears after a keyword in most cases, we restricted the
pattern trees.

body

strong

#text

#text

K

C

P

P

P
html

title

#text

My favorite restaurant

head body

strong

#text

Little Sapporo

br

#text

Best Sushi restaurant in the world

big font

T0

1

2

3

4

5

6

7

8
9

10

φ

φ

φ
φ

NT
∗

Figure 2: Example of a pattern tree P . The struc-
tural relation of the node N∗

T to keyword “Little Sap-
poro” matches the pattern (P, 3).

W are searched first in the procedure find-candidate. For

each found node and for each pattern (P, r) ∈ P, its an-

cestors to which some mapping φ satisfying the above 6

conditions may map from the root node of P are searched

in the procedure matching. Finally, for each such ances-

tor, its descendants whose structural relation to W matches

the pattern (P, r) are searched in the procedure find-node.

The worst-case computational time of this implementation is

O((kW,T nP +1)nT +nW + nt), where kW,T is the number of

nodes in T that contains the keyword W , nP is the number

of patterns in P, nT is the number of nodes in T , nW is the

length of W and nt is the total length of all texts contained

in T .

3.2.2 Learning

A pattern matching function fpat needs a pattern set P,

which is learned from a training data D. A proposed learning

function Learn-fpat is shown in Figure 4. The training data

D is composed of triples (W, T, N∗
T), where W is a keyword,

T is a DOM-tree and N∗
T is a node in T that has a target

relation with W or N∗
T is null when there are no such nodes

in T . The function Learn-fpat uses positive data only, that

is, triples (W, T, N∗
T) with N∗

T ! =null.

For each positive data (W, T, N∗
T), Learn-fpat calls the

function extract-parttree shown in Figure 5, which extracts

one part-tree for each text node NT,W that is a left-collateral

of N∗
T and of which text contains W . Each extracted part-

tree consists of two nodes N∗
T and NT,W , the least common

ancestor NT,0 of them, all the nodes between NT,0 and N∗
T

and all the nodes between NT,0 and NT,W . Search for NT,W

is done by checking, for each ancestor node of N∗
T , all the de-

scendant leaf text node that is a left-collateral of N∗
T , which

4

Function fpat(W,T)
W : keyword, T : DOM-tree
begin

return find-candidate(W,T .root)
end
Function find-candidate(W,NT)
W : keyword, NT : node of T

begin
C = ∅
if NT .tag==”#text” and

contain(NT .text, W)==true then
for each (P, r) ∈ P do

matching(KP , NT , NT .id+r, C)
enddo

endif
M = NT .firstchild
while M ! =null do
C = C∪find-candidate(W,M)
M = M .nextsibling

enddo
return C

end
Procedure matching(NP , NT , b, C)
NP : node of P , NT : node of T

b : maximum allowable node id
C : candidate set (updated when returned)
begin

while NT .parent! =null do
if NP .parent == null and

NT .parent.tag == NP .tag then
MP = NP .firstchild.nextsibling
MT = NT .nextsibling
while MT ! =null do

find-node(MT , MP , b, C)
MT = MT .nextsibling

enddo
else if NP .parent.tag==NT .parent.tag then

NP = NP .parent
if NP .parent ==null then continue

endif
NT = NT .parent

enddo
end
Procedure find-node(NT , NP , b, C)
NT : node of T , NP : node of P

b : maximum allowable node id
C : candidate set (updated when returned)
begin

if NT .id > b then return
if NP .tag == NT .tag then

if NP .firstchild == null then C = C ∪ {NT }
else NP = NP .firstchild

endif
M = NT .firstchild
while M ! =null do

find-node(M,NP , b, C)
M = M .nextsibling

enddo
end

Figure 3: Implementation of the function fpat

Function Learn-fpat(D)
D : training data
begin
Dpat = ∅

for each (W,T, N∗
T) ∈ D do

if N∗
T ! =null then

extract-parttree(Dpat, W,N∗
T)

endif
enddo
P = ∅
for each El,t ∈ Dpat do

P = P∪maximal-common-pattern(El,t, n)
enddo
return P

end

Figure 4: Function of learning a pattern set P

is done by the function keynode. In the keynode function, the

set of the extracted part-trees S are classified by two tags, a

tag l of the root node of S and a tag t of the leaf node corre-

sponding to N∗
T . After the executions of the function extract-

parttree for all positive data, Dpat, a set of classes El,t of

part-trees, is constructed. Note that function get partition,

create and add used in the procedure keynode are defined

as follows. The function get partition(Dpat, l, t) returns the

class El,t of part-trees for the pair (l, t) of tags if exists and

null otherwise. This function is efficiently implemented by

using a hash table. The function create(Dpat, l, t) creates an

empty class El,t for the pair (l, t) of tags and returns it. The

function add(El,t, S) adds a part-tree S to the class El,t.

For each class El,t, generalized patterns are obtained by

the function maximal-common-pattern shown in Figure 6,

which is called by the function Learn-fpat. The function

maximal-common-pattern outputs the maximal common pat-

terns (P, r) of part-trees in a given set El,t, namely, maximal

patterns (P, r) that are matched by the structural relation of

the node N∗
T to a keyword W for all (W,T, N∗

T) ∈ D satisfy-

ing that for T there is an S ∈ El,t with S.treeid = T .id. The

acceptable distance r is calculated by the function max-leaf-

distance (Figure 6), which outputs the maximum difference

between two leaf node ids of S in El,t.

The maximal common patterns for a given set El,t of part-

trees can be obtained by using the algorithm AprioriAll sev-

eral times with minimum support 1.0, where AprioriALL is

an algorithm for mining sequential patterns developed by

Agrawal and Srikant [1]. The first execution of AprioriAll

5

Procedure extract-parttree(Dpat, W,NT)

Dpat : transformed data (updated when returned)
W : keyword, NT : node in T

begin
S.root=null
t = NT .tag
insert child(S, duplicate(NT))
while NT .parent! =null do

insert child(S, duplicate(NT .parent))
l = NT .parent.tag
MT = NT .prevsibling
while MT ! =null do

keynode(Dpat, W,MT , S.root,l,t)
MT = MT .prevsibling

enddo
NT = NT .parent

enddo
end
Procedure keynode(Dpat, W,NT , NS,l,t)

Dpat : transformed data (updated when returned)
W : keyword, NS : node in S, NT : node in T

l : tag of the least common ancestor node
t : tag of the target node
begin

add child(NS, duplicate(NT))
if NT .tag==”#text” and

contain(NT .text, W)==true then
El,t =get partition(Dpat, l, t)

if El,t ==null then El,t =create(Dpat, l, t)

add(El,t, S)
else

NT = NT .firstchild
while NT ! =null do

keynode(Dpat, W,NT , NS .firstchild,l,t)
NT = NT .nextsibling

enddo
endif
remove child(NS)

end
Procedre insert child(S, NS)
S : DOM-tree, NS : copied node in T

begin
NS .firstchild=S.root
NS .nextsibling= NS .prevsibling=null
S.root= NS

end
Procedre add child(NS, MS)
NS : node in S, MS : copied node in T

begin
MS .nextsibling=NS .firstchild
MS .firstchild= MS .prevsibling=null
NS .firstchild= MS

end
Procedre remove child(NS)
NS : node in S

begin
NS .firstchild= NS .firstchild.nextsibling
if NS .firstchild! =null then NS.firstchild.prevsibling=null

end

Figure 5: Function of extracting a part-tree

Function maximal-common-pattern(El,t)
El,t : set of part-trees
begin
L = {(S.treeid,tag-seq(S.root.firstchild))

S.id : S ∈ El,t}
n = |{i : (i, s) ∈ L}|
SEl,t

=AprioriAll(L, 1.0 × n)
P = ∅
for each (s1, I1) ∈ SEl,t

do
L = {(S.treeid,tag-seq(S.root.firstchild.nextsibling))

S.id :
S ∈ El,t, S.id ∈ I1}

Ss1
=AprioriAll(L, 1.0 × n)

for each (s2, I2) ∈ Ss1
do

P = make-pattern-tree(l, t, s1, s2)
r = max-leaf-distance(El,t, I2)
P = P ∪ {(P, r)}

enddo
enddo
return P

end
Function AprioriAll(L, σ)
L : set of pairs (tree id,tag sequence)
σ : (minimum suport)×(number of training data)
begin

L1 ={(c, I) : I = {i : (j, X)i ∈ L, contain(X, c) == true},
c is a length-1 tag sequence with

|{j : (j, X)i ∈ L, i ∈ I}| ≥ σ}
k = 2
while Lk−1 6= ∅ do

Ck = {(c1, I1) ⊗ (c2, I2) : (c1, I1), (c2, I2) ∈ Lk−1,

prefix(c1, k − 2) == prefix(c2, k − 2)}
Lk = {(c, I) : (c, I) ∈ Ck, |{j : (j, X)i ∈ L, i ∈ I}| ≥ σ}
k = k + 1

enddo
return {(c, I) : (c, I) ∈

Sk−1
h=1 Lh, c is maximal}

end
Function tag-seq(NS)
NS : node in S

begin
s =null
while NS .firstchild! =null do

append(s,NS .tag)
NS = NS .firstchild

enddo
return s

end

Figure 6: Function of calculating the maximal com-
mon patterns (1)

is done for finding the maximal common tag subsequences

of all the paths from the root node to the first leaf node of

the part-trees in El,t. Note that support is calculated based

on the number of distinct tree ids of part-trees, namely, the

number of trees from which part-trees are extracted. Thus,

even for support 1.0, some of the tag sequences given to the

function AprioriAll may not contain the obtained tag sub-

sequences. In our implementation of AprioriAll (Figure 6),

in addition to the maximal common tag subsequences s1,

6

Function make-pattern-tree(l, t, s1, s2)
l, t : tag, s1, s2 : tag sequence
begin

N .tag = l

N .firstchild = N .nextsibling = N .prevsibling =null
P .root = duplicate(N)
make-path(P .root, s2, t)
make-path(P .root, s1,”#text”)
return P

end
Procedure make-path(NP , s, u)
NP : node of P , s : tag sequence, u : tag
begin

x = s.first
while x! =null do

N .tag = x.value

add child(NP , duplicate(N))
NP = NP .firstchild
x = x.next

enddo
N .tag = u

add child(NP , duplicate(N))
end

Figure 7: Function of calculating the maximal com-
mon patterns (2)

the set I1 of ids of part-trees that contains s1 is returned

for each s1. In the function AprioriAll, a length-k candi-

date c for frequent sequences is generated from two length-

(k−1) frequent sequences c1, c2 with the same prefix of length

k − 2 (prefix(c1, k − 2) = prefix(c2, k − 2)) by appending

the last tag of c2 to c1. By a join operation of (c1, I1) and

(c2, I2) denoted by (c1, I1)⊗ (c2, I2), (c, I) is created, where

I = {i : i ∈ I1 ∩ I2, contain(X, c) = true for (j, X)i ∈ L}.

For each (s1, I1) obtained by the first execution of Aprior-

iAll, AprioriAll is executed for finding the maximal common

tag subsequences of all the paths from the root node to the

second leaf node of the part-trees in {S : S ∈ El,t, S.id ∈ I1}.

Note that all part-trees in El,t have the tag l of the root

node, the tag “#text” of the first leaf node and the tag t of

the second leaf node. The tag sequences given to Apriori-

All do not contain the tags of those nodes. In the function

make-pattern-tree (Figure 7), which is called by the function

maximal-common-pattern, a pattern tree P is constructed fi-

nally from the tags of the root node and two leaf nodes, and

the two common tag subsequences obtained by AprioriAll.

The worst-case computational time of the function extract-

parttree is O((kW,T,N∗
T

+ 1)nT + nW + nt), where kW,T,N∗
T

is

the number of nodes in T that is a left-collateral of N∗
T and

of which text contains W , nT is the number of nodes in T ,

nW is the length of W and nt is the total length of all texts

in T . Note that searching nodes with text that contains W

takes O(nT), copying found part-trees takes O(kW,T,N∗
T

nT),

and string pattern matching takes O(nW + nt). Therefore,

the worst-case computational time of the first loop in the

function Learn-fpat is O((kD + 1)nD + nW + nd), where nD

is the sum of the number of nodes in T belonging to D,

kD = max(W,T,N∗
T

)∈D kW,T,N∗
T
, and nW and nd are the sum of

nW and nt, respectively, for all training data (W,T, N∗
T) ∈ D.

In all the executions of AprioriAll, totally at most 2lP+1nP |L|

candidates are generated, where lP is the maximum number

of nodes between a root node and a leaf node of pattern

trees in P, nP is the number of the maximal common pat-

terns, and |L| is the number of tags. For each candidate pat-

tern, computational time O(kDnD) is enough for its support

calculation, so the worst-case computational time of function

maximal-common-pattern is O(2lP+1nP |L|kDnD). Thus, the

worst-case computational time of the function Learn-fP is

O(2lP+1nP |L|(kD + 1)nD + nW + nd).

3.3 Content-based Function

The function fcon classifies a given node NT into +1 or

−1 by its attribute values. Since a target information is com-

posed of texts in our problem setting, any text classification

technique can be used to design the function fcon. As an at-

tribute vector, we use an index term vector [2] that is created

from all the texts of the descendant nodes of the given node

NT . An index term vector is a collection of weights associ-

ated with each representative keyword called index term. Its

weights can be binary, normalized term frequencies or tf-idfs.

A classifier used in the function fcon can be any one that

inputs a real valued vector.

3.3.1 Training data generation for a classifier

A training data for a classifier is generated from the orig-

inal training data D by the function Data-generation shown

in Figure 8. For each (W, T, N∗
T) ∈ D, the pattern matching

function fpat is executed. A positive training data instance

is generated for each N∗
T . A negative training data instance

is generated for each NT in a set C output by the function

fpat except for NT .id ≥ N∗
T .id.

7

Function Data-generation(D)
D : training data
begin
Dcon = ∅
for each (W, T, N∗

T) ∈ D do
C = fpat(W,T)
for each NT ∈ C do

l = −1
if N∗

T ! =null then
if NT .id > N∗

T .id then continue
if NT .id == N∗

T .id then l = 1
endif
~v =index-term-vector(NT)
Dcon = Dcon ∪ {(~v, l)}

enddo
enddo
return Dcon

end

Figure 8: Function of generating training data for a
classifier

Shop No. #HTML #POS #ONE #MANY
1 34 26 8 18
2 19 9 2 7
3 73 46 15 31
4 24 14 4 10
5 26 12 4 8
6 23 17 7 10
7 21 11 6 5
8 33 21 6 15
9 20 13 5 8

10 28 20 5 15
total 301 189 62 127

Table 2: Experimental data (#ONE: number of
pages containing reputations of the target shop only,
#MANY: number of pages also containing reputa-
tions of other shops)

4. EXPERIMENTS

4.1 Methodology

The HTML documents we used in our experiment are

Web pages containing the information about a given Ra-

men (lamian, Chinese noodles in Soup) Shop. Among the

most popular 100 Ramen-shops introduced in a popular local

town information magazine4, we selected the most popular

10 Ramen shops with more than 15 Web pages retrieved by

keyword search5 using a shop name and its telephone num-

ber. Totally 301 pages were retrieved and 189 pages of them

contained the reputation about a target shop. (See Table 2.)

We constructed the experimental data (W,T, N∗
T) from

4Hokkaido Walker 2002 NO.3.
5Google(www.google.co.jp) was used in the search.

the collected HTML pages and shop names used to retrieve

them. Each non-null target node N∗
T of a DOM-tree T was

set to the least common ancestor node6 of the text nodes

whose text contains the target reputation.

We conducted cross validation by using the pages retrieved

for each one of 10 shops as test data.

Index terms we used in our experiments are basically stan-

dard forms of nouns, verbs, adjectives and adverbs. We dealt

with Japanese text, and Chasen7, one of Japanese morpho-

logical analysis systems, is used to extract index terms. As a

term weight, we used a term frequency normalized with re-

spect to Euclidean norm. A support vector machine (SVM)

was used as a classifier in the experiments. We used SVM-

Torch II8 with polynomial kernel K(x, y) = (xy + 1)3 and

other default parameters.

We compared our method with other two simpler meth-

ods, a method using patterns only and a method using sim-

ple patterns. A method using patterns only is the one that

usesfcon ≡ 1 in our proposed prediction function. Simple

patterns used in the second method are pairs (t, r) of a tag t

for a target node and a distance r from a keyword node. For

these patterns, all the nodes that have tag t and id i which

satisfies k < i ≤ k+r are matched, where k is the id of a node

whose text contains a given keyword. A method using simple

patterns is the one that uses this pattern matching function

as the function fpat in our proposed prediction function. A

set P of simple patterns (t, r) learn from training data D for

tests and training data generation for a classifier is

{(t, r) : t ∈ L, r = max
(W,T,N∗

T
)∈Dt

(N∗
T .id − min id(W,T))},

where

L = {N∗
T .tag : (W, T, N

∗
T) ∈ D},

Dt = {(W, T, N
∗
T) ∈ D : N

∗
T .tag = t} and

min id(W,T) = min{NT .id : contain(NT .text, W)}.

4.2 Results

The results are shown in Table 3. Note that in the columns

6If the subtree rooted by the least common ancestor node
contains reputations of other restaurants, the most informa-
tive one text node is selected as a representative instead of
the least common ancestor node.
7ChaSen 2.3.3. (URL:chasen.aist-nara.ac.jp/hiki/ChaSen)
8URL:www.idiap.ch/ bengio/projects/SVMTorch.html

8

for fpat, fcon and fdec, the number of correctly extracted

nodes included in the outputs of the functions for N∗
T ! =null

is written. A precision is a rate of the number of correctly

extracted nodes among all the extracted nodes, and a recall

is a rate of the number of correctly extracted nodes among

all the nodes that should be extracted.

The method using patterns only suffers low precision and

recall even for training data. Compared to this method, the

other two methods, which also use contents information, ob-

tain rather higher precision and recall for both data. The

proposed method outperformed the method using simple pat-

terns by 5 ∼ 7 percentages. The numbers in the parentheses

are precisions and recalls that were calculated by including

extracted acceptable nodes in the set of correctly extracted

nodes. Here, acceptable nodes are defined as the ones which

include a part of reputations about a target shop and ex-

clude any information about other shops. In the proposed

method, 79.3% of extracted nodes were acceptable and ac-

ceptable nodes are extracted for 56.6% of the nodes that

should be extracted.

4.3 Discussion

Figure 9 shows all patterns output by Learn-fpat for the

whole experimental data. #NUM is the number of data that

matches each pattern. Each pattern tree is represented by its

string encoding, a tag sequence of nodes in their passing or-

der in a depth-first traversal, where the additional tag “−1”

is added when backtracking from a child. Nodes correspond-

ing to the tags with suffixes “(1)” and “(2)” are a keyword

node and a target node, respectively. A several patterns of

table structure in the found pattern set, such as “table tr td

#text(1) -1 -1 -1 tr td(2) -1 -1”, look useful to winnow can-

didates. Some patterns such as “body #text(1) -1 #text(2)

-1” are too general to winnow candidates, and pruning or

further specification of such patterns may increase precision.

Though this seems to decrease recall, but note that this can

also increase recall if quality of negative training data for

learning a classifier improves by using different set of pat-

terns.

The reputations extracted for Shop 2 by using patterns

and an SVM learned from data of other shops are shown

in Table 4. In the table, “©” indicates that a reputation

is correctly extracted, “4” indicates that the corresponding

extracted node is acceptable, and “×” indicates that the text

contains no reputation about a target shop. All the extracted

texts looks reputations of some shops, so text classification by

SVM works to some extent. For the first “×”-labeled text,

the target node was included in the output of a pattern-

matching function, but was labeled −1 by a content-based

function. For the second “×”-labeled text, the target node

was not output by a pattern-matching function.

4 A super-popular shop selected as the best Ramen shop!!
© In the shop, there was a card saying that the taste of our Ramen
is the result of pursuing delicious Ramen. The taste is mild and fairly
heavy but its aftertaste is clear. Fat back floating on the soup is made
by stewing it several hours in a separate cooking pot. The soup has
become whitish by stewing pig bones and pig legs more than 12 hours.
The noodle, which is thickish and curly, is made by noodle company
K. Besides this soy sauce Ramen, ZYANSYANMEN is also popular.
× Shop S. Sapporo. Tram station named NISHI 9 ZYO. You can enjoy
pork-based salt, soy sauce and miso Ramens. The soup is made from
HIDAKA konbu and dried SANRIKU saury. The Ramen contains
three thick slices of roast pork, in most cases, two slices of pork belly
and one slice of pork loin. I felt nice to see that the noodle was
well drained by a flat bamboo sieve. Each taste of the three kinds of
Ramens (700 yen each) is good. Besides, a chicken-based limited salt
Ramen, which price is 800 yen, tastes better. Chicken fat is floating
on all the surface of the soup. The soup also contains saury taste and
the harmony of the taste is good. It is also nice that they use rock
salt. My recommendation is this limited salt Ramen. However, the
soup of the other Ramens is a little tepid, especially, miso Ramen is
quite tepid, so it is not recommended. The fact that miso Ramen is
tepid is the character of noodle company K? 2003.04.26. eating of the
limited salt Ramen 2003.04.27. I have eaten miso Ramen. limited
salt ? Sapporo city · · · (telephone number) Closed on Monday. Open
11:30-20:30. Parking space for 3 cars. 15 seats.
© I had been hesitating to introduce my favorite Ramen shops because
everyone has a different taste. (It was OK for me to introduce curry
Ramens last time because it is a special kind of Ramens.) Some people
might disagree with me, but the shop I am introducing here is the best
among the Ramens I have tasted for the last 5 or 6 years. The noodle
of this Ramen is thick and curly, and the soup is made by stewing
pig bones. You can enjoy three tastes, miso, salt and soy sauce. The
noodle is a little hard, so you can get normal noodle if you say that
you like softish noodle. The soup is a little thick because of using thick
noodle, but I felt that it was not so strong. The shop was introduced
in Hokkaido Walker in Febuary, 2002, as the second popular Ramen
shop. The most popular one introduced in the magazine was Shop G.
(Evaluations appeared in this page are the ones I have done personally
after eating the Ramens actually.) Q: Is Sapporo near Muroran? You
said that you introduce about shops around Muroran. A: Yes! (I am
sure.)
© Papa A: I have heard that the shop is crowded, and it was true.
People might have been waiting for the opening of this famous shop at
this convenient place. Hardness of noodle of Ramens we ordered, salt,
miso and soy sauce was different, which cause might be crowdedness.
They did not frequently change the water used for boiling the noodle.
Are those acceptable? The miso and soy sauce Ramen still tasted
good. Did the salt Ramen taste like this before? The noodle is made
by Company K. ——— ? ? ??

× Pork that was like roast pork and stewed until it became soft is
extremely delicious.
© Since there was a long waiting line at Sunday noon, I went there a
little after 11 o’clock on a weekday. People came in the shop after by
after, and the shop became crowded soon. The soup of the Ramens
is based on pig bones. The miso soup is rich and a little spicy. The
noodle is fairly hard and curly. I want to eat a popular soy sauce
Ramen next time. The shop is clean. There is parking space.

4 Fat back poured finally makes the soup rich taste!

Table 4: Reputations extracted for Shop 2 (trans-
lated from Japanese)

9

used information training data test data
ave. pre. ave. rec. fpat fcon fdec precision recall

patterns only 0.113 0.169 166 166 30 0.106 0.159
simple patterns + contents 0.907 0.897 183 86 74 0.561 (0.727) 0.391 (0.508)
patterns + contents (proposed) 0.943 0.938 166 95 85 0.630 (0.793) 0.450 (0.566)

Table 3: Precisions and recalls for three methods

#NUM r pattern tree simple pattern (t,r)
30 245 body #text(1) -1 #text(2) -1 (#text,496),#NUM=139
20 452 table tr #text(1) -1 -1 tr td #text(2) -1 -1 -1
19 80 tr td #text(1) -1 -1 td #text(2) -1 -1
19 256 td #text(1) -1 #text(2) -1
16 177 html head title #text(1) -1 -1 -1 body #text(2) -1 -1
10 8 p #text(1) -1 #text(2) -1
8 496 tbody tr td #text(1) -1 -1 -1 tr td #text(2) -1 -1 -1
7 38 li #text(1) -1 #text(2) -1
5 270 div #text(1) -1 #text(2) -1
1 12 blockquote strong #text(1) -1 -1 #text(2) -1
1 28 ol li #text(1) -1 -1 li #text(2) -1 -1
1 22 h3 #text(1) -1 #text(2) -1
1 5 dl dt #text(1) -1 -1 dd #text(2) -1 -1
1 2 span strong #text(1) -1 -1 #text(2) -1

18 51 tr td #text(1) -1 -1 td(2) -1 (td,265),#NUM=52
13 56 table tr td #text(1) -1 -1 -1 tr td(2) -1 -1
11 173 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1
4 265 html head title #text(1) -1 -1 -1 body table tr td(2) -1 -1 -1 -1
4 64 body #text(1) -1 table tr td(2) -1 -1 -1
2 47 td strong #text(1) -1 -1 table tr td(2) -1 -1 -1
7 166 body #text(1) -1 p(2) -1 (p,166),#NUM=13
2 151 html head title #text(1) -1 -1 -1 body p(2) -1 -1
2 33 tr td h2 #text(1) -1 -1 -1 td p(2) -1 -1
2 9 td #text(1) -1 p(2) -1
3 107 html head title #text(1) -1 -1 -1 body table(2) -1 -1 (table,107),#NUM=6
3 7 body table tr #text(1) -1 -1 -1 table(2) -1
2 135 html head title #text(1) -1 -1 -1 body table tbody tr(2) -1 -1 -1 -1 (tr,135),#NUM=5
2 120 tbody tr td #text(1) -1 -1 -1 tr(2) -1
1 66 body table tbody tr td strong #text(1) -1 -1 -1 -1 -1 -1 table tbody tr(2) -1 -1 -1
4 1 html head title #text(1) -1 -1 -1 body(2) -1 (body,1),#NUM=4
4 12 tbody tr td #text(1) -1 -1 -1 tr td span(2) -1 -1 -1 (span,12),#NUM=4
2 17 html head title #text(1) -1 -1 -1 body blockquote(2) -1 -1 (blockquote,17),#NUM=4
2 2 body p strong #text(1) -1 -1 -1 blockquote(2) -1
2 23 body strong #text(1) -1 -1 p strong(2) -1 -1 (strong,23),#NUM=3
1 17 html head title #text(1) -1 -1 -1 body p strong(2) -1 -1 -1

Figure 9: Patterns output by fpat for the set of all the data

According to Table 3, 12% of the target nodes were not

extracted by a pattern-matching function, and 43% of the

other target nodes were not labeled 1 by a content-based

function. Considering high precision and recall for training

data, the reason why so much target nodes were not labeled

1 by the content-based function may be that the number

of training data for the function was too small to learn the

function. This problem may be solved to some extent by

reducing the number of index terms through more careful

selection of them.

5. CONCLUSIONS

We proposed a combined method of structural pattern

matching and text classification that can extract texts related

to a given keyword from Web pages in unfixed sites. In our

experiments on reputation extraction, our method achieved

about 79.3% precision and 56.6% recall by allowing accept-

able errors. The precision looks rather low compared to that

of conventional wrappers, but our method can extract more

information because sites from which texts are extracted are

not fixed, and even a set of extracted texts that contains a

small percentage of wrong ones can be used to assist people’s

decision if original Web pages can be accessed by clicking the

extracted texts. In order to improve precision while keeping

recall, it seems also necessary to detect repetition structures

considered in [3].

Acknowledgments

We would like to thank Prof. Hiroki Arimura for helpful

comments.

10

6. REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns.

In Proc. 11th Int’l Conf. on Data Eng., pages 3–14,

1995.

[2] R. Baeza-Yates and B. Ribriro-Neto. Modern

Information Retrieval. ACM Press, New York, NY,

1999.

[3] C.-H. Chang and S.-C.Lui. Iepad: Information

extraction based on pattern discovery. In Proc. of 10th

Int’l World Wide Web Conf., pages 4–15, 2001.

[4] W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible

learning system for wrapping tables and lists in html

documents. In Proc. of 11th Int’l World Wide Web

Conf., pages 232–241, 2002.

[5] D. Ikeda, Y. Yamada, and S. Hirokawa. Expressive

power of tree and string based wrappers. In Proc. of

IJCAI-03 Workshop on Information Integration on the

Web (IIWeb-03), pages 21–26, 2003.

[6] T. Joachims. Text categorization with support vector

machines: Learning with many relevant features. In

Proc. of 10th European Conference on Machine

Learning, pages 137–142, 1998.

[7] H. Kashima and T. Koyanagi. Kernels for

semi-structured data. In Proc. of 19th International

Conference on Machine Learning (ICML 2002), pages

291–298, 2002.

[8] N. Kushmerick. Wrapper induction:efficiency and

expressiveness. Artificial Intelligence, 118:15–68, 2000.

[9] Y. Murakami, H. Sakamoto, H. Arimura, and

S. Arikawa. Extracting text data from html documents.

The Information Processing Society of Japan (IPSJ)

Transactions on Mathematical Modeling and its

Applications (TOM), 42(SIG 14(TOM 5)):39–49, 2001.

In Japanese.

[10] K. Tateishi, Y. Ishiguro, and T. Fukushima. A

reputation search engine that collects people’s opinions

by information extraction technology. The Information

Processing Society of Japan (IPSJ) Transactions on

Databases (TOD), 45(SIG 07), 2004. In Japanese.

[11] V. N. Vapnik. The Nature of Statistical Learning

Theory. Springer, New York, NY, 1995.

[12] M. J. Zaki. Efficiently mining frequent trees in a forest.

In Proc. SIGKDD’02, pages 71–80, 2002.

11

