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(Abstract) In this paper, we propose a method
of finding simple disjoint decompositions in fre-
quent itemset data. The techniques for decompos-
ing Boolean functions have been studied for long
time in the area of logic circuit design, and re-
cently, there is a very efficient algorithm to find all
possible simple disjoint decompositions for a given
Boolean functions based on BDDs (Binary Deci-
sion Diagrams). We consider the data model called
“sets of combinations” instead of Boolean func-
tions, and present a similar efficient algorithm for
finding all possible simple disjoint decompositions
for a given set of combinations. Our method will be
useful for extracting interesting hidden structures
from the frequent itemset data on a transaction
database. We show some experimental results for
conventional benchmark data.

1 Introduction

Manipulation of large-scale combinatorial data is
one of the fundamental technique for data mining
process. In particular, frequent item set analysis is
important in many tasks that try to find interest-
ing patterns from web documents and databases,
such as association rules, correlations, sequences,
episodes, classifiers, and clusters. Since the in-
troduction by Agrawal et al.[1], the frequent item
set and association rule analysis have been re-
ceived much attentions from many researchers, and
a number of papers have been published about the
new algorithms or improvements for solving such
mining problems[6, 8, 22].

After generating frequent itemset data, we
sometimes faced with the problem that the frequent
itemsets are too large and complicated to retrieve
useful information. So, it is an important technique
for extracting some hidden structures from the fre-
quent itemsets to make the data more understand-
able. Closed/maximal itemset mining[23, 20, 21] is
one of the useful method in this approach.

In this paper, we propose a new method of find-
ing “simple disjoint decompositions” in the fre-
quent itemset data. Our method extracts another
aspect of hidden structures from complicated item-
set data, and will be useful for database analysis.

Our method is based on the Boolean function
decomposition technique, which is a fundamental
theory of logic circuit design. Simple disjoint de-
composition is a basic and useful concept in this
theory. This decomposition gives a single-output
sub-block function whose input variable set is dis-
joint from the other part. It is a special case
of decompositions and not always possible for all
Boolean functions. If we find a such decomposition
for a given function, it must be a good choice for
optimal design, and we may proceed to the local
optimization of each sub-block. There are so many
studies on the method of finding simple disjoint de-
compositions, and currently, the method[4][10][11]
based on the recursive algorithm using BDDs (Bi-
nary Decision Diagrams) is remarkably fast and
powerful to find all possible simple disjoint decom-
positions for a given Boolean functions.

In this paper, we focus on the data model called
“sets of combinations”, instead of Boolean func-
tions. A set of combinations consists of the ele-
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Figure 1: Simple disjoint decomposition on
Boolean function.

ments each of which is a combination of multiple
items. This data model often appears in many kind
of combinatorial problems, and of course, it can be
used for representing frequent itemset data. A set
of combinations can be mapped into Boolean space
of n input variables, and efficiently manipulated by
using BDDs. In addition, we can enjoy more effi-
cient manipulation using “Zero-suppressed BDDs”
(ZBDD)[12], which are special type of BDDs opti-
mized for handling sets of combinations.

As a major contribution of this paper, we
present that we can define the operation of sim-
ple disjoint decomposition for sets of combinations,
as well as for Boolean functions. We then show
that all possible simple disjoint decompositions on
sets of combinations can be extracted in a method
based on ZBDDs, as well as the conventional BDD-
based functional decomposition method. Our new
ZBDD-based decomposition algorithm for sets of
combinations is not completely same as the BDD-
based one for Boolean functions, but they have sim-
ilar recursive structures and complexities. We also
show the experimental results of finding all simple
disjoint decompositions in the frequent itemsets ex-
tracted from a conventional benchmark dataset.

The paper is organized as follows: First, we re-
view the decomposition methods for Boolean func-
tions in Section 2. In Section 3, we define the de-
composition for sets of combinations and present
the algorithm for finding simple disjoint decompo-
sitions. We then show the experimental results in
section 4, followed by conclusion.

Figure 2: Tree structure of simple disjoint decom-
positions.

2 Boolean Function Decomposi-
tion

At first, we review the methods of Boolean func-
tion decomposition. If the function f can be rep-
resented as f(X,Y ) = g(h(X), Y ), then f can be
realized by the network shown in Fig. 1. We call it
simple disjoint decomposition. It is called “simple”
because h is a single-output function and “disjoint”
because X and Y have no common variables. We
call a trivial decomposition if X consists of only
one variable. A non-trivial simple disjoint decom-
position does not always exist in a given function,
but if exists, it is considerably effective for logic
optimization.

A function may have more than one simple dis-
joint decompositions. They can be nesting. For
example, the function abcx + xyz has five decom-
positions as X = {a, b}, {b, c}, {a, c}, {a, b, c},
and{y, z}.

Multiple input logic operations (AND, OR,
EXOR) may produce a number of associative sub-
decompositions. In such cases, we handle those
decompositions as one group, and only use the
full-merged form to represent the group. On
the above example, we only use {a, b, c} to rep-
resent the group including three associative sub-
decompositions {a, b}, {b, c}, {a, c}. After merging
such associative ones, two simple disjoint decom-
positions never overlap each other. The structure
of simple disjoint decompositions can be expressed
by a tree graph as shown in Fig. 2. Since each
input variable appears only once as a leaf of tree,



Finding All Simple Disjoint Decompositions in Frequent Itemset Data 3

the number of branching nodes never exceeds the
number of input variables. The problem of finding
simple disjoint decompositions is to construct such
a tree structure for a given Boolean function.

There are many studies on the methods of
finding simple disjoint decompositions. At first,
a classical method with a decomposition chart is
presented[3][17]. In recent years, more efficient
way using a BDD-based implicit decomposition
chart is discussed[9][18][19]. One proposed another
approach[13] to extract all simple disjoint decom-
positions based on factoring of sum-of-products ex-
pressions.

In the long history of studies on Boolean func-
tion decomposition, the BDD-based recursive algo-
rithm, which is proposed by Bertacco et al. on
1997 and improved later by Matsunaga[10][11], is
now overwhelmingly effective to extract all simple
disjoint decompositions for a given Boolean func-
tions. This algorithms is based on the following
two properties:

• If we consider NPN-equivalence and associa-
tivity, the tree structure of simple disjoint de-
compositions is canonical for a given Boolean
functions.

• Basically, all simple disjoint decompositions
for f can also be found in the two cofactor
functions f(x=0) and f(x=1).

Using the two properties, the algorithm expands
a given Boolean function to the two cofactor func-
tions and call itself recursively. The final results of
tree structure is obtained by checking common part
of the results for the two cofactor functions. Since
the algorithm has a cache mechanism to avoid du-
plicated traversals for the same BDD nodes, we can
efficiently execute the procedure in a time bounded
by the BDD size (roughly square for BDD nodes).
Actually, we need only a few seconds to extract all
possible simple disjoint decompositions for a bench-
mark function with ten thousands of BDD nodes
and dozens of input variables. This decomposition
method is effectively used for VLSI logic synthesis
and technology mapping[16].

Figure 3: Correspondence of Boolean functions and
Sets of combinations.

3 Decomposition for Sets of
Combinations

In this section, we discuss simple disjoint decompo-
sition for sets of combinations, and show a method
of finding those decompositions.

3.1 Sets of combinations and Boolean
functions

A set of combinations consists of the elements each
of which is a combination of a number of items.
There are 2n combinations chosen from n items, so
we have 22n

variations of sets of combinations. For
example, for a domain of five items a, b, c, d, and e,
we can show examples of sets of combinations as:
{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, ∅. Here “1”
denotes a combination of null items, and “∅” means
an empty set. Sets of combinations are one of
the basic data structure for handling combinatorial
problems. They often appear in real-life problems,
such as combinations of switching devices, sets of
faults, paths in the networks, etc., and of course, it
can be used for representing frequent itemset data.

A set of combinations can be mapped into
Boolean space of n input variables. For exam-
ple, Fig. 3 shows a truth table of Boolean func-
tion (ab + ac), but also represents a set of com-
binations {ab, abc, bc, c}. Such Boolean functions
are called characteristic functions for the sets of
combinations. Using BDD manipulation for char-
acteristic functions, we can implicitly represent and
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Figure 4: Different reduction rules for BDD and
ZBDDs.

manipulate large-scale sets of combinations. In ad-
dition, we can enjoy more efficient manipulation
using “Zero-suppressed BDDs” (ZBDD)[12], which
are special type of BDDs optimized for handling
sets of combinations.

ZBDDs are based on the reduction rule different
from one used in ordinary BDDs. As illustrated in
Fig. 4(a), the ordinary reduction rule deletes the
nodes whose two edges point to the same node.
However, in ZBDDs, we do not delete such nodes
but delete another type of nodes whose 1-edge di-
rectly points to the 0-terminal node, as shown in
Fig. 4(b).

In ZBDDs, a 0-edge points to the subset (co-
factor) of combinations not including the decision
variable x, and a 1-edges points to the subset (co-
factor) of combinations including x. If the 1-edge
directly points to the 0-terminal node, it means
that the item x never appear in the set of combi-
nations. Zero-suppressed reduction rule automati-
cally deletes such a node with respect to the irrele-
vant item x, and thus ZBDDs are more compactly
represent sets of combinations than using ordinary
BDDs.

The detailed techniques of ZBDD manipulation
are described in the articles[12][14]. A typical
ZBDD package supports cofactoring operations to
traverse 0-edge or 1-edge, and binary operations
between two sets of combinations, such as union,
intersection, and difference. the computation time
for each operation is almost linear to the number
of ZBDD nodes related to the operation.

3.2 Simple disjoint decompositions on
sets of combinations

In this paper, we propose the definition of “simple
disjoint decomposition on sets of combinations”, as
a similar concept as one for Boolean functions. As
shown in Fig. 1 again, if a given sets of combination
f can be decomposed as f(X,Y ) = g(h(X), Y ),
and X and Y has no common items, we then call
it a simple disjoint decomposition. Here we ex-
plain the meaning of substitution operation on the
set of combinations. At first, we consider the set
of combination g(s, Y ). Let us extract all combi-
nations including s (a cofactor of g w.r.t s), and
then replace s with any one combination in h(X).
The result of substitution g(h(X), Y ) is the set of
all possible combinations obtained by the replace-
ments. Notice that the combinations irrelevant to
s are left as is. If the substitution result exactly
equals to f(X,Y ), it is a decomposition on f .

For instance, we consider the two sets of
combinations:

g(c, d, e) = {cd, cde, de, e} and h(a, b) = {a, ab}.
When we substitute h(a, b) for c, then

g(h(a, b), d, e) = {ad, abd, ade, abde, de, e}.
Namely, f(a, b, d, e) = {ad, abd, ade, abde, de, e}
has a simple disjoint decomposition as
g(h(a, b), d, e).

A set of combinations has one-to-one mapping
to a Boolean function, however, the simple disjoint
decompositions for the two data models do not have
such direct relation. Although simple disjoint de-
composition on sets of combinations is a similar
concept as one for Boolean functions, we have to
develop another decomposition algorithm consider-
ing particular properties on sets of combinations.

Similarly to the case for Boolean functions, a
set of combinations may have more than one sim-
ple disjoint decompositions. For example, the set of
combinations {abcx, abcy, abcz, xy, xz} has five de-
compositions as X = {a, b}, {b, c}, {a, c}, {a, b, c},
and {y, z}. They may have a nested structure, and
can be represented by a tree graph as shown in
Fig. 5.

Contrary to the case for Boolean functions, sets
of combinations do not have symmetric NOT oper-
ation (uses difference operation instead of NOT),
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Figure 5: Tree structure of decompositions on sets
of combinations.

there are no equivalences on input/output polar-
ity. Only input permutation should be consid-
ered. In Matsunaga’s decomposition algorithm[11]
on Boolean functions uses only OR and NOT in-
stead of AND operation to keep canonical forms,
however, in the case for sets of combinations, AND
(product) operation and OR (union) operation do
not have dual relation, so we should treat them in-
dividually. We do not have to consider XOR oper-
ation on sets of combinations. Finally we found
two kind of binary operations: AND (product)
and OR (union), which may produce associative
sub-decompositions on sets of combinations. As
well as for Boolean functions, we handle those sub-
decompositions as one group, and only use the full-
merged form to represent the group.

We need one more special consideration when
the set of combinations includes “1” (the element
of null combination). For example, let us consider
f(a, b, c) = {ab, c, 1}. If we choose h = {ab}, we
can find simple disjoint decomposition as g(h, c) =
{h, c, 1}. However, we may choose h = {ab, 1} and
then g(h, c) = {h, c} or g(h, c) = {h, c, 1} are pos-
sible. Consequently, the decomposition structure
may not be unique when the set of combinations in-
cludes “1”. In such cases, we need additional rule
to keep the decomposition trees canonical. Basi-
cally, we may put a restriction that h(X) does not
include “1”, namely, only the parent set g(s, Y ) can
have “1”. This rule is working well except for AND
(product) operation. Let us consider f = {abc, ac}.
It can be decomposed as {ab, b}×{c}, {a}×{bc, c},
{ac} × {b, 1}, and {a} × {b, 1} × {c}. This exam-
ple shows that AND (product) operation has the

associative property no matter how “1” is included
or not, so we must decompose by a set with “1” if
it is possible. Fortunately, we can see that if f is
AND-decomposable by h with “1”, then f is not de-
composable by h without “1”. On the other hand,
if f is AND-decomposable by h without “1”, then
f is not decomposable by h with “1”. This means
that we can keep the decomposition tree unique.

3.3 ZBDD-based algorithm for finding
simple disjoint decompositions

In the following discussion, we use “·” for AND
(product) operator, and “+” for OR (union) oper-
ator.

If a given sets of combinations F (X,Y ) contains
a simple disjoint decomposition with P (X), it can
be written as:

F (X,Y ) = P (X) ·Q(Y ) + R(Y ).
Here we choose an item v used in F , and compute
the two cofactors F0, F1. (Namely, F = v ·F1+F0.)
Since v must be included in either of X or Y , the
following two cases are considered:

• In case of v ∈ X: (Let X ′ = X − v.)
F (X,Y ) = P (X) ·Q(Y ) + R(Y )

= {v · P1(X ′) + P0(X ′)} ·Q(Y ) + R(Y )
= v · {P1(X ′) · Q(Y )} + {P0(X ′) · Q(Y ) +

R(Y )}
Thus,
F1(X ′, Y ) = P1(X ′) ·Q(Y ),
F0(X ′, Y ) = P0(X ′) ·Q(Y ) + R(Y ).

• In case of v ∈ Y : (Let Y ′ = Y − v.)
F (X,Y ) = P (X) ·Q(Y ) + R(Y )

= P (X) · {v ·Q1(X ′) + Q0(X ′)}
+{v ·R1(X ′) + R0(X ′)}

= v · {P (X) ·Q1(Y ′) + R1(Y ′)}
+{P (X) ·Q0(Y ′) + R0(Y ′)}

Thus,
F1(X,Y ′) = P (X) ·Q1(Y ′) + R1(Y ′),
F0(X,Y ′) = P (X) ·Q0(Y ′) + R0(Y ′).

In any case, if a given sets of combination F has
simple disjoint decompositions, they can be found
by checking the common set of decompositions on
the cofactors F0 and F1. Similarly to BDD-based
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Decomp(F )
{

if (F = 0) return 0 ;
if (F = 1) return 1 ;
H ← Cache(F ) ;
if (H exists) return H ;
v ← F.top ; /* Top item in F */
(F0, F1)← (Cofactors of F w.r.t v) ;
H0 ←Decomp(F0) ;
H1 ←Decomp(F1) ;
H ←Merge(v,H0,H1) ;

/* Make H from common part of H0, H1 */
Cache(F ) ← H ;
return H ;

}
Figure 6: Sketch of the algorithm.

recursive method of Boolean function decomposi-
tion, there are some cases that a part of factors,
such as P0(X ′) and Q0(Y ′), may be reduced to
a constant “1” or “∅”, so we need more detailed
classification in actual implementation of the algo-
rithm.

The above discussion shows that we can gen-
erate a tree structure of representing all possi-
ble simple disjoint decompositions on a set of
combinations using a ZBDD-based recursive algo-
rithm, which is a similar manner to the BDD-based
method[4][10][11] for Boolean function decomposi-
tion. The sketch of algorithm is shown in Fig.6.
The computation time can be roughly square to the
ZBDD size as well as the previous method, by using
a cache mechanism to avoid duplicated traversals
for the same ZBDD nodes.

4 Experimental Results

We implemented a program for finding all simple
disjoint decompositions on sets of combinations.
The program is based on our own ZBDD pack-
age, and additional 1,600 lines of C++ code for
the decomposition algorithm. We used a Pentium-
4 PC, 800MHz, 512MB of main memory, with SuSE
Linux 9. We can manipulate up to 10,000,000
nodes of ZBDDs in this PC.

For evaluating the performance, we conducted
an experiment for finding all simple disjoint de-
compositions in th frequent itemset data extracted

from two example of benchmark database[7]. The
specification of the two databases are shown in Ta-
ble 1. In this table, the column “#Items” shows the
number of items used in the database, “#Records”
is the number of records, “Total literals” means
the total number of each record size. (Record size
is the number of items appearing in the record.)
“Literals/Records” shows average number of items
appearing in a record.

In our experiment, at first we generate a ZBDD
representing the histogram of all patterns seen in
the database, and then we extract a set of frequent
patterns that appear more than or equal to α times
in the database. We conducted this frequent item-
set mining procedure for various threshold α. In
this process, we need about 300 second for “mush-
room”, and 6 second for the first 1,000 lines of
“T10I4D100K”, respectively. The detailed tech-
niques in the ZBDD-based frequent itemset mining
method are described in a recent articles[15].

The experimental results are summarized in
Table 2. In the table, the column “Min-
freq.(α)” shows the minimum frequency parameter
α. “#Items” means the number of items related
to the frequent itemset. “#Patterns” is the num-
ber of patterns in the frequent itemsets. “ZBDD
nodes” shows the number of ZBDD nodes repre-
senting the frequent itemset data, which is the in-
put of the decomposition algorithm. “Time(sec)”
shows the CPU time for generating the decomposi-
tion tree representing all simple disjoint decompo-
sitions. (not including the time for generating ini-
tial ZBDDs.) “#Decomp.” is the number of non-
trivial decompositions extracted by our method.
Notice that all sub-decompositions caused by as-
sociative operations are counted only once for one
group, so, actual number of decompositions may
exist more.

As shown in the table, our decomposition
method is very powerful to deal with a huge number
of frequent patterns. We succeeded in finding sim-
ple disjoint decompositions in the frequent itemset
data in a feasible time. It is another interesting
point that the decomposition results are different
depending on threshold α.

In Fig. 7, we show an example of decomposition
result for “mushroom” with threshold α = 5, 000.



Finding All Simple Disjoint Decompositions in Frequent Itemset Data 7

Table 1: Spec. of databases
Data name #Items #Records Total Literals Literals/Records
mushroom 119 8,124 186,852 23.0
T10I4D100K (first 1000 lines) 795 1,000 10,098 10.1

Table 2: Experimental result
Data name Min-freq.(α) #Items #Patterns ZBDD nodes Time(sec) #Decomp.
mushroom 5,000 7 42 11 (<0.1) 5

2,000 35 6,624 286 (<0.1) 4
1,000 54 123,278 1,417 0.1 4

500 67 1,442,504 4,011 0.2 5
200 83 18,094,822 12,340 0.5 6
100 90 66,076,586 23,068 0.8 7
50 98 198,169,866 36,652 2.0 7
20 113 781,458,546 53,776 4.0 8
10 115 1,662,769,668 61,240 4.9 9
5 117 2,844,545,896 62,389 11.7 10
2 119 5,043,140,094 51,217 7.1 10
1 119 5,574,930,438 40,557 5.0 10

T10I4D100K 70 1 2 1 (<0.1) 1
(first 1000 lines) 60 4 5 4 (<0.1) 1

50 12 13 12 (<0.1) 1
30 74 75 74 (<0.1) 1
20 171 173 172 0.1 2
10 378 506 430 0.8 22
5 585 3,891 1,322 1.5 42
2 745 30,893 9,903 13.3 13
1 795 24,467,220 70,847 1,698.0 8

List of all frequent patterns:

x39 x86 x85 x34, x39 x86 x85, x39 x86 x34, x39 x86, x39 x85 x34, x39 x85, x39 x34, x39,
x90 x86 x85 x36 x34, x90 x86 x85 x36, x90 x86 x85 x34, x90 x86 x85, x90 x86 x36 x34,
x90 x86 x36, x90 x86 x34, x90 x86, x90 x85 x36 x34, x90 x85 x36, x90 x85 x34, x90 x85,
x90 x36 x34, x90 x36, x90 x34, x90, x86 x85 x36 x34, x86 x85 x36, x86 x85 x34, x86 x85,
x86 x36 x34, x86 x36, x86 x34, x86, x85 x59, x85 x36 x34, x85 x36, x85 x34, x85, x59,
x36 x34, x36, x34, 1

Decomposition result:

AND(OR(AND(OR(x39 AND(!x90 !x36)) !x86 !x34) x59) !x85)

Figure 7: Decomposition result for “mushroom” with α = 5, 000.
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The upper description lists all frequent patterns of
itemsets, and the lower is the decomposition re-
sult. In this format, “AND( )” and “OR( )” show
the associative decomposition groups, and “[ ]”
means another general decomposition. “!” is a
special character to mean “+1”. For example,
“AND(!x !y)” indicates (x + 1)(y + 1). Even for
this small example, we can see that it is hard for
human beings to find the hidden structures from
the plain list. By using our decomposition method,
the data becomes remarkably understandable.

In Fig. 8 and Fig. 9, we show the decomposition
results for “mushroom” and “T10I4D100K” with
various threshold α. We can observe interesting
structures hidden in the frequent itemset data. No-
tice that the frequent itemset data handled here are
too large to manipulate explicit manner. ZBDD-
based implicit manipulation is a key technique

5 Conclusion

In this paper, we proposed the definition of sim-
ple disjoint decomposition for sets of combinations,
and presented an efficient ZBDD-based method for
finding all possible simple disjoint decompositions
on a set of combinations. The experimental results
shows that our method is very powerful and useful
for extracting hidden interesting structures from
the frequent itemset data.

Now we have just finished implementation of de-
composition algorithms, and starting experiments
for data mining applications. The concept of sim-
ple disjoint decomposition will be a meaningful op-
eration in database processing, and we hope that
our result has an impact to the data mining com-
munity.
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α = 2, 000:

AND(![x102 x58 OR(x66 x61) x29 x116 x56 x6 x11 x110 x94 x53 x28 x24 x10 x114 x39 x2 x93
x90 AND(!x86 !x34) x76 x67 x63 x59 x52 x38 x36 x23 x13 x9 x3 x1] !x85)

α = 1, 000:

AND(![x48 x102 x58 AND(!x101 !x95) x66 x61 x29 x17 OR(x69 x77) x117 x116 x56 x6 x111 x11
x44 x110 x43 x94 x53 x37 x28 x24 x16 x10 x41 x15 x114 x99 x39 x14 x2 x107 x98 x93 x90 x86
x76 x67 x63 x59 x54 x52 x38 x36 x34 x23 x13 x9 x3 x1] !x85)

α = 500:

AND(![OR(x32 x7 x31) x119 x48 x102 x91 x58 x80 x101 x95 x66 x61 x29 x17 OR(x78 x68) x69
x77 x45 OR(x60 x64) x117 x116 x56 x6 x111 x11 x44 x110 x43 x42 x94 x53 x37 x28 x24 x16
x10 x41 x15 x114 x99 x55 x39 x14 x2 x107 x98 x93 x90 x86 x76 x67 x63 x59 x54 x52 x38 x36
x34 x23 x13 x9 x3 x1] !x85)

α = 200:

AND(![x35 OR(x32 x31) x7 x119 x48 x112 x102 x91 x58 OR(x80 x71 x79 x70) x101 x95 x66 x61
x29 x17 x46 OR(x78 x68) x69 x77 x45 x60 x117 x65 x116 x56 x6 x111 x64 x11 x44 x110 x43
x42 x109 x94 x53 x37 x28 x24 x16 x10 x115 x41 OR(x27 x26) x15 x4 x114 x108 x99 x55 x39
x14 x2 x113 x107 x98 x93 x90 x86 x76 x67 x63 x59 x54 x52 x40 x38 x36 x34 x25 x23 x13 x9
x3 x1] !x85)

Figure 8: Decomposition results for “mushroom” with various α.
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α = 60:

!OR(x354 x177 x217 x368)

α = 50:

!OR(x438 x460 x829 x684 x354 x177 x217 x529 x766 x283 x120 x368)

α = 20:

!OR(x893 x634 x661 x826 x510 x886 x38 x440 x75 x438 x998 x752 x812 x57 x694 x692 x982
x413 x8 x349 x912 x906 x162 x275 x55 x470 x598 x793 x989 x33 x995 x509 x797 x69 x516
x593 x236 x93 x140 x112 x48 x348 x239 x32 x21 x132 x10 x72 x871 x832 x580 x168 x154
x573 x472 x31 x362 x494 x489 x196 x919 x744 x28 x600 x460 x829 x605 x477 AND(!x346
!x217) x684 x354 x296 x12 x617 x522 x885 x676 x145 x956 x758 x935 x780 x638 x631 x487
x541 x116 x789 x788 x526 x403 x918 x844 x722 x419 x310 x73 x151 x874 x480 x204 x70 x43
x944 x888 x614 x523 x803 x778 x579 x411 x147 x921 x78 x27 x862 x392 x960 x795 x623 x571
x177 x175 x161 x878 x653 x276 x183 x914 x720 x675 x597 x280 x279 x192 x71 x390 x970
x947 x809 x782 x682 x658 x529 x350 x798 x569 x966 x883 x766 x738 x381 x283 x229 x937
x895 x449 x854 x674 x581 x401 x205 x120 x39 x825 x775 x561 x538 x368 x274)

α = 10:

OR(x207 x820 x732 x769 x550 x428 x450 x258 x173 x922 x893 x949 x405 x351 x215 x634 [x661
x394 x510 AND(!x515 !x33) x346 x780 x487 AND(!x888 !x561) x217 x720 x71 x766 x283] x308
x948 x815 x838 x707 x826 x804 x309 x887 x318 x860 x68 x241 x129 x843 x429 x886 [x819 x75
x438 AND(!x598 !x782) x460 x829 x684 x789 x70 x529 x937 x368] x468 x686 x265 x784 x252 x38
x440 x486 x108 x322 x361 [x357 AND(!x752 !x58) AND(!x158 !x617) x583 x354 x480 x27] x563
x170 x867 x710 x595 x899 x998 x991 x852 x160 x923 x812 x800 x57 x567 x694 x692 x984 x982
x94 x413 x197 x8 x349 x963 x665 x546 x406 x373 x117 AND(!x912 !x348) x906 x711 AND(!x534
!x470 !x995) x378 x162 x45 x259 x275 x897 x95 x55 x37 x427 x793 x97 x989 x336 x527 x343
x983 x611 [x509 x862 x801 x461 x392 x569] x110 x577 x913 x797 x415 x69 x6 AND(!x516 !x744)
x423 x1 x122 x593 x90 x952 x236 x606 x93 x594 x387 x285 x140 x112 x521 x765 x639 x319 x126
x48 x500 x100 x239 x136 x54 x32 x21 x464 x172 x132 x10 x981 x72 x988 x871 x832 x580 x168
x154 x111 x651 x628 x573 x472 x329 x181 x31 x591 x362 x673 x641 x494 x489 x196 x919 x736
AND(!x517 !x883) x115 x5 x742 x28 AND(!OR(x709 x177 x970) !x310) x600 x746 x649 x355 x234
x884 x605 x477 x210 x841 x740 x548 x296 x12 x522 x885 x792 x790 x731 x676 x385 x145
AND(!x956 !x788) x763 x758 x242 x17 x935 x735 x638 x631 x471 x946 x805 x701 x541 x171 x395
x201 x198 x116 x975 x774 x526 x403 x326 x967 x918 x846 x844 x810 x722 x484 x469 x419 x118
x73 x890 x830 x504 x151 x874 x334 x204 x43 x944 x614 x523 x290 x266 x903 x842 x803 x778
x579 x572 x411 x147 x921 x78 x839 x130 x125 x960 x910 AND(OR(x795 AND(!x623 !x853)) !x571)
x490 x424 x175 x161 AND(!x878 !x538) x706 x653 x277 x276 x256 x193 x183 x932 x914 x675 x618
x597 x530 x496 x280 x279 x272 x192 x390 x227 x947 x809 x682 x658 x350 x214 x798 x620 x143
x104 x978 x966 x738 x708 x381 x352 x294 x229 x964 x895 x857 x449 x422 x950 x854 x733 x674 x35
x814 x704 x581 x401 x205 x120 AND(!x39 !x825) x834 x775 x687 x448 x274 x240 x164 x52 x25)

Figure 9: Decomposition results for “T10I4D100K” (first 1000 lines) with various α.
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