
TCS -TR-A-06-10

TCS Technical Report

A Framework of Programmable Multicast

Applications Using Flexcast and Java Applet

by

Shin-ichi Minato, Hirokazu Takahashi,

Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

Division of Computer Science

Report Series A

January 15, 2006

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

A Framework of Programmable Multicast Applications

Using Flexcast and Java Applet

Shin-ichi Minato
Division of Computer Science, Hokkaido University

North 14, West 9, Sapporo, 060-0814 Japan

Hirokazu Takahashi
NTT Network Innovation Laboratories

1-1 Hikarinooka, Yokosuka-shi, 239-0846 Japan

Takeru Inoue
NTT Network Innovation Laboratories

1-1 Hikarinooka, Yokosuka-shi, 239-0846 Japan

Hiroshi Tohjo
NTT Network Innovation Laboratories

3-9-11 Midori-Cho, Musashino-Shi, 180-8585 Japan

Kan Toyoshima
NTT Network Innovation Laboratories

1-1 Hikarinooka, Yokosuka-shi, 239-0846 Japan

January 15, 2006

(Abstract) As broadband Internet access is more
commonly provided, streaming applications gain
popularity and wide-area multicast technology will
be more important. Recently, a new overlay mul-
ticast protocol, “Flexcast” has been proposed to
realize the wide-area multi-point contents delivery.
Flexcast provides the multicast function in a higher
layer than the IP routing; Flexcast streaming pack-
ets are forwarded between routers by using unicast.
Therefore, Flexcast can work well even if the legacy
routers remain in the Internet. In addition, Flex-
cast features that an efficient delivery tree is au-
tonomously constructed and maintained. Flexcast
is a promising technology to realize wide-area mul-
ticasting in a reasonable cost on the Internet.

While Flexcast addresses the multicast routing
problem, there is another difficult problem in dis-
tributing multicast application programs. In the
streaming applications, the software must be con-
sistent among all servers and clients. However, es-
pecially when uncountable many (or public) users
are targeted, it is hard to distribute the application
programs to all prospective users, and also quite
difficult to keep uncountable servers and clients up-
to-date. In this paper, we propose a new framework
of programmable multicast applications based on
Flexcast protocol and Java Applet. Currently, Java
Applet technology is widely utilized for various

practical applications; however, all of those are lim-
ited to use unicast communications. Our work is
the first practical approach to develop the multi-
cast streaming software with Java Applet. Since
Applets are distributed among clients on demand,
they are kept up-to-date without any explicit syn-
chronizing mechanism. The service providers do
not need to distribute the application programs
to all users beforehand, and it is anytime possi-
ble to update or modify their programs. They can
design and customize their original service freely,
not restricted by the specifications of a commercial
streaming player which is dominant in the market.

This paper describes the structure of our appli-
cation framework. The experimental results con-
firm the feasibility of our method.

1 Introduction

The Internet access is one of the universal services
today, and many people enjoy WWW (World Wide
Web) and E-mail services. In the beginning, the In-
ternet was used for delivering a small capacity con-
tents such as text data and still pictures, but the
recent progress of broadband access technologies of
ADSL and FTTH enable us to deal with the broad-
band streaming contents in a feasible costs. In the

1

2 Shin-ichi Minato, Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

near future, the Internet will commonly be used
for delivering live movies of various events, such as
music concerts, sports athletic meets, lecture meet-
ings and the ceremonies, sending to multiple desti-
nations simultaneously.

However, most of multi-point contents delivery
systems available today are based on unicast com-
munications, and they have a problem that the
traffic increases in proportion to the number of des-
tinations. As the contents become more wideband,
this problem will be more serious in the near fu-
ture. Although IP Multicast[1] technologies have
been studied for long time, there are still technical
and economical problems, and usually they are not
operated in the public wide-area networks beyond
router segments. Consequently, we cannot readily
use the multi-point contents delivery in the current
Internet.

The authors and colleagues have been
proposed a new overlay multicast protocol
“Flexcast”[9][10][4][5], that addresses the above-
mentioned problem. Flexcast provides the
multicast function in a higher layer than the IP
routing, and the communication between routers
is done by the unicast. Therefore, we can start the
multicast service without waiting for deployment
to all the routers in the network. In addition, the
Flexcast does not need manual configuration of
the delivery tree beforehand. It features that an
efficient delivery tree is autonomously constructed
and maintained. Thus, Flexcast is a promising
technology to realize the service of “anytime, any-
where, and anyone’s broadcasting” in a reasonable
cost on the Internet.

By the way, the wide-area multi-point contents
delivery technology has not only the problem of
network routing, but also another important prob-
lem on the application programs in the server and
client hosts. That is, when we use the original ap-
plication program of multicast service, it is difficult
to distribute and install the program for uncount-
able many (or public) users, and also difficult to
maintain the program to be the latest version at
each user’s host. One realistic solution is to use
a commercial Web browser or a media player that
have a dominant market share. However, in this
case, we lose the initiative of developing the mul-

ticast applications freely, because it is strongly re-
stricted by the specification of the commercial soft-
ware.

To solve the problem above-mentioned, we
propose the method of using Flexcast and Java
Applet[6] for the multicasting application program.
Currently, Java Applet technology is widely uti-
lized for various practical applications, however, all
of those are limited to use one-to-one communica-
tions. Our work is the first practical approach to
develop the multicast streaming software with Java
Applet. In our method, the service providers do not
need to standardize the receiver program, and no
need of prior distribution for all prospective users.
Using this programmable applications framework,
we can easily develop and operate various types of
multi-point contents delivery services in a less ini-
tial cost.

In the following sections of this paper, we first
describe the Flexcast protocol and current problem
in Section 2. We then show the method for pro-
grammable application framework based on Java
Applet in Section 3. In Section 4, we show a proto-
type implementation and its evaluation to confirm
the practicality of our method.

2 Flexcast: autonomous wide-
area multicasting method

For avoiding traffic congestion in multi-point con-
tents delivery systems, multicast communication
techniques have been studied for long time. In gen-
eral, multicast technology constructs a tree deliv-
ery route, and the delivery packets are duplicated
in the branching nodes. In this way, the network
traffic and transmission server load can greatly be
reduced[7].

Despite such a great advantage, the multicast
techniques have been used mainy in a local network
closed in one laboratory or office, and also used
in some fixed/closed wide-area networks, such as
MBone[3], isolated from the public Internet. Cur-
rently, the IP Multicast protocol[1] is adopted as
IETF standard and known most widely. How-
ever, the IP Multicast cannot start delivering until
all the routers in the delivery network can handle

A Framework of Programmable Multicast Applications Using Flexcast and Java Applet 3

IP Multicast protocols, because those multicasting
functions are implemented in the network routing
layer. In addition, there are many versions and
parameter settings in the IP Multicast protocols,
but the router products sometimes support them
differently. We need a special attention to operate
IP Multicast service in wide-area network beyond
the router segment. Therefore, the IP Multicast
is basically not operated in the public wide-area
network which consists of a number of network
providers with different operation policies. Cur-
rently, IP Multicast is hardly used for multi-point
contents delivery service in the Internet.

The authors and colleagues have been proposed
a new multicast protocol “Flexcast”[9][10][4][5],
that addresses the above problem. Flexcast pro-
vides the multicast function in a higher layer
than the routing, and the communication between
routers is done by the unicast. Therefore, we can
start the multicast service without waiting for de-
ployment to all the routers in the network. The
outline of Flexcast technology is shown as follows.

2.1 Flexcast Protocol

Figure 1 shows a basic procedure of the multi-point
contents delivery using Flexcast.

• The user, who wants to transmit Flexcast con-
tents, opens the (global) IP address of the
server host to the public.

• The user, who wants to receive Flexcast con-
tents, sends request signals toward the IP ad-
dress of the Flexcast server. The request is a
simple UDP packet with the port number pe-
culiar to Flexcast protocol, and unicasted to
the server periodically (for instance, once per
second).

• When the request packet is received, the Flex-
cast server transmits the contents delivery
packets in unicast of UDP packets toward the
IP address and the port number of the source
of request. When the reception of the request
packets stops for a certain period (for instance,
five seconds), the Flexcast server recognizes
the session closed and stops the data trans-
mission.

• Flexcast splitters, that serve the function to
aggregate the Flexcast flows, are properly ar-
ranged in the network. We do not have to
make all the routers in the network are Flex-
cast splitters. The Flexcast works well when
legacy routers exist in the network. Even
if there are no Flexcast splitters in the net-
work, it works as just one-to-multi-point uni-
cast transmission. There are more Flexcast
splitters in the network, more chance to ag-
gregate the traffic.

Next, we show the basic operation of flow ag-
gregation in Flexcast splitters1, with Fig. 2. The
client (receiver) hosts C1, C2, and C3 periodically
send the request packets toward the server host S.
The request packet is transported in usual unicast
routing. When a Flexcast splitter B exists on this
route, the request packets are intercepted by the
splitter B, and the source IP addresses C1 and C2
in the request packets are recorded in the deliv-
ery table of the splitter B. Then, the splitter B
becomes a new request client periodically sending
packets toward the server S. That is, B becomes a
proxy of C1 and C2.

Similarly, the Flexcast splitter A on the route
from B to S also intercepts the request packets from
B and C3 and records the source IP address in the
delivery table. Then, the splitter A becomes a new
proxy sending periodical packets toward the server
S.

The server S receives the request packets only
from A, and the server S transmits contents de-
livery packet to A. The splitter A duplicates and
relays the delivery packet from S toward B and C3,
which recorded in the delivery table of A. The split-
ter B also duplicates the delivery packets from A
and relays them to C1 and C2.

As the result of the above procedure, the clients
C1 C2, and C3 do not know the existence of the
splitter A and B, and it seems to directly com-
municate with the server S in one-to-one manner.

1In the current version of Flexcast protocol[4][5] devel-
oped in NTT laboratories, IP Multicast (IGMPv2 and v3
conforming) is locally used at a server and a client host, and
the UDP unicast is used in the wide-area network beyond the
router segments. Therefore, there is a somewhat different in
detail point though the basic principle is the same.

4 Shin-ichi Minato, Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

Figure 1: Multi-point contents delivery based on Flexcast.

Figure 2: Basic operation of Flexcast splitters.

Moreover, the contents packets are only simply de-
livered from server S to the other host who sends
the request. Namely, Flexcast is transparent2 for
the client and the server hosts. Therefore, we do
not have to make any configuration the adjacent
router or client/server hosts when we introduce the
Flexcast splitters in the IP network. It makes easy
to gradually deploy the Flexcast splitters in the
network. We can start the Flexcast service without
waiting the complete deployment of the splitters for
the entire network. In addition, the Flexcast has
an excellent feature that the optimal delivery tree
is constructed (and updated) autonomously only

2In the current version of Flexcast implementation[4][5],
in order to facilitate the wide-area network operation and
management, the source IP address in the IP header of de-
livery packet is not always the server S, but the address of
actual source host (a Flexcast splitter) is recorded. The IP
address of the server S is recorded in the ”Flexcast header,”
which is designed in the UDP payload. So, strictly speaking,
it is not transparent in IP layer.

using the request packets, even if the number and
locations of the client hosts cannot be estimated
beforehand.

Consequently, Flexcast is considered as a
promising technology that realize ”anytime, any-
where, and anyone’s broadcasting” on the Internet
with a reasonable cost.

2.2 Problem on distribution and main-
tenance of application programs

Flexcast is a very simple, light protocol based on
UDP packets, and it is independent of the higher
application layer. This means that the application
program can be designed freely. However, there is
a difficult problem in actual situations.

In general, the multi-point contents delivery ser-
vice requires the application programs in the server
and the client hosts, respectively, which are cor-

A Framework of Programmable Multicast Applications Using Flexcast and Java Applet 5

responding to each other correctly. Namely, it is
necessary to standardize the program beforehand
when a lot of receivers are expected, and need to
distribute the program for all the receivers before
starting the service. However, especially in pub-
lic/open community service, it is hard to surely
distribute the program for all prospective users and
to ask everyone to install the program properly.
Moreover, sometimes we need to bug correction or
version up to improve the receiving program, and
this is also difficult work.

When we assume the users who are not familiar
with software installation and maintenance, a real-
istic solution would be to use a Web browser and
a media player which are the most dominant com-
mercial software products in the market. Recently
in Japan, the market share of Windows PC is over-
whelming for broadband access terminals, hence
Internet Explorer and Windows Media Player is
the most popular streaming contents receiver in
such environment. However, the data format for
Windows Media Player is not officially opened for
public, and thus it is hard to add some original
functions to the receiving program. Moreover, even
if we could know the data format and could mod-
ify or improve the functions of the player, we will
always be afraid that the program suddenly be in
trouble because the data format may often be mod-
ified or improved by an initiative of the software
makers. This means that the dominant commercial
software requires a hidden significant cost to keep
the correctness of the application programs, and it
is more severe problem in multi-point (public) con-
tents delivery services, comparing to the ordinary
one-to-one communications.

After all, the most important problem for multi-
casting service providers is that they cannot design
or customize the applications freely because the in-
ternal data format and behavior of the commercial
software is closed and they are not programmable.
To address such a problem, we propose a frame-
work of designing multicast applications using a
programming language. This method does not re-
quire the standardization of application software,
and no need to distribute the programs for all users
before starting service.

3 Programmable application

framework based on Java Ap-
plet

In this section, we first briefly explain Java Ap-
plet and why we chose Java Applet as a program-
ming language together with the Flexcast. We then
describe the detailed techniques to implement the
server and receiver programs in our framework.

3.1 Java Applet

Java[6] is a programming language published from
Sun Microsystems Co. in 1994. The semantics of
this language is defined on the Java virtual machine
(JavaVM). A Java source program is first compiled
into JavaVM machine language codes, and they
are executed by a JavaVM emulator running on
the target machine. This mechanism provides high
compatibility between different platforms. As the
spread of WWW in the latter half of the 1990’s,
Java language becomes popular and widely used.
A number of multimedia libraries, such as send-
ing/receiving Web contents including image and
voice data, have been developed in Java language,
and opened to the public.

Java Applet is a limited class of Java language,
assuming to be performed by a Java processing sys-
tem built in a Web browser. An applet program is
downloaded from the Web server to client PC, and
immediately executed by a Java processor in a Web
browser system. The output of execution is dis-
played in the browser screen. Java Applet features
that we can easily implement active animation pro-
grams and interactive contents running on a Web
browser with the key board and mouse device in-
put. At the time of Java Applet published, the
technology was novel and attractive, and various
applets have been developed.

Recently, we also have Java Servlet technology,
which is working at server side, and the Servlets are
more often used instead of Applets. If we consider
one-to-one unicast applications, the data process-
ing can be located at whichever, the server side or
the client side. In this case, it is more simple way to
put the program at the server side only. However,

6 Shin-ichi Minato, Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

if we consider the multi-point contents delivery sys-
tems, we do need an intelligent receiving program
at each leaf of the delivery tree, and Java Applet
technology is useful. Actually, the Java Applets are
now widely used in cellular phones, which have a
restricted communication bandwidth.

For using Java Applet, a JavaVM module should
be installed in the Web browser properly. Cur-
rently, the JavaVM can be build in the most of pop-
ular browsers, such as Internet Explorer, Netscape,
and Mozilla(Firefox), on either of Windows, Mac,
and Linux OS. One problem is that JavaVM might
not be installed at the time of purchase of PC3.
If we transmit the contents for public, each user
should install the JavaVM properly in one’s own
PC, and the installation problem still remains.
However, the JavaVM installation is required only
once after obtaining a new PC, and the users do not
need to install or update applications every time on
specification change or version up. It greatly re-
duces the user’s labor costs. Currently, the specifi-
cation of JavaVM is enough stable, and the update
of JavaVM itself is rarely needed.

Besides Java Applet, Flash and JavaScript are
also widely used in recent Web contents, and they
can be used for designing programmable functions.
So we consider the possibility of those technologies
to be alternative solutions for our purpose. Unfor-
tunately, both Flash and JavaScript basically use
the communication facilities of the Web browser,
and cannot operate the communication port di-
rectly. Therefore, they can use only HTTP com-
munications with TCP port. TCP is limited to be
used in one-to-one unicast communications since
the both ends corporate each other for packet re-
sending and rate control. This makes difficult to
use TCP for multicast communication. We con-
sider that Java Applet would be the current best
option for our purpose, because it can operate UDP

3Before October 2004, Internet Explorer was equipped
with ”Microsoft JavaVM” in default setting, and there was
a problem that Sun’s official JavaVM and Microsoft’s one
are not completely compatible. As a result of the lawsuit of
the two companies, Microsoft JavaVM is abolished, and the
user oneself should install Sun’s JavaVM after obtaining a
new PC. This installation is a little hard work for beginners,
however, some maker’s PCs are equipped with a JavaVM
installer to make easy for beginners.

communication port directly, various libraries on
image and voice processing are provided, and work-
ing on more than one major platforms.

3.2 Combination with Flexcast

Currently, Java Applet technology is widely uti-
lized for various practical applications, for instance,
“i-appli”[2] for mobile Internet is one of the most
successful service. However, all of those are limited
to use unicast communications. There has not been
any practical result of using multicast with Java
Applet. Java Applet has a strict security restric-
tion that the client host cannot access any remote
host except only the server host which provides the
Applet program4. Conventional IP multicast uses
a special ”class-D” address, called a group address,
for the destination of IP packets. Since the group
address is different from the server address, Java
Applet cannot open a communication port for the
multicast server.

When we use Flexcast, the protocol is transpar-
ent for the server and client host as shown in Fig. 2,
and the client host seems to access the server with
one-to-one unicast communication. This means
that Java Applet can access a multicast-type con-
tents server without violating the security restric-
tion, provided that the Applet program is down-
loaded from the Flexcast server5.

Figure 3 shows a basic architecture of our sys-
tem. In the server host, the Web server process
(Apache etc.) is running as well as the Flexcast
server process. The Web server contains a Web
page (HTML file) of the service entry, and has
opened the Web page’s URI to the public as an
identifier of the contents. A Java applet program
for the Flexcast receiver is embedded in the Web
page.

The user who wants to start Flexcast contents
receiving, at first accesses the URI of the entry Web

4The special certified remote host can be accessed excep-
tionally, but this procedure is also hard for beginners as well
as installing a new software.

5As mentioned in the footnote of Section 2, the current
implementation[4][5] of Flexcast splitter is not completely
transparent. It is not difficult to address this problem, and
near future, our Flexcast splitter will support the transpar-
ent mode.

A Framework of Programmable Multicast Applications Using Flexcast and Java Applet 7

Figure 3: Flexcast contents delivery system using
Java Applet.

page by a Web browser. Then, the Applet program
of the Flexcast receiver is downloaded, and it is
executed on JavaVM immediately. The Applet is
programmed to send Flexcast request packets to-
ward the server, and to receive the delivery packet
returned from the server, and then restore and dis-
play the contents to the Web browser screen. In
the network between the Flexcast server and client
hosts, we can insert any number of Flexcast split-
ters. The splitters aggregate the request flows and
split the delivery flows autonomously, and as the
result, an efficient multi-point delivery tree is gen-
erated in the network.

3.3 Design of Applet programs for Flex-
cast

The Flexcast client (receiver) program is described
in Java Applet. It is composed of the thread that
periodically sends the request packets toward the
Flexcast server, the thread that receives the de-
livery packets from the server, and that restores
and displays the contents to the screen according
to the applications. On the other hand, the Flex-
cast server program is not written in Java Applet

but a general Java application. (We may use any
other programming language such as C, Perl, but
it would be easier to use the same language for the
pair of server and client.) In the Flexcast server
program, the delivery data is divided into a lim-
ited size of the UDP packets according to the spec-
ification of the client program, and they are sent
in a prescribed transfer rate toward the source IP
address of the periodic request packets. When the
request packets are lost for a certain time period,
the session is automatically closed.

In the Flexcast server/client programs, the ba-
sic UDP packets are handled completely based on
the Flexcast protocol, but we can freely design the
higher layers as far as Java language allows, such
as the specifications of presentation or application
layers processed after receiving Flexcast delivery
packets. For example, we may describe an Applet
program that handles a JPEG image file with a
number of UDP packet sequence, and receiving the
image files in a few frame/sec to be shown on the
screen in real time. In this way, we can serve a sim-
ple live movie multicast application. As another
example, if the program receives an image file ev-
ery five or ten seconds and updates the screen im-
mediately, it will be used for delivering the lecture
slides to multiple classrooms. Moreover, if we add
the function of playing the sound, the program can
also be used for an emergency system to show the
evacuation route with an alarm sound.

These examples show that we can freely pro-
gram various multi-point contents delivery services
using Java Applet. We do not have to standardize
and distribute the receiver program to the users be-
fore starting the service, since the program is pro-
vided to the client hosts automatically as a Java
Applet. Therefore, even when uncountable many
users are targeted, it is anytime possible to update
or modify the service, only considering the contents
server’s schedule.

4 Implementation and experi-
mental result

To evaluate validity of our framework of multi-
casting applications, we implemented a prototype

8 Shin-ichi Minato, Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

Figure 4: An example of screen shot of a client (receiver) host.

system and conducted experiments to confirm the
operations. For the Flexcast server, we used a
Pentium-4 PC (800MHz, 512MB, 100Base-T Eth-
ernet) with SuSE Linux 9 and Java SDK 1.4.2. On
the other hand, we prepared two different PCs as
receivers, Pentium 1.2GHz with Windows XP Pro
SP2, and Pentium-4 800MHz with SuSE Linux 9.
We tested more than one Web browsers on each
platform, Internet Explorer Ver. 6.0 and Netscape
7.1 on the Windows PC, and Mozilla 1.6.74 and
Konqueror 3.2.1 on Linux PC, respectively. We
used Java plug-in Version 1.4.2 06 both in Win-
dows PC and Linux PC.

In this experiment, we implemented a multicas-
ting application that the Flexcast server transmits
JPEG image files periodically in a certain fixed
time interval, and the receiver repeats drawing of
the recent image on the Web browser when the im-
age file is delivered. In the Flexcast server, the
image file are divided into multiple UDP packets
each of which is up to 1kByte length, and a se-
quence number is stamped on each packet. In the
receivers, the image files are reconstructed from the
UDP packet sequence. Our receiver program can

detect a packet loss based on the sequence num-
bers, and the erroneous image files are automati-
cally skipped without drawing on the screen. In
addition, our Flexcast server program controls the
peak rate by inserting an interval at least 10msec
between two consecutive UDP packets. The server
program can deliver more than one streaming from
one server, namely, more than one Flexcast Applets
can be embedded in one Web page and simultane-
ously activated.

In this framework, we can freely specify the size
of images and frequency of image update by the
server-side application program. This framework
can be used for various applications, for instance,
live transmission of monitor camera pictures, lec-
ture note delivery, and real time advertisement
banners in the Web pages. The server program
is written in 250 lines of Java code, and receiver
program is 190 lines of Java Applet code.

We conducted an experiment of putting one
Flexcast server in a LAN, and two different stream-
ing contents are simultaneously transmitted from
the same server. Those two contents are received

A Framework of Programmable Multicast Applications Using Flexcast and Java Applet 9

by multiple receivers located in the same LAN. The
specifications of the two streaming contents are as
follows.

• Simple movie delivery program that transmits
JPEG images of a live camera, 4 frames/sec
(320 × 240 pixels, 7.8kByte/frame in average).
Data transmission rate is about 250kbps in av-
erage.

• Lecture note delivery program that trans-
mits JPEG images of PowerPoint slides, one
frame in every six seconds (800 × 554 pixels,
67kByte/frame in average).Data transmission
rate is about 90kbps in average, and 800kbps
in the peak rate (When the lecturer proceeds
the next slide).

We tried to transmit the above two different
contents simultaneously, and total ten flows of
streaming are delivered to the Web browsers run-
ning on three client hosts. In this case, we con-
firmed that the performance of Java Applet is suf-
ficient, and no problem to use heterogeneous Web
browsers and OS. Figure 4 shows an example of the
screen shot of receiving host.

Next we checked the delay time between the im-
age update on the server and its reflection on a
client host. It was about 0.1 second for the live
camera image application, and 0.3 to 1 second for
the lecture slide application. This delay time is
mainly caused by constructing the image from the
fragmented UDP packet sequence at the receiver
host, and we have to wait to receive all parts of
one image before update the screen. Thus, this
delay is almost irrelevant to the performance of in-
terpreting Java code. To reduce the delay, we must
increase the peak transmission rate.

Flexcast protocol is based on simple UDP
packet communication without error correction and
rate control. Thus, if a packet is lost in the net-
work, we just skip an image frame, not re-sending
the lost packet. This is a natural way since there
may be many receivers working simultaneously in
the network, therefore the server cannot wait or
re-send only for one receiver’s error, In such cases,
we usually apply FEC (Forward Error Correction)

technology[8]. There are many type of FEC meth-
ods according to the property of contents, and
sometimes needs tuning adaptively to the real con-
tents. Our programmable application framework
will be useful for implementing such error correc-
tion techniques in multi-point contents delivery ser-
vices.

Finally we note that, in the above experiment,
we confirmed the basic operations of Flexcast and
Java Applet, between the server and the clients lo-
cated in the same LAN without being relayed by
Flexcast splitters. We also conducted additional
experiment to insert a Flexcast splitter between
the server and clients, and have confirmed that
the delivery table in the Flexcast splitter is cor-
rectly constructed based on the request packets
from the Java Applet program, and delivery pack-
ets from the Flexcast server are properly relayed to
the client hosts. It means that the Flexcast split-
ter is working correctly cooperating with Flexcast
Applet programs.

5 Conclusion

We presented a new method for multi-point con-
tents delivery applications based on Flexcast and
Java Applet. In our method, the service provider
does not need to standardize the program, and no
need of prior distribution for all prospective users.
Even if uncountable many users are targeted, it
is anytime possible to update or modify the ser-
vice, only considering the contents server’s sched-
ule. Moreover, the service provider can design and
customize the application program freely, not re-
stricted by the interface of commercial software
which has a dominant share in the market. We can
design the multicast applications with not only sim-
ple movie format but also more sophisticated and
complex presentations. For example, e-learning
technology is recently emerging, and lecture note
delivery on the Internet[8][11] is one of the attrac-
tive multicast application. Our programmable ap-
plication framework can flexibly support the vari-
ous display formats, image size and quality, update
timing, combination with voice and text, etc., ac-
cording to the preference of the lecturer.

10 Shin-ichi Minato, Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, and Kan Toyoshima

As a long-term future work, our method can be
applied to the super-parallel large area distributed
data processing. In this system, the primitive data
is reported to the server using the Flexcast request
packets, and Flexcast splitters aggregate the prim-
itive data, and then the Flexcast server feedbacks
the computation results to every host by Flexcast
delivery packets. Our programmable application
framework will be a key technique in such a mas-
sively parallel computation system.

References

[1] Stephen Deering: “Multicast routing in inter-
networks and extended LANs,” Proc. of SIG-
COMM’ 88, Aug. 1988.

[2] “DoJa: Technology for Creating i-appli, i-
mode Java Applications,”
http://www.doja-developer.net/

[3] Hans Eriksson: “MBONE: The Multicast
Backbone,” Commun. ACM, vol.37, no. 8,
pp.54-60, Aug. 1994.

[4] T. Inoue, S. Tani, K. Ishimaru, S. Minato,
and T. Miyazaki, “Wide-Area Multicasting
based on Flexcast: Toward the Ubiquitous
Network,” Proc. of APSITT’ 03, Nov. 2003.

[5] T. Inoue, S. Tani, H. Takahashi, S. Mi-
nato, T. Miyazaki, and K. Toyoshima, “De-
sign and Implementation of Advanced Multi-
cast Router Based on Cluster Computing,” In
Proc. of IEEE The 11th International Con-
ference on Parallel and Distributed Systems
(ICPADS-2005), July 2005.

[6] “Java 2 SDK, Standard Edition Document,”
http://java.sun.com/j2se/1.4.2/docs/

[7] G. Phillips, S. Shenker, and H. Tangmu-
narunkit, ”Scaling of Multicast Trees: Com-
ments on the Chuang-Sirbu scaling law,” Proc.
of SIGCOMM’99, August 1999.

[8] H. Takahashi, T. Inoue, H. Thojo,
K. Toyoshima, and S. Minato: “A Study

on IP Distance Education System Using Flex-
cast,” Technical Report of IEICE, IN2005-50,
pp. 127-13, July 2005. (In Japanese)

[9] S. Tani, T. Miyazaki, and N. Takahashi,
”Adaptive Stream Multicast Based on IP Uni-
cast and Dynamic Commercial Attachment
Mechanism: an Active Network Implementa-
tion,” Proc. of IWAN2001, Sep. 2001.

[10] S. Tani, T. Inoue, S. Minato, H. Takahashi,
S. Kotabe, and T. Miyazaki: “Global Multi-
Point Streaming Experiments Based on the
Flexcast Protocol,” NTT Technical Review,
Vol. 1, No. 5, pp. 24–30, Aug. 2003.

[11] P. Ziewer and H. Seidl: ”Transparent
teleteaching,” In Proc. of ASCILITE-2002,
Dec. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 841.890]
>> setpagedevice

