
TCS -TR-A-06-12

TCS Technical Report

ZBDD-growth: An Efficient Method for Frequent

Pattern Mining and Knowledge Indexing

by

Shin-ichi Minato and Hiroki Arimura

Division of Computer Science

Report Series A

April 10, 2006

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682





ZBDD-growth: An Efficient Method for Frequent Pattern Mining and

Knowledge Indexing

Shin-ichi Minato
Division of Computer Science, Hokkaido University

North 14, West 9, Sapporo, 060-0814 Japan

Hiroki Arimura
Division of Computer Science, Hokkaido University

North 14, West 9, Sapporo, 060-0814 Japan

April 10, 2006

(Abstract) Frequent pattern mining is one of the
fundamental techniques for knowledge discovery
and data mining. In the last decade, a number
of efficient algorithms for frequent pattern mining
have been presented, but most of them focused
on just enumerating the patterns which satisfy the
given conditions, and it was a different matter how
to store and index the result of patterns for effi-
cient data analysis. In this paper, we propose a
fast algorithm of extracting all/maximal frequent
patterns from transaction databases and simulta-
neously indexing the result of huge patterns us-
ing Zero-suppressed BDDs (ZBDDs). Our method,
ZBDD-growth, is fast as competitive to the existing
state-of-the-art algorithms, and not only enumerat-
ing/listing the patterns but also indexing the out-
put data compactly on the memory. After mining,
the result of patterns can efficiently be analyzed
by using algebraic operations. The data structures
of BDDs have already been used in VLSI logic de-
sign systems successively, but our method will be
the first practical work of applying the BDD-based
techniques for data mining area.

1 Introduction

Frequent pattern mining is one of the fundamental
techniques for knowledge discovery and data min-
ing. Since the introduction by Agrawal et al.[1], the
frequent pattern mining and association rule anal-
ysis have been received much attentions from many
researchers, and a number of papers have been pub-
lished about the new algorithms or improvements
for solving such mining problems[7, 9, 19]. How-

ever, most of such pattern mining algorithms fo-
cused on just enumerating or listing the patterns
which satisfy the given conditions and it was a dif-
ferent matter how to store and index the result of
patterns for efficient data analysis.

In this paper, we propose a fast algorithm of ex-
tracting all/maximal frequent patterns from trans-
action databases, and simultaneously indexing the
result of huge patterns on the computer memory
using Zero-suppressed BDDs. Our method does
not only enumerate/list the patterns but also in-
dexes the output data compactly on the memory.
After mining, the result of patterns can efficiently
be analyzed by using algebraic operations.

The key of our method is to use BDD-based
data structure for representing sets of patterns.
BDDs[4] are graph-based representation of Boolean
functions, now widely used in VLSI logic design
and verification area. For the data mining applica-
tions, it is important to use Zero-suppressed BDDs
(ZBDDs)[12], a special type of BDDs, which are
suitable for handling large-scale sets of combina-
tions. Using ZBDDs, we can implicitly enumerate
combinatorial item set data and efficiently compute
set operations over the ZBDDs. The preliminary
idea of using ZBDDs is presented in our last work-
shop paper[15], and after that we developed a fast
pattern mining algorithm based on this data struc-
ture. Our work will be the first practical result of
applying the BDD-based technique for data mining
area.

For a related work, FP-growth[9] is received a
great deal of attention because it supports fast ma-
nipulation of large-scale item set data using com-

1



2 Shin-ichi Minato and Hiroki Arimura

pact tree structure on the main memory. Our
method is a similar approach to handle sets of com-
binations on the main memory, but will be more
efficient in the following points:

• ZBDDs are a kind of DAGs for representing
item sets, while FP-growth uses a tree rep-
resentation for the same objects. In general,
DAGs can be more compact than trees.

• ZBDD-growth uses ZBDDs not only as inter-
nal data structure but also as output data
structure. It provides an efficient knowledge
index for consequent analysis.

ZBDD-growth algorithm is based on a recursive
depth-first search of the database represented by
ZBDDs. We show two versions of algorithms, gen-
erating all frequent patterns and generating max-
imal ones. Our experimental result shows that
ZBDD-growth is fast as competitive to the exist-
ing state-of-the-art algorithms, such as FP-growth.
Especially for the cases where the ZBDD nodes
are well shared, exponential speed up are observed
comparing to the existing algorithms based on ex-
plicit table/tree representation.

Recently, the data mining methods are often dis-
cussed in the context of Inductive Databases[3, 11],
the integrated processes of knowledge discovery. In
this paper, we place the ZBDD-based method as a
basis of integrated discovery processes to efficiently
execute various operations finding interest patterns
and analyzing information involved in large-scale
combinatorial item set databases.

2 BDDs and Zero-suppressed

BDDs

Here we briefly describe the basic techniques of
BDDs and Zero-suppressed BDDs for representing
sets of combinations efficiently.

2.1 BDDs

BDD (Binary Decision Diagram) is a directed
graph representation of the Boolean function, as
illustrated in Fig. 1(a). It is derived by reducing

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.

Figure 1: BDD and binary tree: F = (a ∧ b) ∨ c .

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Figure 2: Reduction rules of ordinary BDDs

a binary tree graph representing recursive Shan-
non’s expansion, indicated in Fig. 1(b). The fol-
lowing reduction rules yield a Reduced Ordered
BDD (ROBDD), which can efficiently represent the
Boolean function. (see [4] for details.)

• Delete all redundant nodes whose two edges
point to the same node. (Fig. 2(a))

• Share all equivalent sub-graphs. (Fig. 2(b))

ROBDDs provide canonical forms for Boolean
functions when the variable order is fixed. Most
researches on BDDs are based on the above reduc-
tion rules. In the following sections, ROBDDs will
be referred to as BDDs (or ordinary BDDs) for the
sake of simplification.

As shown in Fig. 3, a set of multiple BDDs can
be shared each other under the same fixed variable
ordering. In this way, we can handle a number of
Boolean functions simultaneously in a monolithic
memory space.

Using BDDs, we can uniquely and compactly
represent many practical Boolean functions includ-



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 3

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a⊕ b
F3 = b
F4 = a ∨ b

Figure 3: Shared multiple BDDs.

ing AND, OR, parity, and arithmetic adder func-
tions. Using Bryant’s algorithm[4], we can effi-
ciently construct a BDD for the result of a binary
logic operation (i.e. AND, OR, XOR), for given a
pair of operand BDDs. This algorithm is based on
hash table techniques, and the computation time
is almost linear to the data size unless the data
overflows the main memory. (see [13] for details.)

Based on these techniques, a number of BDD
packages have been developed in 1990’s and widely
used for large-scale Boolean function manipulation,
especially popular in VLSI CAD area.

2.2 Sets of Combinations and ZBDDs

BDDs are originally developed for handling
Boolean function data, however, they can also be
used for implicit representation of sets of combina-
tions. Here we call “sets of combinations” for a set
of elements each of which is a combination out of
n items. This data model often appears in real-
life problems, such as combinations of switching
devices(ON/OFF), fault combinations, and sets of
paths in the networks.

A combination of n items can be represented by
an n-bit binary vector, (x1x2 . . . xn), where each
bit, xk ∈ {1, 0}, expresses whether or not the item
is included in the combination. A set of combina-
tions can be represented by a list of the combina-
tion vectors. In other words, a set of combinations
is a subset of the power set of n items.

A set of combinations can be mapped into
Boolean space by using n-input variables for each
bit of the combination vector. If we choose any

Figure 4: Set of combinations and Boolean func-
tion.

0

0

x
1

Jump

f f

Figure 5: ZBDD reduction rule.

one combination vector, a Boolean function deter-
mines whether the combination is included in the
set of combinations. Such Boolean functions are
called characteristic functions. For example, Fig. 4
shows a truth-table representing a Boolean func-
tion (abc) ∨ (bc), but also represents a set of com-
bination {ab, ac, c}. Using BDDs for characteris-
tic functions, we can implicitly and compactly rep-
resent sets of combinations. The logic operations
AND/OR for Boolean functions correspond to the
set operations intersection/union for sets of com-
binations. By using BDDs for characteristic func-
tions, we can manipulate sets of combinations effi-
ciently. They can be generated and manipulated
within a time roughly proportional to the BDD
size. When we handle many combinations includ-
ing similar patterns (sub-combinations), BDDs are
greatly reduced by node sharing effect, and some-
times an exponential reduction benefit can be ob-
tained.

Zero-suppressed BDD (ZBDD)[12, 14] is
a special type of BDDs for efficient manipulation
of sets of combinations. ZBDDs are based on the
following special reduction rules.

• Delete all nodes whose 1-edge directly points



4 Shin-ichi Minato and Hiroki Arimura

Figure 6: Effect of ZBDD reduction rule.

Figure 7: Explicit representation by ZBDD.

to the 0-terminal node, and jump through to
the 0-edge’s destination, as shown in Fig. 5.

• Share equivalent nodes as well as ordinary
BDDs.

Notice that we do not delete the nodes whose two
edges point to the same node, which used to be
deleted by the original rule. The zero-suppressed
deletion rule is asymmetric for the two edges, as
we do not delete the nodes whose 0-edge points
to a terminal node. It is proved that ZBDDs are
also gives canonical forms as well as ordinary BDDs
under a fixed variable ordering.

Here we summarize the features of ZBDDs.

• In ZBDDs, the nodes of irrelevant items (never
chosen in any combination) are automatically

deleted by ZBDD reduction rule. In ordi-
nary BDDs, irrelevant nodes still remain and
they may spoil the reduction benefit of sharing
nodes.

An example is shown in Fig. 6. In this
case, the item d is irrelevant, but ordinary
BDD for characteristic function Fz(a, b, c)
and Fz(a, b, c, d) become different forms. On
the other hand, ZBDDs for Fz(a, b, c) and
Fz(a, b, c, d) become identical forms and com-
pletely shared.

• ZBDDs are especially effective for represent-
ing sparse combinations. For instance, sets of
combinations selecting 10 out of 1000 items
can be represented by ZBDDs up to 100 times
more compact than ordinary BDDs.

• Each path from the root node to the 1-terminal
node corresponds to each combination in the
set. Namely, the number of such paths in the
ZBDD equals to the number of combinations
in the set. In ordinary BDDs, this property
does not always hold.

• When no equivalent nodes exist in a ZBDD,
that is the worst case, the ZBDD structure
explicitly stores all items in all combinations,
as well as using an explicit linear linked list
data structure. An example is shown in Fig. 7.
Namely, (the order of) ZBDD size never ex-
ceeds the explicit representation. If more



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 5

Table 1: Primitive ZBDD operations
“∅” Returns empty set. (0-termial

node)

“1” Returns the set of only null-
combination. (1-terminal node)

P .top Returns the item-ID at the root
node of P .

P .offset(v) Selects the subset of combinations
each of which does not include item
v.

P .onset(v) Selects the subset of combinations
including item v, and then delete v
from each combination.

P .change(v) Inverts existence of v (add / delete)
on each combination.

P ∪Q Returns union set.
P ∩Q Returns intersection set.
P −Q Returns difference set. (in P but

not in Q.)

P .count Counts number of combinations.

nodes are shared, the ZBDD is more com-
pact than linear list. Ordinary BDDs have
larger overhead to represent sparser combina-
tions while ZBDDs have no such overhead.

Table 1 shows the most of primitive operations
of ZBDDs. In these operations, ∅, 1, P.top are exe-
cuted in a constant time, and the others are almost
linear to the size of graph. We can describe various
processing on sets of combinations by composing of
these primitive operations.

2.3 ZBDD-based Database Analysis

In this paper, we discuss the method of manipulat-
ing large-scale transaction databases using ZBDDs.
Here we consider binary item set databases, each
record of which holds a combination of items cho-
sen from a given item list. Such a combination is
called a tuple (or a transaction).

For analyzing those large-scale transaction
databases, frequent pattern mining[2] and maxi-
mum frequent pattern mining[5] are especially im-
portant and they have been discussed actively in

the last decade. Since the introduction by Agrawal
et al.[1], a number of papers have been published
about the new algorithms or improvements for
solving such mining problems[7, 9, 19]. Recently,
graph-based methods, such as FP-growth[9], are
received a great deal of attention, since they can
quickly manipulate large-scale tuple data by con-
structing compact graph structure on the main
memory.

ZBDD-based method is a similar approach to
handle sets of combinations on the main memory,
but will be more efficient because ZBDDs are a
kind of DAGs for representing item sets, while FP-
growth uses a tree representation for the same ob-
jects. In general, DAGs can be more compact than
trees.

Another important point is that our method
uses ZBDDs not only as internal data structure
but also as output data structure. The most of
existing state-of-the-art pattern mining algorithms
focused on just enumerating or listing the patterns
which satisfy the given conditions, and it was a
different matter how to store and index the result
of patterns for efficient data analysis. In this pa-
per, we present a fast algorithm of pattern min-
ing and simultaneously indexing the result of huge
patterns compactly on the main memory for con-
sequent analysis. The results can be analyzed flex-
ibly by using algebraic operations implemented on
ZBDDs.

In addition, we show here why we use ZBDDs
instead of ordinary BDDs in this application. Ta-
ble 2 lists the basic statistics of typical bench-
mark data[7] often used for data mining/analysis
problems. #I shows the number of items used in
the data, #T is the number of tuples included in
the data, avg|T | is the average number of items
per tuple, and avg|T |/#I is the average appear-
ance ratio of each item. From this table, we can
observe that the item’s appearance ratio is very
small in many cases. This is reasonable as consid-
ering real-life problems, for example, the number
of items in a basket purchased by one customer is
usually much less than all the items displayed in a
shop. This observation means that we often handle
very sparse combinations in many practical data
mining/analysis problems, and in such cases, the



6 Shin-ichi Minato and Hiroki Arimura

Table 2: Statistics of typical benchmark data.
Data name #I #T total|T | avg|T | avg|T |/#I
T10I4D100K 870 100,000 1,010,228 10.1 1.16%
T40I10D100K 942 100,000 3,960,507 39.6 4.20%
chess 75 3,196 118,252 37.0 49.30%
connect 129 67,557 2,904,951 43.0 33.33%
mushroom 119 8,124 186,852 23.0 19.32%
pumsb 2,113 49,046 3,629,404 74.0 3.50%
pumsb star 2,088 49,046 2,475,947 50.5 2.42%
BMS-POS 1,657 515,597 3,367,020 6.5 0.39%
BMS-WebView-1 497 59,602 149,639 2.5 0.51%
BMS-WebView-2 3,340 77,512 358,278 4.6 0.14%
accidents 468 340,183 11,500,870 33.8 7.22%

Figure 8: Database example and tuple-histogram.

ZBDD reduction rule is extremely effective. If the
average appearance ratio of each item is 1%, ZB-
DDs may be more compact than ordinary BDDs
up to 100 times. In the literature, there is a first
report by Jiang et al.[10] applying BDDs to data
mining problems, but the result seems not excellent
due to the overhead of ordinary BDDs. We must
use ZBDDs in stead of ordinary BDDs for success
in many practical data mining/analysis problems.

3 ZBDD-growth: ZBDD-based

pattern mining algorithm

In this section, we describe our new algorithm,
ZBDD-growth, which extract all frequent patterns
from a given transaction database using ZBDDs.

Figure 9: ZBDD vector for tuple-histogram.

3.1 Tuple-Histograms and ZBDD vec-
tors

A Tuple-histogram is the table for counting the
number of appearance of each tuple in the given
database. An example of tuple-histogram is shown
in Fig. 8. This is just a compressed table of the
database to combine the same tuples appearing
more than once into one line with the frequency.

Our pattern mining algorithm manipulates
ZBDD-based tuple-histogram representation as the
internal data structure. Here we describe how to
represent tuple-histograms using ZBDDs. Since
ZBDDs are representation of sets of combinations,
a simple ZBDD distinguishes only existence of
each tuple in the database. In order to repre-
sent the numbers of tuple’s appearances, we de-
compose the number into m-digits of ZBDD vec-
tor {F0, F1, . . . , Fm−1} to represent integers up to
(2m−1), as shown in Fig. 9. Namely, we encode the
appearance numbers into binary digital code, as F0

represents a set of tuples appearing odd times (LSB



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 7

= 1), F1 represents a set of tuples whose appear-
ance number’s second lowest bit is 1, and similar
way we define the set of each digit up to Fm−1.

In the example of Fig. 9, The tuple frequen-
cies are decomposed as: F0 = {abc, ab, c}, F1 =
{ab, bc}, F2 = {abc}, and then each digit can be
represented by a simple ZBDD. The three ZBDDs
are shared their sub-graphs each other.

Now we explain the procedure for construct-
ing a ZBDD-based tuple-histogram from original
database. We read a tuple data one by one from
the database, and accumulate the single tuple data
to the histogram. More concretely, we generate a
ZBDD of T for a single tuple picked up from the
database, and accumulate it to the ZBDD vector.
The ZBDD of T can be obtained by starting from
“1” (a null-combination), and applying “Change”
operations several times to join the items in the
tuple. Next, we compare T and F0, and if they
have no common parts, we just add T to F0. If
F0 already contains T , we eliminate T from F0 and
carry up T to F1. This ripple carry procedure con-
tinues until T and Fk have no common part. Af-
ter finishing accumulations for all data records, the
tuple-histogram is completed.

Using the notation F .add(T ) for addition of a
tuple T to the ZBDD vector F , we describe the pro-
cedure of generating tuple-histogram H for given
database D.

H = 0
forall T ∈ D do

H = H.add(T )
return H

When we construct a ZBDD vector of tuple-
histogram, the number of ZBDD nodes in each
digit is bounded by total appearance of items in
all tuples. If there are many partially similar tu-
ples in the database, the sub-graphs of ZBDDs are
shared very well, and compact representation is ob-
tained. The bit-width of ZBDD vector is bounded
by log Smax, where Smax is the appearance of most
frequent items.

Once we have generated a ZBDD vector for
the tuple-histogram, various operations can be ex-
ecuted efficiently. Here are the instances of opera-
tions used in our pattern mining algorithm.

Figure 10: Example of FP-tree.

• H.factor0(v): Extracts sub-histogram of tu-
ples without item v.

• H.factor1(v): Extracts sub-histogram of tu-
ples including item v and then delete v from
the tuple combinations. (also considered as
the quotient of H/v)

• v ·H: Attaches an item v on each tuple com-
binations in the histogram F .

• H1 + H2: Generates a new tuple-histogram
with sum of the frequencies of corresponding
tuples.

• H.tuplecount: The number of tuples appear-
ing at least once.

These operations can be composed as a sequence
of ZBDD operations. The result is also compactly
represented by a ZBDD vector. The computation
time is bounded by roughly linear to total ZBDD
sizes.

3.2 ZBDD vectors and FP-trees

FP-growth[9], one of the state-of-the-art algo-
rithm, constructs ”FP-tree” for a given transac-
tion database, and then searches frequent patterns
using this data structure. An example of FP-
tree is shown in Fig. 10. We can see that FP-
tree is a trie of tuples with their frequencies. In
other words, FP-growth is based on the tree
representation of tuple-histograms. Namely,
ZBDD-growth is based on logically same internal
data structure as FP-growth. This is the reason
why we call this algorithm ZBDD-growth. How-
ever, ZBDD-based method will be more efficient



8 Shin-ichi Minato and Hiroki Arimura

ZBDDgrowth(H,α)
{

if(H has only one item v)
if(v appears more than α ) return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H.factor1(v) ;
H0 ← H.factor0(v) ;
F1 ←ZBDDgrowth(H1, α) ;
F0 ←ZBDDgrowth(H0 + H1, α) ;
F ← (v · F1) ∪ F0 ;
Cache(H) ← F ;
return F ;

}
Figure 11: ZBDD-growth algorithm.

because ZBDDs can share the equivalent subgraphs
and computation time is bounded by the ZBDD
size. The benefit of ZBDDs is especially remark-
able when a huge number of patterns are produced.

3.3 Frequent Pattern Mining Algorithm

Our algorithm, ZBDD-growth, is based on a recur-
sive depth-first search over the ZBDD-based tuple-
histogram representation. The basic algorithm is
shown in Fig. 11.

In this algorithm, we choose an item v used in
the tuple-histogram H, and compute the two sub-
histograms H1 and H0. (Namely, H = (v · H1) ∪
H0.) As v is the top item in the ZBDD vector,
H1 and H0 can be obtained just by referring the
1-edge and 0-edge of the highest ZBDD-node, so
the computation time is constant for each digit of
ZBDD.

The algorithm consists of the two recursive calls,
one of which computes the subset of patterns in-
cluding v, and the other computes the patterns
excluding v. The two subsets of patterns can be
obtained as a pair of pointers to ZBDDs, and then
the final result of ZBDD is computed. This proce-
dure may require an exponential number of recur-
sive calls, however, we prepare a hash-based cache
to store the result of each recursive call. Each entry
in the cache is formed as pair (H,F ), where H is
the pointer to the ZBDD vector for a given tuple-
histogram, and F is the pointer to the result of

ZBDDgrowthMax(H,α)
{

if(H has only one item v)
if(v appears more than α ) return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H.factor1(v) ;
H0 ← H.factor0(v) ;
F1 ←ZBDDgrowthMax(H1, α) ;
F0 ←ZBDDgrowthMax(H0 + H1, α) ;
F ← (v · F1) ∪ (F0 − F0.permit(F1)) ;
Cache(H) ← F ;
return F ;

}
Figure 12: ZBDD-growth-max algorithm.

ZBDD. On each recursive call, we check the cache
to see whether the same histogram H has already
appeared, and if so, we can avoid duplicate process-
ing and return the pointer to F directly. By using
this technique, the computation time becomes al-
most linear to the total ZBDD sizes.

In our implementation, we use some simple tech-
niques to prune the search space. For example, if
H1 and H0 are equivalent, we may skip to com-
pute F0. For another case, we can stop the recur-
sive calls if total frequencies in H is no more than
α. There are some other elaborate pruning tech-
niques, but they needs additional computation cost
for checking the conditions, so sometimes effective
but not always.

3.4 Extension for Maximal Pattern
Mining

We can extend the ZBDD-growth algorithm to ex-
tract only the maximal frequent patterns[5], each
of which is not included in any other frequent pat-
terns. The algorithm is shown in Fig. 12.

The difference from the original algorithm is
only one line, written in the frame box. In this
part, we check each pattern in F0, and delete it if
the pattern is included in one of patterns of F1. In
this way, we can generate only maximal frequent
patterns. This is basically the same approach as
used in MAFIA[5].



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 9

P .permit(Q)
{

if(P =“0” or Q =“0”) return “0” ;
if(P = Q) return F ;
if(P =“1”) return “1” ;
if(Q =“1”)

if(P include “1” ) return “1” ;
else return “0” ;

R← Cache(P,Q) ;
if(R exists) return R ;
v ←TopItem(P,Q) ; /* Top item in P,Q */
(P0, P1)←factors of P by v ;
(Q0, Q1)←factors of Q by v ;
R← (v · P1.permit(Q1))∪ (P0.permit(Q0 ∪Q1))

;
Cache(P,Q) ← R ;
return R ;

}
Figure 13: Permit operation.

The process of deleting non-maximal patterns
is basically a very time consuming task, however,
we found that one of the ZBDD-based operation,
called permit operation by Okuno et al.[17], can be
used for solving this problem1. P .permit(Q) re-
turns a set of combinations in P each of which is
a subset of some combinations in Q. For example,
when P = {ab, abc, bcd} and Q = {abc, bc}, then
P .permit(Q) returns {ab, abc}. The permit opera-
tion is efficiently implemented as a recursive proce-
dure of ZBDD manipulation, as shown in Fig. 13.
The computation time of permit operation is al-
most linear to the ZBDD size.

4 Experimental Results

Here we show the experimental results to evalu-
ate our new method. We used a Pentium-4 PC,
800MHz, 1.5GB of main memory, with SuSE Linux
9. We can deal with up to 20,000,000 nodes of ZB-
DDs in this machine.

4.1 Experiment for Mathematical Ex-
ample

First, we present the experiment for a set of artifi-
cial examples where ZBDD-growth is extremely ef-

1Permit operation is basically same as SubSet operation
by Coudert et al.[6], defined for ordinary BDDs.

Table 3: Results for ”one-pair-missing” with α = 1.

n #Patterns (output) ZBDD-growth FP-growth
|ZBDD| Time(sec) Time(sec)

8 58,974 35 0.01 0.11
9 242,460 40 0.01 0.47

10 989,526 45 0.01 1.93
11 4,017,156 50 0.01 7.81
12 16,245,774 55 0.01 32.20
13 65,514,540 60 0.01 131.15
14 263,652,486 65 0.02 518.90
15 1,059,392,916 70 0.02 1966.53
16 4,251,920,574 75 0.02 (timeout)

fective. The database, named “one-pair-missing,”
has the following form for a given integer n > 0.

a2b2a3b3· · ·an−1bn−1anbn

a1b1 a3b3· · ·an−1bn−1anbn

a1b1a2b2 · · ·an−1bn−1anbn
...

. . .
...

a1b1a2b2a3b3· · · anbn

a1b1a2b2a3b3· · ·an−1bn−1

Namely, this database has n records each of which
contains (n− 1) pairs of items but only one pair is
missing. It may produce an exponential number of
frequent patterns. The experimental results with
frequency threshold α = 1 are shown in Table 3.
We can observe the exponential explosion of the
number of patterns, but only linear size of ZBDDs
are needed for representing such a huge number
of patterns. In such cases, ZBDD-growth runs ex-
tremely fast, while FP-growth requires exponential
time depending on the output data size.

4.2 Experiments for Benchmark Exam-
ples

Next we show the results for the benchmark
examples[8], written in previous section.

Table 4 shows the time and space for gener-
ating ZBDD vectors of tuple-histograms. In this
table, #T shows the number of tuples, total|T |
is the total of tuple sizes (total appearances of
items), and |ZBDD| is the number of ZBDD nodes
for the tuple-histograms. We can see that tuple-
histograms can be constructed for all instances in



10 Shin-ichi Minato and Hiroki Arimura

Table 4: Generation of tuple-histograms.
Data name #T total|T | |ZBDD Vector| Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
T40I10D100K 100,000 3,960,507 3,396,395 150.2
chess 3,196 118,252 40,028 1.4
connect 67,557 2,904,951 309,075 58.1
mushroom 8,124 186,852 8,006 1.5
pumsb 49,046 3,629,404 1,750,883 188.5
pumsb star 49,046 2,475,947 1,324,502 123.6
BMS-POS 515,597 3,367,020 1,350,970 895.0
BMS-WebView-1 59,602 149,639 46,148 18.3
BMS-WebView-2 77,512 358,278 198,471 138.0
accidents 340,183 11,500,870 3,877,333 107.0

a feasible time and space. The ZBDD sizes are
almost same or less than total|T |.

After generating ZBDD vectors for the tuple-
histograms, we applied ZBDD-growth algorithm to
generate frequent patterns. Table 5 show the re-
sults for the selected benchmark examples, “mush-
room,” “T10I4D100K,” and “BMS-WebView-1.”
The execution time includes the time for generating
the initial ZBDD vectors for tuple-histograms.

The results shows that ZBDD-growth is much
faster than FP-tree for “mushroom,” but not effec-
tive for ”T10I4D100K.” ”T10I4D100K” is known
as an artificial database, consists of randomly gen-
erated combinations, so there are almost no rela-
tionship between the tuples. In such cases, ZBDD
nodes cannot be shared well, and only the over-
head factor is revealed. For “BMS-WebView-1,”
ZBDD-growth is slower than FP-growth when the
output size is small, however, an exponential factor
of reduction is observed for the cases of generat-
ing huge patterns. Especially for α = 31, 30, more
than 1 Tera patterns are generated and compactly
stored in the memory, that has never been possible
by using conventional data structures.

4.3 Maximal Frequent Pattern Mining

We also show the experimental results of maxi-
mal frequent pattern mining using ZBDD-growth-
max algorithm. In Table 6, we show the re-
sults for the same examples as used in the exper-
iment of original ZBDD-growth. The last column

T ime(max)/T ime(all) shows the ratio of computa-
tion time between the ZBDD-growth-max and the
original ZBDD-growth algorithm. We can observe
that the computation time is almost the same (up
to twice) between the two algorithms. In other
words, the additional computation cost for ZBDD-
growth-max is almost the same order as the original
algorithm. Our ZBDD-based ”permit” operation
can efficiently filter the maximal patterns within a
time depending on the ZBDD size, which is almost
the same cost as manipulating ZBDD vectors of
tuple-histograms.

5 Post Processing for Generated

Frequent Patterns

Our ZBDD-based method features that the algo-
rithm uses ZBDDs not only as internal data struc-
ture but also as output data structure indexing a
huge number of patterns compactly on the main
memory. The results can be analyzed flexibly by
using algebraic operations implemented on ZBDDs.
Here we show several examples of the post process-
ing operations for the output data.

Sub-pattern matching for the frequent pat-
terns

For the result of frequent patterns F , we can effi-
ciently filter a subset S, such that each pattern in
S contains a given sub-pattern P .



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 11

Table 5: Results for benchmark examples.
Data name: #Frequent (output) ZBDD- FP-

Min. freq. α patterns |ZBDD| growth growth
Time(s) Time(s)

mushroom:
8,124 1 1 1.2 0.1
5,000 41 11 1.2 0.1
1,000 123,277 1,417 3.7 0.3

200 18,094,821 12,340 9.7 5.4
50 198,169,865 36,652 10.2 44.6
16 1,176,182,553 53,804 7.7 244.1
4 3,786,792,695 59,970 4.3 891.3
1 5,574,930,437 40,557 1.8 1,322.5

T10I4D100K:
100,000 0 0 78.5 0.7

5,000 10 10 81.3 0.7
1,000 385 382 135.5 3.1

200 13,255 4,288 279.4 4.5
50 53,385 20,364 408.7 6.7
16 175,915 89,423 543.3 13.7
4 3,159,067 1,108,723 646.0 38.8
1 2,217,324,767 (mem.out) − 317.1

BMS-
WebView-1:

59,602 0 0 27.3 0.2
1,000 31 31 27.8 0.2

200 372 309 31.3 0.4
50 8,191 3,753 49.0 0.8
40 48,543 12,176 46.6 1.2
36 461,521 34,790 102.4 2.7
35 1,177,607 47,457 111.4 4.2
34 4,849,465 64,601 120.8 8.3
33 69,417,073 80,604 130.0 28.1
32 1,531,980,297 97,692 133.7 345.3
31 8,796,564,756,112 117,101 138.1 (timeout)
30 35,349,566,550,691 152,431 143.9 (timeout)

S = F

forall v ∈ P do:
S = S.onset(v).change(v)

return S

Inversely, we can extract a subset of patterns not
satisfying the given conditions. It is easily done
by computing F − S. The computation time for
the sub-pattern matching is much smaller than the
time for frequent pattern mining.

The above operations are sometimes called con-
straint pattern mining. In conventional method, it
is too time consuming to generate all frequent pat-

terns before filtering. Therefore, many researchers
consider the direct methods of constraint pattern
mining without generating all patterns. However,
using ZBDD-based method, a huge number of pat-
terns can be stored and indexed compactly on the
memory, so in many cases, it is possible to gener-
ate all frequent patterns and then processing them
using algebraic ZBDD operations.

Extracting Long/Short Patterns

Sometimes we are interested in the long/short pat-
terns, consists of a large/small number of items.
Using ZBDDs, all combinations of less than k out of



12 Shin-ichi Minato and Hiroki Arimura

Table 6: Results of maximal pattern mining.
Data name: #Maximal (output) ZBDD- T ime(max)

Min. freq. α frequent |ZBDD| growth-max /T ime(all)

patterns Time(s)
mushroom:

8,124 1 1 1.2 0.99
5,000 3 10 1.2 1.00
1,000 467 744 4.1 1.10

200 3,111 4,173 10.7 1.10
50 9,857 10,223 11.0 1.08
16 24,060 13,121 8.1 1.06
4 39,456 14,051 4.2 0.98
1 8,124 8,006 1.2 0.70

T10I4D100K:
5,000 10 10 107.1 1.32
1,000 370 376 203.1 1.50

200 1,938 2,609 462.8 1.66
50 12,062 13,259 787.8 1.93
16 68,096 66,274 922.4 1.70
4 400,730 372,993 1141.2 1.77
1 77,443 532,061 140.5 −

BMS-
WebView-1:

1,000 29 30 34.9 1.25
200 264 289 41.2 1.32
50 3,546 3,064 71.2 1.45
40 9,827 8,260 110.1 1.44
36 15,179 14,345 149.5 1.46
35 15,725 15,713 161.5 1.45
34 15,877 16,854 173.1 1.43
33 15,753 16,854 183.8 1.41
32 15,252 17,680 196.6 1.47
31 13,639 17,383 208.7 1.51
30 11,371 16,323 219.7 1.53

n items are efficiently represented in a polynomial
size, bounded by O(k · n). This ZBDD represents
a length constraint of patterns. We then apply in-
tersection (or difference) operation to the frequent
patterns with the length constraint of ZBDD. In
this way, we can easily extract a set of long/short
frequent patterns.

Comparison of Two Sets of Frequent Pat-
terns

Our ZBDD manipulation environment can effi-
ciently store more than one results of frequent pat-
tern mining together. So, we can compare the two
sets of frequent patterns generated with different

conditions. For example, if the database is gradu-
ally changing as time passing, the tuple-histograms
and frequent patterns are not the same forever.
Our ZBDD-based method can store and index a
number of snapshot of pattern sets and easily show
the intersection, union, and difference between any
pair of snapshots. When many similar ZBDDs are
generated, their ZBDD nodes are effectively shared
into a monolithic multi-rooted graph, so the mem-
ory requeirement is much less than storing each
ZBDD separately.



ZBDD-growth: An Efficient Method for Frequent Pattern Mining and Knowledge Indexing 13

Calculating Statistical Data

After generating a ZBDD for a set of patterns, we
can quickly count a number of patterns by using
a primitive ZBDD operation S.count. The com-
putation time is linearly bounded by ZBDD size,
not depending on the amount of pattern counts.
We can also efficiently calculate other statistical
measures, such as Support and Confidence, which
are often used in probabilistic analysis and machine
learning.

Finding Disjoint Decompositions in Fre-
quent Patterns

In the recent paper[16], we presented an efficient
ZBDD-based method for finding all possible simple
disjoint decompositions in a set of combinations. If
a given set of patterns f can be decomposed as
f(X,Y ) = g(h(X), Y ), and X and Y has no com-
mon items, we then call it a simple disjoint decom-
position.

This decomposition method extracts another as-
pect of hidden structures from complicated itemset
data. The decomposition procedure is enough fast
for handling large-scale sets of patterns. It will be
a powerful tool for database analysis.

6 Conclusion

In this paper, we presented a new method of
ZBDD-based frequent pattern mining algorithm.
Our method generates a ZBDD for a set frequent
patterns from the ZBDD vector for the tuple-
histogram of a given transaction database. Our ex-
perimental result shows that our ZBDD-growth al-
gorithm is fast as competitive to the existing state-
of-the-art algorithms, such as FP-growth. Espe-
cially for the cases where the ZBDD nodes are well
shared, exponential speed up are observed compar-
ing to the existing algorithms based on explicit ta-
ble/tree representation. On the other hand, for the
cases where ZBDDs are not well shared, or number
of patterns is very small, ZBDD-growth method is
not effective and the overhead factor reveals.

However, we do not have to use ZBDD-growth
algorithm for all instances. We may use the exist-
ing methods for the instances where they are more
effective than ZBDD-growth. In addition, we can
develop a hybrid program that using FP-tree or
simple array for internal data structure, but the
output is constructed as a ZBDD.

A ZBDD can be regarded as a compressed trie
for representing a set of patterns. ZBDD-based
method will be useful as a fundamental techniques
for database analysis and knowledge indexing, and
will be utilized for various data mining applica-
tions.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami, Min-
ing Association rules between sets of items in large
databases, In P. Buneman and S. Jajodia, edtors,
Proc. of the 1993 ACM SIGMOD International
Conference on Management of Data, Vol. 22(2) of
SIGMOD Record, pp. 207–216, ACM Press, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen
and A. I. Verkamo, Fast Discovery of Association
Rules, In Advances in Knowledge Discovery and
Data Mining, MIT Press, 307–328, 1996.

[3] J.-F. Boulicaut, Proc. 2nd International Workshop
on Knowledge Discovery in Inductive Databases
(KDID’03), Cavtat-Dubrovnik, 2003.

[4] Bryant, R. E., Graph-based algorithms for Boolean
function manipulation, IEEE Trans. Comput., C-
35, 8 (1986), 677–691.

[5] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A
Maximal Frequent Itemset Algorithm for Transac-
tional Databases, In Proc. ICDE 2001, 443–452,
2001.

[6] O. Coudert, J. C. Madre, H. Fraisse, A new view-
point on two-level logic minimization, in Proc. of
30th ACM/IEEE Design Automation Conference,
pp. 625-630, 1993.

[7] B. Goethals, “Survey on Frequent
Pattern Mining”, Manuscript,
2003. http://www.cs.helsinki.fi/
u/goethals/publications/survey.ps

[8] B. Goethals, M. Javeed Zaki (Eds.), Frequent
Itemset Mining Dataset Repository, Frequent



14 Shin-ichi Minato and Hiroki Arimura

Itemset Mining Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/data/

[9] J. Han, J. Pei, Y. Yin, R. Mao, Mining Fre-
quent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach, Data Mining
and Knowledge Discovery, 8(1), 53–87, 2004.

[10] L. Jiang, M. Inaba, and H. Imai: A BDD-based
Method for Mining Association Rules, in Proceed-
ings of 55th National Convention of IPSJ, Vol. 3,
pp. 397-398, Sept. 1997, IPSJ.

[11] H. Mannila, H. Toivonen, Multiple Uses of Fre-
quent Sets and Condensed Representations, In
Proc. KDD, 189–194, 1996.

[12] S. Minato: Zero-suppressed BDDs for set manip-
ulation in combinatorial problems, In Proc. 30th
ACM/IEEE Design Automation Conf. (DAC-93),
(1993), 272–277.

[13] S. Minato: “Binary Decision Diagrams and Appli-
cations for VLSI CAD”, Kluwer Academic Pub-
lishers, November 1996.

[14] S. Minato, Zero-suppressed BDDs and Their Ap-
plications, International Journal on Software Tools
for Technology Transfer (STTT), Springer, Vol. 3,
No. 2, pp. 156–170, May 2001.

[15] S. Minato and H. Arimura: Efficient Combinato-
rial Item Set Analysis Based on Zero-Suppressed
BDDs”, In Proc. of IEEE/IEICE/IPSJ Interna-
tional Workshop on Challenges in Web Informa-
tion Retrieval and Integration (WIRI-2005), pp. 3-
10, Apr., 2005.

[16] S. Minato: Finding Simple Disjoint Decompo-
sitions in Frequent Itemset Data Using Zero-
suppressed BDD, In Proc. of IEEE ICDM 2005
workshop on Computational Intelligence in Data
Mining, pp. 3-11, ISBN-0-9738918-5-8, Nov. 2005.

[17] H. Okuno, S. Minato, and H. Isozaki: On the Prop-
erties of Combination Set Operations, Information
Procssing Letters, Elsevier, 66 (1998), pp. 195-199,
1998.

[18] Ricardo Baeza-Yates, Berthier Ribiero-Neto,
“Modern Information Retrieval”, Addison Wesley,
1999.

[19] M. J. Zaki, Scalable Algorithms for Association
Mining, IEEE Trans. Knowl. Data Eng. 12(2),
372–390, 2000.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 841.890]
>> setpagedevice


