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Abstract. In this paper, we consider the problem of finding maximal patterns in an two-
dimensional text for the class of two-dimensional picure patterns with wild cards (don’t cares).
A maximal pattern for two-dimensional text is a generalization of a 1-dimensional sequential
motif in (Parida et al., SODA’00; Pisanti et al., MFCS’03; Pelfrene etal., CPM’03), and it
is such a representative pattern that is not properly contained in any larger pattern with
the same location lists under invariance with respect to parallel motion. Since a text may
contain exponentially many maximal patterns in general, it is natural to consider an output-
sensitive algorithms for enumerating all patterns in the class. Then, we present a polynomial
space and polynomial delay algorithm for enumerating all maximal patterns in a text array in
exact polynomial time per discovered pattern in the total size of the input text. This result
is achieved by backtracking through depth-first search of a tree-shaped search route over all
maximal patterns, similar to (Arimura et al., ISAAC’05). We also discuss the lowerbound
results on the number of maximal patterns and the #P-hardness of conting, and efficient input
polynomial time computation of constant patterns with matrix suffix trees.

1 Introduction

By rapid increase of electronic data in various forms, two dimensional pattern match-

ing have received much attention with potential applications in multimedia, digital

libraries, computer vision, geographic information systems and semi-structured data

processing. In this paper, we consider a new class of data processing problem for

two-dimensional matrix data, called the two-dimensional pattern discovery problem,

where an input is a n×n text matrix T [1..n, 1..n] over an alphabet Σ, the problem is

to find all patterns within a pattern class and satisfying specified constraints without

repetition.

Maximal pattern discovery problem. We study the maximal pattern discovery

problem for the class of square patterns with wild cards defined as follows. For an

alphabet Σ = {a, b, . . .} of constant letters and the wild card (or don’t care) ◦ �∈ Σ, a

two-dimensinal square pattern with wild cards is an m×m matrix P [1..m, 1..m] over

Σ∪{◦}, where ◦ matches itself and any constant letters. Then, a pattern P [1..m, 1..m]

has the location list L(P ) = {d1, . . . , dm} ⊆ [1..n]× [1..n] (m ≥ 0) which is the set of

all locations (or occurrences) of P in T . A pattern P with wild cards is maximal in

a given text T iff (i) P appears in T at some specified frequency and (ii) there exists
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no pattern Q appearing in T that properly contains P and having the same location

list under the invariance with respect to parallel motion. We denote by P andM the

class of patterns and the class of all maximal two-dimensional square patterns over

Σ ∪ {◦}.
The maximal pattern discovery problem can be regarded as a two-dimensional

string version of maximal motif discovery problems in bioinformatics, extensively stud-

ied for the last years [15, 18, 17], and as a variation of closed itemset mining and closed

semi-structured data mining in database and artificial intelligence areas [11, 20, 21].

Since there are exponentially many patterns in an n× n text (Theorem 2), it is

natural to consider a pattern discovery problem as an enumeration problem. Our

particular goal here is to devise a polynomial space and polynomial delay algorithm,

which is one of the efficient kinds of output-polynomial time enumeration algorithms,

for solving the maximal pattern discovery problem for two-dimensional patterns with

wild cards.

However, preliminary analyses of the problem shows that (Theorem 3) the set of

maximal patterns can be exponentially succinct than the set of all frequent patterns,

and furthermore that (Theorem 4) the counting version of maximal pattern problem

is #P -hard problem indicating that enumeration is a not trivial problem. These results

indicates that a simple generate-and-test approach based on frequent pattern discovery

does not work for our maximal pattern problem.

Main results of this paper. We present an efficient algorithm MaxMatrix that,

given an n×n input text T [1..n, 1..n], enumerates all maximal two-dimensional square

patterns P ∈ M with wild cards without duplicates in O(|Σ|N�) exact time (or the

delay) per maximal pattern using O(M�) space, where M = m2 is the size of m×m

pattern P and � = |L(P )| = O(N) is the number of occurrences of P in T (Theorem 7).

Then, we modify this algorithm to remove the dependency of |Σ| resulting another

algorithm with O(N�) exact time per pattern. Since the class of square patterns with

wildcards exactly corresponds to the class of two-dimensional patterns of arbitrary

shape, the above results applies to the latter class of patterns. As a special case,

we observe that the maximal pattern enumeration problem for constant patterns is

solvable in input polynomial time using dictionary structures (Theorem 1).

The key of our algorithm is a tree-shaped search route built over the space of

all maximal patterns. To realize this idea, we develop a technique, called the prefix-

preserving closure extension, by combining the previously proposed notions of tail

extension and the closure operations .

Organization of this paper. The rest of this paper is organized as follows. In Sec-

tion 2, we prepare the basic notions and definitions. Then in Section 3, we show some

lower bounds for the number of maximal two-dimensional patterns. In Section 4, we

give our polynomial space and polynomial delay enumeration algorithm MaxMatrix

for the maximal patterns with wild cards. In Section 5, we discuss future directions.
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2 Preliminaries

We prepare basic definitions and notations on two-dimensional pattern matching and

discovery according to [3, 12, 13]. Then, we define our problem, the maximal two-

dimensional pattern discovery problem by generalizeing the 1-dimensional maximal

motif discovery problem [8, 15, 18, 17]

2.1 Basics

We denote by N = {0, 1, 2, . . .} all natural numbers and by Z = N∪{−x | x ∈ N} be all

integers. For any integers i1, i2, j1j2 ∈ Z, we denote the interval [i1..i2] = {x ∈ Z | i1 ≤
x ≤ i2 } and the rectangular region [i1..i2, j1..j2] = [i1..i2] × [j1..j2]. We sometimes

write [m] and [m,n] to denote [1..m] and [1..m, 1..n], respectively.

Let ∆ be an alphabet of symbols. An n×n matrix over ∆, denoted by A[1..m, 1..n],

is a mapping A : [1..m, 1..n]→ ∆, where we denote by dom(A) = [1..m, 1..n] the do-

main of A and by A[i, j] ∈ ∆ the value of A at point (or location) (i, j) ∈ dom(A).

The subarray of A whose domain is [i1..i2, j1..j2] ⊆ dom(A) is denoted by B =

A[i1..i2, j1..j2]. For m,n ∈ N, we denote by ∆m×n the class of all m× n matrices

over ∆. In what follows, we consider only square matrices , which are matrices with

m = n.

2.2 texts and patterns

Let Σ = {a, b, . . .} be an alphabet of solid characters (or constant letters), and ◦ �∈ Σ

be a distinguished letter, called the wild card (or don’t care). A wild card ◦ matches

any solid character c ∈ Σ and also matches ◦ itself. More formally, we define a binary

relation 	 over Σ ∪{◦}, called the subsumption relation, as follows: ◦ 	 ◦, ◦ 	 c, and

c 	 c for any c ∈ Σ.

Definition 1 (input text matrix). An input text is a n×n matrix T [1..n, 1..n] ∈
Σm×n of solid letters.

Definition 2 (two-dimensional pattern with wild cards). A two-dimensional

pattern with wild cards is a m×m matrix P [1..m, 1..m] ∈ (Σ ∪ {◦}m×m), where its

border region border(P ) = [1, 1..m]∪ [m, 1..m]∪ [1..m, 1]∪ [1..m,m] contains at least

one solid letters in Σ.3

As a special case, a two-dimensional constant pattern is defined as a m×m matrix

P [1..m, 1..m] ∈ Σm×m of solid letters only.

3 This constraint is to avoid useless patterns wiht large borders ocuppied only by wild cards ◦.
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Definition 3 (occurrence). We say that a square pattern P [1..m, 1..m] ∈ (Σ ∪
{◦})m×m with wild cards occurs in another pattern Q[1..n, 1..n] ∈ (Σ ∪ {◦})n×n at

position (x, y) ∈ dom(Q) if P [i, j] 	 Q[x + i − 1, y + j − 1] holds for every position

(i, j) ∈ [1..m, 1..m] in P . In this case, we write P 	 Q. We define ε occurs in Q at

any position (i, j).

The binary relation 	 is called the subsumption for patterns. For constant patterns,

	 reduces to the submatrix relation. If P 	 Q, then, we say that either P subsumes

Q, P is contained by Q, P is more general than Q, or Q is more specific to P . If

P 	 Q but Q �	 P , then we define P ≺ Q and say that either P is properly contained

by Q and so on. We can see that if P 	 Q and Q 	 P , then P = Q. Furthermore, 	
is a partial order over P. The converse of Lemma 1 below does not hold in general.

Lemma 1. For patterns with wild cards P, Q in an text T , if P 	 Q then L(P ) ⊇
L(Q).

Definition 4 (two-dimensional pattern of arbitrary shape). A two-dimensional

pattern of arbitrary shape (an arbitrary pattern) is a mapping A : dom(A)→ Σ with

a finite domain dom(A) ⊆ Z
2.

In the above definition, the domain dom(A) can be a non-rectangular region of

Z2. We regard (0, 0) as the origin of a pattern A of arbitrary shape. A pattern with

arbitrary shape P occurs in an input text Q at location (x, y) if P [i, j] = Q[x + i −
1, y + j − 1] for every (i, j) ∈ dom(P ). It is well known that patterns with wildcards

can be simulated by two-dimensional pattern of arbitrary shape defined below [3]

(detailed is omitted).

Definition 5 (location list). For an input text T [1..n, 1..n] of size n ≥ 0, the lo-

cation list of pattern P [1..m, 1..m] is the set L(x) ⊆ [1..n, 1..n] of all the positions

p = (x, y) in T at which P occurs.

The frequency of P in T is |L(x)|. A a quorum (or a minimum frequency threshold)

is any positive number 1≤ θ≤ n2. We say that pattern x is a θ-frequent in T [1..n, 1..n]

if |L(x)| ≥ θ holds.

2.3 Maximal Pattern Discovery Problem

Now, we define the class of maximal two-dimensional patterns by generalizing the

class of 1-dimensional maximal motifs in [15, 18, 17] as follows. For any (xi, yi) ∈ Z2,

we define (x1, y1)+(x2, y2) = (x1 +x2, y1+y2). A displacement is any two-dimensional

vector d = (x, y) ∈ Z2 meaning the parallel motion by d. The shift of a location list

L ⊆ Z2 by displacement d ∈ Z2 is the set L + d = { p + d | p ∈ L }. We write L − x

to represent the set L + y with y = −x. We regard two matrices P and Q as being

equivalent if L(y) = L(x) + d for some d.
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Definition 6 (maximal two-dimensional patterns). A pattern with wild cards

P [1..m, 1..m] is maximal in text T [1..n, 1..n] if for any pattern with wild cards Q[1..m′, 1..m′]
that properly contains P , i.e., P ≺ Q, there is no displacement d ∈ Z

2 such that

L(y) = L(x) + d.

In other words, a pattern P is maximal in T iff there exists no pattern in T that

properly contains P and is equivalent to P under the invariance with respect to parallel

motion. Without loss of generality, we only consider maximal P with |L(P )| ≥ 2.

We denote by F and M the sets of all frequent patterns and all maximal patterns,

respectively. Clearly, M ⊆ F ⊆ P for any T and any θ. Now, we state our problem

as follows.

Definition 7 (maximal pattern enumeration problem). Let C be a class of

two-dimensional patterns. The maximal pattern enumeration problem for C is, given

an input text T [1..n, 1..n] of size n ≥ 0, to enumerate all maximal two-dimensional

patterns P in T within the class C without repetition.

Since the number of maximal patterns can be exponential in the input size n as

we will see later, the discovery problem naturally becomes an enumeration problem.

2.4 Enumeration algorithms

We introduce terminology for enumeration algorithms according to [14, 19]. Through-

out this paper, we adopt the standard RAM model [1] as a model of computation. An

enumeration algorithm for an enumeration problem Π is an algorithm A that receives

an input and prints all solutions without repetition.

Let N , M be the input and the output sizes on an input, and TA be the total

running time of A for computing all solutions. Among efficient enumeration algo-

rithms, the weakest is an output-polynomial algorithm (P-OUTPUT) A, where TA is

bounded by a polynomial q(N, M). A is of polynomial enumeration time (P-ENUM)

if the amortized time for each solution x ∈ S is bounded by a polynomial p(N) in

N , i.e., TA = O(M · p(N)). The strongest is a polynomial delay (P-DELAY) algo-

rithm (or a exact polynomial time enumeration algorithm) A, where the delay , which

is the maximum computation time between two consecutive outputs, is bounded by

a polynomial p(N) in the input size N . A is of polynomial space (P-SPACE) if the

maximum size of its working space is bounded by a polynomial p(N).

Our goal is to devise an polynomial space polynomial delay enumeration algorithm

for solving the maximal pattern problem for the class of two-dimensional square pat-

terns with wild cards.

3 Lower bound results

We show the following (an upper bound and) lower bound results of the number of

maximal two-dimensional square patterns with wild cards.
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The maximal pattern enumeration problem seems rather easy for the special case

for the class of constant two-dimensinal patterns, where the number of maximal pat-

terns in T is clearly bounded above by O(n3) (O(n2) patterns for each size m = O(n)).

Acturally, the next theorem, which can be easily derived by combining the previous

results on suffix trees for matrices [2, 13], says that the maximal pattern enumeration

problem is solvable in input polynomial time for the class.

Theorem 1 (constant square patterns are easy to enumerate). There exists

an algorithm for enumerating all of n3 maximal patterns in O(n4) = O(N2) total time

for the class of constant two-dimensinal patterns, where N = n2 is the total input size.

Proof: See Appendix A. �


On the other hand, we have the following result for maximal patterns with wild

cards.

Theorem 2 (exponential lowerbound of maximal patterns). There is an infi-

nite series of input texts T0, T1, T2, . . . , such that for every k = 0, 1, 2, . . ., the number

|M| of maximal two-dimensinal patterns with wild cards in Ti is bounded below by

2Ω(n), where the size of Ti is n×n.

Proof: See Appendix B. �


As a technical lemma, we construct below a transformation from an well-studied

problem of closed itemsets enumeration problem to our maximal two-dimensinal pat-

tern enumeration problem.4

Lemma 2 (transformation from closed itemsets to maximal patterns). For

every transaction database R = {t1, . . . , tm} consisting of m transactions over n items

of total size N = mn, there exists an ñ×ñ input matrix T with ñ2 = O(N +m2) such

that the number Q of closed itemsets in r is given by Q = M +m− 1, where M is the

number of maximal patterns with wild cards in T .

Proof: See Appendix C. �


Theorem 3 (succinctness of maximal patterns). There is an infinite series of

input strings T0, T1, T2, . . . , such that for every i ≥ 0 with quorum θ = 1
2
n, the number

F = |F| of all frequent patterns in Ti is exponential (more precisely 2Ω(n)) in the

input size n, while the number M = |M| of maximal patterns in Ti is polynomial in

n, where n = |Ti|.

Proof: The theorem is immediate from Lemma 2 above and the succinctness result

for closed itemsets in [20], where the frequency constraint is not essential. �

4 The maximal pattern discover problem in this paper correponds to the closed itemset enumeration for

transaction databases [20] and to the maximal motif disocvery in sequences [16], but not to the maximal
frequent itemset problem.
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Fig. 1. (a) The coordinate system, (b) two types of shapes, and (c) the partition genereated by a series of
shapes IN1 + NE2 + NE3 + NE4.

Theorem 4 (hardness of counting maximal patterns). The maximal pattern

enumeration problem for patterns with wild cards is #P-hard.

Proof: By reduction from the maximal bipartite clique problem, Yan [21] showed that

the closed pattern enumeration problem for itemsets is #P-hard. Hence, the result

immediately follows from Lemma 2. �


From Theorem 3, we know that a popular generate-and-test algorithm based on

frequent pattern discovery does not work in output-polynomial time (See also for

Subsection 4.1). From Theorem 4, we also see that the maximal pattern enumeration

problem is not an easy enumeration problem. This justifies our approach to considering

output-sensitive enumeration algorithms.

4 Polynomial Space Polynomial Delay Algorithm for

Maximal Two-Dimensional Pattern Discovery

4.1 Tail extension

The first step towards an efficient algorithm for maximal pattern enumeration is how

to enumerate all two-dimensional maximal patterns without repetition. An obvious

way is to store all the patterns discovered so far on main memory and then to make

explicit duplicaition check against the stored patterns. However, this appoach requires

|M| = 2Ω(n) memory, propotional to the output size, in the worst case.

We introduce a systematic way of partitioning matrices according to Amir and

Farach [2] and Giancharlo and Grossi [13]. Let A[1..m, 1..m] ∈ ∆m×m be an m×m

matrix. We assume the coordinate system of Fig. 1 (a) for both texts and patterns,

which is later extended for Z2 as seen in Fig. 2. Let us denote by A + B the union of

two matrices such that dom(A)∩dom(B) = ∅ as defined in the standard way. In what

follows, we assume that the locations (i, j) of the plane Z2 are indexed as in Fig. 2.

We partition A[1..m, 1..m] into a series of shapes A = IN1+NE2+NE3+. . .+NEm,

where IN1 is the 1× 1 square matrix A[1, 1], and NEi is the L-shaped subarray
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NEi(A) = A[1..i, i] + A[i, 1..i − 1] for every 2 ≤ i ≤ m (Fig. 1 (b)). This series of

shapes gives the unique partition of A (Fig. 1 (c)).

Furthermore, we order the positions in the matrix A in the order of A = IN1 +

NE2 + NE3 + . . . + NEm, from inside to outside. Then, inside each L-shape NEi(A),

we order all of its 2i − 1 positions first from left to right then top to bottom as

[1, i] < [2, i] < · · · < [i− 1, i] < [i, i] < [i, i− 1] < · · · < [i, 1]. This gives a total order,

denoted by <ord, over m2 positions in the square [1..m, 1..m], where the least position

is the left bottom corner [1, 1, ] and the greatest is the right top corner [m,m] as in

Fig. 1 (c).

The tail of m×m matrix A ∈ (Σ ∪ {◦})m×m with wild cards is the largest po-

sition tail(A) in the order <ord that is labeled by a constant letter, i.e., tail(A) =

max<ord
{ [i, j] ∈ [1..m, 1..m] |A[i, j] ∈ Σ }. For example, the tail of the array in

Fig. 1 is the cell with order number 15 at position [4, 2] with letter D. We denote by

P [ (i, j)← c ] the matrix obtained from P by substituting letter c ∈ Σ∪{◦} at location

(i, j) ∈ dom(P ).

Definition 8 (tail extension of a matrix). A m×m matrix Q is a tail extension

of a m′×m′ matrix P (m′ ≤m) if Q = P [(i, j) ← c] for some solid character c ∈ Σ

and some position (i, j) ∈ N2 such that (i, j) >ord tail(A), where m′ = max{i, j}.

We consider the directed graph Ttail = (P, E), called an enumeration graph, where

the node set P is the set of all patterns occuring in T at least once and E is the edge

set such that (P, Q) ∈ E iff Q is a tail extension of P . Then, we can see that Ttail is

a spanning tree for all members of Pm since P = Q[ tail(Q) ← ◦ ] obtains P as the

unique parent pattern of Q and |P |Σ < |Q|Σ. Thus, we have the next lemma.

Lemma 3. There is an algorithm that enumerates all matrix patterns with wild cards,

up to maximum size m ≥ 0, without repetition in O(1) time per patterns based on the

depth-first search over Ttail.

Proof: By traversing this tree starting from the empty matrix ⊥ as the unique root

using backtracking, the claimed time complexity is obtained. �


From the above lemma, the following approach for maximal pattern enumeration is

possible: it is first to enuemerate all patterns with frequency at least two, and then test

if each candidate pattern is maximal and if it is not duplicated. However, From the

succinctness result in Theorem 3, this method takes exponential time in the number

of maximal patterns in the worst case. Thus, the tail extension alone does not help

to give even output polynomial time algorithms.

4.2 Merge and Closure

The second problem to solve is how to efficently check maximality of patterns with-

out storing all discovered patterns so far. First, we extend the merge and the closure
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operations, which are originally introduced in [5, 9, 17, 18], then we give a characteri-

zation of maximal two-dimensional patterns with wildcards. We start with technical

definitions.

Definition 9. We define a pseudo two-dimensional matrix to be a mapping P : Z2 →
Σ∪{◦} with infinite domain dom(P ) = Z

2, where P [i, j] ∈ Σ is defined only for finitely

many points (i, j) ∈ dom(P ) and other points are filled with wild cards ◦.

We define the shift of P by a displacement d = (x, y) ∈ Z
2, denoted by (S + d),

as the pseudo matrix such that (S + d)[i, j] = S[i− x, j − y] for every (i, j) ∈ Z2. By

this transformation, the origin o = (0, 0) of P moves to the point d = (x, y).

For each two-dimensional pattern P [1..m, 1..m] with wild cards, its infinite ver-

sion is the two-dimensional pseudo matrix �P � : Z2 → Σ ∪ {◦}, where the value

�S�[i, j] = S[i, j] if (i, j) ∈ dom(S) and �S�[i, j] = ◦ otherwise. Conversely, for each

two-dimensional pseudo matrix S : Z
2 → Σ∪{◦}, we define the trimmed version of S

by the m×m matrix �S� = S[x..x+m−1, y..y +m−1]− (x, y) with wildcards, where

xmin and ymin (xmin and ymin, resp.) are the smallest (largest, resp.) x-coordinates and

y-coordinates for the locations of solid letters in S.

Next, we define the merge operator ⊕ for two-dimensional pseudo matrices as

follows. For letters a, b ∈ Σ, we define a ⊕ a = a and a ⊕ ◦ = ◦ ⊕ a = a ⊕ b = ◦ if

a �= b. This operator ⊕ is associative and commutative. The merge of two-dimensional

pseudo matrices X, Y : Z2 → ∆ is the two-dim pseudo matrix X⊕Y : Z2 → ∆ defined

by X ⊕ Y [i, j] = X[i, j]⊕ Y [i, j] for every point (i, j) ∈ Z2.

Definition 10. Let T be an input text. The merge of a location list L = {d1, . . . , d|L|} ⊆
dom(T ) is the pseudo string

⊕
L : Z2 → ∆ defined by

⊕
L = (�T � − d1)⊕ · · · ⊕ (�T � − d|L|).

Then, its trimmed version is a two-dimensional pattern given by P = �
⊕
L� ∈ P.

Lemma 4. Let L,L′ be any location lists and d ∈ Z
2 be any displacement.

1. If L ⊇ L′ + d then
⊕
L 	

⊕
L′.

2.
⊕
L =

⊕
(L+ d) for any integer d.

Proof: 1: For sets A, A′ ⊆ ∆ of letters, if A ⊇ A′ then ⊕A 	 ⊕A′. Let p = (i, j) be

any position and put A = { T [p + d] | d ∈ L } and A′ = { T [p + d] | d ∈ L′ }. Since

A ⊆ A′, we can see that
⊕
L[p] = ⊕A 	 ⊕A′ =

⊕
L′[p]. This proves the property. 2:

Immediately from the above.

Lemma 5. Let L ⊆ [1..n, 1..n] be any location list in T . Then, P = �
⊕
L� is a

maximal pattern.
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The following definition is a generalization of the closure operator for itemsets [20]

and sequence motifs [17, 18].

Definition 11 (closure operation ). Given a pattern x and an input string s, the

maximal pattern Clo(x) = �
⊕
L(x)� is called the closure of x on s.

Lemma 6. The closure Clo(P ) of a pattern P is unique and computable in O(�n2) =

O(�N) time from P and L(P ), where N = n2 and � = |L(P )| ≤ n.

Lemma 7 (properties of closure). Let P, Q be any patterns occurring in T and

P, Q be any location lists.

1. P 	 Clo(P ).

2. Clo(P ) = Clo(Clo(P )).

3. L(P ) = L(Clo(P )).

4. If P 	 Q then Clo(P ) 	 Clo(Q).

5. Clo(P ) is the unique maximal member in {Q |P and Q are equivalent on T }, the

equivalence class of patterns with the same location lists.

The following theorem is a two-dimensional version of a therem in [17].

Theorem 5 (characterization of maximal patterns). Let θ a quorum and P [1..m, 1..m]

be a pattern in a text T [1..n, 1..n]. Then, the following (i)–(iii) are equivalent:

(i) P is a maximal pattern.

(ii) P = �
⊕
L� for some L ⊆ [1..n, 1..n].

(iii) P = Clo(P ).

Let ⊥ be the (smallest) maximal pattern equivalent to the empty ⊥ pattern, called

the root maximal pattern. Recall that in Lemma 1, the subsumption 	 and the inclu-

sion ⊇ between location lists do not coincide for two-dimensional patterns with wild

cards. The following lemma says that they coincide for maximal patterns.

Lemma 8. For maximal patterns P, Q ∈ M on an input text T , P 	 Q iff L(P ) ⊇
L(Q).

A possible use of the closure operation is to define the closure extension Q of a

square matrix P [1..m, 1..m] by Q = Clo(P [(i, j) ← c]). Then, repeating the closure

extension iteratively patterns starting from the root maximal pattern ⊥, this method

acturally generates all maximal patterns. Since the enumeration graph for the patterns

based on the closure extension is a DAG but not a tree unlike Lemma 3, we need

explicit duplicate check storing all discovered patterns using the memory proportional

to the output size M . Thus, this approach, may result an output polynomial time

algorithm, but cannot be a polynomial delay polynomial space algorithm. Thus, the

closure extension alone still does not help to solve our problem.
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4.3 Prefix Preserving Extension for Two-dimensional Patterns

Now, we give a new extension method that grows a given parent maximal pattern to

generate more specific children maximal patterns by combining the tail extension and

the closure operator above. In this subsection, we adopt the framework of the reverse

search of Avis and Fukuda [10] in order to build an enuemration algorithm based on

backtracking over a tree-shaped search route.

An enumeration tree for M. First, we construct an enumeration tree Tppc =

(M, Eppc) for all maximal two-dimensional patterns ofM appearing in an input text

T . To construct the tree Tppc, we associate with each non-bottom pattern Q ∈M\{⊥}
the unique parent pattern P = Pa(Q) ∈M of smaller size as follows.

Let Q[1..m, 1..m] be an m×m pattern with wild cards. Recall that the indexes of

Q is totally ordered by <ord according to the shape sequence IN1, SE2, SE3, . . . , SEm

as in Fig. 1 (c). Given any position (i, j), the prefix with tail (x, y) is the sub-

set prefix(i, j) = { (i, j) ∈ [1..m, 1..m] | (0, 0) ≤ ord(i, j) ≤ ord(x, y) }, where m =

max{x, y}. Then, we denote by Q∩ prefix(x, y) the submatrix of Q with the domain

dom(Q) ∩ prefix(x, y).

Definition 12 (core position). The core position of Q, denoted by core p(Q), is

the smallest position that the corresponding prefix preserves the location list of Q,

that is,

core p(Q) = min{ (x, y) ∈ dom(Q) | L(Q ∩ prefix(x, y)) = L(Q) }.

Then, we call the core prefix of Q the pattern R = prefix(x, y) ∩Q.

Definition 13 (parent in ppc-extension). Let Q be an m×m pattern with wild

cards and (x, y) = core p(Q) is the core position of Q. Then, the parent of Q is the

pattern Pa(Q) given by

Pa(Q) = Clo(CP [tail(CP )← ◦]),

where CP = prefix(x, y) ∩ Q is the core prefix of Q and CP [tail(CP ) ← ◦] is the

pattern obtained from CP by removing its tail by substitution a wild card for the tail

position.

On the other words, Pa(Q) is the two-dimensional pattern obtained from the core

prefix of Q by removing the solid letter at the tail position. Now, we have the parent-

child relation for Tppc = (M, Eppc).M is the set of all maximal patterns appearing in

an input text T , and E is the edge set such that (P, Q) ∈ E iff P is a parent of Q in

ppc-extension (Definition 13).

Lemma 9. The enumeration graph Tppc for M is a spanning tree for M.
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Fig. 2. The safe region and the prohibited region in the prefix-preserving closure extension (ppc-extension).

Proof: Since the core prefix and the closure are uniquely determined from their inputs,

the parent Pa(Q) is well-defined and unique. Thus, each node Q other than the

bottom ⊥ has the unique parent. On the other hand, since the core prefix is the

shortest prefix preserving the location list L(Q), Pa(Q) must have a properly larger

location list, i.e., L(Pa(Q)) ⊃ L(Q). From Lemma 8, we have that Pa(Q) ≺ Q, and

that |Pa(Q)|Σ < |Q|Σ. Therefore, we know that Tppc has no infinitely descending

sequences w.r.t. �. Combining the above arguments, we proved the lemma. �


A depth-first search algorithm for M. Now, we have an enumeration tree Tppc

for maximal two-dimensional patterns in M. However, it is a bit complicated to

perform a depth-first search on Tppc because the edges of the tree are directed from

a child to the parent in the reverse direction. Thus, the remaining task is to give an

efficient procedure to, given a parent maximal pattern P , enumerate all of its children

Q uniquely. This is achieved by the following PPC-extension, which is obtained by

combining the tail extension and the closure operation.

Let P be any maximal pattern. If we substitute any solid letter c ∈ Σ for any

location (x, y) ∈ dom(x, y) of a wild card, i.e., P [x, y] = ◦, then from the maximality

of P , we see that the resulting pattern R = P [ (x, y) ← c ] has a properly smaller

location list L(R) ⊂ L(P ) than the original one. Then, we compute the merge Q =

⊕L(R) of L(R). By Theorem 5, Q is ensured to be a maximal pattern in T , and

from Lemma 8, Q is properly more general than P , i.e., P ≺ Q. However, the wrong

choice of the substituted position (x, y) causes the duplicated generation of the same

pattern through exponentially many distinct paths from the root. Thus, we need

careful application of the substitution and the merge.

By definition, Q = ⊕L(R) above is a pseudo pattern Q : Z
2 → (Σ ∪ {◦})

whose domain dom(Q) may contain some positions with negative coordinates. Let

[1..∞, 1..∞] = N2 be the first quadrant of the plane Z2 as an open region. Let (x, y) ∈
dom(P ) be the index of P to be subsituted. Then, the safe region for ppc-extension

is defined by the set [1..∞, 1..∞] − prefix(x, y) = { (i, j) ∈ N2 | (i, j) >ord (x, y) },
where the total order <ord is naturally extended for [1..∞, 1..∞].
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Definition 14 (ppc-extension). Let P ∈ M be any maximal two-dimensional pat-

tern in T . Then, a two-domensional pattern Q is said to be a prefix-preserving closure

extension (ppc-extension , for short) of P if the following (i)–(iii) are satisfied:

(i) Closure extension: Q is obtained by substitution of a solid character and applica-

tion of the closure operation, i.e, Q = Clo(P [ (x, y)← c ]) = �⊕L(P [ (x, y)← c ])�
for some c ∈ Σ and some position (x, y) ∈ dom(P ) satisfying P [x, y] = ◦.

(ii) Tail extension: The position (x, y), called the substitution point, properly follows

the core position of P , i.e., (x, y) >ord core p(P ).

(iii) Prefix checking: The extension adds new solid letters to P only to its safe region,

i.e., dom(⊕L(P [ (x, y)← c ])) ⊆ dom(P ) ∪ { (i, j) ∈ N2 | (i, j) >ord (x, y) }.5

Lemma 10. Let T be an n× n input text. Then, all ppc-extensions of a maximal

m×m pattern P can be computed in O(|Σ|N2), where N = n2.

Lemma 11. Let P be any maximal pattern and Q = �⊕L(P [ (x, y)← c ])� be a ppc-

extension of P . Then, (x, y) is the core position of Q.

Theorem 6 (correctness of ppc-extension). For any maximal two-dimensional

pattern P, Q with wild cards such that Q �= ⊥. Then, (1) P = Pa(Q) if and only if

(2) Q = �⊕L(P [ (x, y)← c ])� is a ppc-expansion of P for some solid letter c ∈ Σ and

for some location (x, y) ∈ dom(P ) of wild card ◦. Furthermore, there exists exactly

one pair of (x, y) and c satisfying condition (2) for each Q.

Proof: A sketch of proof. (only-if part) If P = Pa(Q) then P = Clo(CP [tail(CP )←
◦]) for the core prefix CP of P . If c = CP [tail(CP )] then we can prove that Q =

P [tail(CP ) ← c] is a ppc-extension of P . (if part) If Q is a ppc-extension of P

then Q = �⊕L(P [ (x, y)← c ])� for some solid letter c ∈ Σ and position (x, y) >org

core p(P ). Then, we can see that (x, y) = core p(Q). Furthermore, we can show that

Pa(Q) = Clo(Q ∩ prefix(x, y)[(x, y)← ◦]) = P . This completes the proof. �


Based on Theorem 6, we present in Fig. 3 our algorithm MaxMatrix that enu-

merates all maximal two-dimensional patterns in a given input text by the depth-first

search over the enumeration tree Tppc forM applying the ppc-extension to each max-

imal patterns. From the aruguments so far, we have the main result of this paper. To

diminish the factor on the delay proportional to the depth of the enumeration tree,

we use the technique of Uno [19].

Theorem 7 (main theorem). Given an n× n input text T , the algorithm Max-

Matrix in Fig. 3 enumerates all maximal two-dimensional square patterns P with

wild cards within M in O(|Σ|N�) amortized time per maximal pattern with O(M�)

space and O(|Σ|N�) delay, where N = n2 is the total input size, M = m2 is the size

of m×m pattern P being enumerated, and � = |L(P )| = O(N) is the number of

occurrences of P .
5 Note that we did not apply the trimming operation �·� in order to avoid shifting the origin of ⊕L(R) until

this cheking step is done.
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Algorithm MaxMatrix(Σ: alphabet of constants, T [1..n, 1..n]: input text matrix)

0 ⊥ = Clo(⊥); //the root pattern.

1 call Expand(⊥, (0, 0), T ); //(0, 0) <ord (i, j) for any (i, j).

Procedure Expand(P : motif, (px, py): core position, T : input matrix)
1 //assumption: core p(P ) = (px, py) is ensured.
2 output P ;
3 foreach (x, y) ∈ [1..n, 1..n] s.t. (x, y) >ord (px, py) do
4 foreach c ∈ Σ do begin
5 R = ⊕L(P [ (x, y)← c ]); //ppt-extension.
6 SafeRegion(x, y) = { (i, j) ∈ [1..n, 1..n] | (i, j) >ord (x, y) };
7 if (dom(⊕L(R))\dom(P )) ⊆ SafeRegion(x, y) then
8 Q = �R�;
9 call Expand(Q, (x, y), T );
10 end for

Fig. 3. A polynomial space polynomial delay enumeration algorithm for maximal two-dimensional patterns
M in an input text matrix.

Corollary 1. The maxmal pattern enumeration problem is enumerable in polynomial

space and polynomial delay in the input size for the following classes:

• the class of two-dimensional square patterns with wild cards.

• the class of two-dimensional patterns of arbitrary shape.

Proof: The second result follows from the first result since patterns of the second class

can be simulated by the patterns of the first class. �


Procedure Expand(P : motif, (px, py): core position, T : input matrix)
output P ;
Initialize the hash L ⊆ [1..n, 1..n]×Σ;
foreach location (i, j) ∈ L(P ) do

foreach (x, y) ∈ [1..n, 1..n] s.t. (x, y) >ord (px, py) do
L(x, y, c) = L(x, y, c) ∪ {(i + x, j + y)}, where c = T [i + x, j + y];

foreach (x, y, c) ∈ L do
L(P ) = L(x, y, c);
Compute the ppc-extension Q of P with subsutitution [ (x, y)← c ] as line 5 to line 8 of the original;
Expand(Q, (x, y), T );

end for

Fig. 4. A modified version of the recursive procedure Extend

Removing the dependency on the alphabet size. We show that the dependency

of the delay time on |Σ| of the algorithm MaxMatrix in Theorem 7 is remove by a

modification based on the occurrence-deliver technique in Uno et al. [20].

Corollary 2 (modified algorithm). The algorithm MaxMatrixModified of Fig. 4

enumerates all maximal two-dimensional square patterns P with wild cards withinM
in O(N�) amortized time per maximal pattern with O(M�) space and O(N�) delay,

where the parameters N , M , and � are the same as Theorem 7.
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5 Conclusion

In this paper, we study the problem of enumerating all maximal square patterns with

wild cards in a given n×n input matrix of symbols without duplicates. We presented

a polynomial space and polynomial delay algorithm, MaxMatrix, for the problem

by adopting the framework of reverse search [10].

We considered a version of pattern discovery problem where only parallel motion

is allowed as geometrical transformation. For two-dimensional string matching, there

are a number of variations such matching with rotation, enlargement, transpose, and

with mismatch and approximate match [3, 12]. Thus, it is a future research to consider

two-dimensional pattern discovery problems with the above extensions. In this paper,

we used a class of matrix suffix trees [13] for maximal constant pattern problem. The

speedup of the presented algorithm incorporating matrix suffix trees will be another

research issue.

Boros et al. [11], Apostolico, Comin, and Parida [6], Uno and Arimura [8, 9, 20]

studied efficient solutions of maximal pattern enumeration problems for some classes

of structured objects other than two-dimensinal matrices. It would be an interest-

ing problem to develop a uniform algorithmic scheme to construct polynomial space

polynomial delay enumeration algorithms for a class of such structured objects.

We are presently implementing the algorithm MaxMatrix developed in this pa-

per. We plan to make experimental study about the practical performance and the

utility for applications, and will include some results of preliminary experiments in

the complete paper.
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Appendix

This appendix is not included in the submission and can be ignored for

the review.

A Proof of Theorem 1

Theorem 1 (constant square patterns are easy to enumerate): There exists

an algorithm for enumerating all of n3 maximal patterns in O(n2) total time for the

class of constant two-dimensinal patterns is solvable in input polynomial time.

Proof: Let N = n2. For each direction δ ∈ {NE, NW, SE, SW}, we construct L-

suffix tree T δ for an input text T [1..n, 1..n] in O(N log n) time [2, 13]. For constant

square patterns, we can show that if P [m,m] is maximal in T with at least two

locations in T then P has the corresponding explicit node in T δ for each δ. We

enumerate all of such candidate patterns P by traversing O(N) explicit nodes of

one tree, say, T NE , and for each P , test if P has an explicit locus in T δ for each

δ ∈ {NW, SE, SW} in O(m2) = O(N) per pattern P . Overall, this straightfoward

method takes Ttotal = O(N log n + N2) = O(n4) time to solve the maximal pattern

problem for constant square patterns. �


B Proof of Theorem 2

Theorem 2 (exponential lowerbound of maximal patterns): There is an

infinite series of input texts T0, T1, T2, . . . , such that for every k = 0, 1, 2, . . ., the

number |M| of maximal two-dimensinal patterns with wild cards in Ti is bounded

below by 2Ω(n), where the size of Ti is n×n.

Proof: Let k ≥ 0, n = k2 and T = Tk be an n× n matrix defined as follows. First,

we partition T into k2 square submatrices B1, . . . , Bk2 of size k × k, and for each

Bi, we number the k× k locations in Bi as pi
1, . . . , p

i
k2. Then, we define Bi[p

i
1] = $,

and for each j > 1, Bi[p
i
j ] = 1 if i = j and Bi[p

i
j ] = 0 otherwise. Next, we define

the set X consisting of the patterns P : [1..k, 1..k] obtained from arbitrary k × k

patterns over the alphabet {0, ◦} by putting P [1, 1] = $. Then, we can see that

L(P ) = { pi
j | 1 ≤ i ≤ k2, P [pj] = ◦ }. Since all 2k2−1 patterns have mutually distinct

location lists in T , there at least the same number of maximal patterns in T . �


C Proof of Lemma 2

Lemma 2 (transformation from closed itemsets to maximal patterns): Let

I = {1, . . . , n} be items. For every transaction database R = {t1, . . . , tm} consisting

of m transactions over n items of total size N = mn, there exists an ñ×ñ input matrix

T with ñ2 = O(N + m2) such that the number Q of closed itemsets in r is given by

Q = M + m− 1, where M is the number of maximal patterns with wild cards in T .

Proof: We assume that m ≤ n and all members of R are mutually distinct. Suppose

that n = k2 and m = �2 for some k, � ≥ 0. Let ñ = k� + 1/2�2. Σ = { 1j , 0
i
j, #

i
i′ | a ∈



18

I, 1≤ j ≤ n, 1≤ i, i′ ≤ ñ }. We define a text T [ñ× ñ] as follows. First, we number the

positions in [1.., k, 1..k] as p1, . . . , pk2. For each ti, we define the k× k matrix Ai as

Ai[pj ] = 1j if xj ∈ ti and Ai[pj ] = 0j . otherwise. We arrange k2 matrices Ai’s in T in k

rows and k columns, where i-th column and (i+1)-th column of A’s are separated by

a #-column V Di of width i and j-th row and (j +1)-th row HDj of A’s are separated

by a #-row of height i. For all (i, j) ∈ B = (V Di)
m
i=1 ∪ (HDj)

m
j=1, we assign mutually

distinct value T [(i, j)] = #i
j . Then, we can show that for a square pattern P with

|L(P )| ≥ 2, any of its occurrence is entirely contained in some submatrix Ai. We can

show that the number Q2 of closed itemsets appearing at least twice in r equals the

number M2 of maximal matrix appearing at least twice in T . Since Q = Q2 + m and

M = M2 +1 and ñ2 = O(k2�2 + k�3 + 1/4�4), the result follows from Q−m = M − 1.

�





