
An Adaptive Algorithm for Splitting Large Sets of Strings

and Its Application to Efficient External Sorting

Tatsuya Asai† Seishi Okamoto† Hiroki Arimura‡

† Knowledge Research Center, Fujitsu Laboratories Ltd.
4–1–1 Kamikodanaka, Nakahara-ku, Kawasaki 211–8588, Japan

Email: asai.tatsuya@jp.fujitsu.com
Email: seishi@labs.fujitsu.com

‡ Graduate School of Information Science and Technology, Hokkaido University
Kita 14–jo, Nishi 9–chome, Sapporo 060–0814, Japan

Email: arim@ist.hokudai.ac.jp

Abstract

In this paper, we study the problem of sorting a large
collection of strings in external memory. Based on
adaptive construction of a summary data structure,
called adaptive synopsis trie, we present a practi-
cal string sorting algorithm DistStrSort, which is
suitable to sorting string collections of large size in
external memory, and also suitable for more com-
plex string processing problems in text and semi-
structured databases such as counting, aggregation,
and statistics. Case analyses of the algorithm and ex-
periments on real datasets show the efficiency of our
algorithm in realistic setting.

Keywords: external string sorting, trie sort, semi-
structured database, text database, data splitting

1 Introduction

Sorting strings is a fundamental task of string pro-
cessing, which is not only sorting the objects in as-
sociated ordering, but also used as a basis of more
sophisticated processing such as grouping, count-
ing, and aggregation. With a recent emergence of
massive amount of semi-structured data (Abiteboul
et al. 2000), such as plain texts, Web pages, or
XML documents, it is often the case that we would
like to sort a large collection of strings that do not
fit into main memory. Moreover, there are poten-
tial demands for flexible methods tailored for semi-
structured data beyond basic sorting facilities such
as statistics computation, counting, and aggregation
over various objects including texts, data, codes,
and streams (Abiteboul et al. 2005, Stonebraker et
al. 2005).

In this paper, we study efficient methods for sort-
ing strings in external memory. We present a new
approach to sorting a large collection of strings in ex-
ternal memory. The main idea of our method is to
generalize distribution sort algorithms for collections
of strings by the extensive use of trie data structure.
To implement this idea, we introduce a synopsis data
structure for strings, called a synopsis trie, for ap-
proximate distribution, and develop an adaptive con-

STEP1: BuildDietTrie

STEP2: SplitDietTrie STEP3: SortBucket STEP4: Merge

In
pu

t S
tr

in
g

Li
st

 S

O
ut

pu
t S

tr
in

g
Li

st
 T

Growth
parameter αααα

S
or

te
d

S
or

te
d

B
uc

ke
t

S
or

te
d

B
uc

ke
t

S
or

te
d

B
uc

ke
t

B
uc

ke
t

B
uc

ke
t

B
uc

ke
t

Internal memory Internal memory

Synopsis Trie TαS

Figure 1: The architecture of an external sorting al-
gorithm DistStrSort using adaptive construction
of a synopsis trie

struction algorithm for synopsis tries for a large col-
lection of strings with the idea of adaptive growth.

Based on this technique, we present an external
string sorting algorithm DistStrSort. In Fig. 1, we
show an architecture of our external sorting. This
algorithm first adaptively construct a small synopsis
trie as a model of string distribution by a single scan
of the input data, splits input strings into a collec-
tion of buckets using the synopsis trie as a splitter,
then sort the strings in each bucket in main memory,
and finally merge the sorted buckets into an output
collection.

By an analysis, we show that if both of the size of
the synopsis trie and the maximum size of the buckets
are small enough to fit into main memory of size M ,
then our algorithm DistStrSort correctly solves the
external string sorting problem in O(N) time within
main memory M using 3N sequential read, N ran-
dom write, and N sequential write in the external
memory, where N is the total size of an input string
list S. Thus, this algorithm of O(N) time complex-
ity is attractive compared with a popular merge sort-
based external string sort algorithm of O(N log N)
time complexity. Experiments on real datasets show
the effectiveness of our algorithm.

As an advantage, this algorithm is suitable
to implement complex data manipulation opera-
tions (Ramakrishnan and Gehrke 2000) such as

group-by aggregation, statistics calculation, and func-
tional join for texts.

1.1 Related works

In what follows, we denote by K = |S| and N = ||S||
be the cardinality and the total size of an input string
list S ∈ (Σ∗)∗.

A straightforward extension of quick sort al-
gorithm solves the string sorting problem in
O(LK log K) time in main memory, where L is the
maximum length of the input strings and N =
O(LK). This algorithm is efficient if L = O(1), but
inefficient if L is large.

Arge et al. presented an algorithm that solves
the string sorting problem in O(K log K + N) time
in main memory (Arge et al. 1997). The String B-
tree is an efficient dynamic indexing data structure
for strings (Ferragina and Grossi 1999). This data
structure also has almost optimal performance for ex-
ternal string sorting in theory, while the performance
degenerates in practice because of many random ac-
cess to external memory.

Sinha and Zobel presented a trie-based string
sorting algorithm, called the burst sort , and show
that the algorithm outperforms many of previous
string sorting algorithms on real datasets (Sinha and
Zobel 2003). However, their algorithm is an inter-
nal sorting algorithm, and furthermore, the main aim
of this paper is proposal of an adaptive strategy for
realizing an efficient external string sorting.

Although there are a number of studies on sort-
ing the suffixes of a single input string (Bentley and
Sedgewick 1997, Manber and Myers 1993, Manzini
and Ferragina 2002, Sadakane 1999), they are rather
irrelevant to this work since they are mainly incore
algorithms and utilize the repetition structure of suf-
fixes of a string.

The adaptive construction of a trie for a stream of
letters has been studied since 90’s in time-series mod-
eling (Laird, Saul 1994), data compression (Moffat
1990), and bioinformatics (Ron, Singer, Tishby 1996).
However, the application of adaptive trie construction
to external sorting seems new and an interesting di-
rection in text and semi-structured data processing.
Recently, (Stonebraker et al. 2005) showed the use-
fulness of distributed stream processing as a massive
data application of new type.

1.2 Organization

This paper is organized as follows. In Section 2, we
prepare basic notions and definitions on string sorting
and related string processing problems. In Section 3,
we present our external string sorting algorithm based
on adaptive construction of a synopsis trie. In Section
4, we report experiments on real datasets, and finally,
we conclude in Section 5.

2 Preliminaries

In this section, we give basic notions and definitions
on external string sorting.

2.1 Strings

Let Σ = {A,B, A1, A2, . . .} be an alphabet of letters,
with which a total order ≤Σ on Σ is associated. In
particular, we assume that our alphabet is a set of
integers in a small range, i.e., Σ = {0, . . . , C − 1}
for some integer C ≥ 0, which is a constant or at
most O(N) for the total input size N . This is the
case for ASCII alphabet {0, . . . , 255} or DNA alpha-
bet {A, T,C, G}.

We denote by Σ∗ the set of all finite strings on Σ
and by ε the empty string. Let s = a1 · · · an ∈ Σ∗

be a string on Σ. For 1 ≤ i ≤ j ≤ n, we denote by
|s| = n the length of s, by s[i] = ai the i-th letter ,
and by s[i..j] = ai · · · aj the substring from i-th to
j-th letters. If s = pq for some p, q ∈ Σ∗ then we say
that p is a prefix of s and denote p v s.

We define the lexicographic order ≤lex on strings
of Σ∗ by extending the total order ≤Σ on letters in
the standard way.

2.2 String sorting problem

For strings s1, . . . , sm ∈ Σ∗, we distinguish an or-
dered list (s1, . . . , sm), an unordered list (or multi-
set) {{s1, . . . , sm}}, and a set {s1, . . . , sm} (of unique
strings) each other. The notations ∈ and = are de-
fined accordingly. We use the intentional notation
(s | P (s)) or { s |P (s) }. For lists of strings S1, S2,
we denote by S1S2 (S1⊕S2, resp.) the concatenation
of S1, S2 as ordered lists (as unordered lists, resp.).

An input to our algorithm is a string list of size
K ≥ 0 that is just an ordered list S = (s1, . . . , sK) ∈
(Σ∗)∗ of possibly identical strings, where si ∈ Σ∗ is a
strings on Σ for every 1 ≤ i ≤ K. We denote by |S| =
K the cardinality of S and ||S|| = N =

∑K
i=1 |si| the

total size of S. We denote the set of all unique strings
in S by uniq(S) = { si | i = 1, . . . , K }. A string list
S = (s1, . . . , sn) is sorted if si ≤lex si+1 holds for
every i = 1, . . . , n− 1.

Definition 1 The string sorting problem (STR-
SORT) is, given a string list S = (s1, . . . , sK) ∈
(Σ∗)∗, to compute the sorted list π(S) =
(sπ(1), . . . , sπ(K)) ∈ (Σ∗)∗ for some permutation π :
{1, . . . , K} → {1, . . . , K} of its indices.

We can extend our framework for more compli-
cated string processing problems as follows.

Definition 2 The string counting problem (STR-
COUNT) is, given a string list S = (s1, . . . , sK) ∈
(Σ∗)∗, to compute the histogram h : uniq(S) → N
such that h(s) is the number of occurrences of the
unique string s.

Let (∆, ◦) be a pair of a collection ∆ of values and
a corresponding associative operation ◦ : ∆2 → ∆.
For example, (N, +) and (R, max) are examples of
(∆, ◦). A string database of size K ≥ 0 over dom(D)
is a list D = ((si, vi) | i = 1, . . . , K) ∈ (Σ∗ × ∆)∗

of pairs of a string and a value. We denote by
uniq(D) = {si | (si, vi) ∈ D} the set of unique strings
in S. For (∆, ◦), the aggregate on s w.r.t. ◦, denoted

Algorithm DistStrSort:

Input: A string list S = (s1, . . . , sK) ∈ (Σ∗)∗ and
a maximal bucket size 0 ≤ B ≤ M .

Output: The sorted string list T ∈ (Σ∗)∗.

1. Determine a growth parameter α ≥ 0. Build an
adaptive synopsis trie Tα,S for S in main memory
with the growth parameter α and a bucket size B.
(BuildDietTrie in Fig. 4)

2. Split the input list S in external memory into
partition of buckets S1, . . . , Sd of size at most B
(d ≥ 0) by using Tα,S , where Si ¹ Si+1 for every
i = 1, . . . , n− 1. (BuildDietTrie in Fig. 5)

3. For every i = 1, . . . ,K, sort the bucket Bi by ar-
bitrary internal sorting algorithm and write back
to Bi in external memory. (BuildDietTrie in
Fig. 6)

4. Return the concatenation T = B1 · · ·BK of
sorted buckets.

Figure 2: An outline of the external string sorting
algorithm with adaptive splitting DistStrSort

by aggr◦(s), is defined as aggr◦(s) = ◦ (v | (s, v) ∈
D) = v1 ◦ · · · ◦ vm, where (s1, v1), . . . , (sm, vm) ∈ D
is the list of all pairs in D with si = s.

Definition 3 The string aggregation problem w.r.t.
operation (∆, ◦) (STR-AGGREGATE(∆, ◦)) is, given
a string database S = ((si, vi) | i = 1, . . . , K) ∈
(Σ∗×∆)∗, to compute the pair (s, aggr◦(s)) for every
unique string s ∈ uniq(D).

The above string counting and string aggregation
problems as well as string sorting problem can be ef-
ficiently solved by a modification of trie-based sorter.
In this paper, we extend such a trie-based sorter for
an external memory environment.

2.3 Model of computation

In what follows, we denote by K = |S| and N = ||S||
the cardinality and the total size of the input string
list S. We assume a naive model of computation such
that a CPU has random access to a main memory
of size M ≥ 0 and sequential and random access to
an external memory of unbounded size, where mem-
ory space is measured in the number of integers to
be stored. Though the external memory can be par-
titioned into blocks of size 0 ≤ B ≤ M , we do not
study a detailed analysis of I/O complexity. In this
paper, we are particularly interested in the case that
the input size does not fit into the main memory but
not so large, namely, N = O(M2).

3 Our Algorithm

3.1 Outline of the main algorithm

In Fig. 2, we show the outline of our external string
sorting algorithm DistStrSort using an adaptive

Figure 3: A trie

construction of synopsis trie for splitting, which is a
variant of distribution sort for integer lists. In Fig. 1
shows the architecture of DistStrSort.

The key of the algorithm is Step 2 that splits the
input list S into buckets S1, . . . , Sd of at most B by
computing an ordered partition defined as follows.
For string lists S1, S2 ∈ (Σ∗)∗, S1 precedes S2, de-
noted by S1 ≺ S2, if s1 <lex s2 for every combination
of s1 in S1 and s2 in S2.

Then, an ordered partition of a string list S is a
sequence of string lists S1, . . . , Sd such that

(i) the sequence is a partition of S as unordered list,
i.e., S = S1 ⊕ · · · ⊕ Sd,

(ii) Si precedes Si+1, i.e., Si ¹ Si+1, for every i =
1, . . . , n− 1, and

Furthermore, an ordered partition of a string list S
satisfies maximum bucket size B if

(iii) |Si| ≤ B holds for every i = 1, . . . , n.

It is easy to see that if we can compute an or-
dered partition of an input string list S of maximum
size B ≤ M in main memory of size M and if we
can sort bucket of size B in O(B) main memory then
the algorithm DistStrSort in Fig. 2 correctly solves
the string sorting problem in main memory M (The-
orem 7).

However, it is not easy to compute a good parti-
tion with maximum block size B using only a limited
main memory for a large input data S that does not
fit into main memory. Hence, we take an approach
of computing an approximate answer using adaptive
computation in the following sections.

3.2 A Synopsis Trie

A synopsis trie for a string list S = (s1, . . . , sK) ∈
(Σ∗)∗ is the trie data structure T for a subset of pre-
fixes of strings in uniq(S) defined as follows.

A trie for a set S of strings on Σ (Fredkin 1960) is
a rooted tree T whose edges are labeled with a letter
in Σ. In Fig. 3, we show an example of a trie for
a set S = {AN, ART, BAG, BAT, BEAT, BEE, CAT, CAP, CUP}
of strings.

We denote by T the set of vertices of T and by
L(T) ⊆ T the set of its leaves. Each vertex v ∈ T
represents the string str(`) ∈ Σ∗, called the path
string , obtained by concatenating the labels on the
unique path from the root root to v in T . Let
Str(T) = { str(`) | ` ∈ L(T) } be the set of strings
represented by the leaves of T . The vertices of a trie
T are often labeled with some additional information.

Algorithm: BuildDietTrie

Input: A string list S = (s1, . . . , sK), a maximum
bucket size M ≥ B ≥ 0, and a growth parameter
α > 0.

Output: A synopsis trie Tα,S for S.

1. T := {root};
2. For each i := 1, . . . , K, do the following:

(a) Read the next string s = si from the exter-
nal disk;

(b) For each j := 1, . . . , |s|, do:

• y := goto(x, s[j]); (Trace the edge cj .)
• If y = ⊥ holds, then:

− If count(x) ≥ α holds, then:
Create a new state y; T := T ∪{y};
count(y) := 1; goto(x, cj) := y;

− Else:
break the inner for-loop and goto
the step 2(a);

• Else, x := y and
count(y) := count(y) + 1;

3. Return T ;

Figure 4: An algorithm for constructing a synopsis
trie

If a trie T satisfies that Str(T) = S then T is said
to be a trie for S. The trie T for a string list S can be
constructed in O(N) time and O(N) space in the total
input size N = ||S|| for constant Σ (Fredkin 1960).

Then, a synopsis trie for S is a trie T for S which
satisfies that for every string s ∈ uniq(S), some leaf
` ∈ T represents a prefix of s, i.e., str(`) v s. Note
that a synopsis trie for S is not unique and the empty
trie T = {root} is a trivial one for any set S.

Given a string list S, a synopsis trie T can store
strings in S. For every leaf ` ∈ L(T), we define the
sublist of strings in S belongs to ` by list(`, S) =
(s ∈ S | str(`) v s) and the count of the vertex by
count(`, S) = |list(`, S)|. The total space required
to implement a trie for S is O(||S||) even if we include
the information on count and list. On the incore
computation by a trie, we have the following lemma.

Lemma 1 We can solve the string sorting, the string
counting, and the string aggregation problems for an
input string list S in O(N) time using main memory
of size O(N), where N = ||S||.

We will extensively use this trie data structure in
the following subsections in order to implement the
computation at Step 1, Step 2, and Step 3 of the
main sorting algorithm in Fig. 2.

3.3 STEP1: Adaptive Construction of a Syn-
opsis Trie

In Fig. 4, we show the algorithm BuildDietTrie for
constructing an adaptive synopsis trie.

Although the empty trie T = {root} obviously
satisfies the above condition, it is useless for com-
puting a good ordered partition. Instead, the goal
is adaptive construction of a synopsis trie T for S
satisfying the following conditions:

(i) T fits into the main memory of size M , i.e.,
size(T) ≤ M .

(ii) For an input string list S, count(`, S) ≤ B for a
parameter B ≤ M

The adaptive construction is done as follows.
For an alphabet Σ = {c0, . . . , cs−1}, each state
v of the automaton is implemented as the list
(goto(v, 0), . . . , goto(v, s − 1)) of s pointers. For an
alphabet of constant size, this is implemented as an
array of pointers. At the creation of a new state
v, these pointers are set to NULL and a counter
count(v) is set to 1.

When we construct a synopsis trie T , the algo-
rithm uses a positive integer α > 0, called the thresh-
old for growing. This threshold represents a minimum
frequency for extending a new state to the current
edge.

The algorithm firstly initializes a trie T as the trie
T = {root} consisting of the root node only. When
the algorithm inserts a string s ∈ S into T , it traces
the corresponding edge to w starting from root by
goto pointers. Each state v in the synopsis trie T
has an integer count(v) incremented when a string w
reaches to v. These counters represent approximate
occurrences of suffixes of input strings.

When there are no states the current state v trans-
fers to, the synopsis trie tries to generate a new state.
However, the algorithm does not permit the trie to
extend a new edge unless the counter count(v) of v is
more than the given threshold α. If count(v) exceeds
α, the trie generates a new state, and attach it to the
current state with a new edge.

Lemma 2 Let S be an input string list of total size
N . The algorithm BuildDietTrie in Fig. 4 com-
putes a synopsis trie for S in O(N) time and O(|T |)
space.

At present, we have no theoretical upper bounds
of |T | and the maximum value of count(`) according
to the value of growth parameter α ≥ 0. Tentatively,
setting α = cB for some constant 0 ≤ c ≤ 1 works
well in practice.

3.4 STEP2: Splitting a String List into Buck-
ets

Let BID = {1, . . . , b} be a set of bucket-id ’s for some
b ≥ 0. Then, a bucket-id assignment for T is a map-
ping β : L(T) → BID that assigns bucket id’s to
the leaves. Let (T , BID) be a synopsis trie T whose
leaves are labeled with the bucket-id assignment β.

A bucket-id assignment β for T is said to be order-
preserving if it satisfies the following condition: for
every leaves `1, `2, if str(`1) ≤lex str(`2) then β(`1) ≤
β(`2).

Algorithm SplitDietTrie:

Input: A string list S = (s1, . . . , sK) (in external
memory), a synopsis trie Tα,S for S (in internal
memory), and a positive integer M ≥ B ≥ 0.

Output: An ordered partition B1 ⊕ · · · ⊕Bb for S.

1. //Compute a bucket-id assignment β

• Let N ′ =
∑

`∈L(Tα,S) count(`); B′ =
BN ′/N ; k = 1; A = 0;

• For each leaf ` ∈ L(Tα,S) in the lexico-
graphic order of str(`), do:
− If (A+count(`) ≤ B′), then bucket(`) :=
k and A := A + count(`);
− Else, k := k + 1 and A := 0;

• b = k;

2. //Distribute all strings in S into the correspond-
ing buckets.

• For each k = 1, . . . , b, do: Bi := ∅;
• For each string s ∈ S, do:
− Find the leaf ` = vertex(s, Tα,S) reach-
able from the root by s;
− Put s to the k-th bucket Bk in external
memory for k = β(`).

Figure 5: An algorithm SplitDietTrie for splitting
an input string list

By the definition of a synopsis trie above, we know
that for every string s ∈ uniq(S), there is the unique
leaf ` ∈ L(T) such that str(`) v s. We denote
this leaf by vertex(s, T) = `. Then, the bucket-
id assigned to s is defined by bucket(T , β, s) =
β(vertex(s, T)). Given an input string list S ∈
(Σ∗)∗, (T , β) defines the partition

PART (S, T , β) = S1 ⊕ . . .⊕ Sb

where Sk = (s ∈ S | bid(T , β, s) = k) holds for
every bid k ∈ BID. Then, the maximum bucket size
of (T , BID) on input S is defined by max{ Sk | k =
1, . . . , b }. Clearly, S1 ⊕ . . .⊕ Sb = S holds.

Lemma 3 If β is order-preserving then
PART (S, T , β) is an ordered partition.

In Fig. 5, we show an algorithm SplitDiet-
Trie for splitting an input string list S into buckets
PART (S, T , β) = B1 ⊕ . . . ⊕ Bb. We can easily see
that the bucket-id assignment computed by algorithm
SplitDietTrie is always order-preserving. Further-
more, we have the following lemma.

Lemma 4 Let S be an input list and T be a synopsis
trie with bucket-id assignment for S. Suppose that
|T | ≤ M . Then, the algorithm SplitDietTrie of in
Fig. 5, given S and T , computes an ordered partition
of S in O(N) time and O(|T |) space in main memory,
where N = ||S||.

We have the following lemma on the accuracy of
the approximation.

Algorithm SortBucket:

Input: A bucket B ∈ (Σ∗)∗.

Output: A bucket Ci ∈ (Σ∗)∗ obtained from B by
sorted in ≤lex.

1. Build a trie TB for the bucket B in main memory;

2. Traverse all vertices v of TB in the lexicographic
order of path strings str(v) and output str(v).

Figure 6: An algorithm SortBucket for sorting
each bucket

Lemma 5 Let B′ ≥ 0 (0 ≤ B′ ≤ M) and k ≥ 1 be
any integers. Let T be the synopsis trie for S. If the
trie T on S satisfies 0 ≤ count(v) ≤ 1

kB′ for any
vertex ` ∈ L(T), then the resulting ordered partition
S = B1⊕· · ·⊕Bb (b ≥ 0) satisfies that k−1

k B ≤ Bi ≤
B holds for any bucket Bi (1 ≤ i ≤ m).

3.5 STEP3: Internal Sorting of Buckets

Once an input string list S of total size N has been
split into an ordered partition S1 ⊕ . . . ⊕ Sb = S
of maximum bucket size B ≤ M , we can sort each
bucket Bi in main memory by using any internal
memory sorting algorithm. For this purpose, we use
a internal trie sort which is described in Fig. 6.

Lemma 6 The algorithm SortBucket of Fig. 6
sorts a bucket B of strings in O(N) time using main
memory of size O(N), where N = ||B|| and Σ is a
constant alphabet.

3.6 STEP4: Final concatenation

Step 4 is just a concatenation of already sorted buck-
ets B1, . . . , Bb. Therefore, this step requires no extra
cost.

3.7 Analysis of the algorithm

In this subsection, we give a case analysis of a practi-
cal performance of the proposed external sorting al-
gorithm assuming a practical situations for such an
algorithm. For the purpose, we suppose the following
condition:

Condition 1 the synopsis trie computed by Build-
DietTrie and SplitDietTrie on the input string
list S and the choice of a growth parameter α satis-
fies the following conditions:

• The synopsis trie fits into main memory, that is,
size(T) ≤ M .

• The maximum bucket size of the ordered partition
computed by SplitDietTrie at Step 2 does not
exceed M .

For the above condition to hold, we know that at
least the input S satisfies that N = O(M2). Note
that at this time, we only have a heuristic algorithm

Table 1: Parameters of the datasets

Dataset data A data B

File size 67MB 1.1GB

Number of records (with duplications) 140×104 2290×104

Number of records (no duplications) 22×104 109×104

Average of record length 45.0 44.9

Variance of record length 45.1 19.7

Maximum record length 58 58

Minimum record length 15 15

for computing a good synopsis trie without any the-
oretical guarantee for its performance. Finally, we
have the following result.

Theorem 7 Suppose that the algorithms BuildDi-
etTrie and SplitDietTrie satisfy Condition 1 on
the input S and α ≥ 0. The algorithm DistStrSort
correctly solves the external string sorting problem in
O(N) time within main memory M using 3N sequen-
tial read (Step 1–Step 3), N random write (Step 2),
and N sequential write (Step 3) in the external mem-
ory.

From Theorem 7 and Lemma 1, we can show the
following corollary using modified version of Dist-
StrSort algorithm.

Corollary 8 Let (∆, ◦) be any associative binary op-
erator, where operation ◦ can be computed in O(1)
time. Suppose that the algorithms BuildDietTrie
and SplitDietTrie satisfy Condition 1 on the input
S and α ≥ 0. There exists an algorithm that solves
the string counting (STR-COUNT), and the string
aggregation problems (STR-AGGREGATE(∆, ◦)) for
an input string list S in O(N) time using main mem-
ory of size M in external memory.

4 Experimental Results

In this section, we present experimental results on
real datasets to evaluate the performance of our al-
gorithms. We implemented our algorithms in C. The
experiments were run on a PC (Xeon 3.6GHz, Win-
dows XP) with 3.25 gigabytes of main memory.

We prepared two datasets data A and data B con-
sisting of cookie values from Web access logs. The
parameters of the datasets are shown in Table 1.

4.1 Size of Synopsis Trie

First, we studied sizes of synopsis tries constructed by
the algorithm BuildDietTrie by varying the growth
parameter α = 100, 1000, or 10000. Table 2 shows the
number of states of the constructed synopsis trie for
each α on the data A. We can see that the bigger α is,
the smaller the size of the constructed synopsis trie
becomes.

Table 2: Sizes of the constructed synopsis tries
Growth parameter α 100 1,000 10,000
Number of states 426,209 92,768 5,030

0

5

10

15

20

25

30

35

[
1

0

,
1

0

0

]

[
5

0

,
1

0

0

]

[
1

0

0

,
1

0

0

]

[
2

0

0

,
1

0

0

]

[
1

0

.
1

0

0

0

]

[
5

0

,
1

0

0

0

]

[
1

0

0

,
1

0

0

0

]

[
2

0

0

,
1

0

0

0

]

[
1

0

,
1

0

0

0

0

]

[
5

0

,
1

0

0

0

0

]

[
1

0

0

,
1

0

0

0

0

]

[
2

0

0

,
1

0

0

0

0

]

[Number of buckets, Threshold for growing]

R
u
n
t
i
m

e

(
s
e
c
)

SplitDietTrieBuildDietTrie

Figure 7: Running time of BuildDietTrie and
SplitDietTrie

4.2 Running Time

4.2.1 BuildDietTrie and SplitDietTrie

Next, we measured the running times of the subpro-
cedures BuildDietTrie and SplitDietTrie on the
data A, by varying the number of buckets and the
growth parameter. Fig. 7 show the results. The hori-
zontal axis in the figure represents pairs of the number
of buckets and the growth parameter. The vertical
axis represents the running time.

The results indicate that the running time is
shorter for larger growth parameters. Thus, a smaller
synopsis trie can be constructed in a reasonable com-
putational time.

4.2.2 DistStrSort

Finally, we studied the running time of the algorithm
DistStrSort. Fig. 8 shows the running times on the
data B of DistStrSort and the GNU sort 5.97. The
running time of our algorithm scales linearly with the
size of data and is faster than the GNU sort for larger
data sizes.

5 Conclusion

In this paper, we presented a new algorithm for sort-
ing large collections of strings in external memory.
The main idea of our method is first splitting a set of
strings to some buckets by adaptive construction of
a synopsis trie for input strings, then sort the strings
in each bucket, and finally merge the sorted buck-
ets into an output collection. Experiments on real
datasets show the effectiveness of our algorithm.

In this paper, we only made empirical studies on
the performance of adaptive strategy for construction
of a synopsis trie for data splitting. The probabilistic
analysis of the upper bounds of |T | and the maximum

15

データを1GB（約2270万レコード）に増やして、前と同様の
実験環境で、GNU sort と計算時間を比較した。

0

100

200

300

400

500

600

700

800

900

0 5000000 10000000 15000000 20000000 25000000

Number of strings

R
u
n
t
i
m
e
（
s
e
c
）

DistStrSort

GNU sort

Figure 8: Running times of DistStrSort and GNU
sort

value of count(`) concerning to the value of growth
parameter α ≥ 0 is an interesting future research.

We considered only the case that the input size
is at most the square of the memory size, and then
presented a two-level external sorting algorithm. It is
a future research to develop a hierarchical version of
our algorithm for inputs of unbounded size. A stream-
based distributed version of distribution string sort
algorithms is another possible direction.

References

S. Abiteboul, R. Agrawal, P. A. Bernstein,
M. J. Carey, S. Ceri, W. B. Croft, D. J. De-
Witt, et al., The Lowell database research self-
assessment, C. ACM, 48(5), 111–118, 2005.

S. Abiteboul, P. Buneman, D. Suciu, Data on the
Web, Morgan Kaufmann, 2000.

L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter, On
Sorting Strings in External Memory, Proc. the
29th Annual ACM Symposium on Theory of
Computing (STOC’97), 540–548, 1997.

J. Bentley, R. Sedgewick, Fast Algorithms for Sort-
ing and Searching Strings, Proc. the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA’97), 360–369, 1997.

P. Ferragina, R. Grossi, The String B-tree: A New
Data Structure for String Search in External
Memory and Its Applications, J. ACM, 46(2),
236–280, 1999.

E. Fredkin, Trie Memory, C. ACM, 3(9), 490–499,
1960.

P. Laird and R. Saul, Discrete sequence prediction
and its applications, Machine Learning, 15(1):
43–68, 1994.

U. Manber, E. W. Myers, Suffix Arrays: A New
Method for On-Line String Searches, SIAM J.
Comput., 22(5), 935–948, 1993.

G. Manzini and P. Ferragina, Engineering a
Lightweight Suffix Array Construction Algo-

rithm, Proc. the 10th European Symposium on
Algorithms (ESA’02), 698-710, 2002.

A. Moffat, Implementing the PPM data compression
scheme, IEEE Trans Communications COM-
38(11): 1917–1921, 1990.

R. Ramakrishnan, J. Gehrke, Database Management
Systems, McGraw-Hill Professional, 2000.

D. Ron, Y. Singer, and N. Tishby, The power of am-
nesia: learning probabilistic automata with vari-
able memory length, Machine Learning, 25(2-3):
117– 149, 1996.

K. Sadakane A Fast Algorithms for Making Suf-
fix Arrays and for Burrows-Wheeler Transforma-
tion, Proc. the 8th Data Compression Confer-
ence (DCC’98), 129–138, 1999.

R. Sinha, J. Zobel, Efficient Trie-Based Sort-
ing of Large Sets of Strings, Proc. the
26th Australasian Computer Science Conference
(ACSC’03), 2003.

M. Stonebraker, U. Cetintemel, ”One Size Fits All”:
An Idea Whose Time Has Come and Gone,
Proc. the IEEE 21st International Conference
on Data Engineering (ICDE’05), keynote, 2–11,
2005.

