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Abstract

Bayes’ rule specifies how to obtain a posterior from a class of hypotheses

endowed with a prior and the observed data. There are three fundamen-

tal ways to use this posterior for predicting the future: marginalization

(integration over the hypotheses w.r.t. the posterior), MAP (taking the a

posteriori most probable hypothesis), and stochastic model selection (se-

lecting a hypothesis at random according to the posterior distribution). If

the hypothesis class is countable and contains the data generating distribu-

tion (this is termed the “realizable case”), strong consistency theorems are

known for the former two methods, asserting almost sure convergence of

the predictions to the truth as well as loss bounds. We prove correspond-

ing results for stochastic model selection, for both discrete and continuous

observation spaces. As a main technical tool, we will use the concept of

a potential: this quantity, which is always positive, measures the total

possible amount of future prediction errors. Precisely, in each time step,

the expected potential decrease upper bounds the expected error. We

introduce the entropy potential of a hypothesis class as its worst-case en-

tropy with regard to the true distribution. Our results are proven within a

general stochastic online prediction framework that comprises both online

classification and prediction of non-i.i.d. sequences.

1 Introduction

“When you have eliminated the impossible, whatever remains must be the truth.” This

famous quote describes the induction principle of Sherlock Holmes, whose observations

and conclusions are always correct. Real world observations usually lack this desirable

∗This work was supported by JSPS 21st century COE program C01.
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property, instead they are noisy. Thus, Bayes’ rule, eliminating the improbable, has

emerged as a successful induction principle in practice. The aim of this paper is to

collect and prove statements of the form: “When you have eliminated the improbable,

whatever remains is almost sure to behave like the truth.” We will give different but

tightly connected forms of this assertion: Asymptotic almost sure consistency results

and bounds on the error of a predictor based on Bayes’ rule.

1.1 Structure and contributions of this work

The main technical contribution of this paper, presented in Section 3, are several

proofs of consistency theorems for Bayesian stochastic model selection. This com-

pletes a series of recent performance guarantees obtained for all three fundamental

ways of Bayesian learning. It therefore motivates a comparative presentation of all

these results, discussing the basics of Bayesian learning, the fundamental variants of

Bayesian induction, its scope of applicability, and the state of the art of Bayesian

learning theorems. This is subject of the next section.

2 Discrete Bayesian Learning

Bayes’ famous rule,

P (H|D) =
P (D|H) · P (H)

P (D)
, (1)

says how the probability of a hypothesis H is updated after observing some data D.

Still, different specific induction setups can use Bayes’ rule. First, there are different

possibilities to define the input space, the observation space, and the hypothesis space.

Second, a hypothesis class endowed with a probability distribution can be used for

induction in principally three different ways.

The reader should keep in mind that Bayes’ rule is no theorem in general. Under

the assumption that hypotheses and data are both sampled from a joint probability

distribution that coincides with the prior P (H), (1) would be a theorem. However,

Bayes’ rule is commonly not applied under such an assumption, in particular the

distribution P (H) on the hypotheses is usually merely a belief distribution, there is

no probabilistic sampling mechanism generating hypotheses assumed. Hence, Bayes’

rule is motivated intuitively in the first place. Still, many optimality results and

performance guarantees have been shown for Bayesian induction (e.g. in [BD62, CB90,

BRY98]), including the results of the present work.

2.1 What to learn? Hypotheses, history, inputs, observation
spaces

Let X be the observation space. We work in an online prediction setup in discrete

time, that is, in each time step t = 1, 2, . . ., an observation xt ∈ X is revealed to
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the learner. The task of the learner will be to predict xt before he observes it. One

question of fundamental technical impact concerns the structure of the observation

space X . We restrict our attention to the two most important cases of (a) X being

discrete (finite or countable) and (b) continuous X ⊂ Rd for suitable dimension d ∈ N.

As any discrete space can be mapped to a subset of Rd, it is technically sufficient to

restrict to X ⊂ Rd, which we will do in the following (except for a few places where

we explicitly deal with finite observation spaces).

A hypothesis ν specifies a probability distribution on the observation space X . In

the simplest case, it does not depend on any input, these hypotheses represent the

assumption that the observed data is independently identically distributed (i.i.d.).

In all other cases, there is some input space Z, and a hypothesis maps inputs to

distributions on X . In fact, technically, the inputs play no role at all, as we will see

in the following. We therefore may assume the existence of an arbitrary input space

Z without any structure (which may consist of just one point, meaning that there are

no inputs at all), and inputs are generated by an arbitrary process. This covers (even

more than) two of the most important learning setups: Classification, where the data

is conditionally i.i.d. given the inputs, and prediction of non-i.i.d. sequences, where

in each time step t, we may define the input zt = (x1, . . . , xt−1) to be the observation

history seen so far. Generally, we will denote the history of inputs and observations

by

h1:t−1 = h<t = (z1, x1, z2, x2, . . . , zt−1, xt−1)

(observe that two pieces of notation have been introduced here).

Now, a hypothesis is formally defined as a function

ν : Z →M1
D+C(X ).

Here,M1
D+C(X ) denotes the probability distributions on X ⊂ Rd, that are mixtures of

discrete distributions (with nonzero mass concentrated on single points) and distribu-

tions with continuous density functions. We make this restriction mainly because we

wish to be able to define all subsequent quantities, in particular Bayesian posteriors,

effortlessly1 and uniquely (except perhaps on a set of measure zero).2 In particular,

we have ∫
dν(·|z) = 1 for all z ∈ Z.

Note that we consistently use this integral notation, also for discrete observation space

(in which case the integral is in reality a sum).

1For instance, for a measure defined by a “devil’s staircase”, one has to spend additional effort
in order to define everything properly, which is not the aim of the present work. However, this and
other cases can be treated with the methods described here.

2The continuity assumption will be needed for the main proof in Section 3. It can be immediately
lifted and replaced by “uniform piecewise continuity”, which means that there is a single partition
of X such that the continuous parts of all distributions ν ∈ C and for all z ∈ Z are continuous on
each of the elements of the partition. Maybe it can be even further lifted.



4 J. Poland

A Bayesian learner is always based on a hypothesis class C = {ν1, ν2, . . .}. In this

work with the title “discrete Bayesian learning”, we restrict to discrete, i.e. finite or

countable, hypothesis classes (and in the notation we assume a countable hypothesis

class from now on, without loss of generality). Before the learning process starts, each

hypothesis ν ∈ C is endowed with a prior weight wν ∈ (0, 1), such that
∑

ν∈C wν = 1.

Hypothesis classes considered in statistics are usually continuously parameterized.

One motivation to study discrete classes is that they are technically simpler, so they

can serve as a basis for the more advanced continuous case. In the continuous case,

some Bayesian predictors such as MAP (see below) are not consistent at all, while

others such as MML (minimum message length) [WB68, WD99] and MDL (minimum

description length) [Ris96] require appropriate discretization. Also, countable hy-

pothesis classes always admit stronger performance guarantees than possible for their

continuously parameterized counterparts. In particular, we will be able to show al-

most sure consistency, whereas only convergence in probability holds in the continuous

case (e.g. in [BC91]).

Another particular motivation to consider discrete hypothesis classes arises in Al-

gorithmic Information Theory. General continuous hypothesis classes are computa-

tionally not tractable. The largest hypothesis class which can be manipulated in the

limit by a computer, is the class of all computable hypotheses on some fixed universal

Turing machine, precisely prefix machine [LV97]. Thus each hypothesis corresponds

to a program, and there are countably many programs. Each hypothesis has a natural

description length, namely the length of the corresponding program. If we agree that

programs are binary strings, then a natural prior is defined by two to the negative

description length.

If we are dealing with such a universal hypothesis class as defined in Algorith-

mic Information Theory, we need to be careful about the phenomenon of probability

leaks : A hypothesis, that is a program on our universal Turing machine, may not

produce output for certain inputs. Because of our inability of deciding the halting

problem, we cannot generally detect this case. As a consequence, there is no limit-

computable way of defining hypotheses that are proper probability distributions, they

are rather semimeasures. In this paper, we won’t address this issue further, instead we

point to the references: Consistency theorems for the semimeasure case are known for

marginalization [Sol78, Hut04] and for MAP predictions [PH05], but not for stochastic

model selection. All of the probability distributions considered in this paper will be

proper measures.

We rewrite Bayes’ rule (1) using new notation: For a hypothesis ν ∈ C, current

prior weights wν′(h<t) of all hypotheses ν ′ ∈ C depending on the history h<t, input

zt, and observation xt, we set the posterior weight of ν to

wν(h1:t) =
ν(xt|zt) · wν(h<t)∑

ν′∈C ν ′(xt|zt) · wν′(h<t)
, (2)

Note that we actually need to distinguish three variants of Bayes’ rule (not to be

confused with the three variants of Bayesian prediction discussed below): In the case
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of discrete observation space, the quantities ν ′(x|z) (and therefore also the sum in

the denominator) are probabilities, while for continuous observation space, they are

densities. Finally, if at least one hypothesis ν ∈ C is a mixture of a discrete and a

continuous distribution, then all ν ′(x|z) must be treated as mixtures in the following

way: If for an observation x ∈ X , there is a hypothesis assigning non-zero mass to

x, then the ν ′(x|z) are treated as probabilities (and all hypotheses assigning merely

a non-zero density to that particular x will get posterior weight 0). Otherwise, the

ν ′(x|z) are treated as densities.

2.2 How to learn? Three fundamental variants of Bayesian
prediction

Given a set of hypotheses C and some observed data h1:t = (z1, x1, . . . , zt, xt), a legiti-

mate question is asking which of the hypotheses in C has actually generated the data.

It is clear that this question might not be well-defined if the process generating the

data, which we will call µ in the sequel, is not member of C. Actually, one can im-

mediately construct examples where any Bayesian learner produces very undesirable

results in this non-realizable learning setup (see [GL04] for sophisticated examples).

In this work, we will restrict to the realizable case, where the true distribution gen-

erating the observations is contained in the class, µ ∈ C. (But recall that this only

refers to the distribution of the observation given the inputs, we do not need any

assumption on the generation of the inputs zt). Of course, the learner does not know

in advance which element of C is the true distribution µ.

However, hypothesis identification has technical difficulties. For instance, consider

the case where two hypothesis are in C that make (almost) identical predictions, one

of them being the true one. Then it is (almost) impossible to identify the right one,

but if we just want to make predictions, we need not care: Choosing any of the two

will yield (almost) perfect predictions.

So from now on, we restrict our focus to prediction. That is, for given history

h<t and current input zt ∈ Z, we are interested in a predictive distribution3 on the

observation space X that comes as closely to the truth as possible. Our hypothesis

class endowed with the Bayesian posterior
(
wν′(h<t)

)
ν′∈C offers us three fundamental

ways to obtain such a prediction:

1. Marginalization. If we apply Bayes’ rule (1) to the modified setting where

the next observation xt takes the place of the hypothesis H, then, as an easy

computation shows, we get a predictive distribution ξ(xt|zt, h<t) by integrating

the predictions of all hypotheses w.r.t. the current posterior:

ξ(x|zt, h<t) =
∑

ν′∈C
wν′(h<t)ν

′(x|zt). (3)

3In many prediction tasks, a single value is required as prediction, rather than a distribution.
Such a single prediction can be derived from a predictive distribution, e.g. by minimizing a risk
function, compare Corollary 5 below.



6 J. Poland

2. Maximum a posteriori (MAP). If we are interested in a single hypothesis’

prediction, then we may choose the hypothesis with maximal a-posteriori belief

value, abbreviated as MAP hypothesis:

ν∗h<t
= arg max

ν∈C
{wν(h<t)} and (4)

m(xt|zt, h<t) = ν∗h<t
(xt|zt), (5)

where the latter m(xt|zt, h<t) is the MAP prediction.

3. Stochastic model selection. The third possibility is to randomize and sample

a hypothesis according to the probability distribution defined by the current

posterior. This stochastic model selection can be formally written as

Ξ(xt|zt, h<t) = Ñ(xt|zt) where Ñ ∈ C (6)

and P(Ñ = ν ′) = wν′(h<t) for all ν ′ ∈ C.

Note that for given history h<t, the first two methods are deterministic, resulting in

a fixed predictive distribution. Stochastic model selection uses additional randomness.

There are other possibilities than the stated three to use a Bayesian hypothesis

class for prediction. MAP is tightly related to MML and MDL, but the terms MML

and MDL are (also) used for (slightly, in the case of discrete hypothesis class) differ-

ent concepts [CD05, Ris96]. Also, there is a “dynamic” variant of MAP defined in

[PH05], where a MAP hypothesis is chosen for each possible outcome xt and used for

prediction. Anyway: many, if not most, Bayesian prediction methods can be roughly

grouped into the three fundamental “integrate over all hypothesis”, “take the hypoth-

esis with the best current score”, and “select one hypothesis at random according to

the current belief distribution”. And we hold (but that is a matter of taste) that the

above representants are the simplest and most natural of the prediction methods to

consider.

2.3 Performance guarantees for Bayesian learners

We are now ready to state the performance guarantees for the three Bayesian learners

defined in (3), (5), and (6). We start with the technically easiest case of marginal-

ization (3). Actually, this result has been originally discovered by Solomonoff [Sol78]

within the context of Algorithmic Information Theory.

Recall that µ ∈ C is the true distribution generating the data, and ξ is the marginal-

ization predictor. The quadratic Hellinger distance between the ξ-predictions and

µ-predictions at time t is given by

∆2
t (µ, ξ) :=

∫
d
(√

µ(·|zt)−
√

ξ(·|zt, h<t)
)2

. (7)

It clearly depends on the history h<t and the current input zt. Our main technical

results are all stated as cumulative (i.e., over t = 1, . . . ,∞) bounds on the Hellinger

distance (that is, errors) of the predictive probabilities to the truth.
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Theorem 1 If µ ∈ C, then for any sequence of inputs z1, z2, . . .,

∞∑
t=1

Eµ∆2
t (µ, ξ) ≤ log w−1

µ (8)

holds, where log denotes the natural logarithm and wµ is the prior weight of the true

distribution. Eµ refers to the fact that the expectation is taken w.r.t. the true distri-

bution µ, i.e., all observations are generated w.r.t. µ conditional to the inputs, and

this expectation is computed.

Remark 2 The following convention is used throughout the paper: When we write

wµ, it always refers to the prior weight wµ(∅), with empty history. Posterior weights

are being denoted with explicit history, wµ(h<t). This convention will extend to other

quantities, such as the entropy H or the entropy Π below. However, in the proofs

below, the history h<t at a given time t is often dropped for notational convenience.

In these cases, a notation like wµ refers to the current posterior weight.

It should not be surprising that the quantity wµ appears on the r.h.s. and therefore

has an impact on how large the error on the l.h.s. can grow. After all, if the Bayesian

learner assigns a high prior weight to the true distribution, the error should be small.

The remarkable fact is the logarithmic dependence in wµ. As by Kraft’s inequality, the

logarithm of a weight can be interpreted as its description length, (8) is a very strong

result asserting that the cumulative error never exceeds the description length of the

true distribution. In a sense: When finding the truth single-handedly, our error is at

most the number of bits a teacher needs to tell us the truth. We will provide a proof

of Theorem 1 at the beginning of Section 3, as an introduction for the subsequent

proof techniques.

Results for the MAP predictor (5) similar to Theorem 1 have been shown in [PH05].

Theorem 3 Assume µ ∈ C. Suppose that, for any history with nonzero probability

density, the hypotheses always admit the specification of a (not necessarily unique)

MAP hypothesis ν∗. This is satisfied for instance if all hypotheses correspond to

continuous probability densities that are uniformly bounded. Then

∞∑
t=1

Eµ∆2
t (µ,m) ≤ 21w−1

µ . (9)

The proof uses telescoping and dominance. The most remarkable (and worrying)

fact here is the bound O(w−1
µ ) on the r.h.s. While the logarithm in (8) is suffi-

ciently small to be of practical significance, the exponentially larger quantity O(w−1
µ )

is generally huge. One can construct examples where this bound is sharp [PH06].

Fortunately, this does not necessarily imply that the MAP predictions are bad, the

actual error is smaller in many important cases. Still, there are situations where
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MAP predictions tend to be “unbalanced” and therefore unfavorable compared to

marginalization. Stochastic model selection often gives better results in such cases.

The corresponding theorem for stochastic model selection (6), which is the main

technical result of this paper, reads as follows.

Theorem 4 Assume µ ∈ C. Then, for any sequence of inputs z1, z2, . . .,

∞∑
t=1

EµEΞ∆2
t (µ, Ξ) = O

(
w−1

µ + Π(logH + log w−1
µ )

)
= O(Π log w−1

µ ) (10)

holds. The quantities H and Π, the Shannon entropy and the µ-entropy potential of

the hypothesis class, are defined below. EΞ serves as a reminder that the Ξ-predictor

is randomized.

The quantity H in the theorem is the Shannon entropy of the hypothesis class

w.r.t. the current posterior distribution,

H(h<t) = H(
[wν(h<t)]ν∈C

)
= −

∑
ν∈C

wν(h<t) log wν(h<t).

According to the convention in Remark 2, if we write just H as in the theorem, this

corresponds to the prior (or, below in the proofs, to the current posterior). Moreover,

we define the current entropy potential of the hypothesis class relative to the true

distribution µ as

Π
(
(wν)ν∈C

)
= sup

{H(
( w̃νP

ν′ w̃ν′
)ν∈C

)
: w̃µ = wµ ∧ w̃ν ≤ wν ∀ν ∈ C \ {µ}

}
(11)

and Π(h<t) = Π
(
[wν(h<t)]ν∈C

)
, see also Definition 15 below. This can be paraphrased

as “worst-case entropy of the class under all possible Bayesian updates where the

true distribution always has evidence value 1”. We use the same convention as before:

writing just Π corresponds to the prior, or, in the proofs below, to the current posterior

(Remark 2).

As we will see in Section 3.3, the entropy potential Π can grow as large as Ω(Hw−1
µ )

in general. However, if the prior (wν)ν∈C has sufficiently light tails, Π is of order at

most log w−1
µ .

2.4 Implications: almost sure consistency and loss bounds

One important consequence of any finite bound on the expected cumulative Hellinger

error is almost sure consistency of the predictor in the Hellinger sense. That is, the

Hellinger distance of the predictive to the true distribution tends to zero almost surely.

This is easily verified, as

P
(
∃t ≥ T : ∆2

t ≥ ε
)

= P
( ⋃

t≥T

{
∆2

t ≥ ε
})

≤
∑
t≥T

P
(
∆2

t ≥ ε
) ≤ 1

ε

∞∑
t=T

E∆2
t

T→∞−→ 0

(12)
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holds. In case of a finite or countable observation space X , this implies in partic-

ular convergence of all predictive probabilities ξ(xt|zt, h<t) to the true probabilities

µ(xt|zt). In case of a continuous observation space, the predicted probability masses

of any measurable subset of X converges to the true mass. However, we cannot

conclude the convergence of moments, e.g. the expectation, without making further

assumptions.

Other implications of Theorems 1–4 are loss bounds of a Bayes-optimal decision

maker based on the predictive distribution, w.r.t. arbitrary loss functions. The proof

of the following corollary proceeds as that of [PH05, Theorem 27].

Corollary 5 For each input z, let `(·, ·|z) : (x̂, x) 7→ `(x̂, x|z) ∈ [0, 1] be a loss

function known to the learner, depending on the true outcome x and the prediction

x̂ (` may also depend on the time, but we don’t complicate notation by making this

explicit). Let `µ
<∞ be the cumulative loss of a predictor knowing the true distribution

µ, where the predictions are made in a Bayes optimal way (i.e. choosing the prediction

arg minx̂ Ex∼µ`(x̂, x|zt) for current input zt), and `ξ
<∞, `m

<∞, `Ξ
<∞ be the corresponding

quantities for the respective Bayesian learners. Then the loss of the learners are

bounded by

E`ξ
<∞ ≤ E`µ

<∞ + O
(
log w−1

µ

)
+ O

(√
log w−1

µ E`µ
<∞

)
, (13)

E`m
<∞ ≤ E`µ

<∞ + O
(
w−1

µ

)
+ O

(√
w−1

µ E`µ
<∞

)
, and (14)

E`Ξ
<∞ ≤ E`µ

<∞ + O
(
Π log w−1

µ

)
+ O

(√
Π(log w−1

µ )E`µ
<∞

)
, (15)

respectively.

The bound may seem weak to a reader familiar with another learning model,

prediction with expert advice, which has received quite some attention since [LW89,

Vov90]. Algorithms of this type are based on a class of experts rather than hypotheses,

and proceed by randomly selecting experts according to a (non-Bayesian) posterior

based on past performance of the experts. It is straightforward to use a hypothesis

as an expert. Thus the experts theorems (for instance [HP05, Theorem 8(i)]) imply

a bound similar to (15), but without any assumption on the data generating process

µ, instead the bounds are relative to the best expert (hypothesis) in hindsight ν̂

(and moreover with log w−1
ν̂ Π(w) replaced by log w−1

ν̂ ). So the experts bounds are

stronger, which does not necessarily imply that the experts algorithms are better:

bounds like (15) are derived in the worst case over all loss functions, and in this worst

case Bayesian learning is not better than experts learning, even under the proper

learning assumption. However, experts algorithms do not provide estimates for the

probabilities, which Bayesian algorithms do provide: in many practically relevant

cases learning probabilities does yield superior performance.
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2.5 Discussion

The proofs in this work are based on the method of potential functions. A potential

quantifies the current state of learning, such that the expected error in the next step

does not exceed the expected decrease of the potential function in the next step. If

we then can bound the cumulative decrease of the potential function, we obtain the

desired bounds. The potential method used here has been inspired by similar idea in

prediction with expert advice [CBL03], the proof techniques are however completely

different. We will in particular introduce the entropy potential, already stated in

(11), which may be interpreted as the worst-case entropy of the model class under all

admissible transformations of the weights, where the weight of the true distribution

is kept fixed. The entropy potential is possibly a novel definition in this work.

Before starting the technical presentation, we discuss the limitations of our on-

line learning setup. A Bayesian online learner defined in the straightforward way is

computationally inefficient, if in each time step the full posterior is computed: Thus,

marginalization, MAP/MDL, and stochastic model selection are equally inefficient in

a naive implementation, and even generally uncomputable in case of a countable model

class. On the other hand, many practical and efficient learning methods (e.g. train-

ing of an artificial neural network) are approximations to MAP/MDL and stochastic

model selection. Moreover, bounds for the online algorithm also imply bounds for

the offline variant, if additional assumptions (i.i.d.) on the process generating the

inputs are satisfied. Also, in some cases one can sample efficiently from a probability

distribution without knowing the complete distribution.

But the most important contribution of this paper is theoretical, as it clarifies the

learning behavior of all three variants of Baysian learning in the ideal case. Also,

countable hypothesis classes constitute the limit of what is computationally feasible

at all, for this reason they are a core concept in Algorithmic Information Theory

[LV97]. Proving corresponding results for the likewise important case of continuously

parameterized model classes is, to our knowledge, an open problem.

As already indicated, the dependence of the bound (10) on w−1
µ is logarithmic if

the prior weights decay sufficiently rapidly (precisely polynomially), but linear in the

worst case. This implies the practical recommendation of using a prior with light tails

together with stochastic model selection.

The remainder of this paper is structured as follows. In the beginning of the next

section, we will introduce the notation and, in order to introduce the methods, prove

Solomonoff’s result with a potential function. In Section 3.1, we consider stochastic

model selection and prove the main auxiliary result. Section 3.2 defines the entropy

potential and proves bounds for general countable model class. In Section 3.3 we turn

to the question how large the newly defined entropy potential can be.
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3 Technical results

The basic notation has been already introduced. We start with a simple example.

Example 6 Assume that X is binary and Z contains only a single element. In this

case the observations are Bernoulli trials, i.e. they result from fair or unfair coin flips.

C specifies the set of possible coins we consider, and it is well-known that all posterior

weights but the weight of the true coin will converge to zero almost surely for t →∞.

With the set of coins C ∼= {1
4
, 1

2
, 3

4
} and the true coin being the fair one, it is easy

to see that this example gives a lower bound Ω(− log wµ) on the expected quadratic

error of Bayes mixture and stochastic model selection predictions, namely the l.h.s.

expressions of (8) and (23), respectively.

Next, we present a proof of Solomonoff’s [Sol78] remarkable universal induction

result, Theorem 1. The proof presented here slightly differs from the standard one

[Hut04] and serves for introducing our main proof technique, namely potential func-

tions.

Lemma 7 Assume that the data generating distribution is contained in the model

class, i.e. µ ∈ C. Define the complexity potential as

K(h<t) = − log wµ(h<t). (16)

For any current input zt and any history h<t, this potential satisfies

(i) K(h<t) ≥ 0,

(ii) K(h<t)− Ext∼µ(·|zt)K(h1:t) ≥ ∆2
t (µ, ξ). (17)

By summing up the expectation of (ii) while observing (i), this lemma immediately

implies Theorem 1 for arbitrary sequence of inputs z1, z2, . . .:

∞∑
t=1

Eµ∆2
t (µ, ξ) ≤ K = − log wµ. (18)

Proof. Clearly, (i) holds. In order to show (ii), we observe that

wµ(h1:t) = wµ(h<t)
µ(xt|zt)

ξ(xt|zt, h<t)
.

Then, simplifying the notation by suppressing the history h<t and the current input

zt (e.g. K now stands for K(h<t), please compare Remark 2 again),

K − EK(x) = K −
∫

dµ(x)
(
K − log µ(x)

ξ(x)

)
= D

[
µ(·|zt)

∥∥ξ(·|zt, h<t)
]
.
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The r.h.s. here is called Kullback-Leibler divergence. It is well-known that Kullback-

Leibler divergence dominates the squared Hellinger distance ∆2
t (µ, ξ), see (20). 2

By Kraft’s inequality, the complexity K of µ can be interpreted as µ’s description

length. Thus, Solomonoff’s theorem asserts that the predictive complexity (measured

in terms of the quadratic error) coincides with the descriptive complexity, if the data

is rich enough to distinguish the models. Then K can be viewed as the state of

learning in the discrete model class. Observe that only the expected progress, i.e.

decrease of K, is positive. The actual progress depends on the outcome of xt and is

positive if and only if µ(xt) ≥ ξ(xt). If the probability vectors µ and ξ coincide, then

– according to this potential function – no learning takes place for any observation,

as then K(xt) = K for all xt. Hence, the complexity potential K need not always be

a good choice to describe the learning state.

Example 8 Consider a binary observation space and a model class containing three

distributions ν1, ν2, ν3, predicting νi(1|z) = i
4

for some input z. Suppose µ = ν2, i.e.

the true probability is 1
2
. Then we cannot measure the learning progress after the

observation in terms of K. However, there should be a progress, and indeed there is

one, if we consider the entropy of the model class. This will become clear with Lemma

9.

3.1 Stochastic model selection

Here is another case where the complexity potential K is not appropriate to quantify

the state of learning. In stochastic model selection, the current prediction vector

Ξ(·|zt, h<t) is obtained by randomly sampling a model according to the current weights

wν(h<t) and using this model’s prediction, i.e. (compare (6))

Ξ(·|zt, h<t) = νJ(·|zt) where P(J = i) = wνi
(h<t).

Hence, Ξ is a random variable depending on the sampled index J . The following

lemma gives a first indication for a suitable potential function for learning with

stochastic model selection.

Lemma 9 If the current entropy of the hypothesis class is finite, H(h<t) < ∞, then,

for any input zt,

H(h<t)− Ext∼ξ(·|zt,h<t)H(h1:t) ≥ E∆2
t (ξ, Ξ). (19)

Proof. It is a well-known fact, shown e.g. in [BM98, p. 178], that the squared

Hellinger distance of two probability distributions µ and ν on X never exceeds their

Kullback-Leibler divergence:

∆2(µ, ν) =

∫
d
(√

µ(·)−
√

ν(·))2 ≤
∫

dµ(·) log
µ(·)
ν(·) . (20)
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Therefore, we have

H(h<t)− Ext∼ξ(·|zt,h<t)H(h1:t) =
∑
ν∈C

wν(h<t)

∫
dν(x|zt) log ν(x|zt)

ξ(x|zt,h<t)

≥
∑
ν∈C

wν(h<t)∆
2(ξ, ν) = E∆2

t (ξ, Ξ). 2

2

Unfortunately, the l.h.s. of the above inequality contains an expectation w.r.t. ξ

instead of µ. Since on the other hand µ governs the process and generally differs from

ξ, the entropy H is not directly usable as a potential for the Ξ’s deviation from its

mean ξ. The following theorem demonstrates an easy fix, which however exponentially

blows up the potential.

Theorem 10 (Predictive performance of stochastic model selection, loose bound) As-

sume that µ ∈ C. Define the potential

PE(h<t) = H(h<t) exp
(K(h<t)

)
= H(h<t)/wµ(h<t).

Then, for any history h<t and any current input zt,

PE(h<t)− Ext∼µ(·|zt)PE(h1:t) ≥ ∆2
t (ξ, Ξ). (21)

Consequently, with H = −∑
ν∈C wν log wν denoting the initial entropy,

∞∑
t=1

∆2
t (ξ, Ξ) ≤ PE = H/wµ, (22)

∞∑
t=1

∆2
t (µ, Ξ) ≤ − log(wµ) +H/wµ + 2

√
−H log(wµ)/wµ, (23)

and the predictions by Ξ converge to the true probabilities µ almost surely.

Proof. Recall wµ(h1:t) = wµ(h<t)
µ(xt|zt)

ξ(xt|zt,h<t)
. Since always 1/wµ(h<t) ≥ 1, using

Lemma 9 we obtain (21) by

PE(h<t)−
∫

dµ(x|zt)PE(h1:t) = 1
wµ(h<t)

(H(h<t)−
∫

dξ(x|zt, h<t)H(h1:t)
)

≥ ∆2
t (ξ, Ξ).

Summing the expectation up yields (22). Using this together with (18) and the

triangle inequality for the Hellinger distance, we conclude (23). Finally, almost sure

convergence follows from (12). 2

In particular, this theorem shows that the entropy of a model class, if it is initially

finite, necessarily remains finite almost surely. Moreover, it establishes almost sure
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asymptotic consistency of prediction by stochastic model selection in our Bayesian

framework. However, it does not provide meaningful error bounds for all but very

small model classes, since the r.h.s. of the bound is exponential in the complexity,

hence possibly huge.

Before continuing to show better bounds, we demonstrate that the entropy is indeed

a lower bound for any successful potential function for stochastic model selection.

Example 11 Let the observation space be binary. Let wµ = 1− 1
n
, in this way K ≈ 1

n

and can be made arbitrary small for large n ∈ N. Fix a target entropy H0 ∈ N and

set K = 2nH0 . Choose a model class that consists of the true distribution, always

predicting 1
2
, and K other distributions with the same prior weight 1/(nK). In this

way, the entropy of the model class is indeed close to H0 log 2. Let the input set

be Z = {1 . . . nH0}, and let νb(1|z) = bz, where bz is the zth bit of ν’s index b in

binary representation. Then it is not hard to see that on the input stream z1:nH0 =

1, 2, . . . nH0 always µ = ξ. Moreover, at each time, E∆2(µ, Ξ) = 1
n
(2−√2) > 1/(2n).

Therefore the cumulative error exceeds H0/2, i.e. of order of the entropy. Note that

this error, which can be chosen arbitrarily large, is achievable for arbitrarily small

complexity K.

In the proof of Theorem 10, we used only one “wasteful” inequality, namely
1

wµ(h<t)
≥ 1. The following lemma will be our main tool for obtaining better bounds.

Lemma 12 (Predictive performance of stochastic model selection, main auxiliary

result) Suppose that we have some function B(h<t), depending on the history, with

the following properties:

(i) B(h<t) ≥ H(h<t) (dominates the entropy),

(ii) Ext∼µ(·|zt)B(h1:t) ≤ B(h<t) (decreases in expectation),

(iii) the value of B(h<t) can be approximated arbitrarily close

by restricting to a finite model class.

Then, for any history and current input, the potential function defined by

P(h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + B(h<t))

satisfies

P(h<t)− Ext∼µ(·|zt)P(h1:t) ≥ H(h<t)− Ext∼ξ(·|zt,h<t)H(h1:t). (24)

Proof. The proof is divided into two parts. First, we will assume finite observation

space. In the second part, this is generalized to arbitrary observation spaces.

Part 1: Assume that X is finite. Because of (iii), we need to prove the lemma

only for finite model class, the countable case then follows by approximation. In this

way we avoid dealing with a Lagrangian on an infinite dimensional space below.
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Again we drop all dependencies on the history h<t and the current input zt from

the notation. Then observe that in the inequality chain

K + log(1 +H)−
∑
x∈X

µ(x)
[K(x) + log(1 +H(x))

]1 + B(x)

1 + B

≥ K + log(1 +H)−
∑
x∈X

µ(x)(1 + B(x))∑
x′ µ(x′)(1 + B(x′))

[K(x) + log(1 +H(x))
]

(25)

≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (26)

(25) follows from assumption (ii), so that we only need to show (26) in order to

complete the proof. We will demonstrate an even stronger assertion:

log(1 +H)−
∑
x∈X

µ̃x

[
log(1 +H(x))− log µ(x)

ξ(x)

] ≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
(27)

for any probability vector µ̃ = (µ̃x)x∈X ∈ [0, 1]|X | with
∑

x µ̃x = 1.

It is sufficient to prove (27) for all stationary points of the Lagrangian and all

boundary points. In order to cover all of the boundary, we allow µ̃x = 0 for all x

in some subset X0 ( X (X0 may be empty). Let X̃ = X \ X0 and define ξ(X̃ ) =∑
x∈X̃ ξ(x), ξ(X0) = 1− ξ(X̃ ), and ξ̃(x) = ξ(x)/ξ(X̃ ). Then (27) follows from

f(µ̃) = log(1 +H)−
∑

x∈X̃
µ̃x

(
Ṽ (x)− log µ(x)

ξ̃(x)

) ≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (28)

where Ṽ (x) = log(1−∑
ν

wνν(x)

ξ̃(x)
log wνν(x)

ξ(x)
).

We now identify the stationary points of the Lagrangian

L(µ̃, λ) = f(µ̃)− λ
( ∑

x

µ̃x − 1
)
.

The derivative of L w.r.t. all µ̃x vanishes only if

λ = −Ṽ (x) + log µ(x)

ξ̃(x)
for all x ∈ X̃ . (29)

This implies µ(x) = ξ̃(x)eλ+Ṽ (x), and, since the µ(x) sum up to one, 1 = eλ
∑

x ξ̃(x)eṼ (x).

This can be reformulated as λ = − log
[ ∑

x ξ̃(x)eṼ (x)
]
. Using this and (29), (28) is

transformed to
∑

ν∈C wν

∑
x∈X ν(x) log ν(x)

ξ(x)

1 + B
≤ log(1 +H) + λ (30)

= log(1−
∑
ν∈C

wν log wν)− log
[
1−

∑

x∈X̃
ξ̃(x)

∑
ν∈C

wνν(x)

ξ̃(x)
log wνν(x)

ξ(x)

]
.

The arguments of both outer logarithms on the r.h.s. of (30) are at most 1 + B: For

the left one this holds by assumption (i), H ≤ B, and for the right one also by (i)
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because Ex∼ξH(x) ≤ H. Since for x ≤ y ≤ 1+B we have log(y)− log(x) ≥ y−x
1+B

, (30)

follows from ∑
ν∈C

wν

∑
x∈X0

ν(x) log ν(x)
ξ(x)

≤ −
∑
ν∈C

wν

∑
x∈X0

ν(x) log wν .

But this relation is true by Jensen’s inequality:

∑
ν∈C

∑
x∈X0

wνν(x)
ξ(X0)

log wνν(x)
ξ(x)

≤ log
( ∑

ν∈C

∑
x∈X0

wνν(x)
ξ(X0)

· wνν(x)
ξ(x)

)
≤ 0,

since the wνν(x)
ξ(X0)

sum up to one and always wνν(x)
ξ(x)

≤ 1 holds.

Part 2: So far, we have proven the assertion for finite X . In order to show the

generalization to arbitrary observation space, we may decompose X into two subsets

X = X discrete ∪X continuous, where X discrete is the at most countable set of points where

any of the distributions in C has a non-zero mass concentration. We can prove the

assertion for the discrete and the continuous parts separately. The discrete part follows

simply by approximating, so we focus on the continuous part and assume without loss

of generality that all distributions are (piecewise) continuous probability densities.

We show the assertion by assuming the contrary

Ext∼µ(·|zt)P(h1:t)− P(h<t) > Ext∼ξH(h1:t)−H(h<t) (31)

and obtaining a contradiction to part 1. Dropping again the history h<t from the

notation, (31) is equivalent to

Ex∼µP(x)− P > Ex∼ξH(x)−H + 11ε for some ε > 0. (32)

We may assume without loss of generality that X is compact, and that there is a

number R > 0 such that

max
x∈X

H(x)ξ(x) ≤ R and max
x∈X

ξ(x) ≤ R. (33)

To see this, just choose X̃ ⊂ X compact and sufficiently large, such that both (33)

and Ex∼ξ|X̃H(x) ≥ Ex∼ξH(x)− ε hold, this is possible because ξ(x)H(x) is integrable

w.r.t. the Lebesgue measure λ. Then, replace X by X̃ and (32) by

Ex∼µP(x)− P > Ex∼ξH(x)−H + 10ε. (34)

Next, we argue that we may even assume without loss of generality that C is

finite. To this aim, first start with approximating P(x) by a step function P̃(x) that

is piecewise constant on relatively compact subsets A1, A2, . . . , An ⊂ X and takes

only finitely many (namely n) values ỹ1, . . . , ỹn > 0. We choose P̃(x) such that it is

dominated by P(x), with the property

Ex∼µP̃(x) ≥ Ex∼µP(x)− ε.
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This is possible since P(x) is measurable and non-negative.

We choose an even smaller step function P(x) that is likewise constant on A1, . . . , An

and is strictly dominated by P̃(x), such that

Ex∼µP(x) ≥ Ex∼µP(x)− 2ε (35)

and P(x) = P̃(x)− εi = ỹi− εi := yi for x ∈ Ai, where εi > 0 for all 1 ≤ i ≤ n. Then,

for each x ∈ A1, B(x) and therefore P(x) can be approximated with finitely many

hypotheses. Since P(x) ≥ ỹi, we can find a finite set of hypotheses F(x) such that

P F̃(x) > yi for any F̃ ⊃ F(x), where P F̃(x) denotes the potential computed with

only the hypotheses in F̃ . Since P F̃(·) is continuous (while F̃ is fixed), we have that

P F̃(x̃) > yi holds even within an open superset x̃ ∈ U(x) of x. For each x ∈ A1, there

is such an open U(x), and they form an open cover of Ā1. Since Ā1 is compact, there is

a finite subcover U(x1)∪ . . .∪U(xm) ⊃ A1. We may choose F1 = F(x1)∪ . . .∪F(xm)

in order to obtain a finite set of hypotheses approximating P(x) sufficiently closely

on all of A1.

Analogous approximations F2, . . . ,Fn are obtained for all other A2, . . . , An. Also,

we choose a finite set of hypotheses F0 ⊂ C such that all supersets F̃ ⊃ F0 approxi-

mate the prior P up to ε. Take the union F = F0 ∪ F1 ∪ . . . ∪ Fn. Then, from (35),

we conclude that

Ex∼µP(x)− P F̃ > Ex∼µP(x)− P − 3ε.

and P F̃(x) ≥ P(x) for all x ∈ X and any F̃ ⊃ F . We make sure that µ ∈ F .

We perform the same construction an approximation of H(x) from above. Since

X was already assumed to be compact, the constant function R, which dominates

ξ(x)H(x) according to (33) is integrable w.r.t. the Lebesgue measure λ. Therefore,

we may refine the partitioning (Ai)
k
i=1 of X̃, obtaining a new partitioning (Ãi)

m
i=1 of

X̃, such that H(x)ξ(x) is approximated from above within ε by functions constant on

each Ãi. We may choose the approximators H(x) and ξ(x) slightly larger, such that

they need only finitely many hypotheses. We incorporate these hypotheses into F .

Altogether, this shows that we may indeed assume that C is finite, if we replace

(34) with

Ex∼µP(x)− P > Ex∼ξH(x)−H + 4ε, (36)

knowing that P(x) ≤ P(x) and H(x) ≥ H(x) for all x ∈ X .

In the next step, we further decrease X a tiny little bit and define X ⊂ X such

that

ν(X ) < 1 for all (finitely many!) ν ∈ C. (37)

Set Ai = Ai ∩X for all 1 ≤ i ≤ n. While choosing X , we make sure that it is not too

small. Namely, we assert

µ(Ai)
(
1− ε

2yi

)
< µ(Ai) for all 1 ≤ i ≤ n, (38)

Ex∼µ|XP(x) ≥ Ex∼µP(x)− ε, and (39)

1− ξ(X ) <
ε

2 log |C| , (40)
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where |C| is the number of hypotheses in C.

In the last step, construct a refining partition (A′
i)

k
i=1 of (Ãi∩X )m

i=1 and lower and

upper approximations ν, ν for each ν ∈ C, with the following properties:
∫

X

ν < 1 for all ν ∈ C, possible due to (37), (41)

∫

Ai

µ ≥ µ(Ai)
(
1− ε

yi

)
for all 1 ≤ i ≤ n, possible due to (38), (42)

1−
∫

X

ξ <
ε

log |C| , possible due to (40). (43)

Now choose (with λ being the Lebesgue measure)

X ′ = {0, 1, . . . , k}, x′i = arg min
x∈A′i

P(x) for all 1 ≤ i ≤ k,

ν ′i = ν(x′i)λ(A′
i) (1 ≤ i ≤ k, ν ∈ C), ν ′0 = 1−

k∑
i=1

ν ′i for all ν ∈ C,

H′
i = H

(( wνν
′
i∑k

j=0 wνν ′j

)
ν∈C

)
= H(x′i), P ′i = P

(( wνν
′
i∑k

j=0 wνν ′j

)
ν∈C

)
= P(x′i).

By (41), each ν ′ is in fact a measure on X ′. Justifying the following estimations with

the respective equations before, we have

k∑
i=0

µ′iP ′i − P ≥
k∑

i=1

µ′iP ′i − P ≥ Eµ|XP − P
(42)

≥ Eµ|XP − P − ε

(39)

≥ EµP − P − 2ε
(36)

≥ EξH−H + 2ε ≥ Eξ|XH−H + 2ε

≥
k∑

i=1

ξ′iH′
i −H + 2ε

(43)

≥
k∑

i=0

ξ′iH′
i −H + ε.

The last estimate is true since H′
0 ≤ log |C| holds. This is the desired contradiction

to the first part of the proof. 2

We now present a simple application of this result for finite model classes.

Theorem 13 (Predictive performance of stochastic model selection for finite model

class) Suppose that C consists of N ∈ N models, one of them is µ. Let

PF (h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + log N).

Then PF (h<t) − Ext∼µPF (h1:t) ≥ H(h<t) −
∑

x∈X ξ(x|zt, h<t)H(h1:t) holds for any

history h<t and current input zt, Consequently,
∞∑

t=1

∆2(ξ, Ξ) ≤ PF = (1 + log N)
[
log(1 +H)− log(wµ)

]
. (44)

Proof. Since the entropy of a class with N elements is at most log N , this follows

directly from Lemma 12. 2
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3.2 Entropy potential and countable classes

We now generalize Theorem 13 to arbitrary countable model classes. First note that

there is one very convenient fact about the potential function proofs so far: (17),

(21), and (24) all are local assertions, i.e. for a single time instance and history. If the

local expected error is bounded by the expected potential decrease, then the desired

consequence on the cumulative error holds.

The entropy cannot be directly used as B in Lemma 12, since it may increase

under µ-expectation. Intuitively, the problem is the following: There could be a false

model with a quite large weight, such that the entropy is kept “artificially” low. If

this false model is now refuted with high probability by the next observation, then

the entropy may (drastically) increase. An instance is constructed in the following

example. Afterwards, we define the entropy potential, which does not suffer from this

problem.

Example 14 Fix binary observation space and let C̃ and Z̃ be model class and input

space of Example 11. Let C = C̃ ∪ {νfool}, Z = Z̃ ∪ {0}, wfool = 1− 1
m

, and the rest of

the prior of mass 1
m

be distributed to the other models as in Example 11. Also the true

distribution remains the same one. If the input sequence is z1:nH0+1 = 0, 1, . . . nH0,

and νfool(1|0) = 0 while ν(1|0) = 1 for all other ν, then like before the cumulative

error is (even more than) H0/2, while the entropy can be made arbitrarily small for

large m.

Definition 15 (Entropy potential) Let H
(
(wν)ν∈C

)
= −∑

ν wν log wν be the entropy

function. The µ-entropy potential (or short entropy potential) of a model class C
containing the true distribution µ is, as already stated in (11),

Π
(
(wν)ν∈C

)
= sup

{
H

(
( w̃νP

ν′ w̃ν′
)ν

)
: w̃µ = wµ ∧ w̃ν ≤ wν ∀ν ∈ C \ {µ}

}
. (45)

Clearly, Π ≥ H. According to Theorem 10, Π is necessarily finite if H is finite,

so the supremum can be replaced by a maximum. Note that the entropy potential is

finitely approximable in the sense of (iii) in Lemma 12.

The following proposition gives a characterization of the entropy potential.

Proposition 16 (Characterization of Π) For S ⊂ C, let w(S) =
∑

ν∈S wν. There is

exactly one subset A ⊂ C with µ ∈ A, such that

− log wν > L(A) := −
∑

ν′∈A

wν′
w(A)

log wν′ ⇐⇒ ν ∈ A \ {µ}. (46)

We call A the set of active models (in Π). Then, with w̃ν = exp(−L(A)) for ν ∈ C\A,

w̃ν = wν for ν ∈ A, and k = |C \ A|, we have

Π = Π
(
(wν)ν∈C

)
= H

(
( w̃νP

ν′ w̃ν′
)ν∈C

)

= log
(
k + w(A)eL(A)

)
. (47)
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Moreover, this is scaling invariant in the weights, i.e. (46) yields the correct active

set and (47) gives the correct value for weights that are not normalized, if these un-

normalized weights are also used for computing w(A) and L(A).

Proof. We first argue that the maximum of (45) cannot be attained if some w̃ν = 0.

To this aim, let p̃ ∈ [0, 1]|C|, assume w̃ν = 0 for a specific ν ∈ C, and set H̃ =

H
(
( w̃νP

ν′ w̃ν′
)ν

)
. Now assume w̃ν > 0 and observe that

H
(
( w̃νP

ν′ w̃ν′
)ν

)
=

− w̃ν log(w̃ν) + (1− w̃ν)
[− log(1− w̃ν) + H̃

] ≥ H̃

holds if − log(w̃ν) ≥ H̃. This can be realized for small enough w̃ν > 0, hence the

maximum of (45) cannot be attained for w̃ν = 0.

The maxima of the entropy under p̃ can be found only at the boundary or at

the points where the gradient vanishes. Therefore, for a maximum of (45), we need

that for each ν ∈ C \ {µ}, either w̃ν = wν or, with p̃(C) =
∑

ν w̃ν and L̃(C) =

− 1
p̃(C)

∑
ν w̃ν log(w̃ν),

0 =
dH

(
( w̃νP

ν′ w̃ν′
)ν

)

dw̃ν

=
1

p̃(C)

[
− log(w̃ν)− L̃(C)

]
. (48)

Those elements ν satisfying the latter condition have log w̃ν = −L̃(C) and hence

L̃(C) = L̃(C \{ν}). Therefore, each possible maximum of (45) corresponds to a subset

Ã ⊂ C of active models, such that µ ∈ Ã and furthermore w̃ν = wν for ν ∈ Ã and

log w̃ν = −L̃(Ã) = −L(Ã) for ν /∈ Ã. Since only log w̃ν ≤ log wν is feasible, for ν /∈ Ã

we necessarily have − log wν ≤ L(Ã). Subsets Ã that satisfy this latter condition are

called feasible.

Assume that we have a feasible subset Ã, then for all ν /∈ Ã, the complexity

− log w̃ν equals the average complexity of all ν ∈ Ã. Hence

H
(
( w̃νP

ν′ w̃ν′
)ν

)
= −

∑

ν∈Ã

wν

p(Ã)
log

wν∑
ν′∈C wν′

= L(Ã) + log
(
p(Ã) + ke−L(Ã)

)

= log
(
k + p(Ã)eL(Ã)

)
,

which proves (47) for any such Ã.

Observe that our A defined in the assertion is the smallest feasible subset and

therefore unique. So we only have to make sure no larger subset can result in a larger

entropy. To this aim, take any feasible subset Ã ⊂ C. We assume that there is

ν1 ∈ Ã \ {µ} such that − log wν1 ≤ L(Ã). We need to show that then the entropy

increases if we take out ν1. But in this case, the derivative, computed as the r.h.s. of

(48), is non-positive at w̃ν1 = wν1 . Thus we may increase the entropy by decreasing
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wν1 until the derivative vanishes. Repeating this step for all ν with the property

− log wν ≤ L(Ã), we conclude that the smallest feasible subset A gives the maximum

entropy.

Finally, scaling invariance of the set (46) and the value (47) w.r.t. the weights is

easy to see. 2

The next result states that the entropy potential possesses the desired property

to decrease in expectation and therefore paves the way for the main theorem of this

work.

Theorem 17 For any history h<t and current input zt,

∫

xt∈X
µ(xt|zt)Π(h1:t) ≤ Π(h<t).

where the posterior entropy potential is defined as Π(h<t) := Π
(
[wν(h<t)]ν∈C

)
.

Proof. As in the proof of Lemma 12, we need to proceed in two steps. First we show

the assertion for finite observation space X . The second step, the generalization to

arbitrary X , is similar as but substantially simpler that the second part of the proof

of Lemma 12, since the approximation of only one side of the bound is required. We

therefore omit the explicit presentation of this second step here.

Restricting to finite observation space X , we need to show the assertion only for

finite model class: Once this is established, the general case follows by approximation.

Again, we drop the dependence on the history and the current input from the

notation. We will show a slightly more general assertion: For any subset of the

alphabet X̃ ⊂ X , and any choice of probability vectors ν(x) for all ν ∈ C we have

∑

x∈X̃
µ(x)Π(x) ≤ µ(X̃ )Π

([
wνν(X̃ )

]
ν∈C

)
, (49)

where ν(X̃ ) =
∑

x∈X̃ ν(x) is the total ν-probability of the subset X̃ . We prove (49)

by induction over the subset size |X̃ |. For |X̃ | = 1, there is nothing to show. If (49)

holds for X̃ , then for X̃ ′ = X̃ ∪ {x},
∑

x∈X̃ ′
µ(x)Π(x) ≤ µ(X̃ )Π

(
[wνν(X̃ )]ν

)
+ µ(x)Π(x)

(∗)
≤ µ(X̃ ′)Π

(
[wνν(X̃ ′)]ν

)

implies the assertion. It remains to show (∗).
Now let w̃ν = wνν(X̃ ′) and pν = ν(x)/ν(X̃ ′) for all ν ∈ C, and set µ̃ = pµ. Then

(∗) is equivalent to

(1− µ̃)Π
(
[w̃ν(1− pν)]ν∈C

)
+ µ̃Π

(
[w̃νpν ]ν∈C

) ≤ Π
(
[w̃ν ]ν∈C

)
, (50)
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where for all ν ∈ C their values pν range in pν ∈ [0, 1]. Thus we have reduced the

original assertion to binary alphabet.

In order to prove (50), it is sufficient to show that the maximum of the l.h.s. is

attained if pν = µ̃ holds for all ν ∈ C. We first argue that the maximum can be

only attained if in all three sets of weights, [w̃ν ]ν , [w̃ν(1 − pν)]ν , and [w̃νpν ]ν , the

same models are active (see Proposition 16). Denote the respective sets of active

models by A, A0, A1. Recall that the constructions in Proposition 16 do not require

the weights to sum up to one, and define the quantities w̃1(A1) =
∑

ν∈A1 w̃νpν and

L1(A1) = −∑
ν∈A1

w̃νpν

w̃1(A1)
log(w̃νpν) and Π1 = log

(|C \ A1| + w̃1(A1)eL1(A1)
)
, and in

the same way, the quantities w̃0(A0), L0(A0), and Π0.

For active ν ∈ A0 or ν ∈ A1, respectively, the respective derivatives of Π0 and Π1

are computed as

dΠ0

dpν

= −w̃ν

Π0
eL0(A0)

(− log[w̃ν(1− pν)]− L0(A0)
)

< 0 for ν ∈ A0 \ {µ} and

dΠ1

dpν

=
w̃ν

Π1
eL1(A1)

(− log[w̃νpν ]− L1(A1)
)

> 0 for ν ∈ A1 \ {µ},

where dΠ1

dpν
> 0 follows from

(− log[w̃νpν ]− L1(A1)
)

> 0 for ν ∈ A1 (and analogously

for Π0). For inactive ν /∈ A0 or ν /∈ A1, respectively, the respective derivatives vanish.

Consider now a model ν /∈ A which is inactive in Π. If we choose pν = µ, then it is

inactive in both Π0 and Π1, i.e. both ν /∈ A0 and ν /∈ A1 hold. If we decrease pν until it

becomes active in Π1, then, because of dΠ1

dpν
> 0 and dΠ0

dpν
= 0, the term (1− µ̃)Π0 + µ̃Π1

decreases. The same happens if we increase pν until it becomes active in Π0. Hence

the maximum of (1 − µ̃)Π0 + µ̃Π1 can be attained only if the inactive weights in Π

remain inactive in both Π0 and Π1, and we may set pν = µ̃ for all these ν /∈ A.

Next, we claim that for a model ν ∈ A \ {µ}, which is active in Π, the maximum

of (1 − µ̃)Π0 + µ̃Π1 can be only attained if ν remains active in both Π0 and Π1. To

show this, we only need to argue that, regardless of the configuration of the other pν′

(ν ′ 6= ν),

there is an assignment pν ∈ [0, 1] such that both ν ∈ A0 and ν ∈ A1 (51)

holds. If we then increase pν until (possibly) ν /∈ A1, then we have that (1−µ̃)Π0+µ̃Π1

must decrease, since its derivative is smaller than zero.

We have that each pν in the interval I01 := (1− 1
w̃ν

e−L0(A0), 1
w̃ν

e−L1(A1)) also satisfies

(51). In order to show that I01 is non-empty, we first argue that I01 ⊃ I := (1 −
1

w̃ν
e−L0(A), 1

w̃ν
e−L1(A)), which is then proven to be non-empty. Since we know that ν is

active in Π and therefore w̃ν < e−L(A),

1

e
P

A
w̃ν (1−pν)

w̃0(A)
log 1

w̃ν (1−pν)

+
1

e
P

A
w̃νpν

w̃1(A)
log 1

w̃νpν

= e−L0(A) + e−L1(A) ≥ e−L(A) (52)

implies that I is not empty. We will verify (52) below.
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I ⊂ I01 holds by the following argument. Assume that for some ν ′ ∈ A, pν′

is so small that ν ′ /∈ A0. Varying pν′ in the range [0, u] where ν ′ /∈ A0, does not

change the left constraint 1 − 1
w̃ν

e−L0(A0), while the right constraint 1
w̃ν

e−L1(A1) is

minimal at both boundaries pν′ = 0 and pν′ = u. This can be seen by considering the

derivative dL1(A1)
dpν′

= w̃ν

w̃1(A1)

[− log(w̃ν′pν′)− L1(A1)− 1
]
, which is +∞ at pν′ = 0 and

steadily decreases until − w̃ν

w̃1(A1)
(L1(A1) + 1) at pν′ = u. Note that for both boundary

points 0 and u, the value of L1(A1) coincides. Thus we can set pν′ = u, making

the interval I01 smaller. Letting Ã0 = A0 ∪ {ν ′} and Ã1 = A1 ∪ {ν ′}, we then have

I01 = (1 − 1
w̃ν

e−L0(Ã0), 1
w̃ν

e−L1(Ã1)). A symmetric argument holds for the case that

ν ′ /∈ A1. In this way, we can subsequently treat all ν ′ ∈ A \ (A0 ∩ A1), constantly

decreasing I01, until we arrive at I.

Now, in order to show (52), observe that

e
P

A
w̃ν (1−pν)

w̃0(A)
log 1

(1−pν) ≤ w̃(A)

w̃0(A)
and e

P
A

w̃νpν

w̃1(A)
log 1

pν ≤ w̃(A)

w̃1(A)

by Jensen’s inequality, so (52) follows from

w̃0(A)
w̃(A)

e
P

A
w̃ν (1−pν)

w̃0(A)
log w̃ν + w̃1(A)

w̃(A)
e

P
A

w̃νpν

w̃1(A)
log w̃ν ≥ e

P
A

w̃ν
w(A)

log w̃ν .

Applying Jensen’s inequality again to the l.h.s. verifies this. Altogether we have shown

so far that the maximum of (1− µ̃)Π0 + µ̃Π1 can be only attained if A = A0 = A1.

Finally, we can turn to proving (50), by showing that the maximum of (1− µ̃)Π0 +

µ̃Π1 is attained if pν = µ̃ for all ν ∈ C. Since we know already that we may set

pν = µ̃ for ν /∈ A in order to attain the maximum, we can just ignore these models

and assume without loss of generality that A = C. Then the derivatives of Π0 and Π1

are

dΠ0

dpν

= − w̃ν

w0(A)

(− log[w̃ν(1− pν)]− L0(A0)
)

and

dΠ1

dpν

=
w̃ν

w1(A)

(− log[w̃νpν ]− L1(A1)
)
,

respectively. A possible maximum has (1 − µ̃)dΠ0

dpν
+ µdΠ1

dpν
= 0 for all ν 6= µ, which

occurs in case that pν = µ̃ for all ν ∈ C. This is in fact a global maximum if we can

show the Hessian is globally negative semi-definite. It is sufficient to show that both

Hessians of Π0 and Π1 are negative semi-definite: We identify the model class with

an index set C = A ∼= {0, 1, . . . , N} and assign the true distribution to the index 0.

Then, abbreviating Di = log(w̃ipi)−L1(A) and using the characteristic function 1i=j

which is one if i = j and zero otherwise, the Hessian of Π1 is computed as

[
d2Π1

dpidpj

]N

i,j=1

= − 1

w̃1(A)2

[
w̃iw̃j

(
1i=j

w̃1(A)
w̃i

+ Di + Dj − 1
)]N

i,j=1
.

This Hessian is negative semi-definite by Lemma 18 below, and so is the Hessian of

Π0. This concludes the proof. 2
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Lemma 18 Let N ≥ 1 and wi > 0 for 0 ≤ i ≤ N (the wi need not sum up to one).

Let W =
∑N

i=0 wi and assume that − log wj ≥ L := −∑N
i=0

wi

W
log wi holds for all

1 ≤ j ≤ N . Then, for all vectors u ∈ RN , we have that

N∑
i,j=1

uiuj

[
1i=jW

wi

− log wi − L− log wj − L− 1

]
≥ 0. (53)

Proof. We proceed by induction over N . For N = 1, the assertion is immediate.

Now, for N , observe that the derivative of the l.h.s. of (53) w.r.t. w0,

N∑
i=1

u2
i

wi

+
2
( ∑N

i=1 ui

)2

W

[
1 + L + log w0

]
,

is positive, since − log w0 − L < 0. Thus we may decrease the l.h.s. of (53) by

decreasing w0, until eventually − log wk = L holds for one k ∈ {1 . . . N}. Set Di =

− log wi − L and W̃ = W − wk. Then

N∑
i,j=1

uiuj

[
1i=jW

wi

+ Di + Dj − 1

]
=

∑

i,j∈{1...N}\{k}
uiuj

[
1i=jW̃

wi

+ Di + Dj − 1

]

+
∑

i∈{1...N}\{k}

[
wi

wk

u2
k − 2(1−Di)uiuk +

wk

wi

u2
i

]
. (54)

Since for all u, v ∈ R and c ≤ 1 we have u2 − 2cuv + v2 ≥ 0, the term (54) is

nonnegative. Thus the assertion follows from the induction hypothesis. 2

The previous theorem, together with Lemma 12, immediately implies the main

result of this paper, Theorem 4. More precisely, it reads as follows.

Theorem 19 (Predictive performance of stochastic model selection) For countable

model class C containing the true distribution µ, define the potential (for errors in the

squared Hellinger sense) as

P(h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + Π(h<t)).

Then, for any history h<t and current input zt,

P(h<t)− Ext∼µ(·|zt)P(h1:t) ≥ H(h<t)− Ext∼ξ(·|zt,g<t)H(h1:t), and thus
∞∑

t=1

∆2
t (ξ, Ξ) ≤ P = (1 + Π)

[
log(1 +H)− log(wµ)

]
. (55)

The bound (10) on
∑

t ∆2
t (µ, Ξ) follows from the triangle inequality for the Hellinger

distance.
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3.3 The magnitude of the entropy potential

In this section, we will answer the question how large the newly defined quantity, the

entropy potential Π, can grow.

Theorem 20 Let A denote the active set from the Proposition 16. The entropy po-

tential Π of a discrete distribution (wν)ν∈C has the following properties.

(i) It is lower bounded by the entropy of the distribution, Π ≥ H
(
(wν)ν∈C

)
.

(ii) It is finite if and only if the entropy is finite, hence, in the definition the supre-

mum can be replaced by a maximum.

(iii) The upper bound Π ≤ H
(
(wν)ν∈C

)
w−1

µ always holds.

(iv) There are cases where this bound is sharp within a multiplicative constant.

(v) Π ≤ L(A), where L(A) from Proposition 16 is used.

(vi) With ν1 := arg max
{
wν : ν ∈ A\{µ}} and A from Proposition 16, Π ≤ − log wν1

holds.

Proof. Part (i) is obvious. The same holds for (v), this can be seen by observing

k ≤ 1−p(A)

e−L(A) and (47). Part (ii) follows from (iii), which can be verified by

H ≥ −
∑
ν∈A

wν log wν = p(A)L(A) ≥ wµL(A) ≥ wµΠ,

where (v) was used. Since L(A) ≤ − log wν1 , (v) also implies (vi).

It remains to show (iv). To this aim, fix large numbers n, m ∈ N and set K = 2nm.

Let

C = {µ, νfool, ν1, ν2, . . . , νK}.
Set the probability distribution to

wfool = 1− 1

m
, wµ =

1

m
(1− 1

n
), and pi = 1

mnK

for 1 ≤ i ≤ K. Then for the entropy of the model class, H
(
(p)

) ≈ log 2, while wµ ≈ 1
m

and Π ≈ m log 2 ≈ H/wµ holds. 2

The general bound in Theorem 20 (iii) does not exclude cases where the entropy

potential is huge. And in fact, there are cases where this bound is sharp up to a

factor, and also the cumulative quadratic Hellinger distance is of the same order:

∞∑
t=1

∆2(ξ, Ξ) = Ω
(
Π

)
= Ω

( H
wµ

)
. (56)

In order to see this, consider the case of Example 14 and choose large m, n > 1 and

H0 := m. Then H ≈ log 2, wµ ≈ 1
m

, and Π ≈ H0 log 2 ≈ H/wµ. Moreover, as seen
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above, the expected cumulative quadratic Hellinger error exceeds 1
2
H0. Hence, for

this model class and prior, (56) holds.

Fortunately, for broad classes of discrete distributions, it is of reasonable size

O(− log wµ). Precisely, this happens if the tails of the probability distribution p

are sufficiently light.

Proposition 21 (i) If wν decays exponentially, Π = O(− log wµ) holds. For simplic-

ity, we may identify ν with its index in an enumeration, then exponential decay is

reads as wν = O(αν) for some α ∈ (0, 1).

(ii) If wν decays inverse polynomially, that is, wν = O(ν−b) for b > 1, we have

Π = O
(− b2

b−1
log wµ

)
.

Note that the entropy potential does not depend on a reordering of the elements

of C. That is, we just need that there exists some reordering of C such that the

probabilities decay in the stated way.

Proof. We simplify the exposition and assume that the weights decay exactly expo-

nentially or polynomially, respectively. The general case follows easily.

Therefore, in order to show (i), we identify C with {0, 1, . . .} and assume that

pi = αi(1−α), for i = 0, 1, . . . and α ∈ (0, 1). For given k ∼= µ, i.e., k ≥ 0 is the index

of the reference element µ, we need to find an index j ≥ 0 such that

−j log α ≥ −αkk log α +
∑∞

i=j αii log α

αk +
∑∞

i=j αi
. (57)

Then, we know by (46) that the active set is a superset of {j, j + 1, . . .}, and in

particular Π ≤ − log pj = O(j) according to Theorem 20 (vi).

By some elementary transformations, we see that (57) holds if j(αk + αj

1−α
) ≥

kαk + αj+1

(1−α)2
+ jαj

1−α
. This follows from j ≥ k + α2

(1−α)2
, which is therefore sufficient to

state one index j which is necessarily contained in the active set. Hence O(j) = O(k),

and (ii) is proven. (We remark that Theorem 20 (vi) gives a rough estimate here, in

reality the order of the entropy potential is even smaller.)

Part (ii) is shown in a similar way. Again we identify k ∼= µ. Here we assume

pi ' i−b for i ≥ 1 and b > 1. Then we need to find an index j ≥ 1 satisfying

log j ≥ k−b log k +
∑∞

i=j i−b log i

k−b +
∑∞

i=j i−b
. (58)

Since (46) is scale invariant, this gives the desired subset of the active set. With some

transformations, we see that k−b
(
log j− log k

) ≥ ∑∞
i=j i−b

(
log i− log j

)
implies (58).

We may upper bound the sum on the r.h.s. by an integral and search for j such that

k−b
(
log j − log k

) ≥ 1 +

∫ ∞

j

x−b
(
log x− log j

)
dx

= 1 + 1
(b−1)2

j−(b−1)
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(the additional 1 stems from estimating the sum by the integral). Setting j = k
b

b−1

satisfies this requirement for sufficiently large k and thus completes the proof of (ii).

2

If however the probability distribution decays very slowly, the entropy potential is

of exponential order.

Theorem 22 If wν decays as ν−1(log ν)−b for b > 2 and ν = 1, 2, . . ., we have Π =

Ω(w
− 1

b+1
µ ).

Proof. As in the proof of the last result, we assume that exactly pi ' i−1(log i)−b

holds for i = 1, 2, . . . and b > 2. We now need to show that for small j,

Lj <
k−1(log k)−bLk +

∑∞
i=j i−1(log i)−bLi

k−1(log k)−b +
∑∞

i=j i−1(log i)−b
,

where Li = log i + b log log i. This is satisfied if

k−1(log k)−b
[
log j − log k + b(log log j − log log k

]
<

∞∑
i=j

i−1(log i)−b
[
log i−log j+b(log log i−log log j

]
(59)

holds. The r.h.s. sum can be approximated by an integral which evaluates to

1

(b− 1)(b− 2)(log j)b−1
+

b

(b− 1)2(log j)b−2
. (60)

We now set j = dexp(k
1
b )e. Then for sufficiently large k, the first term of (60)

dominates k−1(log k)−b log j. Moreover, for sufficiently large k, the second term of (60)

dominates k−1(log k)−b log log j. Hence, this choice of j satisfies (59) for sufficiently

large k.

Given that the smallest index in A \ {µ} exceeds j = dexp(k
1
b )e, how large is Π

at least? The answer is: Π ≥ 1
2
Lj = 1

2
(log j + b log log j) ≥ 1

2
k

1
b , for k sufficiently

large. This can be seen easily, we just need to make sure that the contribution of the

tail A \ {µ} exceeds 1
2
. Approximating the tail weight by an integral,

∫∞
j

dx
x(log x)b =

1
(b−1)(log j)b−1 , this contribution is 1

b−1
k−

b−1
b and therefore exceeds the contribution of

the element µ, namely k−1(log k)−b, for large k.

Finally, the proof is concluded by observing Π = Ω(k
1
b ) = Ω(w

− 1
b+1

µ ). 2

The entropy potential is infinite with the usual definition of a universal model class

[LV97]. But with a slight modification of the prior, it becomes finite. Hence we can

obtain a universal induction result for stochastic model selection:
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Example 23 Consider a model class C corresponding to the set of programs on a

universal Turing machine. For ν ∈ C, let wν ∼ 2−K(ν)/K(ν)2, where K denotes

the prefix Kolmogorov complexity – it is shown e.g. in [LV97] how to obtain such

a construction. Then H = O(1), and Theorem 19 implies consistency of universal

stochastic model selection with this prior and normalization. Had we chosen the

usual “canonical” weights wν ∼ 2−K(ν), then H ∼= ∑
K(ν)2−K(ν) = ∞, since K is the

smallest possible code length to satisfy the Kraft inequality, and any smaller growth

must necessarily result in an infinite sum. Hence the bound for universal stochastic

model selection is infinite with the usual prior.
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