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(Abstract) Recently much attentions have been paid to
quantum circuit design to prepare for the future “quan-
tum computation era.” Like the conventional logic syn-
thesis, it should be important to verify and analyze the
functionalities of generated quantum circuits. There-
fore, we propose an efficient verification method for
quantum circuits under a practical restriction. Thanks
to the restriction, we can introduce an efficient verifi-
cation scheme based on decision diagrams called Deci-
sion Diagrams for Matrix Functions (DDMFs). Then,
we show analytically what are the advantages of our
approach based on DDMFs over the previous tech-
niques. In order to introduce DDMFs, we also intro-
duce new concepts, quantum functions and matrix func-
tions, which may also be interesting and useful on their
own for designing quantum circuits.

1 Introduction

Recently quantum computing has attracted great atten-
tion by its potential abilities [11]. To realize a quan-
tum algorithm, it is necessary to design the correspond-
ing quantum circuit as small as possible. Thus, it
should be very important to study quantum circuit de-
sign methods even before quantum computing is phys-
ically realized. Indeed, there have been many re-
searches [6, 12, 7, 1, 8, 5, 13, 10] for quantum circuit
design.

Typical quantum circuit design methods are based
on matrix decomposition [13, 10] since a quantum al-
gorithm is expressed by a matrix. They can treat any
kind of quantum circuits, but they cannot treat large

(hence, practical) size problems since they need to ex-
press matrices explicitly and thus they need exponential
time and memory. (Note that a matrix for an n-bit quan-
tum circuit is 2n × 2n, which will be explained later.)

There is a different approach for quantum circuit de-
sign [6, 12, 7, 1, 8, 5]. The approach is to focus on
quantum circuits calculating only (classical) Boolean
functions by the following observation [6]: A quantum
circuit for a standard quantum algorithm essentially dif-
fers in the part of the circuit that calculates (classical)
Boolean functions depending on the specification of a
given problem instance (e.g., so called oracles in the
case of Grover Search). Thus, we focus on designing
a Boolean function in the model of quantum compu-
tation. Then, we may borrow many ideas from (clas-
sical) logic synthesis, especially reversible logic syn-
thesis, and indeed there have been many researches
in the conventional logic synthesis research commu-
nity [6, 12, 7, 1, 8, 5]. Thus, to focus on such quantum
circuits for Boolean functions, we may have a design
method to handle practical size problems. This paper
considers this type of quantum circuits.

Recently a paper [16] discussed an problem of the
equivalence check of general quantum circuits and
quantum states with considering so-called phase equiv-
alence property of quantum states. Even for quantum
circuits calculating only Boolean functions, it should be
very important to verify and analyze the functionalities
of designed circuits as the case of classical logic synthe-
sis. For example, we may consider the following situa-
tion: One of the possible realizations of quantum com-
putation is considered to be so called a linear-nearest-
neighbor (LNN) architecture in which the quantum bits
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(qubits) are arranged on a line, and only operations to
neighboring qubits are allowed. Thus, we need to mod-
ify a designed quantum circuit so that it uses only gates
that operate to two adjacent qubits. In such a case, we
may use some tricky transformations, and it is very con-
venient if we have a verification tool to confirm that the
original and the modified quantum circuits are function-
ally equivalent.

If we consider only the classical type gates, it is
enough to use the conventional technique such as Bi-
nary Decision Diagrams (BDDs) [2] for the verifica-
tion. However, even if we consider quantum circuits
calculating only Boolean functions, it is known that
non-classical (quantum specific) gates are useful to re-
duce the circuit size [1, 8, 5, 4]. Thus we need to ver-
ify quantum circuits with non-classical gates. In such
cases, a classical technique is not obviously enough.

As for simulating quantum circuits, there have
been proposed efficient techniques using decision di-
agrams (called Quantum Information Decision Dia-
grams (QuIDDs) [15] and Quantum Multiple-valued
Decision Diagrams (QMDDs) [9]) to represent matri-
ces for quantum circuits. By using these efficient dia-
grams, we can express the functionalities of two quan-
tum circuits, and then verify the equivalence of the two
circuits. However, they are originally proposed to sim-
ulate general quantum circuits, and thus there may be
a more efficient method that is suitable for verifying
the functionalities of quantum circuits only for Boolean
functions.

Our contribution described in this paper. Con-
sidering the above discussion, we introduce a new
quantum circuit class: Semi-Classical Quantum Cir-
cuits (SCQCs). Although SCQCs have a restriction,
the class of SCQCs covers all the useful quantum cir-
cuits (for calculating Boolean functions) as will be
explained later. Moreover, because of the restriction
of SCQCs, we can express the functionalities of SC-
QCs very efficiently as the conventional techniques by
BDDs. For that purpose, we introduce a new decision
diagram structure called a Decision Diagram for a Ma-
trix Function (DDMF). Then, we show that the verifi-
cation method based on DDMFs are much more effi-
cient than the above mentioned methods based on pre-
viously known techniques. We provide an analytical
comparison between DDMFs and QuIDDs, and reveal
the essential difference: (1) We show that their abil-

ity to express the functionality of one quantum gate
is essentially the same, but (2) we also show that our
approach is much more efficient for the verification
of SCQCs than a method based on known techniques.
(Note that this does not mean that DDMFs are better
than QuIDDs: DDMFs are only for SCQCs, whereas
QuIDDs can treat all kinds of quantum circuits.) More-
over, we show by preliminary experiments that DDMFs
can be used to verify SCQCs of practical size (60 inputs
and 400 gates). In order to introduce DDMFs, we also
introduce new concepts, quantum functions and matrix
functions, which may be interesting and useful on their
own for designing quantum circuits with quantum spe-
cific gates.

2 Semi-Classical Quantum Circuits
and Their Representations by Deci-
sion Diagrams

This section introduces new concepts: SCQCs together
with quantum functions, matrix functions and DDMFs.

2.1 Quantum States and Quantum Gates

Before introducing our new concepts, let us briefly ex-
plain the basics of quantum computation.

In quantum computation, it is assumed that we can
use a qubit which is an abstract model of a quantum
state. A qubit can be described as α |0〉 + β |1〉, where
|0〉 and |1〉 are two basic states, and α and β are com-
plex numbers such that |α|2 + |β|2 = 1. It is con-
venient to use the following vectors to denote |0〉 and

|1〉, respectively: |0〉 =

(
1
0

)
and, |1〉 =

(
0
1

)
. Thus,

α |0〉 + β |1〉 can be described as a vector: α |0〉 +

β |1〉 =

(
α
β

)
. Accordingly, any quantum operation on

a qubit can be described as a 2x2 matrix. By the laws
of quantum mechanics, the matrix must be unitary. We
call such a quantum operation a quantum gate. For ex-
ample, the operation which transforms |0〉 and |1〉 to
|1〉 and |0〉, respectively, is called a NOT gate whose
matrix representation is as shown in Fig. 1.

In addition to the above NOT gates, we can also
use any quantum specific unitary matrix in quantum cir-
cuits. For example, rotation gates denoted by R(θ) are
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often used in quantum computation. The matrix for the
gates is as shown in Fig. 1. Although the functional-
ity of rotation gates is not classical, they are useful to
design quantum circuits for (classical) Boolean func-
tions [1]. Another quantum specific gate called a V gate
is also utilized to design quantum circuits for Boolean
functions [8, 5]. The matrix for the gate is as shown
in Fig. 1. This gate has the interesting property that
V 2 = NOT .

In the following, our primitive gates are (general-
ized) controlled-U gates which are defined as follows:

Definition 1 A controlled-U gate has (possibly many)
positive and negative control bits, and one target bit.
It applies a 2×2 unitary matrix U to the target qubit
when the states of all the positive control bits are the
states |1〉 and the states of all the negative control bits
are the state |0〉. A controlled-U gate may not have a
control bit. In such a case, it always applies U to the
target qubit.

See an example of a quantum circuit consisting of
two controlled-NOT gates in Fig. 2. In quantum cir-
cuits, each gate works one by one from the left to the
right. For the first gate, the target bit is x3 and the sym-
bol ⊕ means the NOT operation. The positive con-
trol bits are x1 and x2 denoted by black circles. This
gate performs NOT on |x3〉 only when both |x1〉 and
|x2〉 are the state |1〉. Consider the second gate in the
same figure. The white circles denote negative controls,
which means the gate performs NOT only when both
|x1〉 and |x2〉 are the states |0〉.

In addition to controlled-NOT gates which are es-
sentially classical gates, we can consider any (quantum
specific) unitary operation for controlled gates. For ex-
ample, the functionalities of controlled gates in Figs. 3
and 4 are various (e.g., NOT, V , V −1, R(1

2π) and
R(1

4π)).

2.2 Semi-Classical Quantum Circuit (SCQC)

Consider Fig. 2 again. This circuit transforms the
state of the third bit |x3〉 into |x3 ⊕ f(x1, x2)〉, where
f(x1, x2) = x1 · x2 + x1 · x2. Thus, we can use this
circuit (as a part of a quantum algorithm) to calculates
the Boolean function f(x1, x2) = x1 · x2 + x1 · x2.
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Figure 1: Unitary matrices

|x2〉
|x1〉

|x3〉

first gate second gate 

Figure 2: A quantum circuit

As mentioned before, although our goal is to construct
such a quantum circuit that calculates a Boolean func-
tion, quantum specific gates (such as R(θ) and V ) are
useful [1, 8, 5, 4] to make the circuit size smaller. For
example, the circuit as shown in Fig. 3 (reported in [5])
utilizes controlled-V and controlled-V −1 gates to be-
come much smaller than the one we can do the best
with only classical type gates, i.e., controlled-NOT

gates. (That was confirmed by an essentially exhaus-
tive search [5].)

In order to characterize such a quantum circuit
that calculates a classical Boolean function with non-
classical gates, we introduce a Semi-Classical Quantum
Circuit (SCQC) whose definition is as follows.

Definition 2 A Semi-Classical Quantum Circuit
(SCQC) is a quantum circuit consisting of controlled-U

1

|x2〉
|x1〉

|x 〉 1V − V V|x3〉

Figure 3: A quantum circuit for half-adder
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1 ⎛ ⎞ ⎛ ⎞

|x2〉
|x1〉

|x 〉
V

1V −

2
R π⎛ ⎞
⎜ ⎟
⎝ ⎠ 4

R π⎛ ⎞
⎜ ⎟
⎝ ⎠

|x3〉

Figure 4: A non-SCQC

gates with the following restriction.

Restriction. If all the initial input quantum states of
the circuit are |1〉 or |0〉 (i.e., just classical values), the
quantum states of the control qubits of any gate in the
circuit should be |1〉 or |0〉 at the time when the gate is
being operated.

The circuit in Fig. 3 is an SCQC. This is because
the quantum states of the control qubits of any gate are
either |1〉 or |0〉 when the gate is being operated if the
initial input state |x1〉, |x2〉 and |x3〉 are either |1〉 or
|0〉. It is not trivial to see the condition for the quantum
state of the control qubit of the last gate (|x3〉) in Fig. 3.
However, by using our new concepts (explained in the
next section), it is easy to verify that the state is indeed
the classical value if the input states of the circuit are
classical values.

On the contrary, the circuit as shown in Fig. 4 is
not an SCQC. Again, by using our new concept it is
easily verified that the condition is not satisfied for the
quantum state of the control qubit of the last gate (|x3〉)
in Fig. 4.

Our motivation to introduce SCQCs is based on the
following observations.

• Although SCQCs are in a subset of all the possible
quantum circuits, quantum circuits (for calculat-
ing a Boolean function) designed by the existing
methods are all SCQCs to the best of our knowl-
edge.

• Even in the future it is very unlikely that we come
up with a tricky design method that produces a
non-SCQC to calculate (classical) Boolean func-
tions. The reason is as follows. If the circuit is
not a SCQC, there is a gate such that the quantum
state of its control bit is not a simple classical value
(|0〉 nor |1〉). In such a case, the quantum states

of the control bit and the target bit after the gate
cannot be considered separately: their states are
not only non-classical values but also correlated
with each other. Such a situation is called quantum
superposition and entanglement [11]. Since the
whole circuit should calculate a Boolean function,
all of the final output quantum states should be
again restored to simple classical values (i.e., |0〉
or |1〉). The reverse operations of creating quan-
tum superposition and entanglement seems to be
only one method to restore to a simple classical
value. Thus, it seems nonsense to consider non-
SCQC circuit when we discuss practical design
method of a quantum circuit to calculate a Boolean
function.

Important Note: The restriction of SCQCs means
that we cannot make entanglement if all the initial input
quantum states of a SCQC are just classical values. It is
well-known that quantum computation without entan-
glement has no advantage over classical computation.
However, this does not mean that SCQCs are meaning-
less by the following reason: As mentioned, a SCQC
is used as a sub-circuit to calculate a Boolean function
for some quantum algorithms. Thus, in the real situa-
tion where a SCQC is used as a sub-circuit, the inputs
to the SCQC are not simple classical values,and so it in-
deed creates entanglement which should give us a quan-
tum computation advantage. In other words, the restric-
tion of SCQCs in the definition is considered when we
suppose the inputs of SCQCs are just classical values,
which may not be a real situation where SCQCs are re-
ally used.

Therefore, SCQCs should be enough if we consider
to design a quantum circuit to calculate a Boolean func-
tion from the practical point of view. Moreover, the re-
striction of SCQCs provide us an efficient method to
analyze and verify quantum circuit as we will see in
Sec. 3. That is our motivation to introduce the new con-
cept in this paper.

2.3 Quantum Functions and Matrix Func-
tions

Before introducing our new representation of the func-
tionalities of SCQCs, we need the following definitions.
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Table 1: A truth tables for quantum, classical and ma-
trix functions

x1, x2 qf1 qf2 mf1 mf2 CM(I) CM(R(1
2π))

0, 0 |0〉 |1〉 I NOT I R(1
2π)

0, 1 V −1 |0〉 |0〉 V −1 I I R(1
2π)

1, 0 |0〉 |0〉 I I I R(1
2π)

1, 1 V −1 |0〉 |1〉 V −1 NOT I R(1
2π)

Definition 3 A quantum function with respect to n

Boolean variables x1, x2, · · · , xn is a mapping from
{0, 1}n to a qubit state.

See the third bit after the first gate in the circuit in
Fig. 3 again. If the initial state of |x3〉 is |0〉, the re-
sultant state of the third bit can be seen as a quantum
function described as qf1(x1, x2) in the second column
of Table 1. For example, the resultant quantum state be-
comes V −1 |0〉 when x1 = 0, x2 = 1. Thus, qf1(0, 1)
is defined as V −1 |0〉 as shown in the table.

Note that a Boolean function can be seen as a spe-
cial case of quantum functions. For example, the third
column (qf2) of Table 1 shows the quantum function of
the resultant third qubit after the two gates of the circuit
in Fig. 2 when the initial state of |x3〉 is |0〉. This can
be considered as the output of a Boolean function when
|0〉 and |1〉 are considered as Boolean values 0 and 1, re-
spectively. (As mentioned before, the circuit is consid-
ered to calculate the Boolean function: x1 ·x2 +x1 ·x2,
which we consider essentially the same as (qf2) in Ta-
ble 1.)

The value of a quantum function q(x1, x2, · · · , xn)
can always be expressed as mf (x1, x2, · · · , xn) |0〉,
where mf (x1, x2, · · · , xn) is a mapping from {0, 1}n

to 2 × 2 unitary matrices. It is convenient to con-
sider mf (x1, x2, · · · , xn) instead of q(x1, x2, · · · , xn)
itself, thus we introduce the following definition.

Definition 4 A matrix function with respect to n

Boolean variables x1, x2, · · · , xn is a mapping from
{0, 1}n to a 2 × 2 (unitary) matrix.

The fourth and the fifth columns of Table 1 show the
matrix function mf1 and mf2 for the quantum function
qf1 and qf2, respectively, in the same table. In this pa-
per, we treat a matrix function whose output values are
only I or NOT as a classical Boolean function by con-
sidering that NOT and I of the matrix function corre-
spond to 1 and 0, respectively, of the Boolean function.

Table 2: Operators ⊕ and ∗.

x1, x2 mf1 mf2 mf1 ⊕ mf2 mf3 f f ∗ mf3

0, 0 R(1
2π) R(1

2π) R(π) R(1
2π) 1 R(1

2π)
0, 1 I I I I 0 I
1, 0 I R(1

4π) R(1
4π) R(π) 1 R(π)

1, 1 R(1
2π) R(1

4π) R(3
4π) R(π) 0 I

In other words, we represent a Boolean function by a
matrix function as a special case.

We define a special type of matrix function called
constant matrix function as follows.

Definition 5 A matrix function mf (x1, x2, · · · , xn)
is called a constant matrix function if
mf (x1, x2, · · · , xn) are the same for all the as-
signments to x1, x2, · · · , xn. CM(M) denotes a
constant matrix function that always equals to the
matrix M .

The sixth and the seventh columns of Table 1 show the
truth tables for constant matrix functions, CM(I) and
CM(R(1

2π)), respectively.

By using the matrix function mf1 in the fourth col-
umn of Table 1, we can easily see how the first gate in
Fig. 3 transforms the third qubit |w〉: |w〉 is transformed
to mf1(x1, x2) |w〉. For example, when x1 = 0, x2 =
1, |w〉 is transformed to V −1 |w〉.

Important Note: The above means that the rep-
resentation (and so the analysis) by matrix functions
works even when |w〉 is any general quantum state. In-
deed, we can use a SCQC even when the input states
are not simple classical values, i.e., the restriction of
SCQCs does not say that SCQCs cannot be used when
the inputs are not classical. (If so, we may not be able
to use an SCQC for a part of a quantum algorithm.)

For matrix functions, we introduce two operators
“⊕” and ‘∗,” which are used to construct DDMFs for
a quantum circuit in the following sections.

Definition 6 Let mf1, mf2 and mf3 be ma-
trix functions with respect to x1 to xn. Then
mf1 ⊕ mf2 is defined as a matrix function mf

such that mf (x1, · · · , xn) = mf1(x1, · · · , xn) ·
mf2(x1, · · · , xn) where · means normal matrix
multiplication. Let also f be a Boolean function
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with respect to x1 to xn. Then f ∗ mf3 is a ma-
trix function which equals to mf3(x1, x2, · · · , xn)
when f(x1, x2, · · · , xn) = 1, and equals to I when
f(x1, x2, · · · , xn) = 0.

See examples in Table 2. Note that if mf1 and mf2 are
considered to be Boolean functions like mf2 in Table 1,
the operator ⊕ corresponds to the EXOR of the two
Boolean functions. Note also that if mf3 is essentially
a Boolean function like mf2 in Table 1, the operator ∗
corresponds to the AND of the two Boolean functions.

2.4 Decision Diagrams for Matrix Functions

A matrix function for a quantum function can be ex-
pressed efficiently by using an edge-valued binary de-
cision diagram structure, which we call a DDMF whose
definition is as follows:

Definition 7 A Decision Diagram for a Matrix Func-
tion (DDMF) is a directed acyclic graph with three
types of nodes: (1) A single terminal node correspond-
ing to the identity matrix I , (2) a root node with an
incoming edge having a weighted matrix M , and (3) a
set of non-terminal (internal) nodes.

Each internal and the root node are associated with
a Boolean variable xi, and have two outgoing edges
which are called 1-edge (solid line) leading to another
node (the 1-child node) and 0-edge (dashed line) lead-
ing to another node (the 0-child node). Every edge has
an associated matrix.

The matrix function represented by a node is defined
recursively by the following three rules.

(1) The matrix function represented by the terminal
node is the constant matrix function CM(I).

(2) The matrix function represented by an internal
node (or the root node) whose associated variable is xi

is defined as follows: xi ∗ (CM(M1) ⊕ mf1) ⊕ xi ∗
(CM(M0) ⊕ mf0), where mf1 and mf0 are the ma-
trix functions represented by the 1-child node and the
0-child node, respectively, and M1 and M0 are the ma-
trices of the 1-edge and the 0-edge, respectively. (See
an illustration of this structure in Fig. 5.)

(3) The root node has one incoming edge that has a
matrix M . Then the matrix function represented by the
whole DDMF is CM(M)⊕mf , where mf is a matrix
function represented by the root node.

xi+1 xi+1

xi

M1 M0

M

mf0mf1

Figure 5: An internal DDMF node

1x

2x

3x

I

1M

1x

2x

3x

I

0MM

1
1 0M M −

M

0M

Figure 6: Conversion to the canonical form

Like conventional BDDs, we achieve the canonical
form for a DDMF if we impose the following restriction
on the matrices on all the edges.

Definition 8 A (DDMF) is canonical when (1) all the
matrices on 0-edges are I , (2) there are no redundant
nodes: No node has 0-edge and 1-edge pointing to the
same node with I as the 1-edge matrix, and (3) common
sub-graphs are shared: There are no two sub-graphs.

Any DDMF can be converted to its canonical form by
using the following transformation from the terminal
node to the root node: Suppose the matrices on incom-
ing edge, 0-edge and 1-edge of a node be M , M0 and
M1, respectively. Then, if M0 is not I , we modify these
three matrixes as follows: (1) The matrix on the incom-
ing edge changed to be MM0. (2) The matrix on the
1-edge changed to be M1M

−1
0 . (3) The matrix on the

0-edge changed to be I . It is easily verified that this
transformation does not change the matrix function rep-
resented by the DDMF. See the example in Fig. 6 where
the matrix on 0-edge of the node x2 is converted to I .
In the example, the matrices I on edges are omitted.
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|x2〉
|x1〉

|x3〉
V

Figure 7: An SCQC (1)

|x2〉
|x1〉

|x3〉
V

Figure 8: An SCQC (2)

Note: The concepts of quantum functions and ma-
trix functions may be used implicitly in the design
method of [1], and the decision diagram structure is
similar between DDMFs and the quantum decision dia-
grams used in [1]. However, the quantum decision dia-
grams in [1] are used to represent conventional Boolean
functions whereas DDMFs are used for representing
matrix functions: the terminal node of a DDMF is a
matrix I . Also a weight on an edge in DDMFs is gen-
eralized to any matrix. Thus, DDMFs can be consid-
ered as a generalization of quantum decision diagrams
to treat matrix functions rather than Boolean functions.
(As we have seen in Table 1, Boolean functions can be
seen as a special case of quantum functions.)

We will use the same operators, ⊕ and ∗, for
DDMFs as for matrix functions: (1) (DDMF for mf )
= (DDMF for mf1) ⊕ (DDMF for mf2) if mf =
mf1 ⊕ mf2, and (2) (DDMF for mf ) = (DDMF for
mf1) ∗ (DDMF for mf2) if mf = mf1 ∗ mf2.

3 Verification of SCQCs by using
DDMFs

See two SCQCs in Fig. 7 and Fig. 8. It is easy to see that
their functionality are the same. However, the problem
is how to verify the equality for much larger circuits.
Thanks to the introduction of DDMFs, we propose a
method to verify the equality of given two n-qubit SC-
QCs in the following.

Step 1. We construct a DDMF to represent the matrix
function that expresses the functionality for each qubit
state at the end of each circuit.

Step 2. We compare two DDMFs for the correspond-
ing qubits of the two circuits. The comparison of two
DDMFs can be done in O(1) time as in the case of
BDDs.

Step. 1 is performed as follows. In the below, we
use a notation Dj

i to express the DDMF for the i-th
quantum qubit state right after the j-th gate. We also
use a notation F (D) to denote the matrix function (or
the Boolean function in a special case) represented by
a DDMF D.

Initialization. For each input xi, we construct a D0
i

as a DDMF for xi. This is the DDMF for the matrix
function (essentially Boolean function) which is NOT

when xi = 1.

Construction of the DDMFs right after the j-th gate.
From the first gate to the last gate, we construct Dj

i

from Dj−1
i as follows. If the i-th bit is not the target bit

of the j-th gate, Dj
i = Dj−1

i . If the i-th bit is the target
bit of the j-th gate Dj

i = Dj−1
i ⊕Dgate where Dgate is

constructed by the following two steps.

(1) For the j-th gate, let us suppose that the pos-
itive control bits be the p1, p2, · · · , pk-th bits, and
the negative control bits be the n1, n2, · · · , nl-th bits.
Then, by the restriction of SCQCs, all the matrix func-
tions F (Dj−1

m ) for m = p1, p2, · · · , pk, n1, n2, · · · , nl

are classical Boolean functions. Thus we can cal-
culate a logical AND of them: g = F (Dj−1

p1
) ·

F (Dj−1
p2

) · · ·F (Dj−1
pk

) · F (Dj−1
n1 ) · F (Dj−1

n2 ) · · ·F (Dj−1
nl ).

Note that this Boolean function can be obtained by
DDMF operations since a DDMF represents a Boolean
function in a special case.

(2) We construct Dgate = (DDMF for g)
∗(DDMF for CM(U)), where U is a unitary matrix
associated with the j-th gate.

Note that all the DDMF operations in the above
should be performed efficiently by using Apply oper-
ations and operation and node hash tables as the con-
ventional BDD operations [2].

We show an example of DDMFs for the quantum
circuit as shown in Fig. 7. At the initialization step, we
construct DDMFs for functions, x1, x2 and x3, which
are D0

1 , D0
2 and D0

3 as shown in Fig. 9. Then we
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Table 3: A truth table for Dcontrol

x1, x2, x3 F (Dcontrol)
0, 0, 0 I

0, 0, 1 V

0, 1, 0 I

0, 1, 1 V

1, 0, 0 I

1, 0, 1 I

1, 1, 0 I

1, 1, 1 I

Table 4: A truth table for D1
2

x1, x2, x3 F (D1
2)

0, 0, 0 I

0, 0, 1 V

0, 1, 0 N

0, 1, 1 V N

1, 0, 0 I

1, 0, 1 I

1, 1, 0 N

1, 1, 1 NN

construct the DDMFs for the quantum states right af-
ter the first gate. Since the target bit is the second
bit for the first gate, D1

1 = D0
1, and D1

3 = D0
3 . To

construct D1
2 , we first calculate a Boolean function

g = F (D0
1) · D0

3 = x1 · x3. Note that this Boolean
function can be obtained by DDMF operations since a
DDMF represents a Boolean function as a special case.
This is because the first bit and the third bit are neg-
ative and positive control, respectively. Then we con-
struct Dgate = g ∗ (DDMF for CM(V )), whose ma-
trix function is shown in Table 3. Finally, we construct
D1

2 = D0
2 ⊕ Dgate whose matrix function is as shown

in Table 4. The constructed DDMFs after the first gate
are shown in Fig. 10.

4 Comparison with the previous
methods

In this section we compare our method with the previ-
ous methods to show the advantage of our method.

I
0
1 DDMF

I

3x

I

1x 2x

0
2 DDMF 0

3 DDMF

Figure 9: DDMFs after the initialization

x

I
0
1 DDMF

3x

I

1x

0
2 DDMF 0

3 DDMF

1x

I

2x

V

2x

3x

Figure 10: DDMFs after a gate

4.1 Verification method based on previous
techniques

A gate (or a circuit) of n qubits can be described by a
2n×2n unitary matrix. For example, the unitary matrix
that expresses the functionality of the last gate in Fig. 4
can be shown as in Fig. 11. (We will explain this briefly
in Appendix.)

Since the same structure (sub-matrices) are often re-
peated in such a 2n ×2n unitary matrices (like Fig. 11),
there have been proposed data compression scheme
based on decision diagram structures: QuIDDs [15]
based on multi-terminal binary decision diagrams, and
QMDDs [9] based on multiple-valued decision dia-
grams (MTBDDs) [3]. Here we explain how the
data compression works for QuIDDs. QMDDs have
a slightly different approach: They use multi-valued
logic instead of binary logic, and the strategy of se-
lecting decision variables is a bit different. However,
it should be noted that the two approaches are essen-
tially the same when (1) the target circuit is binary logic
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Figure 11: A Unitary Matrix for a 3-qubit gate

(|0〉 or |1〉) valued (which is our case), and (2) the vari-
able ordering is appropriately chosen for QuIDDs (as
explained below).

A QuIDD for the matrix in Fig. 11 can be con-
structed as shown in Fig. 12. In a QuIDD representing
a matrix, we have decision variables to specify rows
(R0, R1, R2) and columns (C0, C1, C2) of the matrix as
shown in Fig. 11. For example, the variable assignment
to R0 = 0, R1 = 1, R2 = 1, C0 = 0, C1 = 0, C2 = 1)
leads to the forth row and the second column element,
1−i
2 . We can construct a binary decision diagram where

each variable assignment corresponds to one element
of the matrix as shown in Fig. 12. If there are some re-
peated structures in a matrix, this diagram can reduce
the necessary memory space to store the matrix infor-
mation.

It is known that interleaving the row and the column
variables (i.e., the order of R0, C0, R1, C1, · · · ) would
be a good variable order [14]. In such a case, the vari-
able order becomes the same as the case of QMDDs. In
this paper, we also consider such a variable order.

As the conventional decision diagrams, we can im-
plement any operations (such as addition and multi-
plication) between two QuIDDs based on Apply oper-
ations and operation and node hash tables. Usually,
QuIDDs can reduce the necessary memory, and the
necessary computational time for matrix operations for
quantum circuit simulations [15].

0R

0C 0C

1R

1C 1C

1R

1C 1C

1

2R

2C 2C

0

2R

2C 2C

2R

2C

1
2
i−1

2
i+

Figure 12: A QuIDD (1)

4.2 Advantages of the Proposed Approach

First we compare the number of nodes to represent
the functionality of a single gate between DDMFs and
QuIDDs. Let us use the last gate in Fig. 4 for our ex-
planation. As explained before, the QuIDD shown in
Fig. 12 represents the matrix corresponding to the gate.
A DDMF for the same purpose can be shown as in
Fig. 13. In the DDMF, V is attached on the path corre-
sponding to the variable assignment x1 = 0, x3 = 1.
This is because the gate applies V only when x1 =

1x

I

V
3x

Figure 13: A DDMF
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0R

0C 0C

2R

2C 2C

2R

2C 2C

1G

3G2G

1R

1C 1C

1 0

1R

1C 1C

1
2
i−1

2
i+

5G

4G

Figure 14: A QuIDD (2)

0, x3 = 1.

From the two figures, DDMFs seem to be better
than QuIDDs. However, this is a bit unfair compari-
son because the DDMF implicitly utilizes the fact that
x2 is the target bit. (Thus, x2 does not appear in the
DDMF.) On the other hand, the QuIDD does not use
such knowledge. Although the explanation is omitted
due to the space limitation (again see the details in a
standard text), (R1, C1) corresponds to the input (and
the output) line on x2 in the original quantum circuit.
Thus, if we know that x2 is the target bit, we can also
choose the appropriate variable order for the QuIDD
such that the pairs of variables (R1, C1) are put on the
bottom. Then, the QuIDD becomes smaller as shown
in Fig. 14.

Although there still seems to be a big difference be-
tween two diagrams in Figs. 13 and 14, the essential
difference is only a constant factor since we can de-
crease the number of nodes of the QuIDD in Fig. 14 if
we consider the following two issues.

(1) If we choose the appropriate variable ordering
of (Ri, Ci) as described above, the corresponding ma-
trix can be considered as one such that there are only
2x2 matrices on the diagonal. (Again we omit the ex-
planation.) Thus, for each group of nodes, (Ri, Ci),

which is not on the bottom (e.g., G1, G2, G3 in Fig. 14),
the two paths corresponding to (Ri = 1, Ci = 0) and
(Ri = 0, Ci = 1) always go to 0 terminal node. (This is
because the matrix is a diagonal matrix, and thus the el-
ements in the right upper and the left lower parts of the
matrix are all 0.) Thus, we can essentially omit such
paths, and then only two paths are essentially necessary
for the group of nodes, which means that we can replace
each group of nodes by one node. (Of course, to do so,
we need more operations than the standard QuIDD op-
erations.)

(2) If we note that the terminal nodes of a DDMF
are 2x2 matrices (which has 4 elements), the last group
of nodes (G4 and G5 in Fig. 14) should not be counted
for the fair comparison.

To sum up, in this example, G2, G4 and G5 should
not be counted since each group leads to only the el-
ements of a single 2x2 matrix (I or V ), and G1 and
G3 should be considered as one node; thus there is no
essential difference between two diagrams. Of course,
it is apparent that DDMFs are much more straight for-
ward and easy to implement (hence should be faster)
than QuIDD based approaches for our purpose. How-
ever, the above discussion makes it clear that there is
only a constant factor difference.

Nevertheless, there is a good reason for us to intro-
duce DDMFs: If we consider the verification of the two
quantum circuits, the difference may become exponen-
tial in some cases, which will be explained below.

As mentioned in Sec. 3, when we construct Dj
i from

the previous step, we always implicitly choose the ap-
propriate variable order: We implicitly put the target
bit (the i-th bit) on the bottom (more precisely, we ig-
nore the target bit) when we calculate Dj

i . On the other
hand, we cannot choose an appropriate variable order-
ing for the QuIDD approach since the verification by
QuIDDs are performed as follows: We can verify the
equality of the two quantum circuits by comparing the
two QuIDDs representing the two quantum circuits. To
construct the QuIDD for a circuit, we simply multi-
ply matrices corresponding to gates in the circuit from
the left to the right. This can be done by representing
each matrix into a QuIDD. For the first gate, we can
chose the appropriate variable order. However, if the
target bits are different between the first and the sec-
ond gates, we cannot choose the appropriate variable
ordering when we construct the QuIDD for the second
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gate. This is because the same variable order should be
applied for the two QuIDDs when we perform the mul-
tiplication. Thus, at least one of QuIDDs may become
much larger compared to the DDMF approach. Another
important observation is that the resultant QuIDD after
the multiplication may be larger than the corresponding
DDMF approach by the following reason. We construct
each DDMF for each qubit, and thus we can implicitly
choose the best variable order (i.e., putting the target bit
to the bottom) for each qubit. This can be done because
of the restriction of SCQCs. On the other hand, unitary
matrix based approaches (such as QuIDD and QMDD
based verifications) do not assume such a restriction,
and thus they do not treat each qubit separately, and
thus they represent the functionalities for all qubits at
the same time as one unitary matrix corresponding to a
part of quantum circuit. Therefore, we cannot choose
the best variable if the appropriate variable order dif-
fers for different qubits. (This occurs when we multiply
several matrices corresponding to quantum gates with
different target bits.) Thus, in the worst case, QuIDDs
becomes much bigger than DDMFs during the verifica-
tion procedures. It is obvious that the necessary mem-
ory and the necessary time for Apply operations become
less if the number of nodes is few. Thus it is apparent
our approach is much more efficient than previous ap-
proaches for the purpose of the verification of SCQCs.

It should be noted that there is also an apparent ad-
vantage of DDMFs in terms of operation and node hash
tables as follows. The variables for DDMFs during the
verification is always the inputs of the circuits (i.e., x1

to xn). In other words, we always represent matrix
functions with respect to the inputs of the circuits. Thus
we are always working on the the input variables of the
circuits. On the other hands, the variables for QuIDDs
differs depending on the gates. More precisely, a uni-
tary matrix corresponding to a gate (or a part of the cir-
cuit) represents a relation between the inputs of the gate
(or the part of the circuit) and the outputs of that. That
is, the variables for QuIDD are always local: The mean-
ing of variables Ri and Ci for a QuIDD changes during
the matrix multiplication. (Even though we work on
the same variables Ri and Ci, the logical meaning of
the variables changes depending on the corresponding
quantum gates.) This apparently makes it difficult to
share the previously computed results in the hash ta-
bles. Thus, it is apparent that hash tables work much

Table 5: Experimental result
� variables � gates � nodes time (sec.)

30 100 418 0.0050
30 200 2509 0.035
30 400 16681 16.23
60 100 1568 0.017
60 200 12984 10.7664
60 400 24681 99.58

better for DDMFs.

The above discussion reveals why our verification
method based on DDMFs should work more efficiently
than the previous approaches.

We have implemented a DDMF library by C++, and
performed a preliminary experiment. Unfortunately,
we did not have large SCQC benchmarks, and thus we
randomly generated SCQCs and constructed DDMFs
for the generated circuits. Then the average (of 10 tri-
als) of the total number of used nodes and the CPU time
(on a Linux system running at 3.0 GHz with 256 MB
memory) for various settings (i.e., the numbers of in-
puts and the gates) are reported in Table 5. From the ta-
ble, we can expect our verification method should work
for quantum circuits of practical size.

5 Conclusions and Future Work

In this paper, we introduced new concepts: SCQCs to-
gether with DDMFs. As described, they should be use-
ful for the analysis and the verification of quantum cir-
cuits with a practical restriction. It should be noted that
DDMFs are provably useful even for quantum circuit
design methods since DDMFs can be considered as a
generalization of the data structure used in the design
method in [1].

We also revealed the essential difference between
DDMFs and QuIDDs for representing the functional-
ities of SCQCs. From our discussion, we can say that
our approach is much more efficient for the verification
of SCQCs than a method based on known techniques.
Note that this does not mean that DDMFs are better
than QuIDDs: DDMFs are only for SCQCs, whereas
QuIDDs can treat all kinds of quantum circuits. In other
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words, in some sense, our approach stands in the mid-
dle of classical Boolean function (BDDs) and general
quantum circuit specification (QuIDDs or QMDDs).
As described, this standpoint can be considered as a
good trade-off point if we consider to design and an-
alyze quantum circuits from the practical view point,
i.e., when we focus on sub-circuits to calculate Boolean
functions for quantum algorithms. Lastly we would
like to add one more issue: Since DDMFs are edge-
valued decision diagrams, it should be much easier to
verify quantum phase-equivalence checking of SCQCs
by DDMFs than the method based on QuIDDs [16]. Al-
though we cannot discuss this point due to the space
limitation, such a comparison would also be interesting
in future work.

In conclusion, we can expect the introduction of
SCQCs and DDMFs would promote researches toward
practical and efficient quantum circuit design method-
ology.
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*

A A Unitary Matrix for a 3-input
Gate

As mentioned in Sec. 2.1, one qubit state can be de-
scribed as a 2-dimensional vector. If we consider the
quantum state of n qubits, the state can be described
as a 2n-dimensional vector. For example, if we con-
sider three qubits, |x1〉 = α1 |0〉 + β1 |1〉, |x2〉 =
α2 |0〉 + β2 |1〉 and |x3〉 = α3 |0〉 + β3 |1〉, at the same
time, the total states can be described as a 8(= 23)-

dimensional vector

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. For example, the first

element α1α2α3 and the second element α1α2β3 cor-
respond to the basis state (|x1〉 |x2〉 |x3〉 =) |0〉 |0〉 |0〉
and |0〉 |0〉 |1〉, respectively. This vector can be obtained
from the tensor product of the three 2-dimensional vec-
tors corresponding to |x1〉 , |x2〉 and |x3〉. See more de-
tails in a standard text such as [11].

Thus, an operation to n qubits at the same time can
be described by a 2n × 2n unitary matrix. For exam-
ple, the matrix in Fig. 11 shows the unitary matrix that
describes the operation by the last gate in Fig. 4. The
third and the forth rows (and columns) correspond to
|0〉 |1〉 |0〉 and |0〉 |1〉 |1〉, respectively, and thus we can
see that this operation output the state (1+i

2 |0〉 |1〉 |0〉+
1−i
2 |0〉 |1〉 |1〉) if the input state is (|0〉 |1〉 |0〉). This

corresponds to the fact that the controlled-V gate ap-
plies V to |x3〉 (i.e., |x3〉 = |0〉 is changed to V |0〉 =
(1+i

2 |0〉 + 1−i
2 |1〉)) when |x1〉 |x2〉 = |0〉 |1〉.
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