
TCS -TR-A-08-34

TCS Technical Report

On the Limits of Learning with Computational Models

by

Shane Legg, Jan Poland, and Thomas Zeugmann

Division of Computer Science

Report Series A

January 16, 2008

Hokkaido University
Graduate School of

Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684
Fax: +81-011-706-7684





On the Limits of Learning with Computational
Models

Shane Legg
IDSIA

Galleria 2

CH-6928 Manno (TI), Switzerland

shane@idsia.ch

Jan Poland
ABB Switzerland Ltd. Corporate Research

Segelhof

CH-5405 Baden, Switzerland

jan.poland@ch.abb.com

Thomas Zeugmann
Division of Computer Science

Hokkaido University

N-14, W-9, Sapporo 060-0814, Japan

thomas@ist.hokudai.ac.jp

January 16, 2008

Abstract

This paper provides a short discussion concerning the state of the art in
Bayesian learning theory with an emphasis on performance guarantees. In
the second part of the paper, we outline some negative results indicating that
there is no hope for a general learning algorithm that is computable and imple-
mentable, but powerful enough to learn any computable data.

“When you have eliminated the impossible,
whatever remains, . . . , must be the truth.”

Sherlock Holmes
in The Sign of Four by Sir Arthur Conan Doyle

1. Introduction

Recent advances in technology have enormously increased our ability to collect,

to gather and to store data in digital form, and to make this data available over

networks. For example, the data collected in various fields such as biology, chem-

istry, finance, retail, telecommunications, astronomy, medicine or science in general,

is growing extremely rapidly.

1



2 Shane Legg, Jan Poland, and Thomas Zeugmann

This data may be available as text, audio signals, digital images and video, molec-

ular data among others, i.e., as digital media. However, these collections of data need

processing, interpretation and information extraction in order to be useful. In particu-

lar, learning, extracting information from data, is fundamental for gaining knowledge.

Clearly, powerful learning systems would be an enormous help in automatically ex-

tracting new interrelations, knowledge, patterns and the like from collections of data

as described above. Consequently, there are many challenges to the field of machine

learning and its foundations that require further efforts to develop the theories needed

to provide, for example, performance guarantees.

One old and important principle of learning and discovery is the following: Consider

different explanations of the data and rule out those explanations that are disproved by

the data, i.e., that do not match the data. If this is implemented within a probabilistic

framework, then a Bayesian learner is the result. The first part of this paper will

discuss the state of the art in Bayesian learning theory and present performance

guarantees.

The hypothesis set a learner works with should be sufficiently large to contain

good explanations for the data, since a class containing only bad hypotheses cannot

lead to successful learning. In particular, Bayesian learners can be endowed with so-

called universal hypothesis classes that in principle allow any kind of computable data

to be learned. On the other hand, learners themselves should be computable (and

even efficiently computable) in order to be useful in practice, in contrast to universal

Bayesian learners which are not computable. In the second part of the paper, we

shall present some negative results on the learning capacities that are valid for any

computable learner, irregardless of whether it uses hypotheses or not. These results

indicate that there is no hope for a general learning algorithm that is computable and

implementable, but powerful enough to learn any computable data.

The present work only covers a small part of the results obtained on “limits of

learnability with computational models.” Some topics are only briefly touched, such

as “learning with expert advice,” while many other important research areas are not

mentioned at all, for instance “finite state predictability” (e.g. [10]) and the “learning

of languages” (cf., e.g., [18, 23]).

2. Learning with Hypotheses: Bayes

For an introduction to Bayesian learning we refer the reader to Mitchell [22]. Bayes’

rule is the key ingredient of Bayesian learning. It states that, for some observation, the

current belief in each hypothesis should be updated by multiplying by the probability

that the hypothesis assigns to the observation, after which the belief distribution is

renormalized. We can write this as the famous equation

Posterior(hypothesis|data) =
P (data|hypothesis) · Prior(hypothesis)

P (data)
. (1)



On the Limits of Learning with Computational Models 3

The reader should keep in mind that Bayes’ rule is not a theorem in general. Under

the assumption that the hypotheses and data are both sampled from a joint probabil-

ity distribution that coincides with the prior P (hypothesis), Equation (1) would be a

theorem. However, Bayes’ rule is commonly not applied under such an assumption,

in particular the distribution P (hypothesis) on the hypotheses is usually merely a be-

lief distribution, there is no probabilistic sampling mechanism generating hypotheses

assumed. Hence, Bayes’ rule is motivated intuitively in the first place. Still, many op-

timality results and performance guarantees have been shown for Bayesian induction

(e.g., in [5, 8, 3]), including the results presented in the following.

2.1. What to learn? Hypotheses, history, inputs, observation spaces

Let N = {0, 1, 2, . . . } denote the set of all natural numbers. We set N+ = N \ {0}.
Furthermore, we use R to denote the set of all real numbers.

Let X be the observation space. We work in an online prediction setup in discrete

time, that is, in each time step t = 1, 2, . . ., an observation xt ∈ X is revealed to

the learner. The task for the learner will be to predict xt before it is observed. One

question of fundamental technical impact concerns the structure of the observation

space X . We restrict our attention to the two most important cases of (a) X being

discrete (finite or countable) and (b) continuous X ⊂ Rd for suitable dimension d ∈
N+. As any discrete space can be mapped to a subset of Rd, it is technically sufficient

to restrict to X ⊂ Rd, which we shall do in the following (except for a few places

where we explicitly deal with finite observation spaces).

A hypothesis ν specifies a probability distribution on the observation space X . In

the simplest case, when it does not depend on any input, these hypotheses repre-

sent the assumption that the observed data are independently identically distributed

(i.i.d.). In all other cases, there is some space of inputs or side information Z, and

a hypothesis maps inputs to distributions on X . In fact, technically, the inputs play

no role at all, as we shall see in the following. We therefore may assume the ex-

istence of an arbitrary input space Z without any structure (which may consist of

just one point, meaning that there are no inputs at all), and inputs are generated by

an arbitrary process. This covers, among others, two of the most important learn-

ing setups: Classification, where the data is conditionally i.i.d. given the inputs, and

prediction of non-i.i.d. sequences, where in each time step t we may define the input

zt = (x1, . . . , xt−1) to be the observation history seen so far. Generally, we shall denote

the history of inputs and observations by

h1:t−1 = h<t = (z1, x1, z2, x2, . . . , zt−1, xt−1)

(observe that two pieces of notation have been introduced here).

Now, a hypothesis is formally defined as a function

ν : Z →M1
D+C(X ) .



4 Shane Legg, Jan Poland, and Thomas Zeugmann

Here, M1
D+C(X ) denotes the set of all probability distributions on X ⊂ Rd, that are

mixtures of discrete distributions (with nonzero mass concentrated on single points)

and distributions with continuous density functions. This is expressed by the lower

indices D and C in M1
D+C(X ), respectively. We make this restriction mainly because

we wish to be able to define all subsequent quantities, in particular Bayesian posteriors,

effortlessly1 and uniquely (except perhaps on a set of measure zero).2 Furthermore,

the upper index 1 in M1
D+C(X ) refers to the fact that we only consider normalized

distributions. That is, we have∫
dν(·|z) = 1 for all z ∈ Z .

Note that we consistently use this integral notation, also for discrete observation

spaces (in which case the integral is in reality a sum).

A Bayesian learner is always based on a hypothesis class C = {ν1, ν2, . . .}. In this

work we restrict ourselves to discrete, i.e., finite or countable, hypothesis classes (and

in the notation we assume a countable hypothesis class from now on, without loss of

generality). Before the learning process starts, each hypothesis ν ∈ C is endowed with

a prior weight wν ∈ (0, 1), such that
∑

ν∈C wν = 1, i.e., we assume Prior(hypothesis) =

wν in (1).

Hypothesis classes considered in statistics are usually continuously parameterized.

One motivation to study discrete classes is that they are technically simpler, so they

can serve as a basis for the more advanced continuous case. In the continuous case,

some Bayesian predictors such as MAP (see below) are not consistent at all, while

others such as MML (minimum message length) [30, 31] and MDL (minimum de-

scription length) [27] require appropriate discretization. Also, countable hypothesis

classes always admit stronger performance guarantees than possible for their contin-

uously parameterized counterparts. In particular, we shall be able to show almost

sure consistency, whereas only convergence in probability holds in the continuous case

(e.g. in [2]).

Another particular motivation to consider discrete hypothesis classes arises in Al-

gorithmic Information Theory. General continuous hypothesis classes are computa-

tionally not tractable. The largest hypothesis class which can be manipulated in the

limit by a computer, is the class of all computable hypotheses on some fixed universal

Turing machine, more precisely a prefix machine [20]. Thus each hypothesis corre-

sponds to a program, and there are countably many programs. Each hypothesis has

a natural description length, namely the length of the corresponding program. If we

1For instance, for a measure defined by a “devil’s staircase,” one has to spend additional effort
in order to define everything properly, which is not the aim of the present work. However, this and
other cases can be treated with the methods described here.

2The continuity assumption is technical. It can be immediately lifted and replaced by “uniform
piecewise continuity,” which means that there is a single partition of X such that the continuous
parts of all distributions ν ∈ C and for all z ∈ Z are continuous on each of the elements of the
partition. Maybe it can be even further lifted.



On the Limits of Learning with Computational Models 5

agree that programs are binary strings, then a natural prior is defined by two to the

power of the negative description length.

If we are dealing with a universal hypothesis class as defined in Algorithmic In-

formation Theory, we need to be careful about the phenomenon of probability leaks :

A hypothesis, that is a program on our universal Turing machine, may not produce

output for certain inputs. Because of our inability to decide the halting problem, we

cannot generally detect this case. As a consequence, there is no limit-computable

way of defining hypotheses that are proper probability distributions, they are rather

semimeasures. In this paper, we shall not address this issue further, instead we

point to the references: Consistency theorems for the semimeasure case are known for

marginalization [28, 16] and for MAP predictions [25], but not for stochastic model

selection. All of the probability distributions considered in this paper will be proper

measures.

We rewrite Bayes’ rule (1) using new notation: For a hypothesis ν ∈ C, current

prior weights wν′(h<t) of all hypotheses ν ′ ∈ C depending on the history h<t, input zt,

and observation xt, we set the posterior weight of ν to

wν(h1:t) =
ν(xt|zt) · wν(h<t)∑

ν′∈C ν ′(xt|zt) · wν′(h<t)
. (2)

Note that we actually need to distinguish three variants of Bayes’ rule (not to be

confused with the three variants of Bayesian prediction discussed below): In the case

of a discrete observation space, the quantities ν ′(x|z) (and therefore also the sum in

the denominator) are probabilities, while for continuous observation space, they are

densities. Finally, if at least one hypothesis ν ∈ C is a mixture of a discrete and a

continuous distribution, then all ν ′(x|z) must be treated as mixtures in the following

way: If for an observation x ∈ X , there is a hypothesis assigning non-zero mass to

x, then the ν ′(x|z) are treated as probabilities (and all hypotheses assigning merely

a non-zero density to that particular x will get posterior weight 0). Otherwise, the

ν ′(x|z) are treated as densities.

2.2. How to learn? Three fundamental variants of Bayesian predic-
tion

Given a set of hypotheses C and some observed data h1:t = (z1, x1, . . . , zt, xt), a

legitimate question is asking which of the hypotheses in C actually generated the data.

It is clear that this question might not be well-defined if the process generating the

data, which we shall call µ in the sequel, is not a member of C. Actually, one can

immediately construct examples where any Bayesian learner produces very undesirable

results in this non-realizable learning setup (see [14] for sophisticated examples). In

this work, we shall restrict to the realizable case, where the true distribution generating

the observations is contained in the class, that is, µ ∈ C. (Note that Sherlock Holmes

always deals with the realizable case, as one of the people involved must be the bad

guy. Recall that this only refers to the distribution of the observation given the inputs,



6 Shane Legg, Jan Poland, and Thomas Zeugmann

we do not need any assumption on the generation of the inputs zt). Of course, the

learner does not know in advance which element of C is the true distribution µ.

However, hypothesis identification has technical difficulties. For instance, consider

the case where two hypotheses are in C that make (almost) identical predictions, one

of them being the true one. Then it is (almost) impossible to identify the right one,

but if we just want to make predictions, we do not need to take care: Choosing any

of the two will yield (almost) perfect predictions.

So from now on, we restrict our focus to prediction. That is, for a given history

h<t and current input zt ∈ Z, we are interested in a predictive distribution3 on the

observation space X that comes as close to the truth as possible. Our hypothesis class

endowed with the Bayesian posterior
(
wν′(h<t)

)
ν′∈C offers us three fundamental ways

to obtain such a prediction. Before giving a formal description, we shortly explain the

three ways of making predictions. In the first setting, the actual prediction is made by

taking the weighted mean of all hypotheses (marginalization). The second setting is

actually the oldest and perhaps most intuitive setting. Here we make the prediction in

accordance with the hypothesis that has actually the highest belief value (maximum

a posteriori). In the third setting, we again make the prediction in accordance with

a single hypothesis but in difference to the second setting, this hypothesis is chosen

randomly. Intuitively, we can imagine this random choice as throwing a dice having

as much sides as there are hypotheses, and the probability of each side is equal to its

actual belief value (stochastic model selection).

Next, we proceed formally.

1. Marginalization. If we apply Bayes’ rule (1) to the modified setting where

the next observation xt takes the place of the hypothesis, then, as an easy

computation shows, we get a predictive distribution ξ(xt|zt, h<t) by integrating

the predictions of all hypotheses w.r.t. the current posterior:

ξ(x|zt, h<t) =
∑
ν′∈C

wν′(h<t)ν
′(x|zt) . (3)

2. Maximum a posteriori (MAP). If we are interested in a single hypothesis’

prediction, then we may choose the hypothesis with maximal a-posteriori belief

value, abbreviated as the MAP hypothesis:

ν∗h<t
= arg max

ν∈C
{wν(h<t)} and (4)

m(xt|zt, h<t) = ν∗h<t
(xt|zt) , (5)

where the latter m(xt|zt, h<t) is the MAP prediction.

3In many prediction tasks, a single value is required as prediction, rather than a distribution.
Such a single prediction can be derived from a predictive distribution, e.g. by minimizing a risk
function, compare Corollary 4 below.



On the Limits of Learning with Computational Models 7

3. Stochastic model selection. The third possibility is to randomize and sample

a hypothesis according to the probability distribution defined by the current

posterior. This stochastic model selection can be formally written as

Ξ(xt|zt, h<t) = Ñ(xt|zt) where Ñ ∈ C (6)

and P(Ñ = ν ′) = wν′(h<t) for all ν ′ ∈ C .

Note that for a given history h<t, the first two methods are deterministic, resulting

in a fixed predictive distribution. Stochastic model selection uses additional random-

ness.

There are also other ways to use a Bayesian hypothesis class for prediction. MAP

is tightly related to MML and MDL, but the terms MML and MDL are (also) used

for (slightly, in the case of discrete hypothesis class) different concepts [9, 27]. Also,

there is a “dynamic” variant of MAP defined in [25], where a MAP hypothesis is

chosen for each possible outcome xt and used for prediction. Nevertheless many,

if not most, Bayesian prediction methods can be roughly grouped into the three

fundamental approaches “integrate over all hypothesis,” “take the hypothesis with the

best current score,” and “select one hypothesis at random according to the current

belief distribution.” Furthermore, we hold (but this is a matter of taste) that the

three listed above are the simplest and most natural of the prediction methods to

consider.

2.3. Performance guarantees for Bayesian learners

We are now ready to state the performance guarantees for the three Bayesian

learners defined in (3), (5), and (6). We start with the technically easiest case of

marginalization (3). Actually, this result has been originally discovered by Solomonoff

[28] within the context of Algorithmic Information Theory.

Recall that µ ∈ C is the true distribution generating the data, and ξ is the marginal-

ization predictor. The quadratic Hellinger distance between the ξ-predictions and

µ-predictions at time t is given by

∆2
t (µ, ξ) :=

∫
d
(√

µ(·|zt)−
√

ξ(·|zt, h<t)
)2

. (7)

It clearly depends on the history h<t and the current input zt. Our main technical

results are all stated as cumulative (i.e., over t = 1, . . . ,∞) bounds on the Hellinger

distance (that is, errors) of the predictive probabilities to the truth.

Theorem 1. If µ ∈ C, then for any sequence of inputs z1, z2, . . .,

∞∑
t=1

Eµ∆2
t (µ, ξ) ≤ log w−1

µ (8)



8 Shane Legg, Jan Poland, and Thomas Zeugmann

holds, where log denotes the natural logarithm and wµ is the prior weight of the true

distribution. Eµ refers to the fact that the expectation is taken w.r.t. the true distri-

bution µ, i.e., all observations are generated w.r.t. µ conditional to the inputs, and

this expectation is computed.

It should not be surprising that the quantity wµ appears on the r.h.s. and therefore

has an impact on how large the error on the l.h.s. can grow. After all, if the Bayesian

learner assigns a high prior weight to the true distribution, the error should be small.

The remarkable fact is the logarithmic dependence in wµ. As by Kraft’s inequality,

the logarithm of a weight can be interpreted as its description length, (8) is a very

strong result asserting that the cumulative error never exceeds the description length

of the true distribution. In a sense: When finding the truth single-handed, our error

is at most the number of bits a teacher needs to tell us the truth.

Corresponding results for the MAP predictor (5) and stochastic model selection

(6) have been proved in [25] and [24], respectively. They read as follows

Theorem 2. Assume µ ∈ C. Suppose that, for any history with nonzero probability

density, the hypotheses always admit the specification of a (not necessarily unique)

MAP hypothesis ν∗. This is satisfied for instance if all hypotheses correspond to

continuous probability densities that are uniformly bounded. Then

∞∑
t=1

Eµ∆2
t (µ, m) ≤ 21w−1

µ . (9)

Theorem 3. Assume µ ∈ C. Then, for any sequence of inputs z1, z2, . . .,

∞∑
t=1

EµEΞ∆2
t (µ, Ξ) = O

(
w−1

µ + Π(logH + log w−1
µ )

)
= O(Π log w−1

µ ) (10)

holds. The quantities H and Π, the Shannon entropy and the µ-entropy potential of

the hypothesis class, are defined below. EΞ serves as a reminder that the Ξ-predictor

is randomized.

The quantity H in the theorem is the Shannon entropy of the hypothesis class

w.r.t. the current posterior distribution,

H(h<t) = H
(
[wν(h<t)]ν∈C

)
= −

∑
ν∈C

wν(h<t) log wν(h<t) .

Moreover, we define the current entropy potential of the hypothesis class relative to

the true distribution µ as

Π
(
(wν)ν∈C

)
= sup

{
H

(
( w̃νP

ν′ w̃ν′
)ν∈C

)
: w̃µ = wµ ∧ w̃ν ≤ wν ∀ν ∈ C \ {µ}

}
(11)

and Π(h<t) = Π
(
[wν(h<t)]ν∈C

)
. This can be paraphrased as “worst-case entropy of

the class under all possible Bayesian updates where the true distribution always has

evidence value 1.”



On the Limits of Learning with Computational Models 9

Although we shall be only interested in consistency, that is asymptotic behavior,

in the following, we briefly discuss the r.h.s. of the bounds (8), (9) and (10). The first

one, O(log w−1
µ ), is excellent and non-improvable, as already discussed. The second

one O(w−1
µ ) is exponentially larger and can be huge in general. One can construct

examples where this bound is sharp [26]. Fortunately, this does not necessarily imply

that the MAP predictions are bad, the actual error (and also the bound) is smaller

in many important cases. Still, there are situations where MAP predictions tend to

be “unbalanced” and therefore unfavorable compared to marginalization. Stochastic

model selection often gives better results in such cases, as long as the entropy potential

Π is reasonably small, for instance of order log w−1
µ . One can show [24] that this holds

if the prior (wν)ν∈C has sufficiently light tails, while in general, Π can grow as large

as Ω(Hw−1
µ ).

2.4. Implications: almost sure consistency and loss bounds

One important consequence of any finite bound on the expected cumulative Hellin-

ger error is almost sure consistency of the predictor in the Hellinger sense. That is, the

Hellinger distance of the predictive to the true distribution tends to zero almost surely.

In the case of a finite or countable observation space X , this implies in particular con-

vergence of all predictive probabilities ξ(xt|zt, h<t) to the true probabilities µ(xt|zt).

In the case of a continuous observation space, the predicted probability masses of any

measurable subset of X converges to the true mass. However, we cannot establish the

convergence of moments, e.g. the expectation, without making further assumptions.

Other implications of Theorems 1–3 are loss bounds on a Bayes-optimal decision

maker based on the predictive distribution, w.r.t. arbitrary loss functions. The proof

of the following corollary proceeds as that of [25, Theorem 27].

Corollary 4. For each input z, let `(·, ·|z) : (x̂, x) 7→ `(x̂, x|z) ∈ [0, 1] be a loss

function known to the learner, depending on the true outcome x and the prediction x̂

(` may also depend on the time, but we do not complicate notation by making this ex-

plicit). Let `µ
<∞ be the cumulative loss of a predictor knowing the true distribution µ,

where the predictions are made in a Bayes optimal way (i.e., choosing the prediction

arg minx̂ Ex∼µ`(x̂, x|zt) for current input zt), and `ξ
<∞, `m

<∞, `Ξ
<∞ be the correspond-

ing quantities for the respective Bayesian learners. Then the loss of each learner is

bounded by

E`ξ
<∞ ≤ E`µ

<∞ + O
(
log w−1

µ

)
+ O

(√
log w−1

µ E`µ
<∞

)
, (12)

E`m
<∞ ≤ E`µ

<∞ + O
(
w−1

µ

)
+ O

(√
w−1

µ E`µ
<∞

)
, and (13)

E`Ξ
<∞ ≤ E`µ

<∞ + O
(
Π log w−1

µ

)
+ O

(√
Π(log w−1

µ )E`µ
<∞

)
, (14)

respectively.

The bound may seem weak to a reader familiar with another learning model, pre-

diction with expert advice, which has received quite some attention since [21, 29].



10 Shane Legg, Jan Poland, and Thomas Zeugmann

Algorithms of this type are based on a class of experts rather than hypotheses, and

proceed by randomly selecting experts according to a (non-Bayesian) posterior based

on past performance of the experts. It is straightforward to use a hypothesis as an

expert. Thus the experts theorems (for instance [17, Theorem 8(i)]) imply a bound

similar to (14), but without any assumption on the data generating process µ, instead

the bounds are relative to the best expert (hypothesis) in hindsight ν̂ (and moreover

with Π log w−1
µ replaced by log w−1

ν̂ ). So the experts bounds are stronger, which does

not necessarily imply that the experts algorithms are better: bounds like (14) are de-

rived in the worst case over all loss functions, and in this worst case Bayesian learning

is not better than experts learning, even under the proper learning assumption. How-

ever, experts algorithms do not provide estimates for the probabilities, which Bayesian

algorithms do provide: in many practically relevant cases learning probabilities does

yield superior performance.

3. Computability and Computable Learners

The above performance guarantees for the Bayesian learners only hold in the re-

alizable case. And, as indicated above, Bayesian learning can dramatically fail if this

condition is violated. It is therefore natural to consider large hypothesis classes that

are likely to contain the correct hypotheses even under very weak assumptions.

From now on, we restrict ourselves to the binary observation space, i.e., xt ∈ B
for all t, where B := {0, 1}. The limit of hypothesis classes that are computationally

tractable has been studied in Algorithmic Information Theory [20]. Of the many

different possible constructions, the class of all lower-semicomputable semi-probability

distributions has especially attractive properties: It is the smallest set which (a)

contains all computable hypotheses and (b) is enumerable by a computational process

(the class of only computable hypotheses lacks this second property). This means that,

in principle, predictions according to Bayesian learners can be computed in some sense.

Specifically, they can be only lower semi-computed, that is, approximated from below,

where the learner has no information about the quality of the current approximation.

We mention that in the context of sequence prediction and with this universal model

class, the marginalization predictor ξ defines a semimeasure on binary strings that

coincides with the algorithmic a-priori probability induced by the underlying universal

Turing machine (see [20]).

Given that the Bayesian predictors are only lower semi-computable, are computable

predictors possible at all? In the remainder of this paper we shall give a largely

negative answer to this question. To this aim we restrict to the sequence prediction

case, i.e., apart from the complete history, there is no side information available. Also,

we restrict ourselves to the prediction of deterministic sequences. This is a special

case of the stochastic setup considered so far (see, e.g., Mitchell [22]). In contrast to

the first part of the paper, the following discussion includes the shorter proofs. For a

more complete analysis we refer the reader to [19].



On the Limits of Learning with Computational Models 11

Before proceeding we have to introduce some notation. By B∗ we denote the free

monoid over B (cf. Hopcroft and Ullman [15]). We refer to the elements of B∗ as

strings. The empty string is denoted by λ. The length lexicographical ordering is

a total order on B∗ defined as λ < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 <

· · · . A substring of x is defined xj:k := xjxj+1 . . . xk where 1 ≤ j ≤ k ≤ n. By

convention, x1:0 := λ. By |x| we mean the length of the string x, for example,

|xj:k| = k − j + 1. Sometimes we need to encode a natural number as a string. Using

simple encoding techniques it can be shown that there exists a computable injective

function f : N → B∗ where no string in the range of f is a prefix of any other, and

∀n ∈ N : |f(n)| ≤ log2 n + 2 log2 log2 n + 1 = O(log n).

Unlike strings which always have finite length, a sequence ω is an infinite list of

symbols x1x2x3 . . .. We use B∞ to denote the set of all infinite sequences over B.

Of particular interest to us will be the class of sequences which can be generated by

an algorithm executed on a universal Turing machine. In particular, we say that a

sequence ω ∈ B∞ is a computable binary sequence if there exists a program q ∈ B∗

that writes ω to a one-way output tape when run on a monotone universal Turing

machine U , that is, ∃q ∈ B∗ : U(q) = ω. We denote the set of all computable sequences

by C. A similar definition for strings is not necessary as all strings have finite length

and are therefore trivially computable.

We call a program p ∈ B∗ that on a universal Turing machine U computes a total

function B∗ → B a computable binary predictor. For simplicity of notation we shall

write p(x) to mean the function computed by the program p when executed on U
along with the input string x. Having x1:n as input, the objective of a predictor is for

its output, called its prediction, to match the next symbol in the sequence. Formally,

p(x1:n) = xn+1.

We shall only consider whether or not a predictor can learn to predict in the

limit. Specifically, we say that a predictor p can learn to predict a sequence ω :=

x1x2 . . . ∈ B∞ if there exists m ∈ N such that ∀n ≥ m : p(x1:n) = xn+1. This is essen-

tially “next value” prediction as characterized by Barzdin [4], which has interesting

connections to Gold’s [13] notion of identifiability in the limit. We refer the interested

reader to Freivalds, Bārzdiņš and Podnieks [11] and Ambainis et al. [1] for further

information and more relations to the present work.

Central to our analysis will be the set of all predictors able to learn to predict ω,

which we shall denote by P (ω). Similarly for sets of sequences S ⊂ B∞, define

P (S) :=
⋂

ω∈S P (ω).

Kolmogorov complexity is a standard measure of complexity for sequences and is

defined to be the length of the shortest program which generates the sequence. More

formally, for any sequence ω ∈ B∞ the Kolmogorov complexity of the sequence is,

K(ω) := min
q∈B∗

{|q| : U(q) = ω},

where U is a universal Turing machine. If no such q exists, we define K(ω) := ∞.



12 Shane Legg, Jan Poland, and Thomas Zeugmann

It can be shown that this measure of complexity depends on our choice of uni-

versal Turing machine U , but only up to an additive constant that is independent

of ω. This is due to the fact that a universal Turing machine can simulate any other

universal Turing machine with a fixed length program. In essentially the same way

as the definition above we can define the Kolmogorov complexity of a string x ∈ Bn,

written K(x), by requiring that U(q) halts after generating x on the output tape.

For an extensive treatment of Kolmogorov complexity and some of its applications

see [20] or [6]. As many of our results will have the above property of holding within

an additive constant that is independent of the variables in the expression, we shall

indicate this by placing a small plus above the equality or inequality symbol. For

example, f(x) <
+

g(x) means that that ∃c ∈ R,∀x : f(x) < g(x) + c.

3.1. Prediction of computable sequences

The most elementary result is that every computable sequence can be predicted by

at least one predictor, and that this predictor need not be significantly more complex

than the sequence to be predicted.

Lemma 5. ∀ω ∈ C,∃p ∈ P (ω) : K(p) <
+

K(ω).

Proof. Consider a “predictor” p that only ever predicts ω, no matter what it has

observed so far. Clearly p can be just a trivial modification of the shortest program

that actually generates ω, and thus the result follows.

Not only can any computable sequence be predicted, there also exist very simple

predictors able to predict arbitrarily complex sequences:

Lemma 6. There exists a predictor p such that ∀n ∈ N,∃ω ∈ C : p ∈ P (ω) and

K(ω) > n.

Proof. Take a string x such that K(x) = |x| ≥ 2n, and from this define a sequence

ω := x0000 . . .. Clearly K(ω) > n and yet a simple predictor p that always predicts

0 can learn to predict ω.

Unfortunately, no universal predictor exists, indeed for every predictor there exists

a sequence which it cannot predict at all:

Lemma 7. For any predictor p there constructively exists a sequence ω :=

x1x2 . . . ∈ C such that ∀n ∈ N : p(x1:n) 6= xn+1 and K(ω) <
+

K(p).

Proof. For any computable predictor p there constructively exists a computable

sequence ω = x1x2x3 . . . computed by an algorithm q defined as follows: Set x1 =

1 − p(λ), then x2 = 1 − p(x1), then x3 = 1 − p(x1:2) and so on. Clearly ω ∈ C and

∀n ∈ N : p(x1:n) = 1− xn+1.

Let p∗ be the shortest program that computes the same function as p and define a

sequence generation algorithm q∗ based on p∗ using the procedure above. By construc-

tion, |q∗| = |p∗|+c for some constant c that is independent of p∗. Because q∗ generates

ω, it follows that K(ω) ≤ |q∗|. By definition K(p) = |p∗| and so K(ω) <
+

K(p).



On the Limits of Learning with Computational Models 13

Allowing the predictor to be probabilistic does not fundamentally avoid the prob-

lem of Lemma 7. In each step, rather than generating the opposite to what will be

predicted by p, instead q attempts to generate the symbol which p is least likely to pre-

dict given x1:n. To do this q must simulate p in order to estimate Pr
(
p(x1:n) = 1

∣∣x1:n

)
.

With sufficient simulation effort, q can estimate this probability to any desired ac-

curacy for any x1:n. This produces a computable sequence ω such that ∀n ∈ N :

Pr
(
p(x1:n) = xn+1

∣∣x1:n

)
is not significantly greater than 1

2
, that is, the performance

of p is no better than a predictor that makes completely random predictions.

As probabilistic prediction complicates things without avoiding this fundamental

problem, we shall consider only deterministic predictors as this will highlight the key

results most clearly.

3.2. Prediction of simple computable sequences

Given that the computable prediction of any computable sequence is impossible, a

weaker goal is to be able to predict all “simple” computable sequences. To formalize

this, for n ∈ N, let Cn := {ω ∈ C : K(ω) ≤ n}. Further, let Pn := P (Cn) be the set of

predictors able to learn to predict all sequences in Cn.

Firstly we note that prediction algorithms exist that can learn to predict all se-

quences up to a given complexity, and that these predictors need not be significantly

more complex than the sequences they can predict:

Lemma 8. ∀n ∈ N,∃p ∈ Pn : K(p) <
+

n + O(log n).

Proof. Omitted.

The question now is: Can we do better than this? Lemma 6 shows us that there

exist predictors able to predict at least some sequences vastly more complex than

themselves. This suggests that there might exist simple predictors able to predict

arbitrary sequences up to a high complexity. Formally, could there exist p ∈ Pn where

n � K(p)? Unfortunately, these simple but powerful predictors are not possible:

Theorem 9. ∀n ∈ N : p ∈ Pn ⇒ K(p) >
+

n.

Proof. For any n ∈ N let p ∈ Pn, that is, ∀ω ∈ Cn : p ∈ P (ω). By Lemma 7 we

know that ∃ω′ ∈ C : p /∈ P (ω′) . As p /∈ P (ω′) it must be the case that ω′ /∈ Cn, that

is, K(ω′) ≥ n. From Lemma 7 we also know that K(p) >
+

K(ω′) and so the result

follows.

Intuitively the reason for this is as follows: Lemma 7 guarantees that every simple

predictor fails for at least one simple sequence. Thus if we want a predictor that

can learn to predict all sequences up to a moderate level of complexity, then clearly

the predictor cannot be simple. Likewise, if we want a predictor that can predict

all sequences up to a high level of complexity, then the predictor itself must be very

complex. Thus, even though we have made the generous assumption of unlimited

computational resources and data to learn from, only very complex algorithms can be

truly powerful predictors.



14 Shane Legg, Jan Poland, and Thomas Zeugmann

These results easily generalize to notions of complexity that take computation

time into consideration. As sequences are infinite, the appropriate measure of time is

the time needed to generate or predict the next symbol in the sequence. Under any

reasonable measure of time complexity, the operation of inverting a single output from

a binary valued function can be performed with little cost. If C is any complexity

measure with this property, it is trivial to see that the proof of Lemma 7 still holds

for C. From this, an analogue of Theorem 9 for C easily follows.

With similar arguments these results also generalize in a straightforward way to

complexity measures that take space or other computational resources into account.

Thus, the fact that extremely powerful predictors must be very complex, holds under

any measure of complexity for which inverting a single bit is inexpensive.

3.3. The limits of mathematical analysis

Naturally, highly complex theories of prediction will be very difficult to mathemat-

ically analyze, if not practically impossible. Thus at some point the development of

very general prediction algorithms must become mainly an experimental endeavor due

to the difficulty of working with the required theory. Interestingly, an even stronger

result can be proved showing that beyond some point the mathematical analysis is in

fact impossible, even in theory:

Theorem 10. In any consistent formal axiomatic system F that is sufficiently

rich to express statements of the form “p ∈ Pn”, there exists m ∈ N such that for all

n > m and for all predictors p ∈ Pn the true statement “p ∈ Pn” cannot be proved

in F .

In other words, even though we have proved that very powerful sequence prediction

algorithms exist, beyond a certain complexity it is impossible to find any of these algo-

rithms using mathematics. The proof has a similar structure to Chaitin’s information

theoretic proof [7] of Gödel incompleteness theorem for formal axiomatic systems [12].

Proof. For each n ∈ N let Tn be the set of statements expressed in the formal

system F of the form “p ∈ Pn”, where p is filled in with the complete description

of some algorithm in each case. As the set of programs is denumerable, Tn is also

denumerable and each element of Tn has finite length. From Lemma 8 and Theorem 9

it follows that each Tn contains infinitely many statements of the form “p ∈ Pn” which

are true.

Fix n and create a search algorithm s that enumerates all proofs in the formal

system F searching for a proof of a statement in the set Tn. As the set Tn is recursive,

s can always recognize a proof of a statement in Tn. If s finds any such proof, it

outputs the corresponding program p and then halts.

By way of contradiction, assume that s halts, that is, a proof of a theorem in Tn is

found and p such that p ∈ Pn is generated as output. The size of the algorithm s is a

constant (a description of the formal system F and some proof enumeration code) as



On the Limits of Learning with Computational Models 15

well as an O(log n) term needed to describe n. It follows then that K(p) <
+

O(log n).

However from Theorem 9 we know that K(p) >
+

n. Thus, for sufficiently large n, we

have a contradiction and so our assumption of the existence of a proof must be false.

That is, for sufficiently large n and for all p ∈ Pn, the true statement “p ∈ Pn” cannot

be proved within the formal system F .

The exact value of m depends on our choice of formal system F and which reference

machine U we measure complexity with respect to. However for reasonable choices

of F and U the value of m would be in the order of 1000. That is, the bound m is

certainly not so large as to be vacuous.

4. Conclusions

Within the present paper we have provided a short discussion concerning the state

of the art in Bayesian learning theory with an emphasis on performance guarantees.

Then we outlined some negative results indicating that there is no hope for a general

learning algorithm that is computable and implementable, but powerful enough to

learn any computable data.

We consider these results to be important for a deeper understanding of the ca-

pabilities and limitations of automated knowledge extraction from digital data sets.

Therefore, the insight obtained should be considered as a step toward the development

of a theory of knowledge and media.

References

[1] A. Ambainis, K. Aps̄ıtis, C. Calude, R. Freivalds, M. Karpinski, T. Larfeldt,

I. Sala, and J. Smotrovs. Effects of Kolmogorov complexity present in inductive

inference as well. In Algorithmic Learning Theory, 8th International Workshop,

ALT ’97, Sendai, Japan, October 1997, Proceedings, volume 1316 of Lecture

Notes in Artificial Intelligence, pages 244–259. Springer, 1997.

[2] A. R. Barron and T. M. Cover. Minimum complexity density estimation. IEEE

Trans. Inform. Theory, 37(4):1034–1054, 1991.

[3] A. R. Barron, J. J. Rissanen, and B. Yu. The minimum description length

principle in coding and modeling. IEEE Trans. Inform. Theory, 44(6):2743–2760,

1998.

[4] J. M. Barzdin. Prognostication of automata and functions. In C. V. Freiman, J. E.

Griffith, and J. L. Rosenfeld, editors, Information Processing 71, Proceedings of

IFIP Congress 71, Volume 1 - Foundations and Systems, Ljubljana, Yugoslavia,

August 23-28, 1971, pages 81–84. North-Holland, 1972.



16 Shane Legg, Jan Poland, and Thomas Zeugmann

[5] D. Blackwell and L. Dubins. Merging of opinions with increasing information.

Annals of Mathematical Statistics, 33:882–887, 1962.

[6] C. S. Calude. Information and Randomness. Springer, Berlin, 2nd edition, 2002.

[7] G. J. Chaitin. Gödel’s theorem and information. International Journal of Theo-

retical Physics, 22:941–954, 1982.

[8] B. S. Clarke and A. R. Barron. Information-theoretic asymptotics of Bayes meth-

ods. IEEE Trans. Inform. Theory, 36(3):453–471, 1990.

[9] J. W. Comley and D. L. Dowe. Minimum message length and generalized

Bayesian nets with asymmetric languages. In P. D. Grünwald, I. J. Myung,

and M. A. Pitt, editors, Advances in Minimum Description Length: Theory and

Applications, pages 265–294. The MIT Press, 2005.

[10] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-

quences. IEEE Trans. Inform. Theory, 38(4):1258–1270, 1992.

[11] R. Freivalds, J. Bārzdiņš, and K. Podnieks. Inductive inference of recursive func-

tions: Complexity bounds. In Baltic Computer Science, volume 502 of Lecture

Notes in Computer Science, pages 111–155. Springer, 1991.

[12] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I. Monatshefte für Matematik und Physik, 38:173–198, 1931.

[English translation by E. Mendelsohn: “On undecidable propositions of formal

mathematical systems”. In M. Davis, editor, The undecidable, pages 39–71, New

York, 1965. Raven Press, Hewlitt].

[13] E. M. Gold. Language identification in the limit. Inform. Control, 10(5):447–474,

1967.

[14] P. Grünwald and J. Langford. Suboptimal behaviour of Bayes and MDL in clas-

sification under misspecification. In Learning Theory: 17th Annual Conference

on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004. Proceedings,

volume 3120 of Lecture Notes in Artificial Intelligence, pages 331–347. Springer,

2004.

[15] J. Hopcroft and J. Ullman. Formal Languages and their Relation to Automata.

Addison-Wesley, Reading, Mass., 1969.

[16] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algo-

rithmic Probability. Springer, Berlin, 2004.

[17] M. Hutter and J. Poland. Adaptive online prediction by following the perturbed

leader. Journal of Machine Learning Research, 6:639–660, 2005.



On the Limits of Learning with Computational Models 17

[18] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems that Learn: An

Introduction to Learning Theory, second edition. MIT Press, Cambridge, Mas-

sachusetts, 1999.

[19] S. Legg. Is there an elegant universal theory of prediction? In Algorithmic

Learning Theory, 17th International Conference, ALT 2006, Barcelona, Spain,

October 2006, Proceedings, volume 4264 of Lecture Notes in Artificial Intelligence,

pages 274–287. Springer, oct 2006.

[20] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its

applications. Springer, 2nd edition, 1997.

[21] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. In 30th

Annual Symposium on Foundations of Computer Science, pages 256–261, Re-

search Triangle Park, North Carolina, 1989. IEEE.

[22] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, Massachusetts,

1997.

[23] D. N. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Intro-

duction to Learning Theory for Cognitive and Computer Scientists. MIT Press,

Cambridge, Massachusetts, 1986.

[24] J. Poland. The missing consistency theorem for bayesian learning: Stochastic

model selection. In Algorithmic Learning Theory, 17th International Conference,

ALT 2006, Barcelona, Spain, October 2006, Proceedings, volume 4264 of Lecture

Notes in Artificial Intelligence, pages 259–273. Springer, oct 2006.

[25] J. Poland and M. Hutter. Asymptotics of discrete MDL for online prediction.

IEEE Transactions on Information Theory, 51(11):3780–3795, 2005.

[26] J. Poland and M. Hutter. MDL convergence speed for Bernoulli sequences. Statis-

tics and Computing, 16(2):161–175, 2006.

[27] J. J. Rissanen. Fisher Information and Stochastic Complexity. IEEE Trans.

Inform. Theory, 42(1):40–47, Jan. 1996.

[28] R. J. Solomonoff. Complexity-based induction systems: comparisons and con-

vergence theorems. IEEE Trans. Inform. Theory, 24(4):422–432, 1978.

[29] V. G. Vovk. Aggregating strategies. In Proc. Third Annual Workshop on Com-

putational Learning Theory, pages 371–383, Rochester, New York, 1990. Morgan

Kaufmann.

[30] C. S. Wallace and D. M. Boulton. An information measure for classification.

Computer Journal, 11(2):185–194, Aug. 1968.

[31] C. S. Wallace and D. L. Dowe. Minimum Message Length and Kolmogorov

Complexity. Computer Journal, 42(4):270–283, 1999.


