
TC S -TR -A -08-35TC S Tehnial Report
Algorithms for Finding a Minimum RepetitionStruture of a String or a TreebyAtsuyoshi NakamuraTomoya SaitoMineihi KudoDivision of Computer SieneReport Series AFebruary 8, 2008

Hokkaido UniversityGraduate Shool ofInformation Siene and TehnologyEmail: atsu�ist.hokudai.a.jp Phone: +81-011-706-6806Fax: +81-011-706-7832

Algorithms for Finding a Minimum RepetitionStruture of a String or a Tree
February 8, 2008AbstratA repetition representation string, RRS for short, is a representation fora set of disjoint or nested tandem arrays in a string. The length of an RRSdepends on a set of tandem arrays it represents. We show an O(n3) dynamiprogramming algorithm for �nding a shortest RRS representing a given stringwith length n. The algorithm an be extended to an algorithm of the sametime omplexity for �nding a minimum repetition representation tree, RRT forshort, representing a given labeled ordered tree with n nodes. Furthermore,orresponding problems for width-k sublasses of RRSs and RRTs are shown tobe solved in time O(k2n) when funtions of deiding the size of a RRS and aRRT satisfy a ertain ondition.1 IntrodutionContiguous repeats appeared in a sequene have speial meanings in many ases. Forexample, ontiguously repeated melody forms an impressive part of a musi piee,ontiguous repeats in a DNA sequene have been shown to ause human disease [1℄,and a number of data reords embedded in a Web page an be reognized by detetingontiguously repeated HTML tag struture [2℄.A ontiguous repeat of a substring embedded in a string is alled a tandem array,and it is also alled a tandem repeat when the number of repetition is two. The problemof �nding tandem arrays and repeats have been studied for more than two deades inthe �elds of omputer siene, mathematis and biology [3℄. EÆient algorithms for�nding all or primitive tandem repeats have been proposed [3, 4℄.A tandem array is representable by (r)h, whih means h times repetition of a stringr. By repeatedly substituting this representation for a ontiguous substring orre-sponding to a tandem array, a number of tandem arrays embedded in a string s anbe represented in a speial string r that is omposed of not only alphabets appearedin s but also parentheses and supersript numbers. We all suh a representation r arepetition representation string, RRS for short. An RRS an not represent all tandem1

2 Atsuyoshi Nakamura Tomoya Saito Mineihi Kudoarrays but an represent a set of disjoint or nested tandem arrays simultaneously.Note that there are many RRS representing a string.In this paper, we show an O(n3) algorithm for �nding a shortest RRS representinga given string with length n. Here, using an alphabet weight funtion w� and arepetition weight funtion wR, the length l(r) of an RRS r is de�ned as the sumof its omponent lengths, whih is w�(a) if the omponent is an alphabet a and isl(r0) +wR(h) if the omponent is a tandem array (r0)h. Our algorithm is very simpleone using a dynami programming tehnique. When the width of tandem arrays (r)h,the length of the string represented by r, represented in an RRS is restrited to atmost k, and when wR(2); wR(3); ::: is an arithmeti progression sequene, an O(k2n)algorithm is shown.Furthermore, our O(n3) and O(k2n) algorithms an be extended to algorithms ofthe same time omplexity for �nding a minimum repetition representation tree, RRTfor short, representing a given labeled ordered tree with n nodes. Here, an RRT is alabeled ordered tree that may have speial nodes alled repetition information nodeslabeled h � 2 whih represent an h times repetition of a sequene of the subtrees rootedby its hild nodes. Our algorithm uses divide-and-onquer strategy and reursivelysolves subproblems for 1-height smaller trees, subtrees rooted by hild nodes of theroot node. Using the solutions for the subproblems, the problem is redued to theone for �nding a shortest RRS.2 Finding a Shortest Repetition Representation String2.1 Problem SettingLet � be a �nite set of alphabets. A string is de�ned indutively as follows. Speialsymbol �, alled a null string, and all alphabets are strings. If s1 and s2 are strings,then s1s2, onatenation of s1 and s2, is also a string. Note that �s = s� = s for allstrings s. Here, we de�ne more general notion alled a repetition representation string,RRS for short, as follows. First, all strings are RRSs. If r1 and r2 are RRSs, thenr1r2, onatenation of r1 and r2, is also an RRS. If r is an RRS, then (r)h (h � 2), htimes repetition of r, is also an RRS that is another representation of onatenationrr � � � r| {z }htimes of the same RRSs r. Note that parentheses `(', `)' and odes for numbers arespeial symbols and not ontained in �. Though (r)h is generally alled a tandemarray, we use term \repetition" instead of tandem array in the rest of the paper.Expansion of (r)h is onatenation rr � � � r| {z }htimes of the same RRSs r. Reversely, redutionof onatenation rr � � � r| {z }htimes of the same RRSs r, is an RRS (r)h. String s is said to berepresented by RRS r if expansions of all repetitions in r hange r to s.Example 1 String abaababaab is represented by RRS (ab(a)2b)2. Note that there aremany RRSs representing abaababaab suh as abaababaab itself and (aba)2b(a)2b.

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 3Next, we de�ne the length of an RRS. The length of an RRS an be alulatedusing given two weight funtions, alphabet weight funtion w� and repetition weightfuntion wR. Funtion w� is a real-valued funtion on �, and funtion wR is a real-valued funtion on the set of natural numbers at least 2. Given w� and wR, the lengthl(r) of an RRS r is reursively de�ned as follows:l(�) = 0;l(a) = w�(a) for a 2 �,l(r1r2) = l(r1) + l(r2) for all RRSs r1 and r2, andl((r)h) = l(r) + wR(h):Example 2 Let w�(a) = 1 for all alphabets a 2 �, wR(h) = 1 for all h � 2. Then,l(abaababaab) = 10, l((ab(a)2b)2) = 6 and l((aba)2b(a)2b) = 8.Problem we deal with in this setion is the following one.Problem 1 Given a string s, an alphabet weight funtion w� and a repetition weightfuntion wR, �nd a shortest RRS r that represents s.2.2 AlgorithmIn this subsetion, we desribe an algorithm for �nding a shortest RRS for an arbitrarystring s(= a1a2 � � �an) with length n, an arbitrary alphabet weight funtion w� and anarbitrary repetition weight funtion wR. Let s[i; j℄ denote the substring aiai+1 � � �ajof s, and let r[i; j℄ denote a shortest RRS representing s[i; j℄. Then, the followingproposition holds.Proposition 1 For all 1 � i < j � n, one of the following ases holds.Case 1 r[i; j℄ = (r[i; i+ h� 1℄)d for some h � 1 and d � 2 with dh = j � i + 1Case 2 r[i; j℄ = r[i; i+ d℄r[i+ d+ 1; j℄ for some 0 � d < j � i(Proof) If r[i; j℄ = (r0)d for some RRS r0, r0 must be an RRS representing s[i; i�1+h℄where h = (j � i + 1)=d. RRS r0 must be a shortest RRS representing s[i; i� 1 + h℄beause, if not, l(r0) > l(r[i; i�1+h℄) holds and it leads that l(r[i; j℄) = l(r0)+wR(d) >l(r[i; i� 1 + h℄) + wR(d) = l((r[i; i � 1 + h℄)d), whih ontradits the fat that r[i; j℄is the shortest RRS representing s[i; j℄. Thus, Case 1 holds in this ase.If there do not exist r0 and d � 2 suh that r[i; j℄ = (r0)d, then r[i; j℄ = r1r2for some RRSs r1 and r2. RRSs r1 and r2 must be RRSs representing s[i; i + d℄and s[i + d + 1; j℄, respetively, for some 0 � d < j � i. RRSs r1 and r2 must beshortest RRSs representing s[i; i+ d℄ and s[i+ d+ 1; j℄, respetively, beause, if not,

4 Atsuyoshi Nakamura Tomoya Saito Mineihi Kudol(r1) > l(r[i; i + d℄) or l(r2) > l(r[i + d + 1; j℄) holds and it leads to a ontraditionwith the fat that r[i; j℄ is a shortest RRS. Thus, Case 2 holds in this ase. 2For given 1 � i < j � n, assume that r[i0; j 0℄ is already known for all 1 � i0 < j 0 � nwith j 0 � i0 < j � i. Using the above proposition, r[i; j℄ is obtainable by searhing ashortest RRS among b(j � i + 1)=2 possibilities of Case 1 and j � i possibilities ofCase 2. If l(r[i0; j 0℄) for all 1 � i0 < j 0 � n with j 0� i0 < j� i is already alulated, thelength for eah possible RRS an be alulated in onstant time. Thus, suh searhan be �nished in O(j � i + 1) time. This means that a shortest RRS r[1; n℄ for agiven string s is eÆiently obtainable by dynami programming using the fat thatr[i; i℄ = s[i; i℄ for all 1 � i � n.ShortestRRS % [Finding a Shortest RRS Representing String a1a2 � � � an℄Input: a1a2 � � � an: stringw�: alphabet weight funtionwR: repetition weight funtionOutput:r : shortest RRS representing a1a2 � � � anlr : length of r1: l[i; i℄ w�(ai) for i = 1; 2; :::; n2: l[i; j℄ 1 for i = 1; 2; :::; n and j = 2; 3; :::; n with i < j3: for h = 1 to n do4: for i = 1 to n� h+ 1 do5: for d = 0 to h� 2 do6: if l[i; i+ d℄ + l[i+ d+ 1; i+ h� 1℄ < l[i; i + h� 1℄ then7: l[i; i + h� 1℄ l[i; i + d℄ + l[i+ d+ 1; i + h� 1℄8: type[i; i + h� 1℄ (2; d)9: end if10: end for11: for s = i+ h to n� h+ 1 by h do12: if asas+1 � � � as+h�1 6= aiai+1 � � � ai+h�1 then break13: if l[i; i+ h� 1℄ + wR((s� i)=h+ 1) < l[i; s+ h� 1℄ then14: l[i; s+ h� 1℄ l[i; i+ h� 1℄ + wR((s� i)=h+ 1)15: type[i; s+ h� 1℄ (1; h)16: end if17: end for18: end for19: end for20: lr l[1; n℄21: r ConstrutShortestRRS(a1a2 � � � an, type)22: return (r; lr) Figure 1: Algorithm ShortestRRSAlgorithm ShortestRRS shown in Fig. 1 is the one that onstruts a shortest RRSrepresenting a given string using dynami programming. In the algorithm, l[i; j℄(1 � i � j � n) is the length of a shortest RRS representing string aiai+1 � � �aj. AtLine 1, all l[i; i℄ for i = 1; 2; :::; n are set to the orret value. All the other l[i; j℄ areset to 1 at �rst (Line 2), but those are updated in the for-loop from Line 3 to 19,

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 5and all l[i; j℄ are set to the orret values by the end of the loop. In the for-loop, hinreases one by one from 1 to n, and all l[i; i+h0�1℄ for 1 � i � n�h0+1 are set tothe orret value when h = h0. More preisely, in another for-loop from Line 4 to 18inside the for-loop with h = h0, eah l[i0; i0 + h0 � 1℄ is set to the orret value wheni = i0. In the for-loop from Line 5 to 10, the lengths of h0 � 1 Case-2 possibilitiesare alulated for l[i0; i0 + h0 � 1℄, and l[i0; i0 + h0 � 1℄ is set to the orret valueat the end of this for-loop. This is beause the lengths of all the Case-1 possibilitiesfor l[i0; i0 + h0 � 1℄ are already alulated when h < h0, that is, Case-1 possibility(r[i; i + h1 � 1℄)d is alulated when h = h1 < h0. The lengths of all the Case-1possibilities are alulated in the for-loop from Line 11 to 17. In the for-loop, thelengths of (r[i; i+h� 1℄)d for 2 � d � b(n� i+1)=h are alulated for urrent h andi. Finally, at the end of the for-loop with variable h, the length of a shortest RRSrepresenting a1a2 � � �an, l[1; n℄, is alulated.A shortest RRS r an be onstruted from the given string and `type' beause`type' ontains the information of whih possibility is a shortest RRS: r[i; j℄ = r[i +d℄r[i+ d+ 1; j℄ if type[i; j℄ = (2; d) and r[i; j℄ = (r[i; i+ h� 1℄)(j�i+1)=h if type[i; j℄ =(1; h), where the �rst omponent of `type' indiates whih ase is seleted. Startingfrom r[1; n℄, reursively apply this re�nement using `type' information, an expressionthat only ontains r[i; i℄ for i = 1; 2; :::; n exept speial symbols for repetition anbe obtained. By replaing all r[i; i℄ in the expression with ai, a shortest RRS r isonstruted. ConstrutShortestRRS is the algorithm that exeutes this proedure.Eah re�nement and replaement above an be done in onstant time and there areat most n re�nements and at most n replaements, so ConstrutShortestRRS runs intime O(n).Proposition 2 Algorithm ShortestRRS runs in time O(n3).(Proof) Computational time needed outside the for-loop from Line 3 to 19 is at mostO(n2). So, we only have to show that omputational time needed for lines from Line5 to 17, whih are inside the two outer for-loops, is O(n). The �rst for-loop from Line5 to 10 is trivially O(n). The number of exeuting the inside of the for-loop from Line11 to 17 is at most n=h0 when h = h0, and O(h0) time is neessary for Line 12 in thisase. Thus, O(n) time is also needed for this for-loop. Therefore, omputational timeneeded for lines from Line 5 to 17 is O(n). 22.3 Fast Algorithm for Width-k RRSsComputational time O(n3) of algorithm ShortestRRS seems too slow for pratial use.In this subsetion, we onsider a restrited lass of width-k RRSs, for whih a shortestone an be onstruted more eÆiently.Let (r)h be an arbitrary repetition of RRS r. The width of repetition (r)h is de�nedas the length of string s represented by r. Here, the length of string a1a2 � � �an forai 2 � is n, whih is di�erent from the length of an RRS.

6 Atsuyoshi Nakamura Tomoya Saito Mineihi KudoRRS r is said to be width-k if the width of any repetition appeared in r is at mostk. Let s(= a1a2 � � �an) denote an arbitrary string and let rk[i; j℄ denote a shortestwidth-k RRS representing s[i; j℄. We also de�ne rk;j[1; i℄ as a shortest width-k RRSwith form rk[1; i�jh℄(rk[i�jh+1; i�(j�1)h℄)h for some h � 2 when suh RRSs exist.Width-k RRS rk;j[1; i℄ is a shortest one among those representing s[1; i℄ and endingwith a width-j repetition. Note that rk;j[1; i℄ is NOT always de�ned. To simplify ournotation, we let rk;0[1; i℄ denote a shortest width-k RRS among those representings[1; i℄ and ontaining no ending repetition. Then, the following fat trivially holds.fat 1 rk[1; i℄ is a shortest width-k RRS among rk;j[1; i℄ for j = 0; 1; :::; k.By the fat above, if rk;j[1; i℄ for j = 0; 1; :::; k an be eÆiently onstruted fromrk;j[1; i0℄ for j = 0; 1; :::; k and i0 < i, then rk[1; n℄ an be eÆiently alulated usingdynami programming. We show that this is true. For j = 0, the following propositiontrivially holds, so we omit its proof.Proposition 3 rk;0[1; i℄ = rk[1; i� 1℄aiFor j = 1; 2; :::; k, we need the following property of repetition weight funtion wRto eÆiently onstrut rk;j[1; i℄.wR(h+ 1) = wR(h) + � for some onstant � and for all h � 2. (1)When wR has this property, the following proposition holds.Proposition 4 Assume that wR satis�es (1) and that 1 � j � minfi=2; kg andai�j+1ai�j+2 � � �ai = ai�2j+1ai�2j+2 � � �ai�j. If rk;j[1; i℄ = rk[1; i� jh℄(rk[i� jh+1; i�(j � 1)h℄)h for h � 3, then rk;j[1; i� j℄ = rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1.(Proof) Assume thatrk;j[1; i� j℄ = rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1for some h0 6= h, and also assume thatl(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1)< l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1):Then,l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0)= l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1) + wR(h0)� wR(h0 � 1)= l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1) + wR(h)� wR(h� 1)< l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1) + wR(h)� wR(h� 1)= l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h)

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 7This ontradits the fat that rk;j[1; i℄ = rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h. 2By this proposition, rk;j[1; i℄ for j = 1; 2; :::; k is either modi�ed rk;j[1; i � j℄ thatis onstruted from rk;j[1; i � j℄ by repeating the last repetition one more time, orrk[1; i� 2j℄(rk[i� 2j + 1; i� j℄)2, if it is de�ned.ShortestWkRRS %[Finding a Shortest Width-k RRS Representing String a1a2 � � � an℄Input: a1a2 � � � an: stringw�: alphabet weight funtionwR: repetition weight funtionsatisfying wR(h+ 1) = wR(h) + � for some real number �Output:r : shortest RRS representing a1a2 � � � anlr : length of r1: (l; type) ShortestWkRRSLengthTable(a1a2 � � � an; w�; wR)2: lk;0[1; 0℄ = 0, j�[0℄ = 03: for i = 1 to n do4: lk;0[1; i℄ = lk;j�[i�1℄[1; i � 1℄ + l[i; i℄, j�[i℄ = 05: for j = 1 to minfi; kg do6: if j � i=2 and ai�j+1ai�j+2 � � � ai = ai�2j+1ai�2j+2 � � � ai�j then7: if lk;j[1; i�j℄+� � lk;j�[i�2j℄[1; i�2j℄+ l[i�2j+1; i�j℄+wR(2)then8: lk;j[1; i℄ = lk;j[1; i � j℄ + �9: h[j; i℄ = h[j; i � j℄ + 110: else11: lk;j[1; i℄ = lk;j�[i�2j℄[1; i� 2j℄ + l[i� 2j + 1; i� j℄ + wR(2)12: h[j; i℄ = 213: end if14: else15: lk;j[1; i℄ =116: end if17: if lk;j[1; i℄ < lk;j�[i℄[1; i℄ then j�[i℄ = j18: end for19: end for20: lr lk;j�[n℄[1; n℄21: r ConstrutShortestWkRRS(a1a2 � � � an; type; j�; h)22: return (r; lr) Figure 2: Algorithm ShortestWkRRSNow, we know that width-k RRSs rk;j[1; i℄ for j = 0; 1; :::; k and their shortestone rk[1; i℄ an be onstruted from rk;j[1; i0℄ and rk[1; i0℄ for i0 < i, and rk[g; h℄ for1 � g � h < i and h�g+1 � k. A dynami programming using this fat is algorithmShortestWkRRS shown in Fig. 2.For all 1 � i � j � n with j � i + 1 � k, the algorithm �rst alulates lengthl[i; j℄ of a shortest one rk[i; j℄ among the RRSs representing s[i; j℄. This task isdone by exeuting algorithm ShortestWkRRSLengthTable shown in Fig. 3. Note thatShortestWkRRSLengthTable is a modi�ed ShortestRRS in Fig. 1 whih is modi�ed

8 Atsuyoshi Nakamura Tomoya Saito Mineihi Kudoso as not to alulate l[i; j℄ for j � i+ 1 > k.Then, the algorithm alulates length lk;j[1; i℄ of the width-k RRS rk;j[1; i℄ fori = 1; 2; :::; n and j = 0; 1; :::; k using dynami programming. Note that rk;j[1; i℄ is setto 1 when rk;j[1; i℄ is not de�ned at Line 15. In the algorithm, we alulatesj�[i℄ = arg min0�j�k rk;j[1; i℄instead of alulating the length of rk[1; i℄, whih is equal to lk;j�[i℄[1; i℄ using j�[i℄.A shortest width-k RRS rk[1; n℄ representing inputted string a1a2 � � �an an beonstruted using `type' information returned by ShortestWkRRSLengthTable, j�[i℄and h[j; i℄ for i = 1; 2; :::; n and j = 1; 2; :::; k, where h[j; i℄ is the number of timesrepeated in the last repetition of rk;j[1; i℄. The onstrution an be done as follows.First, using j�[n℄ and h[j�[n℄; n℄, you know thatrk[1; n℄= (rk[1; n� j�[n℄h[j�[n℄; n℄℄(rk[n� j�[n℄ + 1; n℄)h[j�[n℄;n℄ if j�[n℄ > 0rk[1; n� 1℄an if j�[n℄ = 0:RRS rk[n� j�[n℄ + 1; n℄ an be onstruted by allingConstrutShortestRRS(an�j�[n℄+1an�j�[n℄+2 � � �an,type), a funtion used in AlgorithmShortestRRS. (See Fig. 1.) Thus, onstrution problem of rk[1; n℄ is redued to asmaller onstrution problem of rk[1; n� j�[n℄h[j�[n℄; n℄℄ when j�[n℄ > 0 and rk[1; n�1℄ when j�[n℄ = 0. Repeated appliation of this redution �nally leads to on-strution problem of rk[1; 0℄, whih is trivially �. By this proedure, AlgorithmConstrutShortestWkRRS at Line 21 an onstrut rk[1; n℄ in time O(n).Proposition 5 Algorithm ShortestWkRRS runs in time O(k2n).(Proof) Computational time needed for ShortestWkRRSLengthTable is O(k2n) be-ause the inside of the loop from Line 3 to 19 is exeuted at k times, the inside of theloop from Line 5 to 10 is also exeuted at most k times, and the loop from Line 11 to17 is exeuted at most k=h times while time O(h) is neessary at Line 12.Computational time needed for lines from Line 3 to 19 in ShortestWkRRS is alsoO(k2n) by the following reason. One exeution of the inside of the loop from Line5 to 18 needs O(k) time beause exeution of Line 6 needs O(k) and other lines areexeuted in onstant time. Sine the insides of the nested for-loops are exeuted atmost n times and k times, respetively, O(k2n) time is neessary in total.Thus, together with the fat ConstrutShortestWkRRS needs O(n) time, we anonlude that ShortestWkRRS runs in time O(k2n). 2

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 9ShortestWkRRSLengthTable %[Calulate the Length l[i; j℄ of the ShortestRRS Representing String aiai+1 � � � aj for All 0 < j � i < k℄Input: a1a2 � � � an: stringw�: alphabet weight funtionwR: repetition weight funtionOutput:l : lengths of the shortest RRS representingstring aiai+1 � � � aj for all 0 < j � i < ktype : struture information of the shortest RRS representingstring aiai+1 � � � aj for all 0 < j � i < k1: l[i; i℄ w�(ai) for i = 1; 2; :::; n2: l[i; j℄ 1 for i = 1; 2; :::; n; j = 1; 2; :::; n; 0 < j � i < k3: for h = 1 to k do4: for i = 1 to n� h+ 1 do5: for d = 0 to h� 2 do6: if l[i; i + d℄ + l[i+ d+ 1; i + h� 1℄ < l[i; i + h� 1℄ then7: l[i; i + h� 1℄ l[i; i+ d℄ + l[i+ d+ 1; i+ h� 1℄8: type[i; i + h� 1℄ (2; d)9: end if10: end for11: for s = i+ h to i+ k � h by h do12: if asas+1 � � � as+h�1 6= aiai+1 � � � ai+h�1 then break13: if l[i; i + h� 1℄ + wR((s� i)=h + 1) < l[i; s+ h� 1℄ then14: l[i; s+ h� 1℄ l[i; i + h� 1℄ + wR((s� i)=h + 1)15: type[i; s+ h� 1℄ (1; h)16: end if17: end for18: end for19: end for20: return (l; type)Figure 3: Algorithm ShortestWkRRSLengthTable3 Finding a Minimum Repetition RepresentationTree3.1 Problem SettingAn ordered tree is a rooted tree in whih all nodes having the same parent node aretotally ordered. In this paper, all hild nodes of a tree in any �gure are supposed tohave left-to-right ordering. A labeled ordered tree is an ordered tree in whih all nodesare labeled. We assume that labels are members in �, a �nite set of alphabets.In this setion, we introdue the following notation. Let �(T) denote the root nodeof an ordered tree T . A subtree rooted by node v in a tree T is denoted by Tv. Let(v) denote the number of hild nodes of a node v, and let vi denote the ith hildnode of v. For notational simpliity, we use T i instead of T�(T)i , the subtree rooted

10 Atsuyoshi Nakamura Tomoya Saito Mineihi Kudoby the ith hild node of the root node of T . Let �(v) denote the label of a node v.We let V (T) denote the set of nodes in a tree T .Here, we de�ne a repetition representation tree, RRT for short, whih is a gener-alized onept of a labeled ordered tree. Only one di�erene from a general labeledordered tree is that an RRT may ontain speial nodes alled repetition informationnodes whose label is not an alphabet in � but a number at least 2. A repetition infor-mation node v labeled number h represents suh a repetition struture that the subtreesequene rooted by v is repeated h times as a subtree sequene diretly rooted by thev's parent node p. (See Fig.4.) Any repetition information node must be neither aroot node nor a leaf node.
v

...

Rv

h

p

1st time 2nd time hth time. . .

expansion

reduction

1 Rv
2 Rv

c(v)

Rp
1 Rp

i-1

...

Rp
i+1 Rp

c(p)

...

...

Rp
1 Rp

i-1

...

Rv
1 Rv

2 Rv
c(v) Rv

1 Rv
2 Rv

c(v) Rv
1 Rv

2 Rv
c(v) Rp

i+1 Rp
c(p)

......

p ...R R’

Figure 4: Repetition information node and its expansionThe operation of transforming an RRT with repetition information node v intoan RRT representing the same tree without node v is alled expansion of v, and theopposite operation is alled redution to v. When all the repetition information nodesin RRT R are expanded, a general labeled ordered tree T is obtained. Then, we saythat R represents T .For a repetition information node v in an RRT R, the width of v is de�ned as thenumber of v's hild nodes in an RRT R0 whih is made by expanding all repetitioninformation nodes below v. Note that a repetition information node v with widthk in an RRT R represents the repetition of k subtree sequene in a labeled orderedtree T represented by R. RRT R is said to be width-k if the width of any repetitioninformation node is at most k.
a

b b

c c c c c

a

b

c

a

b b

c c

2

33 3

c

T1 R12R11

a

b bc c

a

b

2

c

T2 R2

a

b c

2

2
a

b ccb cc

T3 R3Figure 5: Examples of RRTsExample 3 T1; T2 and T3 are general labeled ordered trees and also RRTs representingthemselves. R11 and R12 are RRTs representing T1, R2 is an RRT representing T2,

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 11and R3 is an RRT representing T3. Among R11; R12; R2 and R3, the �rst two RRTsare width-1, the �rst three RRTs are width-2, and the all RRTs are width-3.Similar to the de�nition of the length of an RRS in the previous setion, we de�nethe size m(R) of an RRT R using given two funtions alphabet weight funtion w�and repetition weight funtion wR as follows.m(R)= 8>>>>>>>><>>>>>>>>:
0 if R is an empty treewR(�(�(R))) + (�(R))Xi=1 m(Ri) if �(R) is a repetition informationnodew�(�(�(R))) + (�(R))Xi=1 m(Ri) otherwiseRRT-version of our problem is the following.Problem 2 Given a labeled ordered tree T , an alphabet weight funtion w� and arepetition weight funtion wR, �nd a minimum RRT R that represents T .Remark 1 When the height of T is one, the above problem an be redued to an RRS-version problem. Let T be a height-1 tree with leaf node label sequene a1; a2; :::; ad.Then, the redued RRS-version problem is that of �nding a shortest RRS r rep-resenting string a1a2 � � �ad for the same alphabet and repetition weight funtions.There is a one-to-one orrespondene between an RRT R representing T and an RRS�(�(T))r, whih is a onatenation of the root label �(�(T)) and an RRS r represent-ing a1a2 � � �ad. Do tree traversal of R, and output `(' at the �rst visit of a repetitioninformation node, output `)h' at the last visit of a repetition information node labeledh, and output an alphabet a at the �rst visit of an node labeled a. Then, outputtedstring �(�(T))r is an RRS orresponding to R. RRS �(�(T))r is a unique RRS en-oding of an RRT R representing a height-1 tree T , and the onversion of the oppositediretion is also possible. Furthermore, m(R) = l(r) + w�(�(�(T))) when the samew� and wR are used. Thus, minimizing m(R) is equivalent to minimizing l(r). Bythis redution, the above problem an be solved when the height of T is at most one.3.2 AlgorithmWe show an algorithm for �nding a minimum RRT representing a given arbitrary la-beled ordered tree T , given an arbitrary alphabet weight funtion w� and an arbitraryrepetition weight funtion wR.The algorithm is named MinimumRRT and shown in Fig. 6. It uses divide-and-onquer strategy. First, it solves subproblems of �nding a minimum RRT Ri repre-senting an labeled ordered subtree T i for eah i = 1; 2; :::; (�(T)). These subprob-lems are solved by reursively alling algorithm MinimumRRT. Then, the problem

12 Atsuyoshi Nakamura Tomoya Saito Mineihi KudoMinimumRRT %[Construt the Minimum RRT Representinga Labeled Ordered Tree T ℄Input: T : labeled ordered treew�: alphabet weight funtionwR: repetition weight funtionOutput:R: minimum RRT R representing TmR: size of a minimum RRT R representingT1: if �(T) has no hild node then2: R T , mR w�(�(�(T)))3: else4: v �(T); d (v)5: (Ri; mi) MinimumRRT(T i; w�; wR) for i = 1; 2; :::; d6: (v) AssignLabel(�(v) (v1) (v2) � � � (vd))7: w�0((vi)) mi for i = 1; 2; :::; d8: (r;mR) ShortestRRS((v1) (v2) � � � (vd); w�0; wR)9: R ConstrutMinimumRRT(r; R1; R2; :::; Rd; �(v))10: end if11: return (R;mR) Figure 6: Algorithm MinimumRRTof onstruting a minimum RRT R representing T from R1; R2; :::; R(�(T)) is reduedto the problem of �nding a shortest RRS r representing a string orresponding tothe sequene T 1; T 2; :::; T (�(T)). The redued problem is solved by alling algorithmShortestRRS developed in the previous setion.Algorithm MinimumRRT uses two other algorithms, AssignLabel and Construt-MinimumRRT.AssignLabel is an algorithm that assigns a label in �0 � � to an inputted string,and returns the label. The algorithm assigns an inputted string itself for a stringomposed of one alphabet in �. If the same string as the one inputted before isinputted, then the already assigned label is returned. Otherwise, the algorithm assignsa new label. Note that AssignLabel assigns the same label if and only if inputtedstrings are the same. In MinimumRRT, AssignLabel is used for labeling eah node vwith (v), whih is determined by the subtree Tv. This means that (u) = (v), Tu = Tv: (2)Though AssignLabel uses labels �(v) and (v1); (v2); :::; (v(v)) alone for alulationof (v), (2) holds even for (v) alulated like this when (2) holds for (v1); (v2); :::; (v(v))by indution. Sine (2) trivially holds for leaf nodes, (2) holds for all nodes in T .ConstrutMinimumRRT is an algorithm that onstruts a minimum RRT R repre-senting T from an RRS r representing (v1) (v2) � � � (v(v)), minimumRRTsR1; R2; :::; R(v)representing T 1; T 2; :::; T (v), respetively, and the root label �(v) of T , where v =

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 13�(T). The algorithm onverts an RRS r to the orresponding RRT R by the on-version desribed in Remark 1. Only one di�erene from the onversion is to add Riinstead of a leaf node labeled (vi).Theorem 1 Given a labeled ordered tree T , an alphabet weight funtion w� and arepetition weight funtion wR, algorithm MinimumRRT outputs a minimum RRT Rrepresenting T and its size m(R).(Proof) The proof is an indution on the height h of T . When h = 0, �(T) has nohild node, so the minimum RRT is T itself and its size is w�(�(�(T))), whih areoutputted by the algorithm.Let h = h0, and suppose that the theorem holds when h � h0�1. Then, (Ri; mi) fori = 1; 2; :::; (�(T)) obtained at Line 5 is a pair of the minimum RRT Ri representingT i and its size mi by the assumption beause the height of T i is at most h0 � 1. Inany RRT R0 representing T , the subtree R0i orresponding to T i, that is, the subtreethat beomes T i by expanding all repetition information nodes inluded in it, an bereplaed with any R00i representing T i. This means that a minimum R� representingT must have a minimum R�i representing T i as a subtree orresponding to T i foreah i, and any R�i representing T i is possible if R�i has minimum size among RRTsrepresenting T i. Thus, by applying redution operations to T 0 that is an RRT madefrom T by replaing eah T i with Ri, a minimum RRT R� an be obtained. Duringsuh a redution, Ri does not hange, so it an be replaed by a node labeled analphabet (vi) 2 �0 with m�0((vi)) = m(Ri) = mi, where vi is the root node of T i.The same result an be obtained by substituting Ri for a node labeled (vi) afterthe redution. Therefore the problem is redued to that of �nding a minimum RRTrepresenting a height-1 tree with a leaf node label sequene (v1); (v2); :::; (v(v))and the root labeled �(v), where v is the root node of T . By Remark 1, this anbe solved by �nding a shortest RRS r representing the string (v1) (v2) � � � (v(v)).Sine MinimuRRT onduts just the same proess as we desribed above, the theoremholds when h = h0. 2For the lass of width-k RRTs, the following orollary holds.Corollary 1 Given a labeled ordered tree T , a alphabet weight funtion w� and a rep-etition weight funtion wR satisfying (1), a modi�ed MinimumRRT made by replaingShortestRRT with ShortestWkRRT outputs a minimum width-k RRT R representingT and its size m(R).Theorem 2 Algorithm MinimumRRT runs in time O(n3) for an arbitrary labeledordered tree with n nodes.(Proof)

14 Atsuyoshi Nakamura Tomoya Saito Mineihi KudoFor a given tree T , algorithm MinimumRRT is alled just one for eah node,preisely speaking, just one for a subtree rooted by eah node. Thus, let us onsiderproess time needed for eah node and its summation. For leaf nodes, onstant timeis neessary for the algorithm. Thus, time O(n) is enough for the algorithm to proessall the leaf nodes.For eah internal node v, we laim that O((v)3) is neessary for the algorithm.Sine we do not have to take aount of the proess time of reursively alled Mini-mumRRT here, time O((v)) is needed for Line 5. AssignLabel runs in time O((v))under the assumption of no limitation on the amount of memory. ShortestRRS runsin time O((v)3) by Proposition 2. All the other parts passed when the else-lause isexeuted inluding ConstrutMinimumRRT are proessed in time O((v)). Therefore,time O((v)3) is neessary for proessing eah internal node.Let I denote the set of internal nodes in T . Then, Pv2I (v) = n � 1 holds.Therefore, Pv2I (v)3 � n3 holds. Thus, timeO(n3) is enough for the algorithm toproess all the internal nodes.Totally, MinimumRRT runs in time O(n3). 2The following orollary for width-k RRTs an be proved similarly.Corollary 2 A modi�ed MinimumRRT made by replaing ShortestRRT with ShortestWkRRTruns in time O(k2n) for an arbitrary labeled ordered tree with n nodes.4 DisussionFor a string s with length n, one repetition (tandem array) an be spei�ed by atriple (i; d; h), where i is its starting position, d is its width and h is the number ofrepetitions. Sine h � 2, the number of triples an bebn=2Xd=1 nXi=d(bi=d � 1) = �(n2 logn):The problem of �nding a shortest RRS representing s is a kind of �nding an optimalombination of a (possibly large) number of repetitions under a ertain riterion. TheRRS-form onstraint is equivalent to the ondition that any two members (i1; d1; h1)and (i2; d2; h2) in a ombination must bedisjoint (i1 + d1h1 � i2 or i2 + d2h2 � i1)or nested (i1 � i2; i2 + d2h2 � i1 + d1 or i2 � i1; i1 + d1h1 � i2 + d2):Reently, repetition struture analysis of web pages for information extration havebeen studied by several researhers [2, 5℄. In suh a analysis, ontents suh as texts

Algorithms for Finding a Minimum Repetition Struture of a String or a Tree 15and images are not onsidered generally, and only HTML or XML tag sequenes areanalysed. Suh a sequene is a string as it is, and is also represented by a labeledordered tree alled a \tag tree". The problems dealt in the analysis an be seen as theone of �nding a good ombination of repetitions under the RRS-form or RRT-formonstraint. In this setion, we show di�erene between repetition-analysis results bythe onventional methods [2, 5℄ and those of our method using onrete examples.First, let us onsider how to selet nested repetitions. Approah taken by Nanno,Saito and Okumura [5℄ is a bottom-up seletion. Their method �rst �nds a non-overlapped (best) ombination of repetitions among those inluding no repetitionsinside. Then, it replaes every found repetition with one appropriate alphabet andrepeats the same proedure until no repetition is found. For a string abbaabba, thereare four repetitions (2; 1; 2); (5; 1; 2); (7; 1; 2) and (1; 5; 2), and only the last repetitioninludes other repetitions inside. Thus, the �rst three repetitions are seleted atthe �rst round1, and the string is modi�ed to aBABa by substitutions of seletedrepetitions (aa ! A; bb ! B). Sine the modi�ed string has no repetition, the RRSmade by bottom-up seletion approah is a(b)2(a)2(b)2a. For w�(a) = w�(b) =w�() = 1 and wR(h) = 1 for all h � 2, our algorithm outputs (a(b)2a)2 for the inputstring abbaabba beause l(a(b)2(a)2(b)2a) = 10 and l((a(b)2a)2) = 6. By virtue ofglobal optimization, the ombination of repetitions our method seleted looks morenon-trivial than the one seleted by the bottom-up approah.Seond, onsider a greedy approah, whih repeatedly selets one best repetitionamong the rest repetitions. What is the best repetition depends on what riterion isused. How long substring is overed by a repetition seems one of proper riterions, andatually, Liu, Grossman and Zhai [2℄ used this riterion2 to selet a repetition. For astring abaababaabbaab, the repetition overing the longest substring is (1; 5; 2), whihovers the �rst 10-length string. Thus, using the greedy approah with the aboveriterion, RRS (ab(a)2b)2b(a)2b is made �nally. However, for the above w� and wR,the length of (ab(a)2b)2b(a)2b is 10, whih is larger than the length 9 of another RRS(aba)2(b(a)2b)2 representing the same string. In this ase again, global optimizationmakes our method suess to �nd a more non-trivial RRS than the methods using thegreedy approah does. .5 Conluding RemarksWhat set of repetitions in a sequene or a tree is a struturally essential one? Findingsuh a set of repetitions is an important task in strutural analysis of sequenesand trees. Our O(n3) algorithms seems too slow for pratial use, but the O(k2n)algorithms appears fast enough when the width of repetitions are always smaller thana ertain bound k. For example, width bound 20 seems large enough for extration1Sine their method �nds a ombination that maximizes the sum of the number of repetitions,all the three repetitions are seleted.2Their method also prefers smaller starting position.

16 Atsuyoshi Nakamura Tomoya Saito Mineihi Kudoof data reords from HTML tag trees. Atually, we are now using our algorithmin our online appliation of extrating keyword related items from an arbitrary Webpages [6℄. Unfortunately, repetitions our algorithms deal with are only idential ones.Extension of our algorithms so as to deal with non-idential repetitions would enablewide range of appliations.AknowledgementsWe would like to thank Prof. Hiroki Arimura for his valuable omments.Referenes[1℄ Benson, G.: Tandem repeats �nder: a program to analyze DNA sequenes, NuleiAids Researh, 27(2), pp.573-580, 1999.[2℄ Liu, B., Grossman, R. and Zhai, Y.: Mining Data Reords in Web Pages, InProeedings of the 9th ACM SIGKDD International Conferene on Knowledge Dis-overy and Data Mining, pp.601-606, 2003.[3℄ Stoye, J. and Gus�eld, D.: Simple and Flexible Detetion of Contiguous RepeatsUsing a SuÆx Tree, Theoretial Computer Siene, 270, pp.843-856, 2002.[4℄ Main, M. and Lorentz, R.: An O(n logn) algorithm for �nding all repetitions in astring, Journal of Algorithms, 5, pp.422-432, 1984.[5℄ Nanno, T., Saito, S. and Okumura, M.: Struturing Web Pages Based on Repeti-tion Of Elements, IPSJ Journal, 45(9), pp.2157-2167, 2004. (In Japanese.)[6℄ Nakamura, A., Hasegawa, H., Saito, T. and Kudo, M.: Flexible Wrappers forKeyword-Related Information, Hokkaido University Division of Computer SieneTCS Tehnial Report Series A, TCS-TR-A-07-24, 2007.

