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(Abstract) Frequent itemset mining is one of the
fundamental techniques for data mining and knowl-
edge discovery. Recently, Minato et al. proposed
a fast algorithm “LCM over ZDDs” for generat-
ing very large-scale frequent itemsets using Zero-
suppressed BDDs (ZDDs), a compact graph-based
data structure. Their method is based on LCM al-
gorithm, one of the most efficient state-of-the-art
techniques for itemset mining, and directly gener-
ates compact output data structures on the main
memory, to be efficiently post-processed by using
ZDD-based algebraic operations.
In this paper, we propose a novel method of finding
distinctive frequent itemsets from time segmented
(e.g. daily, weekly, monthly) sequential transaction
databases. We define “frequency pattern chart”
using regular expressions for specifying distinctive
frequency patterns in time segmented databases.
Our method efficiently extracts all itemsets satisfy-
ing a given frequency pattern chart using LCM over
ZDDs algorithm and ZDD-based symbolic process-
ing of finite automata. Experimental results show
that our method is applicable to very large-scale
problems, for example, we can find a small number
of distinctive itemsets from a huge number (more
than 1044) of frequent itemsets in a few seconds.
Time segmented databases often appear in many
real-life problems, so our new method will have a
significant impact to various practical applications.

1 Introduction

Discovering useful knowledge from large-scale
databases has attracted a considerable attention
during the last decade. Frequent itemset mining
is one of the fundamental problems for data min-
ing and knowledge discovery. Since the pioneering
work by Agrawal et al.[1], various algorithms have
been proposed to solve the frequent itemset min-
ing problem (cf., e.g., [3, 12]). Among those state-
of-the-art algorithms, Linear time Closed itemset
Miner (LCM) [11] by Uno et al. has a feature of
the theoretical bound as output linear time. Their
open source code [10] is known as one of the fastest
implementations of a frequent itemset mining pro-
gram.

LCM and most of the other itemset mining al-
gorithms focus on only enumerating or listing the
itemsets that satisfy the given conditions, and how
to store and index the result of itemsets for a more
efficient data analysis was a different matter. If
we want to post-process the mining results by set-
ting various conditions or restrictions, we have to
dump the frequent itemsets into storage at least
once. Even though LCM is an output linear time
algorithm, it may require impracticable time and
space if the number of frequent itemsets gets too
large.

For representing very large-scale frequent item-
sets, S. Minato proposed a method using Zero-
suppressed Binary Decision Diagrams (ZDDs, or
ZBDDs) [7], an efficient graph-based data struc-
ture. ZDD is a variant of a Binary Decision Dia-
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gram (BDD) [2], which was originally developed in
the VLSI logic design area, but later it has been
applied to data mining problems [8, 6]. Recently,
Minato et al. [9] proposed a nice combination of
an LCM algorithm and a ZDD-based data struc-
ture. Their method, called “LCM over ZDDs,”
can generate a huge number of frequent itemsets
on the main memory with a very small overhead of
computational time when compared with the orig-
inal LCM algorithm. The mining result can be
efficiently post-processed by using algebraic ZDD
operations.

LCM over ZDDs algorithm is developed for com-
binatorial (non-sequential) itemset mining, but in
this paper, we propose a novel idea of applying
this algorithm to a sequential data mining prob-
lem. Our method finds distinctive itemsets which
frequently appear in “time segmented” sequential
transaction databases, where the time segmented
databases means a list of transaction databases,
each of which is indexed by a sequential segment
number (as D1,D2, . . . ,DN ). Daily (or weekly,
monthly) databases are the typical cases of this
model. Here we do not define the sequential or-
der of the transactions in a same time segment.

Now, we are interested in the distinctive item-
sets which have a specific sequential behavior of
occurrnces in the time segmeneted databases, for
example, an itemset is always infrequent in D1 to
Dk (for some k), and after that it is always frequent
from Dk+1 to end. It will be a very powerful tool
if we can extract all the itemsets satisfying such a
given sequential frequency pattern. To deal with
this problem, we define “frequency pattern chart”
using regular expressions to describe various fre-
quency patterns. Our method efficiently extracts
all itemsets satisfying a given frequency pattern
chart using LCM over ZDDs algorithm and ZDD-
based symbolic data processing of finite automata.
Experimental results show that our method is ap-
plicable to very large-scale problems, for example,
we can find a small number of distinctive item-
sets from a huge number (more than 1044) of fre-
quent itemsets in a few seconds. Time segmented
databases often appear in many real-life problems,
so our new method will have a significant impact
to various practical applications.

In the rest of this paper, we start with prelimi-
naries for itemset mining and ZDD data structure
in Section 2. We then review the LCM over ZDDs
algorithm in Section 3. Section 4 describes our
new method of finding distinctive frequent itemsets
from time segmented databases. Experimental re-
sults are shown in Section 5, followed by summary
of this paper.

2 Preliminaries

2.1 Transaction Databases and Itemset
Mining

Let E = {1, 2, . . . , n} be the set of items. A
transaction database on E is a multiset D =
{T1, T2, . . . , Tm} where each Ti is included in E .
Each Ti is called a transaction (or tuple). We de-
note the sum of sizes of all transactions in D, with
||D|| that is, the size of database D. A set P ⊆ E
is called an itemset. The maximum element of P

is called the tail of P , and is denoted by tail(P ).
An itemset Q is a tail extension of P if and only if
both Q \P = {e} and e > tail(P ) hold for an item
e. An itemset P �= ∅ is a tail extension of Q if and
only if Q = P \ tail(P ), and therefore, Q is unique,
i.e., any non-empty itemset is a tail extension of a
unique itemset.

For itemset P , a transaction including P is an
occurrence of P . The denotation of P , which is de-
noted by Occ(P ), is the set of the occurrences of P .
|Occ(P )| is the frequency of P , and is denoted by
frq(P ). In particular, for an item e, frq({e}) is the
frequency of e. For a given constant θ, called a min-
imum support, itemset P is frequent if frq(P ) ≥ θ.
If a frequent itemset P is not included in any other
frequent itemset, P is maximal. We define the clo-
sure of itemset P in D, denoted by clo(P ), with⋂

T∈Occ(P ) T . An itemset P is closed if P = clo(P ).

The problem of frequent itemset mining is to
enumerate all (or maximal/closed) frequent item-
sets for a given database D and a parameter θ. In
other words, it is to generate a family of itemsets
for a given setting. Frequent itemset mining is one
of the fundamental problems for data mining and
knowledge discovery. Since the pioneering work by
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Figure 1: Binary Decision Tree, BDD and ZDD

a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F (a, b, c) = abc ∨ abc

As a family of itemsets:
S(a, b, c) = {ac, b}

Figure 2: Correspondence of Boolean functions and
sets of combinations.

Agrawal et al.[1], various algorithms have been pro-
posed to solve the frequent itemset mining problem
(cf., e.g., [3, 12].

2.2 Zero-suppressed Binary Decision
Diagrams (ZDDs)

Next, we briefly review the data structures of deci-
sion diagrams. A Binary Decision Diagram (BDD)
is a graph representation for a Boolean function.
An Example is shown in Fig. 1 for F (a, b, c) =
abc ∨ abc. Given a variable ordering (in our ex-
ample a, b, c), one can use Bryant’s algorithm[2] to
construct the BDD for any given Boolean function.
For many Boolean functions appearing in practice
this algorithm is quite efficient and the resulting
BDDs are much more efficient representations than
binary decision trees.

BDDs were originally invented to represent
Boolean functions. But we can also map a family
of itemsets into Boolean space of n variables, where
n is the cardinality of E (see Fig. 2). So, one could
also use BDDs to represent families of itemsets.
However, one can even obtain a more efficient rep-

Figure 3: ZDD reduction rule.

resentation by using Zero-suppressed BDDs (ZDDs,
or ZBDDs)[7].

If there are many similar itemsets then the sub-
graphs are shared resulting in a smaller representa-
tion. In addition, ZDDs have a special type of node
deletion rule. As shown in Fig. 3, All nodes whose
1-edge directly points to the 0-terminal node are
deleted. Because of this, the nodes of items that do
not appear in any itemset are automatically deleted
as shown in Fig.1. This ZDD reduction rule is ex-
tremely effective if we handle a family of sparse
itemsets. If the average appearance ratio of each
item is 1%, ZDDs are possibly more compact than
ordinary BDDs, up to 100 times.

ZDD representation has another good property
that each path from the root node to the 1-terminal
node corresponds to each itemset in the family.
Namely, the number of such paths in the ZDD ex-
actly equals to the cardinality of the family. This
beautiful property indicates that, even if there are
no equivalent nodes to be shared, the ZDD struc-
ture explicitly stores all itemsets as well as using an
explicit linear linked list data structure. In other
words, (the order of) ZDD size never exceeds the
explicit representation. If more nodes are shared,
the ZDD is more compact than linear list.

Figure 1 summarizes the primitive operations of
the ZDDs. In these operations, “∅,” “1,” and S.top
can be obtained in a constant time. S.offset(k),
S.onset(k), and S.change(k) operations require a
constant time if item k is at the root node of S,
otherwise they consume linear time for the number
of ZDD nodes located at a higher position than
item k. The union, intersection, and difference op-
erations can be performed in almost linear time to
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Table 1: Primitive ZDD operations
“∅” Returns empty family. (0-termial node)
“1” Returns singleton family of null-itemset. (1-terminal node)
S.top Returns item-ID at root node of S.
S.offset(k) Sub-family of itemsets not including item k.
S.onset(k) Gets S − S.offset(k) and then deletes item k from each itemset.
S.change(k) Inverts existence of item k (add / delete) on each itemset.
S1 ∪ S2 Returns union of the two families.
S1 ∩ S2 Returns intersection of the two families.
S1 − S2 Returns difference of the two families. (in S1 but not in S2.)
S.count Counts cardinality of S.

the size of the ZDDs. S.count is also linear to the
ZDD size, not depends on the cardinality.

Recently, Prof. D. E. Knuth presented a draft
version of the upcoming fascicle of his famous book
series [5]. This new fascicle (total 140 pages, in-
cluding 236 exercises) is entirely devoted for BDDs,
and ZDD is also discussed minutely using 30 pages
including 70 exercises. Prof. Knuth re-arranged
a set of primitive ZDD operations and named it
“Family Algebra.” He has developed his own
BDD/ZDD package, which is available in his home
page.

3 LCM over ZDDs for Large-
Scale Itemset Mining

We briefly review LCM over ZDDs algorithm to ef-
ficiently generate a huge number of frequent item-
sets on the main memory.

3.1 LCM Algorithm

As described above, various algorithms have been
proposed to solve the frequent itemset mining prob-
lem. Among those state-of-the-art algorithms,
LCM (Linear time Closed itemset Miner)[11] by
Uno et al. has a feature of the theoretical bound
as output linear time1. Their open source code[10]
is known as one of the fastest implementation of
frequent itemset mining program.

1The complexity has been theoretically proven in generat-
ing all/closed itemsets, but is still open (only experimental)
for a maximal one.

LCM Backtrack(P : itemset)
{

Output P
For e = n to tail(P ) + 1 step −1 do

If P ∪ {e} is frequent
LCM Backtrack(P ∪ {e})

}
Figure 4: Basic structure of LCM algo-
rithm.

ZDD LCMovZDD(P : itemset)
{

ZDD F ← P
For e = n to tail(P ) + 1 step −1 do

If P ∪ {e} is frequent {
F ′ ← LCMovZDD(P ∪ {e})
F ← F ∪ F ′

}
Return F

}
Figure 5: Basic structure of LCM over
ZDDs.

LCM and most of the other itemset mining al-
gorithms focus on just enumerating or listing the
itemsets which satisfy the given conditions, and it
was a different matter how to store and index the
result of itemsets for efficient data analysis. If we
want to post-process the mining results by apply-
ing various conditions or restrictions, once we have
to dump the frequent itemsets into a sequential file
storage. Even LCM is an output linear time algo-
rithm, it may require impracticable time and space
if the number of frequent itemsets becomes enor-
mous.
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Table 2: Comparison of LCM over ZDDs with original LCM.

Database name #Item #Trans- ||D|| Min. #Frequent LCM over ZDDs LCM-count LCM-dump
action (size of D) support itemsets |ZDD| Time(s) Time(s) Time(s)

mushroom 119 8,124 186,852 1,000 123,287 760 0.50 0.49 0.64
300 5,259,786 4,412 2.25 2.22 9.96
100 66,076,586 11,584 5.06 4.87 114.21
50 198,169,866 17,830 8.17 7.86 357.27

BMS-WebView-1 497 59,602 149,639 50 8,192 3,415 0.11 0.11 0.12
40 48,544 10,755 0.18 0.18 0.22
36 461,522 28,964 0.49 0.42 0.98
34 4,849,466 49,377 1.30 1.07 8.58
32 1,531,980,298 71,574 31.90 29.73 3,843.06

BMS-WebView-2 3,340 77,512 358,278 5 26,946,004 353,091 4.84 3.62 51.28
T10I4D100K 870 100,000 1,010,228 2 19,561,715 3,270,977 9.68 5.09 22.66
chess 75 3,196 118,252 1,000 29,442,849 53,338 197.58 197.10 248.18
connect 129 67,557 2,904,951 40,000 23,981,184 3,067 5.42 5.40 49.21
pumsb 2,113 49,046 3,629,404 32,000 7,733,322 5,443 60.65 60.42 75.29

(2.4GHz Core2Duo E6600 PC, 2 GB memory, SuSE Linux 10, GNU C++)

3.2 LCM over ZDDs

Recently, Minato et al. [9] proposed a fast al-
gorithm for generating huge number of frequent
itemsets using ZDDs. Their method, “LCM over
ZDDs” is based on LCM algorithm and generat-
ing a compact output data using ZDDs on the
main memory. The result can efficiently be post-
processed by using algebraic ZDD operations.

LCM over ZDDs does not touch the core algo-
rithm of LCM, and just generates a ZDD for the
solutions obtained by LCM. Figure 4 shows the ba-
sic structure of the original LCM algorithm. Here
we omit detailed techniques used in the original
LCM for checking frequency of each itemset, but
basically the algorithm explores all the candidate
of itemsets in a backtracking (or depth-first) man-
ner, and when a frequent itemset is found, it is ap-
pended one by one to the output file. On the other
hand, LCM over ZDDs constructs a ZDD which
is the union of all the itemsets found in the back-
tracking search, and finally returns a pointer to the
root node of the ZDD. A basic modification can be
described as Fig. 5.

The performance of LCM over ZDDs algorithm
is shown in [9]. In the Table 2, the benchmark
datasets are chosen from FIMI2003 repository [4].
|ZDD| represents the number of ZDD nodes rep-

resenting all the frequent itemsets. The column
“LCM-count” shows the computation time of the
original LCM when counting only the number of
itemsets, and ‘LCM-dump” represents the time for
listing all the itemsets into the output file (using
/dev/null). “LCM over ZDD” show the time for
generating the results of the ZDD on the main
memory, including the time for counting the ZDD
nodes.

We can observe that LCM over ZDDs is more
efficient than the original LCM-dump. The differ-
ence becomes significant when very large numbers
of itemsets are generated. The original LCM-dump
is known as an output linear time algorithm, but
LCM over ZDDs requires a sub-linear time for the
number of itemsets. The computational time of
LCM over ZDDs is almost the same as executing
an LCM-count. We must emphasize that LCM-
count does not store the itemsets, but only counts
the number of solutions. On the other hand, LCM
over ZDDs generates all the solutions and stores
them on the main memory as a compact ZDD. This
is an important difference.

After executing LCM over ZDDs, we can ap-
ply various algebraic ZDD operations to filter or
analyze the frequent itemsets [8]. In the follow-
ing sections, we present a novel method of finding
distinctive frequent itemsets from time segmented
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Figure 6: ZDD-based symbolic processing for finite automata.

databases.

4 Distinctive Frequent Itemset
Mining from Time Segmented

Databases

LCM over ZDDs algorithm is developed for com-
binatorial (non-sequential) itemset mining, but in
this paper, we propose a novel idea of applying
the algorithm to a sequential data mining prob-
lem. Our method finds distinctive itemsets which
frequently appear in “time segmented” sequential
transaction databases. This method will be useful
for many types of real-life databases, such as, daily
(or weekly, monthly, etc.) market sales, traffic ac-
cidents, web click streams, influenza virus types,
etc.

First we define the time segmented sequential
databases. This is a list of (the same type of)
transaction databases Di, each of which is indexed
by a sequential segment number i (i = 1, 2, . . . ,N).
Here we do not define the sequential order of the
transactions in a same time segment.

4.1 Itemsets with Distinctive Sequential
Frequency Patterns

In this data model, we generate a sequence of the
families of frequent itemsets Fi from respective
databases Di with a given common minimum sup-
port ratio α. We then want to extract a family of
distinctive frequent itemsets F having a sequential
frequency pattern, for example:

• Each itemset in F is always included in Fi (i >

k) but not in Fi (i ≤ k), for some k (1 ≤ k <

N). In other words, the itemset suddenly be-
come frequent on some day and then contin-
uously frequent. We do not know k, when it
becomes frequent.

• Each itemset in F is included only in
Fk, Fk+1, Fk+2, for some k (1 ≤ k ≤ N − 2).
In other words, the itemset is frequent only in
the consecutive three days, and never been fre-
quent in other days. We do not know k, when
it starts being frequent.

• Each itemset in F is included in Fi when (i <

k) or (i ≥ l), for some k, l (1 < k < l < N). In
other words, the itemset is frequent on the first
and the last days, however it is infrequent only
in one consecutive period. We do not mind
when it starts and ends being infrequent.
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4.2 Frequency Pattern Charts Using
Regular Expressions

We propose a way to represent “frequency pat-
tern chart” by a string of ‘0’ and ‘1’. For
example, those three example can be repre-
sented by the string “0...01...1”, “0...01110...0” and
1...10...01...1”, where ‘0’ means infrequent and ‘1’
means frequent. More precisely, we can use regu-
lar expressions to represent the frequency pattern
charts as follows:

• 00*11* (suddenly becomes frequent and con-
tinues.)

• 0*1110* (frequent only for three consecutive
segments.)

• 11*00*11* (frequent, infrequent and frequent
again.)

Using a regular expression, we can easily and accu-
rately represent the sequence of frequency patterns
which we are interested in. So, our goal is to ex-
tract a family of all itemsets satisfying the given
frequency pattern chart represented by a regular
expression.

4.3 ZDD-Based Symbolic Data Process-
ing for Frequency Pattern Charts

The above problem is efficiently solved by ZDDs
representing for families of itemsets. The overall
process for “0*1110*” is illustrated in Fig. 6. First
we construct a Nondeterministic Finite Automa-
ton (NFA) to accept the same strings as the given
regular expression. In this automaton, each state
has at most two edges labeled ‘0’ or ‘1’. When
an itemset is staying at a certain state, and if the
itemset is included in next Fi (i.e. frequent), then
it choose ‘1’ edge, otherwise choose ‘0’ edge. If no
corresponding edge exists, the itemset disappears.
It is a well-known process to construct the NFA
by a systematic way with a computation time lin-
early to the length of the regular expression. Next,
we determine the state transition function for each
state of the NFA.

In the case of “0*1110*”, the state transition
functions can be written as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Next(S1)← S1 ∪ Fi

Next(S2)← Fi − S1

Next(S3)← S2 ∩ Fi

Next(S4)← (S4 − Fi) ∪ (S3 ∩ Fi)

In this formulas, Sj represents a family of itemsets
staying at the state. Then, the itemsets included
in Fi (i.e. Sj ∩ Fi) travarse the 1-edge, and the
itemsets not in Fi (i.e. Sj − Fi) traverse the 0-
edge. In this way, the itemsets in the next states
can be calculated as set operations.

Here we use the complement set S1 instead of
S1, because S1 corresponds to “0*”, that means
itemsets which are always infrequent for all Fi’s.
However, we cannot directly get infrequent item-
sets from Fi’s, so we manipulate S1. As the regular
language is closed under the complement operation,
we can see that it has no significant impact to the
computability.

We then simulate the NFA’s action symbolically
by using algebraic ZDD operations. In the simula-
tion process, we prepare one ZDD for each state Sj

of the NFA (0 ≤ j < M , where M is the number
of NFA states), and all Sj’s are initialized to the
empty family. Then the family of frequent item-
sets F1 is computed from D1 by using LCM over
ZDDs, and the F1 is given as the first input to the
NFA. The next states of Sj’s can be computed by
the state transition functions with the current Sj’s
and F1 by using algebraic ZDD operations. This
computation process is repeated sequentially until
all Fi’s (i = 1, 2, . . . N) are generated and given to
the NFA. Finally, the ZDDs of the accepting states
(S4) contains the solutions of itemsets F whose fre-
quency patterns satisfy the given frequency pattern
chart. We remark that this method is based on a
similar idea as the “symbolic simulation” used in
VLSI formal verification method.

5 Experimental Results

To evaluate our method, we conducted experiments
for the benchmark datasets. For example, “BMS-
WebView-1” is known as a set of click streams for
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Table 3: Number of itemsets and ZDD size for each state of NFA in symbolic processing.
i Fi S1 S2 S3 S4(= F)

(seg.) #Itemset |ZDD| #Itemset |ZDD| #Itemset |ZDD| #Itemset |ZDD| #Itemset |ZDD|
0 − − 0 0 0 0 0 0 0 0
1 345,095 1,483 345,095 1,483 345,095 1,483 0 0 0 0
2 131,908 447 476,592 1,660 131,417 316 491 314 0 0
3 340 228 476,557 1,688 45 50 23 31 233 172
4 701 374 476,774 1,792 217 190 8 12 39 52
5 1,393 562 477,528 2,005 754 368 59 70 18 29
6 2,230 797 478,867 2,444 1,339 611 109 96 37 53
7 1,668 666 479,695 2,741 828 479 199 150 33 55
8 (1.49 · 1020) 12,147 (1.49 · 1020) 15,082 (1.49 · 1020) 15,862 500 322 186 136
9 328 260 (1.49 · 1020) 15,096 10 16 29 43 174 150

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
55 1,598 737 (7.14 · 1044) 26,499 361 248 109 82 878 313
56 425 336 (7.14 · 1044) 26,516 19 25 3 4 877 320
57 443 322 (7.14 · 1044) 26,560 17 26 0 0 872 318
58 455 342 (7.14 · 1044) 26,607 57 63 5 8 866 312
59 1,610 723 (7.14 · 1044) 26,817 676 287 17 18 852 302

Table 4: Experimental results for performance evaluation.
Dataset α Freq. pat. #Itemset Time

(#Segment) (%) chart Fi’s F (sec)
BMS-WebView-1 0.5 0*1110* 7.21 · 1016 37 0.40
(59 segments) 0.4 0*1110* 7.14 · 1044 852 4.51

0.3 0*1110* 1.18 · 1046 3.57 · 1044 42.00
0.5 11*00*11* 7.21 · 1016 7 0.40
0.4 11*00*11* 7.14 · 1044 6 4.41
0.3 11*00*11* 1.18 · 1046 19 42.90

BMS-WebView-2 0.4 0*1110* 666,654 300 1.75
(77 segments) 0.3 0*1110* 9,236,264 1,493 2.69

0.2 0*1110* 1.44 · 1017 38,895 7.04
(2.4GHz Core2Duo PC, 2 GB mem., SuSE 10, GNU C++)

an online shopping site. Each transaction shows a
set of visiting web pages by one customer’s con-
secutive action. This dataset consists of 59,602
transactions without any timing information, but
we assume that they are sorted by time, and we
partitioned them with 1,000 transactions per seg-
ment, i.e. we have 59 segments in total. (the last
fragment is omitted.) In this way, we artificially
generated time segmented databases.

We then apply our method to extract distinctive
itemsets F . Table.3 shows the result of the number
of itemsets and ZDD sizes during the symbolic sim-
ulation for “BMS-WebView-1” with α = 0.4% and
the frequency pattern chart “0*1110*”. We ob-
served that 852 itemsets are finally extracted from

713623846352979940529143133451627984798184096
(≈ 7.14 · 1044) of frequent itemsets. The total
computation time is less than five seconds, includ-
ing the execution of LCM over ZDDs. To check
the correctness, we confirmed that the itemset
{18631,18643} ∈ F is frequent only in D50,D51

and D52. Similarly, {46293,46285,46281} ∈ F is
frequent only in D6,D7 and D8. This means that
we have discovered some local event only seen in
these time segments.

Our method can be applied flexibly for various
settings. Table 4 shows the performances for dif-
ferent datasets, parameters and frequency pattern
charts.
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We remark that our method repeats the same
procedure for each time segment, so the computa-
tion time is basically linear to the number of time
segments N , but it depends on ZDD sizes for rep-
resenting Fi’s and Sj ’s. We can apply this method
for large N , if we appropriately control the problm
size by the minimum support ratio α.

As related work on itemset data compression,
the techniques of closed/maximal itemset mining
are known. However, the distinctive itemsets in F
may not closed/maximal for each Fi, so we cannot
compute F correctly if we use the closed/maximal
sets of Fi’s. ZDD-based data structure has a
great advantage that it can compress any family of
itemsets and can apply symbolic operations for all
itemsets without decompression. Our ZDD-based
method will make a breakthrough to large-scale se-
quential data mining.

6 Summary

we presented a novel method of finding distinctive
frequent itemsets from time segmented databases.
We proposed “frequency pattern chart” using regu-
lar expressions for specifying distinctive frequency
patterns in time segmented databases. Our method
efficiently extracts all itemsets satisfying a given
frequency pattern chart using LCM over ZDDs al-
gorithm and ZDD-based symbolic processing of fi-
nite automata.

BDD-based symbolic processing techniques for
sequential systems have been developed in the area
of VLSI formal verification. Our method is the first
practical result of applying such symbolic method
to a sequential data mining problem. Time seg-
mented databases often appear in many real-life
problems, so our new method will have a signifi-
cant impact to various practical applications.
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