
TCS -TR-A-09-38

TCS Technical Report

Mining Frequent Bipartite Episodes from Event
Sequences

by

Takashi Katoh, Hiroki Arimura, and Kouichi

Hirata

Division of Computer Science

Report Series A

May 21, 2009

Hokkaido University
Graduate School of

Information Science and Technology

Email: arim@ist.hokudai.ac.jp Phone: +81-011-706-7680
Fax: +81-011-706-7680

Mining Frequent Bipartite Episodes from Event
Sequences ⋆

Takashi Katoh1, Hiroki Arimura1, and Kouichi Hirata2

1 Graduate School of Information Science and Technology, Hokkaido University
Kita 14-jo Nishi 9-chome, Sapporo 060-0814, Japan

{t-katou, arim}@ist.hokudai.ac.jp
Tel: +81-11-706-7678, Fax: +81-11-706-7890

2 Department of Artificial Intelligence, Kyushu Institute of Technology
Kawazu 680-4, Iizuka 820-8502, Japan

hirata@ai.kyutech.ac.jp

Tel: +81-948-29-7622, Fax: +81-948-29-7601

Abstract. In this paper, first we introduce a bipartite episode of the
form A 7→ B for two sets A and B of events, which means that every
event of A is followed by every event of B. Then, we present an algorithm
that finds all frequent bipartite episodes from an input sequence without
duplication in O(|Σ| · N) time per an episode and in O(|Σ|2n) space,
where Σ is an alphabet, N is total input size of S, and n is the length of
S. Finally, we give experimental results on artificial and real sequences
to evaluate the efficiency of the algorithm.

1 Introduction

It is one of the important tasks in data mining to discover frequent patterns
from time-related data. For such a task, Mannila et al. [10] have introduced
episode mining to discover frequent episodes in an event sequence. Here, an
episode is formulated as an acyclic labeled digraphs in which labels correspond
to events and arcs represent a temporal precedent-subsequent relation in an event
sequence. Then, the episode is a richer representation of temporal relationship
than a subsequence, which represents just a linearly ordered relation in sequential
pattern mining (cf., [3, 12]). Furthermore, since the frequency of the episode is
formulated by a window that is a subsequence of an event sequence under a fixed
time span, the episode mining is more appropriate than the sequential pattern
mining when considering the time span.

For subclasses of episodes [8, 9, 5, 10], a number of efficient algorithms have
been developed so far (in Fig. 1). Mannila et al. [10] presented efficient mining
algorithm for subclasses of episodes, called parallel episodes and serial episodes
Mannila et al. [10] have designed an algorithm to construct general class of
episodes from serial and parallel episodes, which is general but inefficient. On
the other hand, in order to capture the direct relationship between premises
⋆ This work is partially supported by Grand-in-Aid for JSPS Fellows (20·3406).

a b c

a

b

c

a

b

c

b

a

b

c

b

c

a

b

c

ba

a

b

c

ba b

serial episode

parallel episode

sectorial episode

bipartite episode

diamond episode

elliptic episode

Fig. 1. Examples of subclasses of episode. serial episode (Mannila et al. [10]), parallel
episode (Mannila et al. [10]), sectorial episode (Katoh et al. [8]), bipartite episode (this
paper), diamond episode (Katoh et al. [9]), and elliptic episode (Katoh et al. [5]).

and consequences, Katoh et al. have introduced sectorial episodes [8], diamond
episodes [9], and elliptic episodes [5]. Both episodes have the special events, a
source as a premise and a sink as a consequence. In particular, from bacterial
culture data [5, 9], they have succeeded to find frequent diamond and elliptic
episodes concerned with the replacement of bacteria and the changes for drug
resistance, which are valuable from the medical viewpoint. Here, the source and
the sink are set to the bacteria and another bacteria for the former episodes,
and the sensitivity of antibiotic and the resistant of the same antibiotic for the
latter episodes.

Since both diamond and elliptic episodes have just a single source and a
single sink, they can represent no relationship between plural premises and plural
consequences. On the other hand, plural sources or plural sinks are necessary to
represent episodes that plural premises or plural consequences simultaneously
occur. Hence, as the simplest forms of episodes with plural sources and plural
sinks, in this paper, we newly introduce bipartite episodes of the form A 7→B,
where A and B are sets of events. The bipartite episode A 7→ B means that
every event of A is followed by every event of B, so A and B are regarded as the
sets of sources and sinks, respectively, and the graph representation of it forms
a directed bipartite graph from A to B.

By paying our attention to enumeration methods, Katoh et al. [5, 9] have de-
signed so called level-wise algorithms for enumerating all of the frequent diamond
or elliptic episodes, based on the frequent itemset mining algorithm Apriori-
Tid [1]. While the level-wise algorithms are sufficient to find frequent episodes
efficiently in practice, it is difficult to give theoretical guarantee of the efficiency.
Recently, in order to give such theoretical guarantee, Katoh et al. [7] have de-
veloped the enumeration algorithm for frequent diamond episodes in polynomial
delay and in polynomial space, based on depth-first search.

In this paper, we design the algorithm Bipar to enumerate frequent bipartite
episodes efficiently based on depth-first search. Then, it finds all of the frequent

2

bipartite episodes in an input sequence S without duplication in O(|Σ|N) time
per an episode and in O(|Σ|2n) space, where |Σ|, n, and N are an alphabet size,
the length of S, and the total size of S, respectively. Hence, we can enumerate
frequent bipartite episodes in polynomial delay and in polynomial space. We
also give the incremental computation for occurrences, and pratical speed-up by
dynamic programming and prefix-based classes.

This paper is organized as follows. In Section 2, we introduce bipartite
episodes and other notions necessary to the later discussion. In Section 3, we
discuss several properties of bipartite episodes. In Section 4, we present the al-
gorithm Bipar and show its correctness and complexity. In Section 5, we give
some experimental results from randomly generated event sequences to evaluate
the practical performance of the algorithms. In Section 6, we conclude this paper
and discuss the future works.

2 Preliminaries

In this section, we introduce the class of bipartite episodes and the related no-
tions necessary to later discussion. We denote the sets of all integers and all
natural numbers by Z and N, respectively. For a set S, we denote the cardi-
nality of S by |S|. A digraph is a graph with directed edges (arcs). A directed
acyclic graph (dag , for short) is a digraph without cycles.

2.1 An input event sequence and its windows
Let Σ = {1, . . . , m} (m ≥ 1) be a finite alphabet with the total order ≤ over
N. Each element e ∈ Σ is called an event 3. Let null be the special, smallest
event, called the null event , such that a < null for all a ∈ Σ. Then, we define
max ∅ = null. An input event sequence (input sequence, for short) S on Σ is a
finite sequence ⟨S1, . . . , Sn⟩ ∈ (2Σ)∗ of events (n ≥ 0), where Si ⊆ Σ is called
the i-th event set for every 1 ≤ i ≤ n. For any i < 0 or i > n, we define Si = ∅.
Then, we define n the length of S by |S| = n and define the total size of S by
||S|| =

∑n
i=1 |S|. Clearly, ||S|| = O(|Σ|n), but the converse is not always true.

2.2 Episodes
Mannila et al. [10] defined an episode as a partially ordered set of labeled nodes.

Definition 1 (Mannila et al. [10]). A labeled acyclic digraph X = (V, E, g)
is an episode over Σ where V is a set of nodes, E ⊆ V × V is a set of arcs and
g : V → Σ is a mapping associating each node with an event.

An episode is an acyclic digraph in the above definition, while it is define as a
partial order in Mannila et al. [10]. It is not hard to see that two definitions are es-
sentially same each other. For an arc set E on a vertex set V , let E+ be the transi-
tive closure of E such that E+ = {(u, v) | there is some directed path from u to v}.
3 Mannila et al. [10] originally referred to each element e ∈ Σ itself as an event type

and an occurrence of e as an event . However, we simply call both of them as events.

3

a

b

c

b

c

a b

W6

W5W1

W4W0

W3W-1

W2

7

b

2-1

a

b

c

5

a

b

c

a

c

a

c

a

b

864310

W-2

-2

Input sequence S
Serial episode X

Bipartite episode Y

windows

event sets

indices

Fig. 2. (Left) An input sequence S = (S1, . . . , S6) of length n = 6 over Σ = {a, b, c}
and their k-windows. (Right) Serial episode X = a 7→ b and a bipartite episode Y =
({a, b, c} 7→{b, c}). In the sequence S, we indicate an occurrence (embedding) of Y in
the second window W2 in circles and arrows. See Example 1 and 2 for details.

Definition 2 (embedding). For episodes Xi = (Vi, Ei, gi) (i = 1, 2), X1 is
embedded in X2, denoted by X1 ⊑ X2, if there exists some mapping f : V1 → V2

such that (i) f preserves vertex labels, i.e., for all v ∈ V1, g1(v) = g2(f(v)),
and (ii) f preserves precedence relation, i.e., for all u, v ∈ V with u ̸= v, if
(u, v) ∈ E1 then (f(u), f(v)) ∈ (E2)+. The mapping f is called an embedding
from X1 to X2.

Given an input sequence S = ⟨S1, . . . , Sn⟩ ∈ (2Σ)∗, an window in S is a
contiguous subsequence W = ⟨Si · · ·Si+k−1⟩ ∈ (2Σ)∗ of S for some i, where
k ≥ 0 is the width of W .

Definition 3 (occurrence for an episode). An episode X = (V,E, g) occurs
in an window W = ⟨S1 · · ·Sk⟩ ∈ (2Σ)∗, denoted by X ⊑ W , if there exists
some mapping h : V → {1, . . . , k} such that (i) h preserves vertex labels, i.e.,
for all v ∈ V , g(v) ∈ Sh(x), and (ii) h preserves precedence relation, i.e., for all
u, v ∈ V with u ̸= v, if (u, v) ∈ E then h(u) < h(v). The mapping h in the above
definition is called an embedding of X into W .

An window width is a fixed positive integer 1 ≤ k ≤ n. For any −k+1 ≤ i ≤ n,
we say that an episode X occurs at position i in S if X ⊑ Wi, where Wi =
⟨Si, . . . , Si+k−1⟩ is the i-th window of width k in S. Then, we call i an occurrence
or label of X in S. In what follows, we denote the i-th window Wi by WS,k

i . Let
WS,k = { i | −k +1 ≤ i ≤} be the domain of occurrences. For an episode X, we
define the occurrence list for X in S by WS,k(X) = {−k+1 ≤ i ≤ n |X ⊑ Wi },
the set of occurrences of X in an input S.

Example 1. Consider an alphabet Σ = {a, b, c} and an input event sequence
S = ⟨{a, b}, {b}, {a, c}, {a, c}, {a, b, c}, {a, b, c}⟩ in Figure 2. Then, if the window
width k is 4, has nine 4-windows from W−2 to W6 for all −2 ≤ i ≤ 6, i.e.,
WS,5 = { Wi | − 2 ≤ i ≤ 6 }.

Let C be a subclass of episodes, S be an input sequence, and k ≥ 1 a window
width. Let X ∈ C be an episode in the class C. The frequency of X in S is defined

4

by the number of k-windows freqS,k(X) = |WS,k(X)| = O(n). A minimum
frequency threshold is any positive integer σ ≥ 1. Without loss of generality
that σ ≤ |WS,k| for the length n of S. Then, the episode X is σ-frequent in
S if freqS,k(X) ≥ σ. We denote by FS,k,σ be the set of all σ-frequent episodes
occurring in S. Let C be a subclass of episodes we consider.

Definition 4. Frequent Episode Mining Problem for C:
Given an input sequence S ∈ (2Σ)∗, an window width k ≥ 1, and a minimum
frequency threshold σ ≥ 1, the task is to find all σ-frequent episodes X within
class C that occur in S with window width k without duplicates.

Our goal is to design an efficient algorithm for the frequent episode mining
problem in the framework of enumeration algorithms [2, 4]. Let N be the total
input size and M the number of all solutions. An enumeration algorithm A is
of output-polynomial time, if A finds all solutions S ∈ S in total polynomial
time both in N and M . Also A is of polynomial delay , if the delay , which is the
maximum computation time between two consecutive outputs, is bounded by a
polynomial in N alone.

3 Bipartite Episodes

3.1 Definition

Definition 5. For m ≥ 1, m-serial episode (or serial episode) over Σ is a se-
quence P = (a1 7→ · · · 7→ am) of events a1, . . . , am ∈ Σ. This P represents an
episode X = (V, E, g), where V = {v1 . . . vm}, E = {(vi, vi+1) | 1 ≤ i < m}, and
g(i) = ai for every i = 1, . . . ,m.

Definition 6. An episode X = (V,E, g) is a partial bipartite episode (or partial
bi-episode) if the underlying acyclic digraph X is bipartite, i.e., (i) V = V1 ∪ V2

for mutually disjoint sets V1, V2, (ii) for every arc (x, y) ∈ E, (x, y) ∈ V1 × V2.
Then, we call V1 and V2 the source and sink sets.

Definition 7. A bipartite episode (bi-episode, for short) is an episode X =
(V, E, g) that satisfies the following conditions (i) – (iii):

(i) X is a partial bipartite episode with V = V1 ∪ V2.
(ii) X is complete, i.e., E = V1 × V2 holds.
(iii) X is partwise-linear , that is, for every i = 1, 2, the set Vi contains no distinct

vertices with the same labeling by g.

In what follows, we represent a bipartite episode X = (V1∪V2, E, g) by a pair
(A,B) ∈ 2Σ×2Σ of two subsets A,B ⊂ Σ of events, or equivalently, an expression
(A 7→B), where A = g(V1) and B = g(V2) are the images of V1 and V2 by label
mapping g. We also write (a, b) or (a 7→b) for a 2-serial episode. In what follows,
then, we define the size of a bipartite episode X by ||X|| = |A|+|B| = |V1|+|V2|.

5

Example 2. In Figure 2, we show examples of an input event sequence S =
⟨{a, b}, {b}, {a, c}, {a, c}, {a, b, c}, {a, b, c}⟩ of length n = 6, a serial episode X =
a 7→ b and a bipartite episode Y = ({a, b, c} 7→ {b, c}) on an alphabet of events
Σ = {a, b, c}. Then, the window list for a bipartite episode Y = ({a, b, c} 7→
{b, c}) is W(Y) = {W2,W3,W4}.

In what follows, we denote by SEk, SE = ∪k≥1SEk, PE , SEC, BE , DE ,
and EE , respectively, the classes of k-serial, serial, parallel, sectorial, bipartite,
diamond, and elliptic episodes over Σ. For subclasses of episodes, the following
inclusion relation hold: (i) SE2 ⊆ SEC ⊆ BE and (ii) PE ⊆ BE .

3.2 Serial constructibility
In this section, we introduce properties of bipartite episode that are necessary to
devise an efficient algorithm for the frequent bipartite episode mining problem.
We define the set of all serial episodes embedded in episode X by Ser(X) =
{ S ∈ SE |S ⊑ X }. An episode X is said to be serially constructible on Σ if for
any input event sequence S on Σ and for any window W of S, X ⊑ W holds iff
for every serial episode S ∈ Ser(X), S ⊑ W holds.

Katoh and Hirata [6] gave a necessary and sufficient condition for serially
constructibility, called the parallel-freeness.

Definition 8 (Katoh and Hirata [6]). An episode X = (V, E, g) is parallel-
free if any pair of vertices labeled by the same event are reachable, that is, for
any pair of mutually distinct vertices u, v ∈ V (u ̸= v), if g(u) = g(v) then there
exists a directed path from u to v or v to u in X.

Theorem 1 (Katoh and Hirata [6]). Let Σ be any alphabet. X is parallel-free
iff X is serially constructible.

Theorem 2. Let X be partial bi-episode. If X is bipartite then X is parallel-free.

Corollary 1. Any bipartite episode is serially constructible.

Let Xi = (Ai 7→Bi) be a bipartite episode for every i = 1, 2. We define that
X1 ⊆ X2 if A1 ⊆ A2 and B1 ⊆ B2.

Lemma 1 (anti-monotonicity of frequency). Let σ be any frequency thresh-
old and k ≥ 1 be a window width. Let Xi = (Ai 7→Bi) (i = 1, 2) be a bipartite
episode. If X1 ⊆ X2 then freqS,k(X1) ≥ freqS,k(X2).

Proof. Let W be any window in S. Suppose that X2 ⊑ W . By Corollary 1,
S ⊑ W for all serial episodes S ∈ Ser(X2). Since X1 ⊆ X2, we can show that
Ser(X1) ⊆ Ser(X2). For all serial episodes S ∈ Ser(X1), it holds that S ⊑ W .
By Corollary 1, X1 ⊑ W . From the above, if X2 ⊑ W then X1 ⊑ W for any W .
Therefore, WS,k(W1) ⊇ WS,k(W2). Then, freq(X1) ≥ freq(X2). ⊓⊔

Now, we have shown the serial constructibility for bipartite episodes. In the
following, however, we further make detailed analysis on the serial constructibil-
ity for bipartite episodes by giving a simpler proof of Corollary 1 that does not
use Theorem 1. For a window W and an event e ∈ Σ, we denote by st(e,W) and
et(e,W), respectively, the first and the last positions in W at which e occurs.

6

Lemma 2 (characterization of the occurrences for a bipartite episode).
Let X = (U, V, A, g) be any bipartite episode and W any window in WS,k. Then,
X ⊑ W iff (maxu∈U st(g(u),W)) < (minv∈V et(g(v),W)) holds.

Lemma 3 (characterization of the occurrences for a bipartite episode).
Let U = {u1, . . . , un} and V = {v1, . . . , vm} (0 ≤ n, 0 ≤ m) be sets of verte-
ces, X = (U, V,A, g) be a bipartite episode and W = ⟨S1, . . . , Sk⟩ a window
in WS,k. Then, X ⊑ W iff for any n,m ≥ 0, max(st(g(u1)), . . . , st(g(un))) <
min(et(g(v1)), . . . , et(g(vm))) hold.

Proof. Let U = {u1, . . . , un} and V = {v1, . . . , vm} (0 ≤ n, 0 ≤ m) and
W = ⟨S1, . . . , Sk⟩. We write st(u) for st(u,W) and same for et(u,W). (Only
if-direction) If X ⊑ W then there exists some mapping h : (U ∪ V → {1, . . . k})
satisfying (i) for all vertex v ∈ (U ∪ V), g(v) ∈ Sh(v) and (ii) for all verteces
u ∈ U and v ∈ V , h(u) < h(v). For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, it holds
that st(g(ui)) ≤ h(ui) and h(uj) ≤ et(g(uj)), respectively. Then, it holds that
maxu∈U st(g(u)) ≤ maxv∈U h(u) and minv∈V h(v) ≤ minv∈V et(g(v)). By the
condition (ii), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, it holds that h(ui) < h(vj).
Therefore, we obtain the claim. (If-direction) Suppose that maxu∈U st(g(u)) <
minv∈V et(g(v)) holds. Then, we can build a mapping h by For all 1 ≤ i ≤ n
and 1 ≤ j ≤ m, h(ui) = st(g(uj)) for every 1 ≤ i ≤ n and h(vj) = et(g(vj)) for
every 1 ≤ j ≤ m. Then, the claim holds. ⊓⊔

Lemma 4. For any bipartite episode X = (A 7→B), Ser(X) = A ∪ B ∪ { (a 7→
b) | (a, b) ∈ A×B }

Theorem 3 (a detailed version of serial construction). Let X be a bi-
partite episode and W = ⟨S1, . . . , Sk⟩ a window in WS,k. Let, A,B ⊆ Σ be
non-empty sets. Then,

(1) If X = (A 7→B) then, X ⊑ W iff ∀(a, b) ∈ A×B, (a 7→b) ⊑ W .
(2) if X = (A 7→∅) or X = (∅ 7→B), X ⊑ W iff ∀a ∈ A ∪ B, a ⊑ W .

We define the merge of two bipartite episodes Xi = (Ai 7→Bi) (i = 1, 2) by
X1 ∪X2 = (A1 ∪A2 7→B1 ∪B2), such that the edge set is the set unions of their
edge sets. The downward closure property for a class C of episodes says that for
any episodes X1, X2 ∈ C, the condition WS,k(X1∪X2) = WS,k(X1)

∩
WS,k(X2)

holds. Unfortunately, the class of bipartite episodes does not satisfy this prop-
erty in general. The next lemma is essential to fast incremental computation of
occurrence lists for the class of bipartite episodes in the next section.

Theorem 4 (downward closure property). Let Xi = (Ai 7→Bi) (i = 1, 2).
For any input sequence S and any k ≥ 1, if A1 = A2 then WS,k(X1 ∪ X2) =
WS,k(X1)

∩
WS,k(X2).

7

a

c

b

a

c

b

c

b
a

c

b
a

c

a

c

b
a

b

a

c

b

b

a

c

bc

a

c

ba

a

c

b

a

c

ba

c

b
a

b

c

ba

b

a

c

a

b

a

b

a

b

b
a

b
c

a

b
a

a

b

a

b

a

c

b
a

c

c

ba

c

a

c

a

c

a

b

a

c

b
a

c
c

a

c
a

a

c

a

c

a

c

b
c

b

c

b

c

ba

cc

ba

bc

b

b
c

b
c

c

b
a

c

b

c

b

a

c

ba

c

b
a

a

c
a

a

b
a

ba caaa

a

a

c

bb

c

b
b

a

c
b

a

b
b

bb cbab

b

a

c

bc

c

b
c

a

c
c

a

b
c

bc ccac

c
a

c

b

a

b

a

c c

b

a cb

Fig. 3. The parent-child relationships on the alphabet Σ = {a, b, c}, where each white
empty circle indicates the empty set.

4 A Polynomial-Delay and Polynomial-Space Algorithm

4.1 The outline of the algorithm

In this section, we present a polynomial-delay and polynomial-space algorithm
Bipar for extracting all frequent bipartite episodes in a given input sequence.
Let S = (S1, . . . , Sn) ∈ (2Σ)∗ be an input sequence of length n and total input
size N = ||S||, k ≥ 1 be the window width, and σ ≥ 1 be the minimum frequency
threshold.

4.2 Enumeration of bipartite episodes

The main idea of our algorithm is to enumerate all frequent bipartite episodes
by searching the whole search space from general to specific using depth-first
search. For the search space, we define the parent-child relationships for bipartite
episodes.

Definition 9. The bi-episode ⊥ = (∅ 7→ ∅) is the root . Then, the parent of a
non-root bipartite episode X = A 7→B is defined by

parent(A 7→B) =
{

(A − {max(A)}) 7→B (if B = ∅)
A 7→(B − {max(B)}) (otherwise)

We define the set of all children of X by Children(X) = {Y | parent(Y) =
X}. Then, we define the family tree for BE by the rooted digraph T (BE) =
(V, E,⊥) with the root ⊥, the vertex set V = (BE), and the edge set E =

8

algorithm Bipar(S, k, Σ, σ)
input: input event sequence S = ⟨S1, . . . Sn⟩ ∈ (2Σ)∗ of length n ≥ 0,
window width k > 0, alphabet of events Σ, the minimum frequency 1 ≤ σ ≤ n + k;
output: the set of all σ-frequent bipartite episodes in S with window width k;
method:
1 ⊥ := (∅ 7→∅); // The root bipartite episode ⊥;
2 FreqBiparRec(⊥,S, k, Σ, σ);

procedure FreqBiparRec(X,S, k, Σ, σ)
input: bipartite episode X = (A 7→B) and S, k, Σ, and k are same as in Bipar.
output: the set of all σ-frequent bipartite episodes in S that are descendants of X;
method:
1 if (|WS,k(X)| ≥ σ) then
2 output X;
3 // Execute in the special case that the right hand side of X is empty.
4 if (B = ∅) then
5 foreach e ∈ Σ such that e > max(A) do
6 // Expand the left hand side.
7 FreqBiparRec(((A ∪ {e}) 7→B),S, k, Σ, σ);
8 end if
9 // Execute always.
10 foreach (e ∈ Σ (e > max(B))) do
11 // Expand the right hand side.
12 FreqBiparRec((A 7→(B ∪ {e})),S, k, Σ, σ);
13 end if

Fig. 4. The main algorithm Bipar and a recursive subprocedure FreqBiparRec for
mining frequent bipartite episodes in a sequence.

{ (X, Y) |X is the parent of Y , Y ̸= ⊥ }. As shown in Fig. 3, we can show that
the family tree T (BE) forms the spanning tree for all bi-episodes of BE .

In Fig. 4, we show the basic version of our polynomial-delay and polynomial-
space algorithm Bipar and its subprocedure FreqBiparRec for extracting fre-
quent bipartite episodes from input sequence S. The algorithm is a backtracking
algorithm that traverses the spanning tree T (BE) based on depth-first search
starting from the root ⊥ using the parent-child relationships over BE .

The subprocedure BiparOcc is a straightforward algorithm that computes
the occurrence list WS,k(X) for bi-episode X by testing the embedding X ⊑
WS,k

i for each position i while scanning the input sequence. Its definition is
omitted here. We can show that BiparOcc computes WS,k(X) from X of size
m = ||X|| and an input sequence S of length n in O(|Σ|kmn) time.

In Fig. 5, we show the algorithm for computing the occurrence list of a
bipartite episode.

Lemma 5. Let S be any input sequence of length n. For any window width
k ≥ 1 and minimum frequency threshold σ ≥ 1, the algorithm Bipar in Fig. 4

9

procedure BiparOcc(X, k,S)
input: bipartite episode X = (A 7→B),
window width k > 0, an input sequence S = ⟨S1, . . . Sn⟩;
output: the occurrence list W for X;
method:
1 W := ∅;
2 for (i := −k + 1, . . . , n) do

3 if (X ⊑ WS,k
i) then W := W ∪ {i};

4 return W ;

Fig. 5. An algorithm BiparOcc for computing the occurrence list of a bipartite
episode.

procedure BiparOccInc(X, X0, W0, k,S)
input: bipartite episodes X = (A 7→(B0 ∪ {e}) and X0 = (A 7→B0) = parent(X),
the occurrence list W0 for X0, window width k > 0
, an input sequence S = ⟨S1, . . . Sn⟩;
output: the occurrence list W for X;
method:
1 W := W0;
2 if (A = ∅) then W := W∩SerialOcc((∅ 7→{e}), k,S);
3 else
4 foreach (a ∈ A) W := W∩SerialOcc((a 7→e), k,S);
5 return W ;

Fig. 6. An improved algorithm BiparOccInc for computing the occurrence list of a
bipartite episode.

with BiparOcc finds all σ-frequent bipartite episodes occurring in S without
duplicates in O(|Σ|4kn) delay and O(|Σ|2 + n) space.

4.3 Incremental computation of occurrences
The algorithm BiparOccInc in Fig.6 computes the occurrence list W = WS,k(Y)
for the newly created child episode Y = (A 7→B ∪ {b}) from the list WS,k(X))
for its parent X = (A 7→B) by calling the subprocedure SerialOcc. The next
lemma is derived from Lemma 5 on the downward closure property for BE .

Lemma 6 (correctness of BiparOccInc). Let X = (A 7→B) be a bipartite
episode and e ∈ Σ be an event. Then, we have the next (1) and (2):

(1) If A = ∅ then W(A 7→(B ∪ {e})) = W(X) ∩W(∅ 7→{e}).
(2) if A ̸= ∅ then W(A 7→(B ∪ {e})) = W(X) ∩

∩
a∈A W(a 7→{e}).

The algorithm BiparOccInc uses the subprocedure SerialOcc for com-
puting the occurrence list for a 2-serial episode. This algorithm is a modification
of FastSerialOcc for 3-serial episodes in [7] and its definition is omitted here.
We can show that SerialOcc can be implemented to run in O(N) = ||S|| time
in the total input size N = ||S|| regardless window width k.

10

procedure SerialOcc(X, k,S)
input: serial episode X = (a 7→b), window width k > 0,
an input sequence S = ⟨S1, . . . Sn⟩;
output: the occurrence list W for X;
method:
1 W := ∅; (x, y) := (0, 0);
2 for (i := −k + 1, . . . , n) do
3 last := i − 1; end := i + k
4 while x < end and (not (x > last and a ∈ Sx)) do x := x + 1;
5 while z < end and (not (z > x and b ∈ Sy)) do y := y + 1;
6 if (last < x < y < end) then W := W ∪ {i};
7 //(x, y) is the lexicographically first occurrence of X in Wi;
8 end for
9 return W ;

Fig. 7. A linear-time algorithm SerialOcc for the occurrence list of a 2-serial episode.

Fig. 7 shows the algorithm SerialOcc for computation of the occurrence
list for a 2-serial episode, which is a modification of FastSerialOcc in [7]. We
can show that SerialOcc can be implemented to run in O(N) = ||S|| time in
the total input size N = ||S|| regardless window width k.

Lemma 7. The algorithm SerialOcc in Fig. 7 computes the occurrence list
for a 2-serial episodes X = a 7→b in an input sequence S of length n in O(N) =
O(|Σ|n) time regardless window width k, where N = ||S||.

Lemma 8. The algorithm BiparOccInc in Fig.6 computes the new occurrence
list W = WS,k(Y) for the child episode Y = (A 7→ B ∪ {b}) in O(N |A|) =
O(|Σ|2n) time from a bi-episode X = (A 7→B), WS,k(X), any event b ∈ Σ, and
k, where n = |S| and N = ||S||.

4.4 Practical improvement by dynamic programming

We can further improve the computation of occurrence list by BiparOccInc
using dynamic programming technique as follows.

During the execution of the algorithm FreqBiparRec the subprocedure Se-
rialOcc for SE are called many times inside BiparOccInc with the same ar-
guments (a 7→b, k,S) (a, b ∈ Σ). Fig. 8 shows the algorithm LookupSerialOcc
that is a modification version of SerialOcc using dynamic programming. This
algorithm uses a hash table TABLE in Fig. 8 that stores pairs ⟨X,W(X)⟩ of a
2-serial episode X = (a 7→b) and its occurrence list W(X)

We modify the main algorithm Bipar and BiparOccInc such that after ini-
tializating the hash table, we call LookupSerialOcc instead of SerialOcc.
This modification does not change the behavior, while it reduces the total num-
ber of the calls for SerialOcc from at most |Σ||F | to at most |Σ|2, where
F ⊆ BE is the set of solutions.

11

global variable: a hash table TABLE : Σ2 → 2{−k+1,...,n};
initialization: TABLE := ∅;

procedure LookupSerialOcc(X, k ∈ N,S)
input: serial episode X = (a 7→b), window width k > 0,
an input sequence S = ⟨S1, . . . Sn⟩;
output: the occurrence list W for X;
method:
1 if (TABLE[(a, b)] = UNDEF) then
2 W :=SerialOcc((a 7→b), k,S);
3 TABLE := TABLE ∪ {⟨ (a, b), W ⟩ };
4 end if;
5 return TABLE[(a, b)];

Fig. 8. Practical speed-up for computing occurrence lists of serial episodes using dy-
namic programming.

Lemma 9. After initializating the hash table TABLE, the algorithm LookupSe-
rialOcc calls SerialOcc at most O(|Σ|2) times during the execution of the
main procedure Bipar using O(|Σ|2n) memory.

4.5 Reducing the number of scan on the an input sequence by prefix-
based classes

We can improve the computation of occurrence list by BiparOccInc using the
idea of prefix-based classes, which is originally invented by Zaki [14, 15].

For a bipartite episode P = (A,B), called a common prefix , we define the
prefix-based class related to P by the set of bi-episodes

CP = { X = (A 7→B ∪ {b}) |P = (A 7→B), b ∈ Σ, max B < b }.

In our modified algorithm BiparFast, we enumerate each prefix-based classes
for BE instead of each episode in BE . We start with defining enumeration pro-
cedure of bi-episodes using prefix-based classes induced in a new class of family
trees for BE . We define the parent function parent : BE\{⊥} → BE .

Definition 10. For any non-root bipartite episode X = A 7→B,

parent(A 7→B) =

 ((B − {max B}) 7→ ∅) if A = ∅, B ̸= ∅
((A − {max A}) 7→ B) if A ̸= ∅, |B| = 0 or |B| = 1
(A 7→(B − {max B})) if A ̸= ∅, |B| ≥ 2

By using the parent function above, we can define the family tree T =
(V, E,⊥) in a similar way as in Section 4.2. As shown in Fig. 9, we can show
that the family tree T (BE) forms the spanning tree for all bi-episodes of BE .

Next, we give a procedure to enumerate all bi-partite episodes based on
depth-first search on T . Starting with ⊥ = (∅, ∅), we enumerate bi-episodes in
BE by the following rules.

12

a

b

a

b

a

c

a

c

a

b

a

b

a

b

a

b

a

c

a

c

a

c

a

c c

b

c

b

c

b

c

b

c

b

c

b

a

c

b

a

c

b

a

c

b

a

c

b

a

c

b

a

c

b

c

b
a

c

b
c

b
a

c

b
c

b
a

c

b
a

c

a

c

b
a

b

a

c

b
a

c

a

c

b
a

c

a

c

b
a

b

a

c

b
a

b

a

c

b

b

a

c

bc

a

c

ba

a

c

b b

a

c

b b

a

c

bc

a

c

b c

a

c

ba

a

c

b a

a

c

ba

c

b
a

b

a

c

b
a

b

a

c

b
a

b

c

ba

b c

ba

b c

ba

b

a

c

a

b

a

b

a

b

a

c

a

b

a

c

a

b

a

b

a

b

a

b

a

b

b
a

b
c

a

b
a

a

b
b

a

b
b

a

b
c

a

b
c

a

b
a

a

b
a

a

b

a

c

b
a

c

a

c

b
a

c

a

c

b
a

c

c

ba

c c

ba

c c

ba

c

a

c

a

c

a

b

a

c

a

c

a

c

a

c

a

c

a

b

a

c

a

b

a

c

b
a

c
c

a

c
a

a

c
b

a

c
b

a

c
c

a

c
c

a

c
a

a

c
a

a

c

a

c

b
c

b
a

c

b
c

b
a

c

b
c

b

c

b

c

b

c

b

c

b

c

b

c

ba

cc

ba

bc

b a

cc

b a

cc

ba

bc

b a

bc

b

b
c

b
c

c

b
a

c

b
b

c

b
b

c

b
c

c

b
c

c

b
a

c

b
a

c

b

a

c

ba

a

c

ba

a

c

ba

c

b
a

c

b
a

c

b
a

a

c
a

a

b
a

a

c
a

a

c
a

a

b
a

a

b
a

ba caaa ba ba ca caaa aa

a

c

bb

a

c

bb

a

c

bb

c

b
b

c

b
b

c

b
b

bb cbab bb bb cb cbab ab

a

c

bc

a

c

bc

a

c

bc

c

b
c

c

b
c

c

b
c

a

c
c

a

b
c

a

c
c

a

c
c

a

b
c

a

b
c

bc ccac bc bc cc ccac ac

a b ca cbaa bb ccaa ccbb

a

c
b

a

b
b

a

c
b

a

c
b

a

b
b

a

b
ba

c

b

a

c

b

a

c

b

a

c

b

a

c

b

a

c

b

Fig. 9. The improved parent-child relationships on the alphabet Σ = {a, b, c} (Lines)
and the image of recursive calls in algorithm BiparFast (Arrows).

Lemma 10. For any bi-episodes X,Y ∈ BE, Y is a child of X if and only if
Y is obtained from X by applying one of the following rules to X. The new
occurrence list W(Y) is also obtained by the corresponding rule.

(i) If X = (A 7→∅), then for any e ∈ Σ, Y = (∅ 7→A) and
W(Y) = W(X).

(ii) If X = (A 7→∅), then for any e ∈ Σ, Y = (A∪{e} 7→∅) and
W(Y) = W(X) ∩W(e).

(iii) If X = (A 7→{b}), then for any e ∈ Σ, Y = (A∪{e} 7→{b}) and
W(Y) = W(X) ∩W((e 7→b)).

(iv) If X = (A 7→C∪{a}) ∈ CP , then for any Z = (A 7→C∪{b} ∈ CP such that
a < b, Y = (A 7→ C∪{a, b}), where CP is the unique prefix-based class to
which X belongs, and W(Y) = W(X) ∩W(Z).

Proof. The statements (i) – (iii) are easily proved by construction of the parents.
In statements (iv), it follows from the condition maxB < a, b and a < b that
the parent for Y is uniquely determined to be X. The proof for the property
W(Y) = W(X)∩W(Z) follows from Theorem 5 on downward closure property
for BE . ⊓⊔

By the above lemma, provided that each prefix-based class CP is available,
we do not need to compute the new occurrence lists W(Y) for each child in the
cases of (i) and (iv). We have to explicitly compute the occurrence lists only for
a single event in case (i) and for a 2-serial episodes in case (iii).

Example 3. Consider an alphbet Σ = {a, b, c} and an input event sequence S =
⟨{a, b}, {b}, {a, c}, {a, c}, {a, b, c}, {a, b, c}⟩ in Figure 2. If the window width k is
4, we show that W(X1 = {a, b} 7→ {a}) = {0, 1, 2, 3, 4, 5}, W(X2 = {a, b} 7→
{b}) = {−1, 0, 1, 2, 3, 4, 5}, and W(X3 = {a, b} 7→ {c}) = {0, 1, 2, 3, 4, 5}. Then,
we compute the occurrence lists of Y ∈

∪
i=1,2,3 children(Xi) in Table 1.

13

bipartite episodes occurrence lists

X1 = {a, b} 7→{a} W(X1) = {0, 1, 2, 3, 4, 5}
X2 = {a, b} 7→{b} W(X2) = {−1, 0, 1, 2, 3, 4, 5}
X3 = {a, b} 7→{c} W(X3) = {0, 1, 2, 3, 4, 5}
Y1 = {a, b} 7→{a, b} W(Y1) = W(X1) ∩ W(X2) = {0, 1, 2, 3, 4, 5}
Y2 = {a, b} 7→{a, c} W(Y2) = W(X1) ∩ W(X3) = {0, 1, 2, 3, 4, 5}
Y3 = {a, b} 7→{b, c} W(Y3) = W(X2) ∩ W(X3) = {0, 1, 2, 3, 4, 5}
Y4 = {a, b, c} 7→{a} W(Y4) = W(X1) ∩ W(c 7→a) = {1, 2, 3, 4, 5}
Y5 = {a, b, c} 7→{b} W(Y5) = W(X2) ∩ W(c 7→b) = {2, 3, 4, 5}
Y6 = {a, b, c} 7→{c} W(Y6) = W(X3) ∩ W(c 7→c) = {1, 2, 3, 4, 5}

Table 1. Bipartite episodes Xi; (i = 1, 2, 3) and Yi; (1 ≤ i ≤ 6) in Fig. 2 and whose
occurrence lists.

algorithm BiparFast(S, k, Σ, σ)
input: input event sequence S = ⟨S1, . . . Sn⟩ ∈ (2Σ)∗ of length n ≥ 0,
window width k > 0, alphabet of events Σ,
the minimum frequency 1 ≤ σ ≤ n + k;
output: the set of all σ-frequent bipartite episodes (A 7→B)
such that B ̸= ∅ in S with window width k;
method:
1 if (|WS,k(∅ 7→∅)| ≥ σ) then
2 Xr := ∅; // the set of pairs of a bipartite episode X and whose occurrence list;
3 foreach (e ∈ Σ) Xr := Xr ∪ (∅ 7→{e}, WS,k(e));
4 FastRecA(Xr,S, k, Σ, σ);
5 FastRecB(Xr,S, k, Σ, σ);
6 end if

Fig. 10. The main algorithm BiparFast for mining frequent bipartite episodes in a
sequence.

Based on the above arguments, in Fig. 10, we present the modified version
of our backtracking algorithm, called BiparFast, for finding all frequent bipar-
tite episodes in a given input sequence. In Fig. 11, we also show its recursive
subprocedures FastRecA and FastRecB.

We can apply further improvements to our algorithm BiparFast as shown
in [7]. We can improve the delay of the algorithm BiparFast by the factor of
the height of the search tree T using alternating output technique of [13]. We can
also reduce the space complexity of the algorithm BiparFast from O(|Σ|3n) to
O(|Σ|2n) space by using the diffset technique, of Zaki [15] for itemset mining.

Combining all improvements discussed above, we can modify the basic version
of our backtracking algorithm Bipar. In what follows, we call this modified
algorithm by BiparFast. Now, we have the main theorem of this paper on the
delay and the space complexities of the modified algorithm BiparFast.

14

procedure FastRecA(X,S, k, Σ, σ)
input: the set of pairs X = {(X, WS,k(X))}
of a bipartite episode X and the occurrence window list for X,
X, S, k, Σ, and k are same as in BiparFast.
output: the set of all σ-frequent bipartite episodes Y
that are desendants of X in (X, Y), where (X, W) is any element of X;
method:
1 Xf := ∅;
2 Y := ∅;
2 foreach ((X, W) ∈ X) do
3 if (|W | ≥ σ) Xf := Xf ∪ (X, W);
4 foreach (((A 7→B), W) ∈ Xf) bf then
5 output A 7→B;
6 if (A = ∅) output B 7→∅;
7 if (Xf ̸= ∅) then
8 Ae 7→{b} := one of a bipartite episode in Xf ;
9 Y := ∅;
10 foreach (e ∈ Σ (e > max(Ae))) do
11 foreach ((A 7→{b}, W) ∈ Xf) do
12 Y := (A ∪ {e}) 7→{b};
13 U := W∩ SerialOcc (e 7→b, k,S);
14 Y := Y∪{(Y, U)};
15 end foreach
16 FastRecA(Y,S, k, Σ, σ);
17 FastRecB(Y,S, k, Σ, σ);
18 end foreach
19 end if

procedure FastRecB(X,S, k, Σ, σ)
input and output are are same as in FastRecA.
method:
1 Xf := ∅;
2 Y := ∅;
2 foreach ((X, W) ∈ X) do
3 if (|W | ≥ σ) Xf := Xf ∪ (X, W);
4 foreach ((X, W) ∈ Xf) output X;
5 foreach ((Ap 7→Bp, Wp) ∈ Xf) do
6 Y := ∅;
7 foreach ((As 7→Bs, Ws) ∈ Xf (max(Bs) > max(Bp))) do
8 Y := Ap 7→(Bp ∪ {max(Bs)});
9 U := Wp ∩ Ws;
10 Y := Y∪{(Y, U)};
11 end foreach
12 FastRecB(Y,S, k, Σ, σ);
13 end foreach

Fig. 11. Recursive subprocedures FastRecA and FastRecB of the algorithm Bipar-
Fast.

15

0

2

4

6

8

10

12

14

16

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

11
00

00

n

ru
n
n
in

g
ti
m

e
 (
se

c
)

Fast
FastDP

Fig. 12. Running time for the input
length n, where s = 10, p = 0.1, r = 0.0,
k = 10, and σ = 0.1n.

0

5000

10000

15000

20000

25000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

11
00

00

n

m
e
m

o
ry

 s
iz

e
 (

K
B

)

Fast
FastDP

Fig. 13. Memory size for the input length
n, where s = 10, p = 0.1, r = 0.0, k = 10,
and σ = 0.1n.

Theorem 5. Let S be any input sequence of length n on event alphabet Σ.
For any window width k ≥ 1 and minimum frequency threshold σ ≥ 1, the
algorithm BiparFast can be implemented to find all σ-frequent bipartite episodes
occurring in S without duplicates in O(|Σ|N) delay (time per frequent episode)
and O(|Σ|2n) space, where N = ||S|| is the total size of input.

5 Experimental Results

In this section, we give the experimental results for the following combinations of
the algorithms given in Section 4, by applying to the randomly generated event
sequences and the real event sequence.

Data: We made randomly generated event sequences S = (S1, . . . , Sn) over
an alphabet Σ = {1, . . . , s} from four parameters (n, s, p, r), where each event
set Si (i = 1, . . . , n) is generated by a probability measures P (e ∈ Si) = p(e/s)r

for each e ∈ Σ. The real event sequence is made from bacterial culture data
provided from Osaka Prefectural General Medical Center from 2000 to 2005 by
concatenating detected bacterium for the sample of sputum for every patients.

Method: We implemented the following three depth-first search (DFS)
algorithms given in Section 4:

Basic : the basic DFS algorithm BiparBasic with OiparOcc
in Fig. 4 (sec. 4.1).

Fast : the modified DFS algorithm BiparFast with SerealOcc (sec. 4.5).
FastDP : the modified DFS algorithm BiparFast with LookUpSerealOcc

based on dynamic programming (sec. 4.4).

All experiments were run in a PC (AMD Mobile Athlon64 Processor 3000+,
1.81GHz, 2.00GB memory, Window XP, Visual C++) with window width K ≥ 1
and minimum frequency threshold σ ≥ 1.

Experiment A: Fig. 12 and Fig. 13 show the running time and the size
of virtual memory usage of the algorithms Fast and FastDP for the randomly

16

0

2

4

6

8

10

12

0 50000 100000 150000 200000 250000 300000 350000

#outputs

ru
n
n
in

g
ti
m

e
 (

se
c
)

Fast
FastDP

Fig. 14. Running time for the number of outputs, where n = 10, 000, s = 10, p = 0.1,
r = 0.0, k = 10, and σ = 0.001n.

generated event sequences from the parameter (10000 ≤ n ≤ 100000, s = 10, p =
0.1, r = 0.0), where k = 10 and σ = 0.1n. Then, we know that, the running time
and the size of virtual memory usage of these algorithms seems to be linear in
the input size and thus expected to scales well on large datasets. For this event
sequence, FastDP is five hundred times as faster as Fast. On the other hand,
FastDP used more memory than Fast.

Experiment B: Fig. 14 shows the running time of the algorithms Fast and
FastDP for the number of outputs for the randomly generated event sequences
from the parameter (n = 10, 000, s = 10, p = 0.1, r = 0.0), where k = 10 and
σ = 0.001n. Then, we see that the slopes are almost constant and thus the delays
are just determined by the input size as indicated by Theorem 5.

exp exp1 exp2 exp3 exp4 exp5 exp6 exp7

type rand rand rand rand rand bact bact
n 1, 000 10, 000 10, 000 1, 000 100, 000 70, 606 70, 606
s 10 10 1, 000 10 10 174 174
p 0.1 0.1 0.1 0.1 0.001
r 0.0 0.0 10.0 0.0 0.0

k 10 10 10 100 1, 000 15 15
σ 0.1n 0.001n 0.25n 0.1n 0.1n 0.01n 1

#outputs 2, 330 334, 461 3, 512 1, 048, 576 1, 780 162 177, 216

Table 2. Parameter settings for Experiment C, where rand and bact indicates a ran-
domly generated data and a bacterial culture data, respectively. The first, second, third,
and fourth rows show the name of setting, the data, the parameters, and the number
of output episodes, respectively.

Experiment C: Next, we ran seven experiments to compare the algo-
rithms Basic, Fast, and FastDP for various parameter settings par1 – par7 shown
in Table 2. As input data, exp1 to exp5 used the randomly generated event se-

17

0.01

0.1

1

10

100

1000

10000

100000

exp1 exp2 exp3 exp4 exp5 exp6 exp7

experiments

ru
n
n
in

g
ti
m

e
 (

se
c
) Basic

Fast
FastDP

Fig. 15. Running time for exp1 to exp7.

100

1000

10000

100000

exp1 exp2 exp3 exp4 exp5 exp6 exp7

experiments

m
e
m

o
ry

 s
iz

e
 (
K
B

) Basic
Fast
FastDP

Fig. 16. Memory size for exp1 to exp7.

X = {Serratia-marcescens, Staphylococcus-aureus}
7→{yeast, Stenotrophomonas-maltophilia}

Fig. 17. An example of bipartite episode extracted from a bacterial culture data.

quences with parameters (n, s, p, r), and exp6 and exp7 used the bacterial culture
data.

Fig. 15 and Fig. 16 show the running time and the virtual memory size of
the algorithms. For exp2, exp3, and exp7, we did not have the results for Basic
because the running time was greater than 20, 000 (sec). Then, for exp1, exp4,
exp5, and exp6, we know that Fast and FastDP were faster than Basic. especially,
for exp5, FastDP was 7300 times faster than Basic. On the other hand, Fast
and FastDP were using more memory than Basic. The algorithm FastDP was
using more memory than Fast for exp1 to exp7. The algorithm FastDP was the
fastest algorithm for exp1 to exp7 expect exp3. For exp3 that was a experiment
with large alphabet size |Σ| = 1000, FastDP was using sixteen (16) times large
memory than Fast and Fast was faster than FastDP in this case.

In Fig. 17, we show an example of the bipartite episode X with frequency 21
extracted from the bacterial culture data in exp7, where names in type writer font
are the names of bacteria. This episode says that a group of bacteria yeast and
Stenotrophomonas-maltophilia are detected after another group of bacteria
Serratia-marcescens and Staphylococcus-aureus within fifteen days.

6 Conclusion

This paper studied the problem of frequent bipartite episode mining, and pre-
sented an efficient algorithm Bipar that finds all frequent bipartite episodes in
an input sequence in polynomial delay and polynomial space in the input size.
We have further studied several techniques for reducing the time and the space
complexities of the algorithm.

18

Possible future problems are extension of Bipar for general fragments of
DAGs [10, 11]. Also, we plan to apply the proposed algorithm to bacterial culture
data [5, 9].

References

1. R. Agrawal, R. Srikant: Fast algorithms for mining association rules in large
databases, Proc. 20th VLDB , 487–499, 1994.

2. H. Arimura: Efficient algorithms for mining frequent and closed patterns from
semi-structured data, Proc. PAKDD’08, LNAI 5012, 2–13, 2008.

3. H. Arimura, T. Uno: A polynomial space and polynomial delay algorithm for
enumeration of maximal motifs in a sequence, Proc. ISAAC’05, LNCS 3827, 2005.

4. D. Avis, K. Fukuda: Reverse search for enumeration, Discrete Applied Mathemat-
ics, 65, 21–46, 1996.

5. T. Katoh, K. Hirata: Mining frequent elliptic episodes from event sequences,
Proc. 5th LLLL, 46–52, 2007.

6. T. Katoh, K. Hirata: A simple characterization on serially constructible episodes,
Proc. PAKDD’08, LNAI 5012, 600-607, 2008.

7. T. Katoh, H. Arimura, K. Hirata: A Polynomial-Delay Polynomial-Space
Algorithm for Extracting Frequent Diamond Episodes from Event Sequences
Proc. PAKDD’09, LNAI 5476, 172-183, 2009.

8. T. Katoh, K. Hirata, M. Harao: Mining sectorial episodes from event sequences,
Proc. 10th DS, LNAI 4265, 137–145, 2006.

9. T. Katoh, K. Hirata, M. Harao: Mining frequent diamond episodes from event
sequences, Proc. 4th MDAI, LNAI 4617, 477–488, 2007.

10. H. Mannila, H. Toivonen, A. I. Verkamo: Discovery of frequent episodes in event
sequences, Data Mining and Knowledge Discovery, 1, 259–289, 1997.

11. J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, P. S.. Yu: Discovering frequent closed
partial orders from strings, IEEE TKDE, 18, 1467–1481, 2006.

12. J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu:
Mining sequential patterns by pattern-growth: The PrefixSpan approach, IEEE
Trans. Knowledge and Data Engineering, 16, 1–17, 2004.

13. T. Uno: Two general methods to reduce delay and change of enumeration algo-
rithms, NII Technical Report, NII-2003-004E, April 2003.

14. M. J. Zaki: Scalable Algorithms for Association Mining, IEEE TKDE, 12, 372–390,
2000.

15. M. J. Zaki, C.-J. Hsiao: CHARM: An efficient algorithm for closed itemset mining,
Proc. 2nd SDM, 457–478, SIAM, 2002.

19

	main.pdf
	main

