
TCS -TR-A-10-42

TCS Technical Report

Substring Indices Using Sequence BDDs

by

Shuhei Denzumi, Hiroki Arimura, and Shin-ichi

Minato

Division of Computer Science

Report Series A

April 14, 2010

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Building Substring Indices Using Sequence BDDs

Shuhei Denzumi
Division of Computer Science

Hokkaido University

Sapporo 060-0814, Japan

Hiroki Arimura
Division of Computer Science

Hokkaido University

Sapporo 060-0814, Japan

Shin-ichi Minato
Division of Computer Science

Hokkaido University

Sapporo 060-0814, Japan

April 14, 2010

(Abstract) There is a demand for efficient

indexed-substring data structures, which can store

all substrings of a given text. Suffix trees and

Directed Acyclic Word Graphs (DAWGs) are ex-

amples of substring indices, but they lack oper-

ations for manipulating sets of strings. The Se-

quence Binary Decision Diagram (SeqBDD) data

structure proposed by E. Loekito, J. Bailey, and J.

Pei (KAIS, 2009) is a new type of Binary Decision

Diagram (BDD), and represents sets of sequences.

This study focuses mainly on two issues: (a) com-

pact substring indices based on SeqBDD, called

Suffix Decision Diagrams (SuffixDDs), which make

it possible to represent the set of all substrings effi-

ciently via various operations inherited from Zero-

suppressed Binary Decision Diagrams (ZDDs), and

(b) methods for building SuffixDD, beginning with

an empty string and updating iteratively whenever

a new letter is read. This paper presents an ef-

ficient algorithm for constructing a SuffixDD for a

given text, together with a proof of correctness and

some notes about BDD families, and discusses why

the new data structure appears to have advantages

over existing substring indices. An upper bound on

the running time is also obtained. It is hoped that

presenting this data structure to a wider audience

at this time will help to promote useful discussion

of the important issues.

1 Introduction

The development of information networks has

raised the necessity for data mining to discover us-

age patterns from massive online data. For a given

text T and pattern P , string matching is the prob-

lem of determining if P occurs in T . This problem

was well known long ago, and is as important today

for manipulating large-scale data such as Internet-

based data.

Substring indices are efficient data structures for

storing all the substrings of a given text. DAWG

[2] is such a data structure, representing all the

substrings contained in a text of length n. For a

pattern of length m, DAWG can solve the problem

in O(m log |Σ|+occ) time, where |Σ| and occ denote

the alphabet size and the number of occurrences of

P in T , respectively. We can obtain DAWG in O(n)

time by simulating Ukkonen’s online algorithm for

constructing a suffix tree [12].

In this paper, we present a method for apply-

ing SeqBDDs to substring indices. SeqBDDs [7]

is a new ZDD-based data structure recently pro-

posed by E. Loekito, J. Bailey, and J. Pei. This

data structure is a new type of BDD. BDDs [3]

are widely used for representing and manipulating

Boolean functions inside a computer, and ZDDs

[8, 10], a special type of BDDs, are suitable for

handling large-scale sets of combinations. SeqB-

DDs are string indices based on ZDDs, they are

able to enumerate large sets of sequences implic-

itly, and use a variety of efficient operations. Fam-

ilies of BDDs are compact representations of dis-

crete structures, with rich collections of operations.

The extension of SeqBDD to substring indices is an

open issue, and we would like to devise an efficient

substring index structure based on SeqBDD.

In the remainder of this paper, Chapter 2 for-

mulates a convenient notational framework and

discusses BDD families. This treatment is essen-

tially self-contained, assuming no prior knowledge

1

2 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

of BDDs. Chapter 3 presents two construction

procedures for SuffixDD, one being a simple tech-

nique and the other a more efficient implementa-

tion, together with some theorems that describe

the virtues of the method. Some computational

experiments are recorded in Chapter 4, with Chap-

ter 5 concluding the paper and mentioning several

future directions for related work.

2 Preliminaries

2.1 Basic string definitions

Let Σ be a finite alphabet and Σ∗ be the set of

all strings over Σ. We denote the length of string

x ∈ Σ∗ by |x|. The string whose length is 0 is

denoted by ϵ and called the empty string , that is

|ϵ| = 0. The concatenation of two strings x1 and

x2 ∈ Σ∗ is denoted by x1 · x2, also written simply

as x1x2 if no confusion occurs.

Strings x, y, and z are said to be the prefix ,

substring , and suffix of the string w = xyz, respec-

tively. The ith symbol of a string w is denoted by

w[i], and the substring of w that begins at position

i and ends at position j is denoted by w[i . . . j]. For

convenience, we let w[i . . . j] = ϵ for j < i. We also

denote by Prefix(w) the set of all prefixes of the

string w ∈ Σ∗, and denote by Substring(w) the set

of all substrings of w ∈ Σ∗. The reversal of a string

w = w[1 . . . |w|] is defined by wR = w[|w|] · · ·w[1].

2.2 BDDs

A BDD [3] is a directed-graph representation of a

Boolean function, as illustrated in Figure 2(b). It

is derived by reducing the binary tree graph repre-

senting a recursive Shannon’s expansion, as shown

in Figure 2(a). The following reduction rules yield

a BDD, which can efficiently represent the Boolean

function (see [4] for details).

• Delete all redundant nodes whose two edges

point to the same node (see Figure 1(a)).

• Share all equivalent subgraphs (see Figure

1(b)).

x

f f

jump
0 1

(a) Node deletion.

x

f0

0 1
x

f1

0 1
x

f0

0 1

f1

(b) Node sharing.

share

Figure 1: BDD reduction rule

BDDs provide canonical forms for Boolean func-

tions when the variable order is fixed. Most re-

search on BDDs is based on the above reduction

rules. 1

As shown in Figure 3, a set of multiple BDDs

can be shared with each other under the same vari-

able ordering. In this way, we can handle a num-

ber of Boolean functions simultaneously in the one

memory space.

Using Bryant’s algorithm [3], we can efficiently

construct a BDD for the result of a binary logic

operation (i.e. AND, OR, XOR), given a pair of

operand BDDs. This algorithm is based on hash-

table techniques, and the computation time is al-

most linear with data size, unless the data overflows

the main memory (see [9] for details).

2.3 ZDDs

A ZDD [8, 10] is a special type of BDD for the

efficient manipulation of sets of combinations [11].

An example is shown in Figure 4.

With a ZDD, we do not delete the nodes whose

two edges point to the same node, which was re-

quired under the original rule. Instead, we delete

all nodes whose 1-edge points directly to the 0-

terminal node, and jump through to the 0-edge’s

destination, as shown in Figure 5.

1In general, the term BDD includes graphs that do not
fix the order of variables or that are not canonical, but we
deal only with those graphs that follow the above reduction
rules in this paper.

Substring Indices Using Sequence BDDs 3

c

F

0

11011 0 1 0

c c c

b b

a 1

0

0 0 0 01 1 1 1

1 10

(a) Binary Decision Tree.
F

0

0 1

c

b

a 1

0

1

1

(a) Binary Decision Tree.

0

(b) BDD

Figure 2: Binary tree and BDD for F = (a∧ b)∨ c

When no equivalent nodes exist in a ZDD, which

is the worst case, the ZDD structure explicitly

stores all combinations of all items, in addition to

using an explicit linear linked-list data structure.

An example is shown in Figure 6. Note that the

order of ZDD size never exceeds that of the explicit

representation.

It is known that binary operations can be exe-

cuted efficiently in almost linear computation time

and in a single memory space matching the number

of nodes of the ZDD. This feature depends on using

a technique that avoids redundant computation by

using a hash table to store and make available prior

computation results.

In the past, an approach was reported that ap-

plied ZDD to the sequence data-mining field [5].

Figure 7 shows an example of a ZDD represent-

ing a set of sequences. However, the research did

not demonstrate the performance required for ap-

plication to practical-scale problems. This was at-

tributed to the fact that the ZDDs were not op-

timized for sets of sequences. In fact, if we use

F1

baF

bF

baF

baF

∨=

=

⊕=
∧=

4

3

2
1

F2 F3 F4F1

0

0 1

b b

a 1a a

F2 F3 F4

0

0

0

0

1

1
1

1

Figure 3: Shared multiple BDDs

SeqBDDs, as follows, we can manipulate sets of se-

quences efficiently.

2.4 SeqBDDs

A SeqBDD is a ZDD that has removed the ordering

constraint only for 1-edges with ordered 0-edges,

and for which a letter is allowed to occur multiple

times in a path. SeqBDD semantics are such that

a path in a SeqBDD represents a string, for which

the nodes are arranged in order of the positions

of their respective variables in the string. More

specifically, the top node corresponds to the head

of the string, and the successive nodes take 1-edges

corresponding to the following letters, respectively.

A SeqBDD node N = node(x,N1, N0) denotes an

internal node labeled by letter X, and N1 (or N0)

denotes its 1-edge (or 0-edge). The letter of node

N has a lower order (appears earlier in the variable

ordering) than the letter ofN0. We denote the total

number of descendant nodes of node N , including

N itself, by |N |. Let x be a letter and P and Q be

two sets of strings. In SeqBDD, a 0-terminal node

4 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

1

C(abc)

a a0 0 1

C(abcd)

C(abcd)

abc C
000
001
010
011
100
101
110
111

0
1
1
0
0
0
0
0

C(abc):

abcd C
0000
0001
0010
0011
0100
0101
0110
0111
1000

0
1
1
0
0
0
0
0
0

C(abcd):

0 1

d
0

b

c

b b

c

b
0 0

0

0

0

0

011

1

1

1 1

1

0 1

b

0 1
a

0 1

C(abcd)

C(abc)

1000
1001
1010
1011
1100
1101
1110
1111

0
0
0
0
0
0
0
0

BDD ZDD

Figure 4: Example of ZDD effect

encodes the empty set (emptyset), and a 1-terminal

node encodes the set of empty string (ϵ). Figure

8 shows an example. For clarity, we omit the 0-

terminal nodes from the illustrations in this paper.

(A solid line represents a 1-edge and a dotted line

represents a 0-edge).

We define an operation P .push(x) that appends

x to the head of every sequence in P , and an op-

eration P ∪ Q that returns the set of sequences

occurring in either P or Q.

Definition 1 A SeqBDD node N =

node(x,N1, N0) represents a set of sequences

S such that S = Sx̄ ∪ Sx.push(x), where Sx is the

set of sequences that begin with element x (with

the head elements being removed), and Sx̄ is the

set of sequences that do not begin with x. Node N1

represents set Sx, and node N0 represents set Sx̄.

Table 1 shows most of the primitive operations

for SeqBDDs. In these operations, ∅, 1, P.top,

and P.push(x) are executed in constant time, with

x

f f

jump
0 1

0

Figure 5: ZDD reduction rule

the others being almost linear with the size of the

graph. We can describe a variety of processing op-

erations on sets of combinations by composition of

these primitive operations.

These are natural extensions to ZDDs, as used

in Loekito et.al ’s paper [7]. The size of the out-

put is at most |P ||Q| because this is the number of

distinctly different calls of binary operations that

can arise. To keep a lid on the computation, we

can remember what we have done before by hash-

ing. Previously solved cases thereby become ter-

minal ones. Therefore, the running time will be

O(|P ||Q|) in the worst possible case. However, the

running time is practically linear with the SeqBDD

representation for almost all operations.

First, we show the SeqBDDs’ union operation ∪
in Figure 10. Recursions always terminate when a

sufficiently simple case arises. The terminal cases

are P ∪ ∅ = P , ∅ ∪ Q = Q, and P ∪Q = P when

P = Q.

If P is a 0-terminal, i.e. P is empty, the output

comprises all sequences in Q. Similarly, if Q is a

0-terminal, P is returned as output.

If P equals Q, i.e. P and Q comprise the same

sequences, then the output also comprises all se-

quences in P .

If both P and Q are internal nodes, we compare

the letters of both x and y. Suppose x = y. Then,

because x is the smallest letter among the head

letters of all strings in P and Q, x should be the

letter of the output node. The 1-edge of the output

node should contain all sequences that begin with

x, with the 0-edge of the output node containing

Substring Indices Using Sequence BDDs 5

{abcd, bc, cde}

a

bb 1

1

0

0

0

0 1

e

d

1 cc c

d

Figure 6: Explicit representation by ZDD

the remaining sequences. Suppose x is smaller2

than y. Then x is smaller than the head of all

sequences in Q. Therefore, the output node should

have letter x, and all sequences that begin with x

are present in P1. The remaining output sequences

exist in P0 and Q. Suppose x is bigger than y. This

condition is the opposite of the above condition,

since the operation is commutative.

When we construct a substring index in Se-

qBDD, we can consider a 1-terminal node as a 0-

terminal node, since no 0-terminal node appears

when computing ∪. In this way, the ∪ operation

can be twice as fast. In addition, we can define the

operations ∩ and \, which compute the intersec-

tion and difference sets, respectively, by recursive

algorithms. These procedures are almost the same

as for ∪. The only differences are that we change

the output in the terminal cases and the inputs of

recursive calls. The remaining algorithms proceed

exactly as for ∪.

2A 1-terminal node is considered an internal node with a
bigger letter than all letters in the alphabet.

{aabac, baba, aaca, bbac}

a1

b1

a2

a2 b

1

c5

a4

c3
b3

a2

b3

a4

b2

a3

c4

Figure 7: ZDD representation of a set of sequences
aabac, baba, aaca, bbac

2.5 Online substring-index construction
problem

A Substring index for a text T is a data structure

that stores the set of all substrings of T and has

the following operations:

• Index construction P ← create(T): Return

the index that represents the set of all sub-

strings of T ∈ Σ∗.

• Membership determination P.member(w):

For a given string w ∈ Σ∗, determine whether

“w ∈ Substring(T)” is true.

For a given online text T = T [1 . . . n], the online

substring-index construction problem is expressed

as follows. For each i = 1, . . . , n, construct the

substring index Si of Ti = T [1..i], where Si is built

incrementally from Si−1 and T [i].

6 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

a

a

a

b

b b

c

{aaa, aba, bbc, bc}

{bbc, bc}

{bc, c}

{c}

{aa, ba}

{ba}

{a}

root

c

1

{c}

{�}

Figure 8: An example of SeqBDD, and the sets of
sequences that each node represents

3 Algorithms

In this section, we introduce SuffixDD , which is

a substring index based on SeqBDD, and give an

efficient construction algorithm.

3.1 SuffixDD

Let T ∈ Σ∗ be a text of length n ≥ 0. Then the

SuffixDD of text T is a SeqBDD constructed for the

set of all substrings Substring(T). Figure 11 shows

an example of SuffixDD for aabac. The number

of nodes of SuffixDD is linear with respect to the

length of the text T . It is possible to show that

SuffixDD is isomorphic to DAWG. From this fact,

we can infer that the number of nodes of SuffixDD

is O(n) for a text of length n ≥ 0.

3.2 Naive construction method

Figure 12 shows a straightforward construction al-

gorithm for SuffixDD. We first build a SeqBDD Ri

that represents only the string Ti = T [1 . . . i] at

each step. Then we update SuffixDD by adding all

those suffixes of Ti that are not contained in Si at

the time, and the result is set as the new SuffixDD.

In this algorithm, a SeqBDD must be built at every

reading of a new letter, to represent all suffixes of

Table 1: Primitive SeqBDD operations

“∅” Returns empty set.
(0-terminal node)

“1” Returns the set of only the
empty string. (1-terminal node)

P .top Returns the letter at the
root node of P .

P .onset(x) Selects the subset of sequences that
begin with letter x, and then removes
x from the head of each sequence.

P .offset(x) Selects the subset of sequences that
do not begin with letter x.

P .push(x) Appends x to the head of
every sequence in P .

P ∪Q Returns the union set.

P ∩Q Returns the intersection set.

P\Q Returns the difference set
(in P but not in Q).

P .count Counts the number of sequences.

the current text. An example of this construction

process is shown in Figure 13.

For every letter, this algorithm has to build a

rectilinear SeqBDD whose length is the same as

the text already read, and it computes unions at

almost the same time as for the length. Let n be

the length of the text. The computation time of

∪ is O(|Σ|n) in this case, and it is repeated O(n2)

times. These considerations lead to the following

lemma.

Lemma 1 The running time of BuildNaive is

bounded by O(|Σ|n3).

3.3 Efficient construction method

Using the simple algorithm, we build a SeqBDD of

length n and add new suffixes one by one when-

ever a new letter is read. We now give an effi-

cient algorithm for SuffixDD construction. It does

not involve bottom-up building or repeating the

same union-operation computations. The idea is to

construct a SuffixDD comprising all reversed sub-

strings, maintaining a SeqBDD that represents all

Substring Indices Using Sequence BDDs 7

b

aa

a

b

b

aa

a b

a

a

S1={aabac, baba} S2={aaca, bbac}
21 SS �

b

c

a

b

a

1

c
b

Figure 9: An example of SeqBDD showing the re-
sult of a ∪ operation and its inputs.

prefixes of the reversed text, and then updating it

by just one union operation.

The procedure can be expressed as shown in

Figure 14. We maintain and update a SeqBDD

R that represents all reversed suffixes by append-

ing one node to the old R. To update SuffixDD

S, we compute the union of S ∪ R once per itera-

tion. Let T and P be the given text and pattern.

Therefore, the SeqBDD represents Substring(TR)

in this algorithm. An example is shown in Figure

15, for T = aba. For this SuffixDD, the string-

matching problem is to determine whether or not

PR ∈ Substring(TR).

Let n denote the length of the text. This al-

gorithm makes a new node (O(1)) in one itera-

tion, and computes the union with the existing Suf-

fixDD. Note that updating SuffixDD takes O(|Σ|n)
time.

Theorem 1 BuildFast can be executed in time

O(|Σ|n2).

'

&

$

%

Procedure P ∪Q
Input: P , Q: SeqBDD;

1: case P = 0-terminal node : return Q
2: case Q = 0-terminal node : return P
3: case P = Q : return P
4: If there is a P ∪Q result, then return it.

5: x ← P .top; y ← Q.top
6: P1 ← P .onset(x); P0 ← P .offset(x)
7: Q1 ← Q.onset(y); Q0 ← Q.offset(y)
8: case x = y : z ← x; R1 ← P1 ∪ Q1; R0 ←

P0 ∪Q0

9: case x < y : z ← x; R1 ← P1; R0 ← P0 ∪Q
10: case x > y : z ← y; R1 ← Q1; R0 ← P ∪Q0

11: return R1.push(z) ∪R0

%It means making node(z,R1, R0) and re-
turn it.

Figure 10: Code for constructing P ∪Q

(1) The correctness of procedure BuildFast

Proof

We prove that the variable S comprises

Substring(T) at each iteration. Let n be the text

length.

(i) If n = 0:

We have T = ϵ, and, because the substrings of

the empty string are also only empty strings, then

the 1-terminal node represents it. Therefore, vari-

able S is the SuffixDD of the text at the first iter-

ation because BuildFast starts with S = 1-terminal

node. It follows that R represents Prefix(TR) =1-

terminal node, for the same reason.

(ii) Suppose that S is the SuffixDD of the text

T [1 . . . i]R when n = i(i > 0), and R represents

Prefix(T [1 . . . i]R).

R is updated to represent Prefix([1 . . . i+ 1]R)

at the time that the i+ 1th letter is read in line 5.

The SuffixDD of T [1 . . . i+ 1]R] is obtained by the

union in line 6:

Substring(T [1 . . . i]R) ∪ Prefix(T [1 . . . i+ 1]R)

= Substring(T [1 . . . i+ 1]R)

The variable S is shown to represent

8 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

b

c

a

b

1

a

a

Substring(aabac)

1

Figure 11: Structure for a SuffixDD, given an input
aabac

Substring(T [1 . . . i + 1]R) by the above equality.

The proof is therefore complete by induction.

(2) Running time of algorithm BuildFast

The length of a straight SeqBDD R is i when

the text length is i. Therefore, S ∪ R terminates

after i recursions on a 1-edge in the worst case. The

number of times we traverse 0-edges is at most |Σ|.
Therefore, one ∪ will take O(|Σ|i) for each letter:

Σn
i=1O(|Σ|i) = O(|Σ|n2)

The BuildFast algorithm can therefore be per-

formed in O(|Σ|n2) for a text whose length is n,

and we have proved Theorem 1.

4 Experiments

We implemented the proposed algorithm in the

concurrent programming language Erlang, and per-

formed experiments using artificial data. We used

an Erlang Term Storage table for storing the nodes

of the BDDs. The computer was a 2.67 GHz Corei7

PC running Windows XP SP3, with a 3.25 GB

main memory, of which about 1.5 GB was allocated

to Erlang. We used artificial data, in which all

letters occurred with equal likelihood, as the test

data. The text strings were generated randomly.

The alphabet size was either 4 or 128, depending

on the experiment.

'

&

$

%

Procedure BuildNaive
Input: Text string T

1: n ← 1
2: S ← 1-terminal node
3: while(){
4: T [n] ← reads a new letter
5: n++
6: Build SeqBDD R that represents

T [1 . . . n].
7: do{
8: OldS ← S
9: S ← R ∪OldS

10: R← R.onset(R.top)
11: }while(S ̸= OldS)
12: }

Figure 12: Naive procedure for construction of a
SuffixDD

4.1 Experiments and results

Both SuffixDD construction algorithms, BuildNaive

and BuildFast, were implemented for comparison.

The experiments were performed to test the data

structure of SuffixDD, using each random text of

length n with a default Σ of {A,B,C,D}. The

following empirical results were obtained.

Experiment 1:

Figure 16 shows the running time for BuildFast.

Figure 17 shows the running time for both meth-

ods. Figure 18 is a logarithmic version of Figure

17.

These results suggest that the naive algorithm

runs in O(n2) time and the efficient algorithm runs

in O(n) time. These results do not contradict

Lemma 1 or Theorem 1, running in better time

than predicted. The efficient method built Suf-

fixDD faster than the O(n2) running time derived

from analysis of the algorithm. The memorization

technique worked well, which was probably the rea-

son for the overall running time being better than

expected.

Experiment 2: Figure 19 shows the running

time of BuildFast with two random texts, for which

|Σ| = 4 and |Σ| = 128, respectively.

Substring Indices Using Sequence BDDs 9

In both cases, running times seem to be pro-

portional to n. The O(n2) running time is derived

from analysis of the algorithm. The SuffixDDs for

|Σ| = 4 were computed nearly six times faster than

the SuffixDDs for |Σ| = 128.

Experiment 3: Figure 20 shows the number of

nodes in SuffixDDs for |Σ| = 4 and |Σ| = 128.

The size of the SuffixDD is linearly related to

the length of the text. The SuffixDDs for the

larger alphabet were slightly smaller, but the rea-

son is not clear. For example, the number of nodes

for alice29.txt, which comprises 152,089 bytes, is

288,759.

Experiment 4: Figure 21 shows the compu-

tation times for constructing SeqBDDs that repre-

sent the union, intersection, and difference of two

SuffixDDs.

Experiment 5: We generated three random

texts, namely S, T , and U . Text S had P (A) = 0.4

and P (B) = P (C) = P (D) = 0.2, where P (x) is

the probability that letter x is chosen. Text T had

P (A) = 1. Text U had equally likely probabilities.

Figures 22 and 23 show the running time and the

number of nodes for the SuffixDDs of S, T , and U .

Both the running time and the size are smaller

for the texts with stronger bias. The SuffixDDs

for T were built 20 times faster than for the other

texts, and the number of nodes was n+ 1, i.e., the

smallest size.

5 Conclusion

In this paper, we have discussed SeqBDD, pro-

posed by Loekito et al., and have presented an al-

gorithm that constructs SuffixDD using only prim-

itive SeqBDD operations. We described exper-

iments showing that our proposed algorithm is

faster than the simple method, and have found

that our method leads to a thousand-fold increase

in program speed. The results of our study sug-

gest that SuffixDD can store all substring sets ef-

fectively. Therefore, SuffixDD appears to be a valid

method.

In future work, additional static and dynamic

statistics should be gathered, and a more sophisti-

cated study comparing SuffixDD with existing sub-

string indices would be desirable. SuffixDD can be

applied effectively to other string problems, and it

would appear to be useful to develop applications

for string searching based on SeqBDD. It would be

interesting to extend SuffixDD to allow mismatch-

ing. It is clear that there is considerable work yet

to be done on SuffixDD.

References

[1] S.B. Akers, “Binary decision diagrams,”

IEEE Trans. Comput., Vol. C-27, No. 6, pp.

509–516, 1978.

[2] A. Blumer, J. Blumer, A. Ehrenfeucht,

D. Haussler, and R. McConnell, “Linear size

finite automata for the set of all subwords of a

word: an outline of results,” Bull. Europ. As-

soc. Theoret. Comput. Sci., 21, pp. 12–20,

1983.

[3] R.E. Bryant, “Graph-based algorithms for

Boolean function manipulation,” IEEE

Trans. Comput., Vol. C-35, No. 8, pp. 677–

691, 1986.

[4] D.E. Knuth, “The Art of Computer Program-

ming, Volume 4, Fascicle 1: Bitwise Tricks &

Techniques and Binary Decision Diagrams,”

Addison-Wesley, 2009.

[5] R. Kurai, S. Minato, and T. Zeugmann,

“N-Gram analysis based on zero-suppressed

BDDs,” In T. Washio, et al. editors, “New

Frontiers in Artificial Intelligence, Joint JSAI

2006 Workshop, Post-Proceedings”, LNAI

4384, pp. 289–300, Springer, Feb. 2007.

[6] C.Y. Lee, “Representation of switching cir-

cuits by binary-decision programs,” Bell

Syst. Tech. J., Vol. 38, pp. 985–999, 1959.

[7] E. Loekito, J. Bailey, and J. Pei, “A bi-

nary decision diagram based approach for min-

ing frequent subsequences,” Knowledge and

Information Systems, doi:10.1007/s10115-009-

0252-9, 2009.

10 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

[8] S. Minato, “Zero-suppressed BDDs for set ma-

nipulation in combinatorial problems,” Proc.

30th ACM/IEEE Design Automation Conf.

(DAC-93), pp. 272–277, 1993.

[9] S. Minato, “Binary Decision Diagrams and

Applications for VLSI CAD,” Kluwer Aca-

demic Publishers, November 1996.

[10] S. Minato, “Zero-suppressed BDDs and their

applications,” Int. J. Software Tools for Tech-

nology Transfer (STTT), Vol. 3, No. 2, pp.

156–170, Springer, May 2001.

[11] S. Minato and H. Arimura “Frequent pattern

mining and knowledge indexing based on Zero-

suppressed BDDSs,” The 5th international

workshop on knowledge discovery in inductive

databases (KDID’2006), pp. 83–94.

[12] E. Ukkonen “Constructing suffix trees on-line

in linear time,” IFIP’92, pp. 484–492, 1992.

a

1

{a}

Substring(�) �

read T[1] = a

→
Substring(T[1])

read T[2] = b

a

11

b

{ab}

Substring(T[1]) � →

Substring(T[1 … 2])

b

a a b

{b}
and

1 1

read T[3] = a

a

1

{bab}

� →

Substring(T[1 … 3])

b

{ba}
and

Substring(T[1 … 2])

a

a

1

b

a
b

Figure 13: Processing of aba in BuildNaive

'

&

$

%

Procedure BuildFast
Input: Text string T

1: R ← 1-terminal node
2: S ← 1-terminal node
3: while(){
4: x ← read a letter
5: R ← R.push(x) ∪ 1-terminal node

%make node(x, S, 1-terminal node), and
let it be the new S

6: S ← S ∪R
7: }

Figure 14: Efficient code for constructing a Suf-
fixDD

Substring Indices Using Sequence BDDs 11

a

1

Substring(�R) �

read T[1] = a

→
Substring(T[1]R)

read T[2] = b

a

11

a

Prefix(T[1 … 2]R)

Substring(T[1]R) � →

Substring(T[1 … 2]R)

a

b a b

Prefix(T[1]R)

append
b node

1 1

read T[3] = a

a

1

� →

Substring(T[1 … 3]R)

b
Substring(T[1 … 2]R)

a

a

1

b

a
b

Prefix(T[1 … 3]R)
append
a node

Figure 15: Processing of aba in BuildFast

�����

�����

�����

�����

�����

�����

�
��
�
��
�
�

�	
��
����������

�

�����

�����

�����

�����

�����

�����

� ����� ������ ������ ������ ������ ������ ������

�
��
�
��
�
�

n

�	
��
����������

Figure 16: Experiment 1: Empirical running time,
for BuildFast

����

�����

�����

�����

�����

�����

�����

�����

�����

�
��
�
��
�
�

��	
��
���

��	
��
��

�

����

�����

�����

�����

�����

�����

�����

�����

�����

� ��� ��� ��� ��� ����

�
��
�
��
�
�

n

��	
��
���

��	
��
��

Figure 17: Experiment 1: Running time to con-
struct a SuffixDD, for BuildNaive and BuildFast

�

��

��

���

����

����

���	�

�����

�
�
�
�
��
��
	

�
�

��
	
�

	
�
�

��
������

��
�����

�

�

��

��

���

����

����

���	�

�����

� ��� ��� ��� 	�� �����
�
�
�
��
��
	

�
�

��
	
�

	
�
�

n

��
������

��
�����

Figure 18: Experiment 1: Logarithm of the run-
ning time of Figure 17

�����

�����

�����

�����

�����

�����

�����

�
��
�
��
�
�

	
	��

	
	����

�

�����

�����

�����

�����

�����

�����

�����

� ����� ����� ����� �����

�
��
�
��
�
�

n

	
	��

	
	����

Figure 19: Experiment 2: Empirical running time
of BuildFast, for |Σ| = 4 and |Σ| = 128

�����

������

������

������

������

�
�
�
�
�

�����

������	

�

�����

������

������

������

������

� ����� �����
���� 	���� ������

�
�
�
�
�

n

�����

������	

Figure 20: Experiment 3: Empirical size of Suf-
fixDDs, for |Σ| = 4 and |Σ| = 128

���

���

���

���

����

����

����

����

�
��
�
��
�
�

��	
�

	���
����	
�

�	���
����

�

���

���

���

���

����

����

����

����

� ����� ����� ����� ����� ������

�
��
�
��
�
�

n

��	
�

	���
����	
�

�	���
����

Figure 21: Experiment 4: Empirical computation
times for binary set operations on two SuffixDDs

12 Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato

����

����

����

����

�����

�����

�����

�
��
�
��
�
�
�

�

�

	

�

����

����

����

����

�����

�����

�����

� ����� ����� ����� ����� ������

�
��
�
��
�
�
�

n

�

�

	

Figure 22: Experiment 5: The running time of
BuildFast, for texts with biased probabilities

�����

������

������

������

������

�
�
�
�
�

�

�

�

�

�����

������

������

������

������

� ����� ����� 	����
���� ������

�
�
�
�
�

n

�

�

�

Figure 23: The number of nodes of SuffixDD, for
texts with biased probabilities

