
TCS -TR-A-10-45

TCS Technical Report

Dynamic Reconfigurable Bit-Parallel Architecture for
Large-Scale Regular Expression Matching

by

Yusaku Kaneta, Shingo Yoshizawa, Shin-ichi

Minato, Hiroki Arimura, and Yoshikazu Miyanaga

Division of Computer Science

Report Series A

June 29, 2010

Hokkaido University
Graduate School of

Information Science and Technology

Email: arim@ist.hokudai.ac.jp Phone: +81-011-706-7680
Fax: +81-011-706-7680

Dynamic Reconfigurable Bit-Parallel Architecture
for Large-Scale Regular Expression Matching

Yusaku Kaneta, Shingo Yoshizawa, Shin-ichi Minato, Hiroki Arimura, and Yoshikazu Miyanaga

Graduate School of Information Science and Technology, Hokkaido University
N14, W9, Sapporo 060-0814, Japan

{y-kaneta,minato,arim,miya}@ist.hokudai.ac.jp
yosizawa@csm.ist.hokudai.ac.jp

Abstract—In this paper, we propose a novel FPGA-based
architecture for large-scale regular expression matching, called
dynamic reconfigurable bit-parallel NFA architecture (dynamic
BP-NFA) that allows dynamic reconfiguration of the patterns
using bit-parallel NFA-simulation approach. This is the first
dynamic reconfigurable FPGA-based hardware with guaranteed
performance for the class of extended patterns, where a extended
pattern is a restricted regular expression in linear form consisting
of letters, classes of letters, don’t cares, optional letters, bounded
and unbounded length gaps and repeatable letters. The key of our
architecture is the use of bit-parallel pattern matching approach
that have been developed in string matching communities for the
decades. In this approach, the information of an input NFA is
compactly encoded in bit-masks stored in a collection of registers
and block RAMs. Then, the NFA is efficiently simulated by
a fixed circuitry using a combination of bit- and arithmetic-
operations on these bit-masks consuming one input letter per
clock. As compared with previous approaches of DFA-based
dynamic reconfigurable architectures, experimental results show
that the proposed architecture achieves higher throughput for
the class of exact string patterns and comparable for the class
of extended patterns.

I. Introduction

A. Backgrounds
By rapid growth of network and sensor technologies, massive
data of new types, called data streams, and related applications
have emerged in various fields including networks and data
engineering. ESP (Event Stream Processing) [1] and NIDS
(Network Intrusion Detection System) [3] are example appli-
cations of data stream processing. Consequently, efficient data
stream processing technologies have been extensively studied
in theory and practice. The large-scale pattern matching
problem is one of the most important problems in data stream
processing, where a pattern matching system has to work with
a large number of complex regular expressions against high-
speed data streams.

These problems are, however, quite CPU-intensive tasks and
it is difficult for a software on CPU to efficiently process
massive data streams real time in wire-speed. Therefore,
researches on large-scale regular expression matching on re-
configurable hardwares such as FPGA have attracted much
attention recently.

B. Related works
A recent research trend to large-scale regular expression
matching hardwares is to simulate finite state automata for
a given class of regular expressions on a specially designed
hardware ([3], [4], [9], [11], [12], [14], [15], [16]). Then,
this approach is further classified into the static compilation
approach and the dynamic reconfiguration approach.

In the static compilation approach ([11], [12], [14], [15],
[16]), a set of input regular expressions are transformed into
either deterministic finite automata (DFA) or non-deterministic
finite automata (NFA), and then statically compiled into wired
logic on FPGA. However, the static compilation approach has
a drawback that modification of regular expressions is too
expensive to be done frequently.

In the dynamic reconfiguration approach ([3], [4], [9]),
a universal control logic is statically compiled into FPGA
beforehand, a description of regular expressions is loaded to
the FPGA as data in preprocessing time, and then simulated in
run-time [3], [4], [9]. This approach is attractive in real world
applications such as EPS and NIDS where reconfiguration of
input patterns frequently occurs. However, classes of patterns
that can be dealt with in this approach are still limited, it
is a challenging task to design dynamically reconfigurable
hardwares that efficiently run for wider classes of regular
expressions.

C. Main result of this paper
In this paper, we propose a novel architecture based on
simulation of NFAs tailored for large-scale regular expression
matching on FPGA, called dynamic reconfigurable bit-parallel
architecture (dynamic BP-NFA). The key of this architecture
is the use of bit-parallel pattern matching approach developed
in string matching communities since 1990 [2], [10], [13].

As a main result, we present a hardware based on this
approach for a subclass EXT of regular expressions, called
extended patterns, which are regular expressions in linear
form consisting of letters α, wildcards ’.’, classes of letters
[ab · · ·], optional letters α?, bounded and unbounded repeats
α{x, y} and α∗. For example, R = [AB]+B.{1, 3}[BC]?.∗C is
an example of extended patterns.

In our approach, input extended patterns are translated into
an input NFA, and the information of the NFA is compactly
encoded in a set of bit-masks stored in 32-bit registers and
block RAMs, when the underlying register length is 32 bit.
Then, the NFA is efficiently simulated by a fixed circuitry
using a set of 32-bit Boolean operations and a 32-bit integer
addition on the registers and RAMs. As analysis, we show
that this hardware correctly matches a given set of extended
patterns against an input text consuming one input letter per
clock regardless of the contents of the input.

Compared with the previous dynamic reconfigurable DFA-
based approaches, the throughput 2.9 Gbps of our hardware
is much higher for class STR and the throughput 1.6 Gbps is
comparable for class EXT, while it uses comparable hard-
ware resources in FPGA implementation. An advantage of
our architecture is the worst performance guaranteed by the
design compared with DFA-based architecture with micro
controller [3]. Another advantage is the potential extensibility
for more general pattern classes. For example, Kaneta et al. [7]
recently extended the Extended SHIFT-AND method, used
in this paper, for a more general class of acyclic regular
expressions allowing union and Kleene-plus. Such method
can be incorporated into our architecture by extending the
construction of masks and a circuitry.

This paper is organized as follows. In Section II, we give
basic definitions. In Section III, we propose our architecture,
and in Section IV, we give the detailed description of each
pattern matching module. In Section V, we give experimental
results, and in Section VI, we conclude.

II. Preliminary

A. Regular expression matching
Let N = {0, 1, 2, . . .} be the set of all non-negative integers,
and Σ = {a, b, . . .} be a finite alphabet of letters. A string on
Σ is a sequence S = s1 · · · sn of letters, where S[i] = si ∈ Σ
for every 1 ≤ i ≤ n. We denote by S[i..j] the substring
si · · · sj for every i ≤ j, and by ε the empty string. If i > j,
we define S[i..j] = ε. For a set S ⊆ Σ∗ of strings, we denote
by |S| the cardinality and ||S|| = Σs∈S |s| the total size of S.
We denote by Σ∗ the set of all strings on Σ. For a letter a ∈ Σ
and a integers i ∈ N, we define by ai a string consisting of
i-consecutive a.

Let REG be the class of regular expressions on Σ. More
precisely, a regular expression R is either a letter a ∈ Σ,
concatenating R = R1 · R2, union R = (R1|R2), and
the Kleene-star R = (R1)∗, where R1 and R2 are regular
expressions [10]. For a regular expression R ∈ REG, we
denote by L(R) ⊆ Σ∗ its language. Let T = t1 · · · tn ∈ Σ∗ be
an input text of length n ≥ 0, where ti ∈ Σ (1 ≤ i ≤ n).
A pattern is a regular expression on Σ. We say a regular
expression R = r1 · · · rm ∈ REG occurs at end position j
in T , if T [i..j] = ti · · · tj ∈ L(R). Our problem is stated as
follows.

Definition 1. The multiple pattern matching problem for

a subclass of regular expressions REG is defined as fol-
lows. An input is an input pattern set P = { (i, Ri) | i =
1, . . . , N } (N ≥ 1), where for every i = 1, . . . , N , Ri is a
pattern and i is an integer, called an index. Then, the task is,
given a stream T = t1t2 · · · tp · · · (p ≥ 1) of input letters,
to output the pairs (p, i) such that p is an end position of a
pattern Ri in T for all p = 1, 2, . . . and i = 1, . . . , N .

B. Target pattern class: Extended patterns
The target subclass of regular expressions that our architecture
deals with is the class of extended patterns defined as follows.
In what follows, ≡ means the notational equivalence.

Definition 2. The class of extended patterns, denoted by EXT,
is a subclass of regular expressions defined as follows: an
extended pattern R on Σ is a sequence of some components
R = r1 · · · rm (m ≥ 0), where for each 1 ≤ i ≤ m, ri is
an expression, called a component, with one of the following
forms:

(1) A letter ri = a ∈ Σ is a component with the language
by L(a) = {a}.

(2) A don’t care ri = . is a component with the language
L(.) = Σ. This matches any letter in Σ.

(3) A class of letters ri = β is a component, where β ⊆
Σ, with the language L(β) = β. As notation, we write
[ab · · ·] for β = {a, b, . . .}. Note that a letter a ∈ Σ and
a don’t care symbol ’.’ are a class of letters.

(4) An optional letter ri = β? is a component, where β ⊆ Σ
is a class of letters, and β? ≡ (β|ε).

(5) Bounded repeats ri = β{x, y}, ri = β{, y}, and
ri = β{x} are components with equivalence β{x, y} ≡
(β?)y−xβx, β{, y} ≡ (β?)y , and β{x} ≡ βx, respec-
tively, where β ⊆ Σ and x ≤ y (x, y ∈ N). If β is a
don’t care ’.’ then ri is called a bounded length gap.

(6) Unbounded repeats ri = β∗ and ri = β+ are compo-
nents, where β ⊆ Σ is a class of letters, and β+ = ββ∗.
If β is a don’t care ’.’ then ri is called a variable length
don’t care (VLDC).

For R = r1 · · · rm, we define its language by L(R) =
L(r1) · · ·L(rm). If a component ri is one of the forms β?,
β{x, y}, β∗, and β+, then β is called the matrix of ri.

Example 1. We show examples of extended patterns.

• R1 = ABABC.
• R2 = [AB]+B.{1, 3}[BC]?.∗C.
• R3 = (A[BC]∗).{, 4}((DE)+).

We say that R is an exact string patterns (also called a
string pattern), denoted by STR, if every component ri of an
extended patterns R = r1 · · · rm is a letter in Σ such as R1.

III. Proposed Architecture
In this section, we present our dynamic reconfigurable bit-
parallel architecture, dynamic BP-NFA, based on simulation
of NFAs using bit-parallel pattern matching technique.

Output PacketInput Packet 6464

PMM
N

Module Id

Comparators
STATE register

ACCEPT register

�
�

NFA

State

Input Letter

NFA State (updated)

PMM
4

Module Id

Comparators
STATE register

ACCEPT register

�
�

NFA

State

Input Letter

NFA State (updated)

PMM
3

Module Id

Comparators
STATE register

ACCEPT register

�
�

NFA

State

Input Letter

NFA State (updated)

PMM
2

Run-time modePreprocessing mode

Pattern Matching Module

Bit-masks Block

MOVE

block RAM

REPPOS

block RAM

EpsBEG register

EpsEND register

EpsBLK register

Control block

Packet

Decoder

Module Id

Comparators

Matching Block

Make α-Trans

Block

Make ε-Trans

Block

Test Match

Block

Mask

Data

ACCEPT register

EmitMatchINIT register

NFA

State

Mask

Data

Input

Letter

Input Letter

NFA State (updated)

Control

Signals

PMM
1

�
�

STATE register

64 N

N: the number of PMMs

Output

Encoder

Input Packet

(Preprocessing or

Run-time packet)

Input

Decoder

Fig. 1. The top-level architecture of our pattern matching hardware for extended patterns

A. Top-level architecture
In Fig. 1, we show the top-level architecture of our pattern
matching hardware. The hardware consists of the input de-
coder, a collection of pattern matching modules (PMM, for
short), and the output encoder as submodules.

The hardware runs with two different modes: the prepro-
cessing mode and the run-time mode. It communicates the
outside environment (a host PC) through a sequence of I/O
packets of 64 bit length which are received and sent by the
input decoder and output encoder.

B. Preprocessing and Run-time packets
I/O packets in all types have 64 bit length and start with the
Opcode field of 4 bit length. I/O packets are classified into
the following types according to Opcode field: no-operation
(0000), preprocessing (0001), and run-time (0010). In
Fig. 2, we show the bit layout of the preprocessing and run-
time packets.

Mask Address

(8 bit)

Opdata

(32 bit)

Opcode

(4bit)

Mask Id

(4 bit)

Module Id

(16 bit)

0 31 63

Not used

(24 bit)

OpCode

(4bit)

Not used

(28 bit)

Input Letter

(8bit)

0 31 63

Fig. 2. The formats of the preprocessing and run-time packets

A preprocessing packet is an I/O packet with opcode 0001
(preprocessing) (Fig. 2). Then, the meaning of each field of a
preprocessing packet is given by the following table.

A run-time packet is a packet with opcode 0010 (run-time)
of the form shown in Fig. 2. Then, the first 32 bits contain
the Opcode (4 bit) only and the remaining 32 bits contain
the input letters in the Opdata field (32 bit). In present
implementation, just 8 bit (one letter) in the Opdata field
is used.

Received by the input decoder, an input packet is copies
and delivered to all pattern matching modules. Each module

TABLE I
The meaning of fields in a preprocessing packet

Field Length (bit) Meaning

Opcode 4 The type of a packet
Mask Id 4 The name of the destination bit-mask
Mask Addr 8 An index of a line in a block RAM
Module Id 16 The id of the destination pattern matching

module
Opdata 32 The content of a single bit-mask to deliver

PMMi has its own decoder and decodes the fields of the
received packet, where 1 ≤ i ≤ N .

In the preprocessing mode, a host sends to the hard-
ware only preprocessing packets. If its ModuleId field is
identical to its own module id, namely i, then the module
PMMi stores the contents of the Opdata field at a register
with name MaskId or a line MaskAddress of a block
RAM with MaskId according to the values of MaskId and
MaskAddress.

In the run-time mode, a host send to the hardware only run-
time packet to feed input letters of an input stream. Then, the
received run-time packet is delivered to all pattern matching
modules, and an input letter as Opdata is extracted and
processed by each module PMMi.

C. Emission of match results
The output-encoder is a module consisting of a priority
encoder [5] and a FIFO to keep the ids of matched patterns
that report the match information to the outside environment
using an output packet. An output packet is a packet of 64
bit length that contains two pairs of a ModuleId field (16
bit) and a field (16bit) for additional information such as the
current time stamp. In the preprocessing mode, the output-
encoder does nothing. In the run-time mode, if matching of
a pattern Pi is detected, an EmitMatch signal (1 bit) is
emitted from module PMMi to the output-encoder. Then, the
corresponding pattern id i in binary is pushed into the FIFO,

Test Match Block
Make α -transition Block

32

Emit

Match

0

≠

<<�

32

32STATE

WD RD

WE

CLK

WN

INIT

WD RD

WE

CLK

MOVE

(block RAM)

WD

RD

WE

A

CLK

32

32

32

32

32

32

ACCEPT

WD RD

WE

CLK

32

1

32

Bit-mask Bit-mask

�
�

Runtime

En

32

32

State

Init

32

Input

Letter

8

�
�

�
�
�

�
�
�

32

Fig. 3. The circuit of a pattern matching module for exact string patterns

packed into an output packet, and then sent to a host in each
clock.

IV. Pattern matching module

A pattern matching module, PMM, is a core of our pattern
matching hardware, and is responsible for simulation of a
specified input pattern with fixed length, say, 32 letter length.
In what follows, we assume registers and block RAM of 32
bit length.

A. Components of a module

In the middle of Fig. 1, we show a single unit of a pattern
matching module, PMM. A pattern matching module consists
of three subunits: a decoding unit for delivery of masks (the
control block), a memory unit for storing bit-masks (the bit-
masks block), and a control logic for NFA-simulation (the
matching block).

Before entering detailed description of a PMM, we give
assumptions. The precise parameters setting depends on the
actual class of patterns we target. We assume that an input
alphabet is Σ = {0, . . . , 255}, and thus, the width of an input
letter is 8 (bit). We also assume that the register length is L =
32, which typically varies from 32 to 128 (bit). Then, each
pattern matching module, PMM, has a number of registers
and block RAMs of the same bit-length L. For each bit-masks,
MSB (LSB, resp.) comes at the left end (at the right end, resp.).

A basic idea of bit-parallel pattern matching is to firstly
transform a given extended pattern into a special NFA having
linear shape, secondly to build a set of bit-masks from the
transition functions of the NFA, and finally, to make NFA-
simulation on the bit-masks using by a fixed control logic
designed to the target class of patterns. In the followings, we
give the detailed description of our architecture step by step
starting from simpler to more complex classes of patterns.

10 2 3 4 5

A B A B C

Σ

Fig. 4. The pattern NFA of a string pattern R1 = ABABC.

B. Simulation: Exact string pattern
We start with explaining the construction for the simplest class
of exact string patterns according to SHIFT-AND method [2],
[13] as follows. It consists of the definition of a set of bit-
masks and a control logic for NFA-simulation. An exact
string pattern (also called a string pattern) is just a string
P = r1 · · · rm of m letters, where m ≤ L and ri = ai ∈ Σ
is a constant letter for every i = 1, . . . , m. For example,
we consider the string pattern R1 = ABABC in the following
explanation.

Construction of NFA. Then, the corresponding NFA NR =
N(R) for a string pattern, called a pattern NFA, consists only
of the backbone consisting only of m letter transitions. For
example, we show in Fig. 4 the pattern NFA N1 = N(R1) cor-
responding to the exact string pattern R1. Precisely speaking,
the NFA is given by the tuple NR = (Σ, Q, δ, q0, qf), which
has the state set Q = {0, 1, . . . , m}, the initial state q0 = 0, the
final state qf = m. The transition relation δ ⊆ Q×(Σ∪{ε})×Q
is the set of directed letter edges {(i−1, ai, i) | i = 1, . . . , m},
called the backbone of NR.

Construction of bit-masks. To simulate the pattern NFA
for an exact string pattern, we use three types of L-bit masks
INIT , ACCEPT and an array MOV E[a] ∈ {0, 1}L (a ∈
Σ) of bit-masks defined as follows:

• INIT is the L-bit mask that sets 1 at the bit-position
corresponding to the initial state. That is, INIT [i] = 1
if and only if i = 0.

• ACCEPT is the L-bit mask that sets 1 at the bit-position
corresponding to the final state. That is, ACCEPT [i] =
1 if and only ifi = m − 1.

• MOV E[a] is the L-bit mask that indicates all bit-
positions of backbones labeled with a letter a in R. That

Make α -transition Block Make ε-transition Block

32

<<�

32

32

ACCEPT

WD RD

WE

CLK

INIT

WD RD

WE

CLK

MOVE

(block RAM)

WD

RD

WE

A

CLK

32

32

32

32

bitmask

�
�

Emit

Match

32

32

State

Init

32

Input

Letter

8

REPPOS

(block RAM)

WD

RD

WE

A

CLK

32

328

32

32

32

32

32

32

32

EpsBEG

WD

CLK

32

32

32

Test Match

block

1

Feed back to STATE register

STATE

WD RD

WE

CLK

32

�
�

�
�
�

�
�
�

32

�
�

EpsEND

WD

CLK

�
�
�

�
�

�
�
�

EpsBLK

WD

CLK

Runtime

EN

�
	

32

�
�

RD

WE

RD

WE

RD

WE

Fig. 5. The circuit of a pattern matching module for extended patterns

is, MOV E[a][i] = 1 if and only if the state i has a
backbone labeled with a ∈ Σ, or equivalently, ri = a.

We store the bit-masks INIT and ACCEPT in L-bit
registers, and the array (MOV E[a])a∈Σ in a block RAM with
Σ L-bit entries each having a single read and write ports.

Control logic for NFA-simulation. Based on SHIFT-AND
method ([2], [10], [13]), the control logic in the matching
block is, then, given by the following code, where t ∈ Σ
is the current input letter:

STATE ← ((STATE << 1) | INIT) & MOV E[t];

The acceptance test is given by the following code:

if (STATE & ACCEPT) then EmitMatch ← 1;

By the above construction, we can implement the control
logic for the NFA-simulation by a circuit in Fig. 3 by using
five L-bit Boolean operations, three L-bit registers, and one
block RAMs with Σ L-bit entries each having a single read
and write ports.

C. Simulation: Extended pattern
Now, we show the construction of PMM for extended pat-
tern matching according to Extended SHIFT-AND methods
(Chap. 4, Navarro and Raffinot [10]) as follows.

Expanded form and bit-assignment. Let R be an extended
pattern. Then, recall that every component ri of R has one of
the following types: (i) ri = β, (ii) ri = β?, and (iii) ri = β∗,
(iv) ri = β+, and (v) ri = β{x, y}, where β ⊆ Σ. We expand
all occurrences of bounded repeats ri = β{x, y} of type (v)
in R by using the equivalence β{x, y} ≡ (β?)y−xβx, where
x ≤ y. Let EXPAND(R) = r1 · · · r� be the resulting extended
pattern consisting of m components, where � ≤ L. By con-
struction, the resulting EXPAND(R) contains no occurrences of
components of type (v). Then, we assign the unique numbers
1, · · · , �, called the bit-positions, to all components r1, . . . , r�.

10 2 3 4 5 6 7

[AB] B Σ Σ Σ [BC] Σ

[AB] Σ

ε ε εε

Σ

8

C

Fig. 6. The extended pattern NFA of R2 = [AB]+B.{1, 3}[BC]?.∗C.

For example, let R2 = [AB]+B.{1, 3}[BC]?.∗C be
the target extended pattern consisting of six compo-
nents. Then, by replacing the bounded gap .{1, 3} with
(.?)(.?)(.), we obtain its expanded version EXPAND(R2) =
([AB]+)(B)(.?)(.?)(.)([BC]?)(.∗)(C) consisting of eight compo-
nents with assigned bit-positions from 1 to 8.

Construction of NFA. Then, we obtain the pattern NFA
N(R) for R from the expanded version EXPAND(R) as
follows. Let EXPAND(R) = r1 · · · rm for some m ≥ 1 and
L be an positive integer larger than or equal to than m. L
is acturally the length of regsiters in an underlying hardware.
By construction, we can assume that EXPAND(R) contains
components of only type (i)–(iv). For every i = 1, . . . , m, we
add to the NFA N(R) the letter edges and ε-edges related to
the state i according to the type of the i-th component ri with
matrix β as follows:

• For all types (i) – (iv) of ri, we add the backbone edge
ei = (i− 1, β, i) directed from the state i− 1 to the state
i labeled with matrix β.

• Furthermore, if ri is either (ii) β? or (iii) β∗, then we
add an ε-edge directed from the previous state i − 1 to
the current state i.

• Furthermore, if ri is either (iii) β∗ or (iv) β+, then we
add a self loop labeled with matrix β from the current
state i to itself.

For example, we show in Fig. 6 the extended pattern
NFA N1 = N(R2) corresponding to the extended pat-
tern EXPAND(R2).

For the expanded version EXPAND(R) of an extended

pattern, an ε-block in EXPAND(R) is a maximal consecutive
subsequence ri · · · rj , where a component ri is ri = βi? or
ri = β∗

i for some i ≤ j. Let us denote by B1, . . . , Bh (h ≥ 0)
the ε-blocks of EXPAND(R), where Bj ⊆ {1, . . . , L} is the set
of bit-positions of the j-th ε-block. For example, EXPAND(R2)
has two ε-blocks B1 = {3, 4} and B2 = {6, 7} corresponding
to r3r4 = (.?)(.?) and r6r7 = ([BC]?)(.∗), resp.

Construction of bit-masks. To simulate an extended pat-
tern NFA NR = N(R) for an extended pattern, we use L-
bit masks EpsBEG, EpsEND, EpsBLK, and the array
REPPOS[a] ∈ {0, 1}L of bit-masks in addition to the bit-
masks INIT , ACCEPT , and MOV E[a] ∈ {0, 1}L (a ∈ Σ)
which are already defined in the previous subsection. For an
L-bit mask, we identify each ε-block and the corresponding
consecutive sequence of bit-positions in {1, . . . , L}.

• EpsBLK is the L-bit mask that sets 1’s at all positions
in every ε-block. That is, EpsBLK[i] = 1 if and only if
i is contained by some ε-block Bk.

• EpsBEG is the L-bit mask that sets 1 at the previous
position of the lowest bit-position of every ε-block. That
is, EpsBEG[i] = 1 if and only if i = min(Bk) − 1 for
some ε-block Bk.

• EpsEND is the L-bit mask that sets 1 at the highest
bit-position of every ε-block. That is, EpsEND[i] = 1
if and only if i = max(Bk) for some ε-block Bk.

• REPPOS[a] is the L-bit mask that indicates all
bit-positions of self-loops labeled with a letter a in
EXPAND(R). That is, REPPOS[a][i] = 1 if and only
if the state i has a self-loop labeled with a ∈ β, or
equivalently, either ri = β∗ or ri = β+ with a ∈ β.

In Fig. 8, we show an example of the bit-masks for
R2 = [AB]+B.{1, 3}[BC]?.∗C. As in the previous case, we store
the bit-masks INIT , ACCEPT , EpsBEG, EpsEND, and
EpsBLK in L-bit registers, and the arrays (MOV E[a])a∈Σ

and (REPPOS[a])a∈Σ in block RAMs.

Control logic for NFA-simulation. Based on bit-parallel
method, we finally give the control logic for NFA-simulation.
Fig. 5 shows the whole circuit of NFA-simulation for extended
pattern matching. In the following, we give the computer code
for the control logic this circuit for NFA-simulation, which is
the modified version of the code in Navarro and Raffinot [10].
we note that t = ti ∈ Σ is the current input letter in an input
text.

Firstly, the next code initializes the state mask at line
(1), make a letter transition at line (2), and apply the letter
transitions by self-loops at line (3):

STATE ←(((STATE << 1) | INIT) (1)

& MOV E[ti]) (2)

| (STATE & REPPOS[ti]); (3)

Then, the sequence of the following codes simulate the ε-

Bit-positions 1 2 3 4 5 6 7 8

R2 [AB]+ B .{1, 3} [BC]? .∗ C

EXPAND(R2) [AB]+ B .? .? . [BC]? .∗ C

Fig. 7. The bit-position assignment for R2 = [AB]+B.{1, 3}[BC]?.∗C and
its expanded version EXPAND(R2).

Bit-position i 1 2 3 4 5 6 7 8

INIT 1 0 0 0 0 0 0 0

ACCEPT 0 0 0 0 0 0 0 1

MOV E[A] 1 0 1 1 1 0 1 0
MOV E[B] 1 1 1 1 1 1 1 0
MOV E[C] 0 0 1 1 1 1 1 1
MOV E[%] 0 0 1 1 1 0 1 0

REPPOS[A] 1 0 0 0 0 0 1 0
REPPOS[B] 1 0 0 0 0 0 1 0
REPPOS[C] 0 0 0 0 0 0 1 0
REPPOS[%] 0 0 0 0 0 0 1 0

EpsBEG 0 1 0 0 1 0 0 0

EpsEND 0 0 0 1 0 0 1 0

EpsBLK 0 0 1 1 0 1 1 0

Fig. 8. The set of masks for R2 = [AB]+B.{1, 3}[BC]?.∗C on alphabet
Σ = {A, B, C}, where the symbol ’%’ denotes any letter not in Σ.

transitions with the state mask:

HIGH ← STATE | EpsEND; (4)

LOW ← HIGH − EpsBEG (5)

STATE ← (EpsBLK & ((∼ LOW) ⊕ HIGH)) (6)

| STATE; (7)

The meaning of the above code is explained as follows. At
line (4), we turn on the highest bit (the end bit) of each ε-
block of the mask STATE, and set it to HIGH . At line (5),
for each ε-block in HIGH , we invert all bits lower than or
equal to the lowest 1 bit in HIGH and set it to LOW . At line
(6), the mask (EpsBLK & ((∼ LOW) ⊕ HIGH)) has bit
1 at all bit positions properly higher than the lowest 1 bit in
STATE. Finally, we add the change to the mask STATE at
line (7). The acceptance test STATE & ACCEPT is same
as exact pattern matching.

In Fig. 9, we show an example of NFA-simulation by the
set of bit-masks for R2 = [AB]+B.{1, 3}[BC]?.∗C on an input
text T = ABCBBC. In the figure, we show the status of the
bit-mask STATE after the update in each cycle i (1 ≤ i ≤ 6).

By the above construction, we can implement the control
logic for the NFA-simulation by a circuit shown in Fig. 5 by
using eleven L-bit Boolean operations, one L-bit subtraction,
six L-bit registers, and two RAMs with Σ L-bit entries each
having a single read and write ports.

Theorem 1. For the class EXT of extended patterns, our
hardware consumes one input letter per clock regardless of
the content of the input text T . Furthermore, its combinatorial

TABLE II
Summary of parameters of the proposed pattern matching hardwares, where #Op, #Add, #Reg, #BL, and #Slice, are the numbers of 32 bit operations, 32 bit

integer additions, registers, block RAM lines, resp., per PMM. #Patterns and #Chars Total are the number and the total size of input patterns, resp.

.
Class of Patterns #Op #Add #Reg #BL #Slice Freq Throughput Load Time Total #Patterns #Chars Total
Exact string patterns 5 0 3 256 54 363 MHz 2.9 Gbps 0.182 msec 256 8,192 letters
Extended patterns 11 1 6 512 123 202 MHz 1.6 Gbps 0.328 msec 128 4,096 letters

Cycle Input STATE after update in cycle i Emit

i letter ti 1 2 3 4 5 6 7 8 Match

1 A 1 0 0 0 0 0 0 0 0
2 B 1 1 1 1 0 0 0 0 0
3 C 0 0 1 1 1 1 1 0 0
4 B 1 0 0 1 1 1 1 0 0
5 B 1 1 1 1 1 1 1 0 0
6 C 0 0 1 1 1 1 1 1 1

Fig. 9. An example of extended pattern matching, given an extended pattern
R2 = [AB]+B.{1, 3}[BC]?.∗C and an input text T = ABCBBC.

circuit for state update in Fig. 5, excluding registers and
RAMs, has O(log L) depth and O(L3) gates, where L is the
length of a register.

Proof: The circuit in Fig. 5 contains one L-bit adder
and constant number of L-bit bitwise Boolean gates, a L-
bit multiplexer and a L-bit comparator. It is well known that
an L-bit adder can be implemented in O(log L) depth using
O(L3) gates. Since the other L-bit gates can be implemented
in constant depth and O(L) 1-bit gates, we have the claimed
complexities. Since any cycle on the data paths contains at
most one register or a RAM, the result is prove.

V. Experimental results
To evaluate the time and area complexities, we implemented
our pattern matching hardwares in Verilog HDL for both
classes of exact string patterns STR (Sec. IV-B) and extended
patterns EXT (Sec. IV-C), where the register length L is
set to L = 32 and the arrays MOV E and REPPOS are
implemented in block RAMs. We targeted the Virtex-5 LX330
with -1 speed grade, which has 51,840 slices and 288 block
RAMs with 36 Kbits. We use the Xilinx ISE Design Suite
10.1 and Synopsys VCS development tools.

Summary of our hardwares. In Table. II, we show the
summary of the experimental results of a single pattern match-
ing module, PMM, in our pattern matching hardwares. The
number of block RAM lines (#BL) is given by the number of
block RAMs times |Σ| = 256.

Resource usage. For the area complexity, in the experi-
ments, we could implement up to 256 PMMs (8, 192 total
letters) and up to 128 PMMs (4, 096 total letters), for STR
and EXT, respectively. In this setting, the place-and-route took
around one hour in both classes. For EXT, one PMM uses 123
slices (787 logic cells) and two block RAMs (512 = 2×256
lines are used). Consequently, the usage of block RAMs was

89%, while the usage of slices was only 24%. This means
that the size of a hardware in our architecture is constrained
mainly by the amount of block RAMs and not by one of the
slices. In Fig. 10, we show the dependency of the number of
slices against the number N of PMMs, where the number of
slices is proportional to N .

Performance evaluation. The maximum frequencies of our
hardwares were 363 MHz and 202 MHz, resp., for STR and
EXT. For the time complexity in run-time, we estimate the
throughput of matching by Throughput = Freq×8 (bit/sec).
Thus, the throughputs were 2.9 Gbps and 1.6 Gbps since our
hardwares consume one letter (8 bit) per clock. In Fig. 11, we
observe that the throughputs for STR and EXT is constant
regardless of N .

On dynamic reconfiguration, we estimate the total loading
time of input patterns by Load Time Total = #Patterns ×
(#Reg + #BL)/Freq (sec). Thus, a PMM took 0.71 μsec and
2.56 μsec to load an input pattern, and consequently, the total
loading times were 0.182 msec and 0.328 msec to load 256
and 128 patterns for PAT and EXT, resp. As comparison, we
implemented a hardware in the static compilation approach
based on SHIFT-AND method [2] for STR on Xilinx Virtex-5
LX50 with 7,200 slices. This hardware achieves frequency 216
MHz and throughput 1.7 Gbps using 2,925 slices and no block
RAMs. As the loading time, the compilation required 4.27×105

msec, approximately seven minutes, for 300 patterns with total
size 3,963 letters. Hence, the dynamic reconfiguration is 106

times faster than the static compilation in this case.
Comparison against other regular expression match-

ing hardwares. In Table. III, we compared our hardware,
dynamic BP-NFA, against the previous DFA-based dynamic
reconfigurable hardwares [3], [4], [6]. For the class of exact
string patterns, our hardware for STR achieves throughput
of 2.9 Gbps higher than 1.8 Gbps by Baker et al.’s KMP-
based hardware [4] and 1.6 Gbps by Jung et al.’s Bitsplit-
based hardware [6]. For more complex classes of regular
expressions, our hardware achieves 1.6 Gbps for the class EXT
of extended patterns, while Baker et al.’s RegExp Controller
hardware [3] achieves 1.4 Gbps for their target subclass
of regular expressions, which will be explained below. On
resource usage, it seems that our hardware uses ten times more
logic cells (slices) than RegExp Controller hardware, while the
former uses less block RAM lines than the latter.

Note that Baker et al.’s RegExp Controller hardware is a
hybrid of DFA simulation and microcontroller [3] and has been
only dynamic reconfigurable architecture for a subclass of
regular expressions before ours, where each regular expression
can be expressed with a small DFA and a few number of un-

TABLE III
Results comparisons of regular expression matching hardwares based on various dynamic reconfigurable architectures, where Class is the target class of

input patterns, bRAM/char is the number of bytes used in block RAMs per letter, and Logic Cells/char is the number of logic cells used per letter. STR,
EXT, and REG stand for the classes of exact string patterns, extended patterns, and regular expression, resp.

Design Class Device Throughput bRAM/char Logic Cells/char #Chars Total Remarks

Dynamic BP-NFA for STR (ours) STR Virtex-5 LX300 2.9 Gbps 4 bytes/char 10.8 8192 54 slices
Dynamic BP-NFA for EXT (ours) EXT Virtex-5 LX300 1.6 Gbps 8 bytes/char 24.6 4096 123 slices
KMP-based hardware [4] STR Virtex-II Pro 1.8 Gbps 4 bytes/char 3.2 3200 NA
Bitsplit-based hardware [6] STR Virtex-4 1.6 Gbps 46 bytes/char 1.4 16715 NA
RegExp Controller hardware [3] REG Virtex-4 FX100 1.4 Gbps 46 bytes/char 2.56 16715 NA

�����

�

�����	
���
�������������������
�����	
���
���������������

����

�����

�����

��
�
��
��

	��
���
��

�����	
���
�������������������
�����	
���
���������������

�

����

�����

�����

� �� �� �� �� �� �� �� �� � ������������

!"
��
��
�
��
��

	��
���
��

!"���������
	������

�����	
���
�������������������
�����	
���
���������������

Fig. 10. Slice usages against the number of PMMs for exact string matching
and extended pattern matching.

�

�

�

��
�#$

��
�%

�����	
���
�������������������
�����	
���
���������������

�

�

�

�

�

�

� �� �� �� �� �� �� �� �� � ������������

!"
�

��

"�
��
�#$

��
�%

!" � 	 ���

�����	
���
�������������������
�����	
���
���������������

�

�

�

�

�

�

� �� �� �� �� �� �� �� �� � ������������

!"
�

��

"�
��
�#$

��
�%

!"���������
	�����

�����	
���
�������������������
�����	
���
���������������

�

�

�

�

�

�

� �� �� �� �� �� �� �� �� � ������������

!"
�

��

"�
��
�#$

��
�%

!"���������
	�����

�����	
���
�������������������
�����	
���
���������������

�

�

�

�

�

�

� �� �� �� �� �� �� �� �� � ������������

!"
�

��

"�
��
�#$

��
�%

!"���������
	�����

�����	
���
�������������������
�����	
���
���������������

Fig. 11. Throughputs against the number of PMMs for exact string matching
and extended pattern matching.

bounded and bounded repeats as delimiters. Although Baker et
al.’s hardware achieves high throughput, it can be overflowed
when many matches of short segments occur. On the contrary,
our hardware, dynamic BP-NFA, consumes more logic, while
it achieves comparable high throughput regardless of the type
of input as shown in Theorem. 1. Hence, our hardware can
be an alternative choice for dynamic reconfigurable hardwares
for regular expression matching.

VI. Conclusion
In this paper, we presented a novel FPGA-based architecture,
called the dynamic reconfigurable bit-parallel architecture, for
large-scale regular expression matching. For the subclass EXT
of regular expressions, this architecture provides dynamic re-
configuration of the patterns using bit-parallel NFA simulation.

The use of block RAMs is attractive on modern FPGA

devices equipped with large number of block RAMs 1 since
it reduces not only the number of logic cells but also the
compilation and place-and-route times.

In this paper, we considered the class of extended patterns.
As future work, it is an interesting problem to extend our
architecture for more general classes of patterns, such as
acyclic regular expressions [7] and XPath queries [8].

References
[1] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman. “Efficient pattern

matching over event streams”. In Proc. SIGMOD’08, pp. 147–160, 2008.
[2] R. Baeza-Yates and G. H. Gonnet. “A new approach to text searching”.

CACM, 35(10), pp. 74–82, 1992.
[3] Z. K. Baker, H. Jung, and V. K. Prasanna. “Regular expression software

deceleration for intrusion detection systems”. In Proc. FPL’06, pp. 1–8,
2006.

[4] Z. K. Baker and V. K. Prasanna. “Time and area efficient pattern
matching on FPGAs”. In Proc. FPGA’04, ACM, pp. 223–232, 2004.

[5] D. Harris and S. Harris. Digital Design and Computer Architecture.
Morgan Kaufmann Publishers Inc., 2007.

[6] H. J. Jung, Z. K. Baker and V. K. Prasanna. “Performance of FPGA
implementation of bit-split architecture for intrusion detection systems”.
In Proc. RAW’06, 2006.

[7] Y. Kaneta, S. Minato, and H. Arimura. “An efficient matching algorithm
for acyclic regular expressions with bounded depth”. TCS Technical
Report A, DCS, Hokkaido University, TCS-TR-A-10-40, Feb. 2010.

[8] Y. Kaneta and H. Arimura. “Faster bit-parallel algorithms for unordered
pseudo-tree matching and tree homeomorphism”. In Proc. IWOCA’10,
2010.

[9] Y. Kawanaka, S. Wakabayashi, and S. Nagayama. “A systolic regular
expression pattern matching engine and its application to network
intrusion detection” In Proc. FPT’08, pp. 297–300, 2008.

[10] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings.
Cambridge University Press, 2002.

[11] H. Roan, W. Hwang, et al. “SHIFT-OR circuit for efficient network
intrusion detection pattern matching”. In Proc. FPL’06, pp. 1–6, 2006.

[12] R. Sidhu and V. K. Prasanna. “Fast regular expression matching using
FPGAs”. In Proc. the 9th Annual IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp. 227–238, 2001.

[13] S. Wu and U. Manber. “Fast text searching: allowing errors”. CACM,
35(10), pp. 83–91, 1992.

[14] N. Yamagaki, R. Sidhu, and S. Kamiya. “High-speed regular expression
matching engine using multi-character NFA”. In Proc. FPL’08, pp. 131–
136, 2008.

[15] Y. E. Yang and V. K. Prasanna. “Memory-efficient pipelined architecture
for large-scale string matching”. In Proc. IEEE FCCM’09, pp. 104–111,
2009.

[16] Y. E. Yang, W. Jiang, and V. K. Prasanna. “Compact architecture
for high-throughput regular expression matching”. In Proc. ACM/IEEE
ANCS’09, pp. 30–39, 2009.

1In the latest version of Xilinx Virtex series, the highend model Virtex-7
910T, released in June 2010, has 1,800 block RAMs, while Virtex-5 240T,
released in October 2006, has 516 block RAMs.

