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Abstract. In this paper, we extend the SHIFT-AND approach by Baeza-Yates and Gonnet
(CACM 35(10), 1992) to the matching problem for network expressions, which are regular
expressions without Kleene-closure and useful in applications such as bioinformatics and
event stream processing. Following the study of Navarro (RECOMB, 2001) on the extended
string matching, we introduce new operations called Scatter, Gather, and Propagate to effi-
ciently compute ε-moves of the Thompson NFA using the Extended SHIFT-AND approach
with integer addition. By using these operations and a property called the bi-monotonicity of
the Thompson NFA, we present an efficient algorithm for the network expression matching
that runs in O(ndm/w) time using O(dm) preprocessing and O(dm/w) space, where m and
d are the length and the depth of a given network expression, n is the length of an input
text, and w is the word length of the underlying computer. Furthermore, we show a modified
matching algorithm for the class of regular expressions that runs in O(ndm log(m)/w) time.

1 Introduction

Recent emergence of massive text and sequence data in networks has attracted
much attention to string processing technologies [1, 3, 4, 11, 14, 16, 18]. In this paper,
we study the regular expression matching problem, which is one of the most impor-
tant problems in string processing. Especially, for the last decades, approaches based
on efficient NFA simulation have been extensively studied for restricted subclasses
of regular expressions, namely, the four-russian approach for the class REG of reg-
ular expressions [4, 11]; the SHIFT-AND approach for the class STR of strings [3,
18], and the SHIFT-ADD approach for the classes of k-mismatch string patterns [3,
8]. In particular, Navarro and Raffinot [13, 14] presented efficient bit-parallel ap-
proach, called Extended SHIFT-AND approach tailored to a restricted but useful
subclass EXT of extended string patterns, which are regular expressions in linear
form, such as R0 = ([AB]+)(B.{1, 3})([BC]?)(.∗)C, that consists of letters a ∈ Σ, wild-
cards “.”, classes of letters α = [ab · · · ], optional letters α?, bounded repeats α{x, y},
and unbounded repeats α∗ and α+, where α ⊆ Σ. In this approach, Navarro and
Raffinot [14] nicely extended the original approach of [3, 18] by introducing a new
bit-parallel simulation technique, called the propagation, with the use of integer ad-
dition “+” (or subtraction “−”) in addition to usual Boolean operations on RAM
to deal with a special case of ε-closure caused by optional letters α? and bounded
repeats α{x, y} in extended string patterns as well as unbounded repeats α∗ with
the use of an extended letter mask.

In this paper, inspired by the work by Navarro and Raffinot [14], we study the
pattern matching problem for a special class NET of regular expressions, called net-
work expressions , which are introduced in Myers [12]. A network expression (over
strings) in NET is a regular expression without Kleene-closure, that is, an expres-
sion constructed recursively from strings in STR applying ε-edges, concatenation,
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and union. Similarly, we can define the class EXNET of extended network expres-
sions , which are network expressions over extended string patterns in EXT. For
example, R1 = A(BA|CD)(CD|AB)B and R2 = A(AB|B?)(B?.∗|AB)C are examples of ex-
pressions in NET and EXNET, respectively. Network expressions and extended net-
work expressions are widely used in applications in the various fields including such
as bioinformatics [12], event stream processing [1], and network intrusion detection
systems [16].

As main results in this paper, we show the followings. Let RAM(op) denote a
unit-cost random access machine equipped with a set op of arithmetic operations in
addition to the standard Boolean operations “&”, “|”, “∼”, and “⊕”. We present an
efficient algorithm that solves the regular expression matching problem for the classes
NET and EXNET in O(nd⌈m/w⌉) time using O(dm+ |Σ|⌈m/w⌉) preprocessing and
O(d⌈m/w⌉+ |Σ|⌈m/w⌉) space on RAM(+), where Σ is a fixed alphabet, m and d
are the length and the depth of an input expression R, and n is the length of an input
text T over Σ. Furthermore, we show that the regular expression matching problem
for the full class REG can be solved in O(nd⌈m/w⌉ logm) time using O(dm logm+
|Σ|⌈m/w⌉) preprocessing and O(d⌈m/w⌉ logm+ |Σ|⌈m/w⌉) space on RAM(+). If
we allow the reversal of bitmasks inv as a primitive, then the problem can be solved
in the same time, preprocessing, and space complexities as NET and EXNET on
RAM(+, inv).

To obtain above results, we devise the following techniques to achieve efficient bit-
parallel simulation of Thompson NFA (TNFA, for short) for classes NET and EXNET.
A key of NFA simulation for the full class REG is an efficient simulation of ε-closure in
TNFA as mentioned in the previous works [4, 11]. Hence, by extending the previous
SHIFT-AND [3, 18] and Extended SHIFT-AND [14] approaches, we introduce a
set of new bit-parallel simulation operations, called Scatter, Gather and Propagate
operations to deal with the long succession and the branching of ε-edges caused by
concatenation and union in network expressions in NET and EXNET. Furthermore,
we also devise a transformation technique of a given TNFA into a special form
of NFA that satisfies a property called “bi-monotonicity” of ε-moves by attaching
new ε-edges to all subexpressions whose initial and final states are ε-reachable in
the original expression. Furthermore, we introduce the barrel shifter technique for
implementing backward ε-edges for REG based on a well-known technique in the
VLSI circuit design.

The advantages of our approach to regular expression matching are summarized
as follows. (i) Simple and efficient: Since our algorithm naturally exploits the com-
position structure of TNFAs and does not use complex module decompositions as
in [4], it is particularly efficient for regular expressions with small depth. (ii) Hard-
ware friendly: Since it uses only simple bit-operations and addition/subtraction and
avoids the heavy use of table-lookup, it has potential to be implemented on modern
parallel hardwares with simple structure, such as GPGPUs or FPGAs. To confirm
the above observations, we developed a hardware implementation of a multiple reg-
ular expression matching system on FPGA based on the proposed algorithm. The
experimental results showed that the system could match 256 patterns at the same
time against a text stream with throughput of 1.6Gbps and 0.5Gbps in total for
NET and EXNET, respectively.
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Related works. There are a number of researches on the regular expression
matching problem for REG other than the Extended SHIFT-AND approach. In the
Table-Lookup approach, Myers [11] developed an O(nm/ log n) time and space al-
gorithm. Improving the space complexity of [11], Bille and Thorup [5] presented
O(nm(log log n)/(log n)3/2 + n+m) time and O(m) space algorithm. For DFA sim-
ulation by Brute force determinization, Navarro and Raffinot [15] proposed an O(n)
time and O(m2m) bits space algorithm using DFA simulation of Glushkov’s NFAs,
while Wu and Manber [18] presented an O(n) time and O(m22m) bits space algo-
rithm based on the DFA simulation of Thompson’s NFAs. Champarnaud et al. [7]
improves this result by obtaining an expected exponential reduction of the space
complexity. Papers [6, 12, 13] study pattern matching with bounded and unbounded
gaps.

Organization of this paper. In Section 2, we give basic definitions and nota-
tions. In Section 3, we present our algorithm for the class NET of network expressions
as well as extended network expressions EXNET. In Section 4, we give a modified
algorithm for the full class REG of regular expressions. In Section 5, we show ex-
perimental results on the hardware implementation of the proposed algorithms. In
Section 6, we conclude this paper.

2 Preliminary

In this section, we give basic definitions and notations in the regular expression
matching problem according to [2, 11, 14].

Regular expression matching problem. Let N = {0, 1, 2, . . .}. For i ≤ j, we
define [i..j] = {i, i+1, . . . , j}. Let Σ be a finite alphabet of letters . A string on Σ is
a sequence S = s1 · · · sn of letters, where si ∈ Σ for every i. For every 1 ≤ i ≤ j ≤ n,
We denote by S[i] = si ∈ Σ, by S[i..j] the substring si · · · sj, and by ε the empty
string . If i > j, we define S[i..j] = ε. For a string S, we denote by |S| the length (or
the size) of S.

The class REG of regular expressions on Σ is defined recursively as follows: (1) If
a ∈ Σ ∪ {ε} then a ∈ REG. (2) If R1, . . . , Rn ∈ REG then (R1 · · ·Rn), (R1| · · · |Rn),
(R1)

∗ ∈ REG. In this paper, regular expressions are unbounded , i.e., n ≥ 1, while
n = 2 in the standard definition [4, 14]. The length (or the size) of R is defined by the
number ||R|| of symbols from Σ∪{ε, ·, |, ∗} appearing in R. For a regular expression
R, the parse tree TR, the language L(R) ⊆ Σ∗, and the depth (or the height) d(R),
respectively, are defined in the standard way [14]. Let C ⊆ REG be any subclass of
REG. A pattern is any regular expression R ∈ C and a text is a string T ∈ Σ∗ over
Σ. We say that a regular expression R of length m occurs in a text T of length n if
there exist some i ≤ j such that T [i..j] ∈ L(R) holds. Then, the index j is called the
end position of R in T . Now, we state our problem below. The regular expression
matching problem for a class C ⊆ REG is, given a regular expression R ∈ C of length
m and an input text T of length n, to output the set of all end positions of R in T .

Subclasses of regular expressions. We introduce the classes STR, EXT, NET,
and EXNET of string patterns, extended string patterns, network expressions, and
extended network expressions, respectively, as follows. A string pattern over Σ is
a string R ∈ Σ∗. An extended string pattern [13] over Σ is a regular expression
R = r1 · · · rm (m ≥ 0), where for every 1 ≤ i ≤ m, ri is one of the following forms:



4 Yusaku Kaneta, Shin-ichi Minato, and Hiroki Arimura

(i) letters a ∈ Σ, (ii) wildcards “.”, (iii) classes of letters α = [ab · · · ], (iv) optional
letters α?, (v) bounded repeats α{x, y}, and (vi) unbounded repeats α∗ and α+,
where α ⊆ Σ. The semantics of the additional operations is given by the notational
equivalence: “.” ≡ Σ, α? ≡ (α|ε), α{x, y} ≡ (α?)y−xαx, and α+ ≡ (αα∗).

A network expression (over strings) in NET [12] is a regular expression over
strings, that is, a regular expression obtained from strings, ε-edges, concatenation,
and union. An extended network expression in EXNET [12] is a network expression
over extended string patterns in EXT. For example,R0 = ([AB]+)(B.{1, 3})([BC]?)(.∗)C,
R1 = A(BA|CD)(CD|AB)B, and R2 = A(AB|B?)(B?.∗|AB)C are examples of expressions
over Σ = {A, B, C} in EXT, NET, and EXNET, respectively.

Model of computation. As the model of computation, we assume a unit-cost
RAM with word length w [2]. For any bitmask length L ≥ 0, A bitmask is a vector
X = bL · · · b1 ∈ {0, 1}L of L bits. for a bit b ∈ {0, 1}, we denote by bk the bitmask
consisting of k copies of b. For bitmasks with L ≤ w, we assume that the following
Boolean and arithmetic operations are executed in O(1) time: bitwise and “&”,
bitwise or “|”, bitwise not “∼”, bitwise xor “⊕”, left shift “≪”, right shift “≫”
on RAM(), integer addition “+” and integer subtraction “−” on RAM(+). The
space complexity is measured in the number of words.

3 Fast Bit-parallel Algorithm for Extended Net-

work Expressions

In this section, we present an efficient algorithm that receives any input extended
network expression R in NET or EXNET with length m and depth d and an input
text T on Σ with length n, and finds all the occurrences of R in T in O(nd⌈m/w⌉)
time using O(dm+ |Σ|⌈m/w⌉) preprocessing and O(d⌈m/w⌉+ |Σ|⌈m/w⌉) space on
RAM(+). In what follows, we assume an input regular expression R with length m
and depth d and the input text T with length n.

3.1 Basic NFA simulation algorithm
We show the outline of our algorithm BP-Match. First, in the preprocessing phase,
we construct a set of the bitmasks MR from a given extended network expression
R ∈ EXNET, and then, in the runtime phase, we search for all the end positions of
R in an input text T based on NFA simulation of NR.

Algorithm BP-Match(T ∈ Σ∗: an input text, R ∈ EXNET: an extended network
expression)

Preprocess:
(1) Transform R to its expanded form Expand(R).
(2) Construct the TNFA NR from Expand(R).
(3) Construct a set MR of the bitmasks from NR.

Runtime:
(4) Simulate NR on T by using MR

Transformation of a regular expression to its expanded form. As pre-
processing, we first expand all the occurrences of bounded repeats α{x, y} and
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Fig. 1. The construction of Thompson automata (TNFAs).
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unbounded repeats α+ in an input expression R using the equivalence α{x, y} ≡
(α?)y−xαx and α+ ≡ (αα∗), respectively. Furthermore, we apply the operation, called
bypassing , that replaces all the subexpressions S in R such that ε ∈ L(S) with the
expression S ′ ≡ (S | ε). This bypassing does not change the language L(R). We
denote by Expand(R) the resulting extended network expression. The properties of
Expand(R) will be examined later.

Construction of TNFA. We construct the parse tree TR of R as shown in
Fig. 2. By the construction in Fig. 1, we compute the Thompson NFA (TNFA, for
short) N(R) = (V,E, θ, ϕ) of Expand(R) as shown in Fig. 3, where V = {0, . . . , L}
for L ≥ 0. As a special case, for the subexpression S ′ ≡ (S|ε) introduced by the
bypassing, we add the ε-edge to S directly connecting from θS to ϕS instead of rule
(f). In Fig. 3, we show an example of TNFA for R2 = A(AB|B?)(B?.∗|AB)C. For each
node v of TR, let S = S(v) be the subexpression of Expand(R) associated with v
and NS = N(S) = (VS, ES, θS, ϕS) be its corresponding TNFA, called the component
TNFA for v, with a state set VS, an edge set ES, initial and final states θS and ϕS. By
depth-first search of TR from left to right, we assign the set V (v) = {θS, ϕS} ⊆ [0..L]
of the initial and final states of S to each node v of TR as in Fig. 2, and define the
depth d(v) by the number of non-concatenation nodes on the path from the root to
v. For each x ∈ V (v), we define d(x) = d(v), and for each subexpression S = S(v),
we associate the interval IS = [θS..ϕS] ⊆ [0..L]. In Fig. 4, we show a bit-position
assignment related to TR in Fig. 2. A labeled edge e = (u, β, v) ∈ ES is an α-edge if
β ⊆ Σ, and is an ε-edge if β = ε.
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Algorithm RunTNFA(T = t1 · · · tn: an input text,
N(R): a TNFA)

1: D ← InitN ; //initial state set
2: D ← EpsCloN (D); //ε-closure
3: for i← 1, . . . , n do
4: if D ∩ AcceptN ̸= ∅ then
5: report “match at i− 1”;
6: D ← MoveN (D, ti); //α-edges
7: D ← EpsCloN (D); //ε-closure
8: end for
9:
10:

Fig. 5. The algorithm RunTNFA for NFA simulation
in the runtime phase.

Procedure EpsCloN (D: the state set for a TNFA
N(R))

1: for k ← d(R), . . . , 1 do
2: D ← Propagate(D, k);
3: D ← Gather(D, k − 1);
4: end for
5: D ← Propagate(D, 0);
6: for k ← 1, . . . , d(R) do
7: D ← Scatter(D, k − 1);
8: D ← Propagate(D, k);
9: end for
10: return D;

Fig. 6. The procedure EpsCloN for computing
ε-closure.

Efficient NFA simulation. Next, we describe the standard NFA simulation
method developed by Thompson [2, 17] that most of the previous regular expression
matching algorithms [3, 4, 11, 14, 18] employ. In Thompson’s algorithm [17], the cur-
rent status of the TNFA NR = (VR, ER, θR, ϕR) is represented by a set D ⊆ VR of
active states . Then, we define the following operations: InitN returns the set {θR};
AcceptN returns the set {ϕR}; For any letter c ∈ Σ, MoveN(D, c) returns the set
{y ∈ VR | y is reachable from some x ∈ D by exactly one α-edge such that c ∈ α
}; EpsCloN(D) returns the set {y ∈ VR | y is reachable from some x ∈ D by zero or
more ε-edges }, called the ε-closure of D.

In Fig. 5, we show the algorithm RunTNFA that simulates the computation of
the TNFA NR on an input text T . We can show the following lemma [17].

Lemma 1 (Thompson [17]). For any input text T , the algorithm RunTNFA in
Fig. 5 correctly solves the regular expression matching problem for REG.

Fine classification of ε-moves. It is not hard to efficiently implement MoveN
either by using table-lookup [11] or SHIFT-AND approach [3, 18], while it is not
straightforward to efficiently implement EpsCloN since we have to compute ε-closure.
The key of our algorithm is an efficient implementation of EpsCloN based on a set
of new bit-parallel operations Scatter, Gather, and Propagate defined as follows.

In the construction (a)–(g) of TNFA in Fig. 1, we categorize ε-edges in a com-
ponent TNFA N(S) into four types: (i) e = (θ, ε, θi) in (f) or (g) is a scatter edge
(s-edge) with depth d(θ), (ii) e = (ϕi, ε, ϕ) in (f) or (g) is a gather edge (g-edge)
with d(ϕ), (iii) e = (θ, ε, ϕ) in (a), (c), (d), or (g) is a propagate edge (p-edge) with
d(θ) = d(ϕ), and (iv) e = (ϕi, ε, θi) in (g) is a back edge (b-edge) with d(θi) = d(ϕi),
where θ and ϕ are the initial and the final states of N(S). We classify the ε-edge
introduced by bypassing as a propagate edge. For scatter, gather, propagate, and
back edges in N(S), we assign the depth of the outermost node θ or ϕ of N(S). The
next lemma gives a characterization of ε-edges.

Lemma 2. If e = (u, ε, v) is an ε-edge in the TNFA NR for R ∈ EXNET, then
∆ = d(v)− d(u) ∈ {+1, 0,−1} holds. Moreover, (i) if ∆ = +1, e is a scatter edge,
(ii) if ∆ = −1, e is a gather edge, and (iii) if ∆ = 0, e is a propagate edge.
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For any set D ⊆ V and any k = 0, . . . , d(R), we define Scatter(D, k) (or
Gather(D, k)) the sets of states from some states in D reachable by exactly one
scatter edge (or one gather edge, resp.) with depth k. On the other hand, the set
Propagate(D, k) is defined by the ε-closure of D restricted by the propagate edges
with depth k. For any component TNFA S, an ε-block B ⊆ VS is a set of states
that induces a maximal connected component consisting only of propagate edges.
By construction of TNFA and bypassing, we can see that any such ε-block forms a
chain. Clearly, all states in B have the same depth d, which is called the depth of
B. For example, an expression R2 = A(AB|B?)(B?.∗|AB)C in Fig. 3 has three ε-blocks,
B1 = {1, 7, 14}, B2 = {5, 6}, and B3 = {8, 9, 10}.

Now, we show the key lemma, called the bi-monotonicity lemma on bypassing
transformation. For any d, d′ ∈ N, we define d ≤1 d

′ if d′−d ≤ 1 holds. For any states
x, y in TNFA N(R), a ε-path π = (x1 = x, . . . , xn = y) ∈ (VR)

∗ is said to be bi-
monotone if there exists some state xk (1 ≤ k ≤ n) such that d(x1) ≥1 · · · ≥1 d(xk)
and d(xk) ≤1 · · · ≤1 d(xn) hold, that is, the depth sequence for the first half is non-
decreasing and the latter half is non-increasing. By induction on the construction of
TNFA, we can show the next lemma.

Lemma 3 (bi-monotonicity lemma). Let x, y be any states in Expand(R). If π
be any ε-path from x to y, then there also exists some bi-monotone ε-path from x to
y in Expand(R).

Based on the bi-monotonicity of an expanded version of TNFA, we present in
Fig. 6 the procedure EpsCloN that computes the ε-closure for EXNET.

Lemma 4. Suppose that Scatter, Gather, and Propagate operations are correctly
implemented for R ∈ EXNET with depth d(R). Then, the algorithm EpsClo in Fig. 6
correctly computes the ε-closure EpsCloN(R)(D) of any state set D.

Proof. The soundness is obvious from construction. The completeness follows that
if a state y is ε-reachable from a state x, then the applications of operators in the
order of the regular expression (Propagete.Gather)∗ Propagete (Scatter.Propagete)∗

moves x to y by the existence of a bi-monotone ε-path by Lemma 3. Since this is
what EpsCloN does, the lemma is proved. ⊓⊔

3.2 Bit-parallel implementation
To simulate the TNFA NR for an extended network expression Expand(R), we use a
set MR of bitmasks of L bits CHR[c], REP[c], BLKτ [k], SRCτ [k], and DSTτ [k] ∈ {0, 1}L,
for every c ∈ Σ, 0 ≤ k ≤ d(R), and τ ∈ {S, G, P}, where L is the number of the
states of NR. Then, by further generalizing the Extended SHIFT-AND approach,
we simulate the ε-closure operations Scatter, Gather, and Propagate as follows. Let
NS = (V,E, θ, ϕ) be any component TNFA in depth k.

Simulation of Move operation. Preprocess: Let e = (θ, α, ϕ) ∈ E be an α-
edge of NS, where α ⊆ Σ. To implement the Move operation, we precompute the
following bitmasks. For every letter c ∈ α and every NS, we define: (M.1) CHR[c]
has 1 in the bit-position j = ϕ. (M.2) REP[c] has 1 in the bit-position j = ϕ such
that θ = ϕ holds, that is, an α-edge e is a self-loop, equivalently, either S = α∗ or
S = α+.
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Fig. 7. The bit-operations and the corresponding parts of TNFAs

Runtime: To simulate the Move(D, ti), we perform

D ← (((D ≪ 1) & CHR[ti]) | 1) | (D & REP[ti]); (1)

where ti ∈ Σ be an input letter. This code is the same as the code for α-moves in
the Extended SHIFT-AND approach [14]. For the details, see [14].

Simulation of Scatter operation. Preprocess: Let e = (θ, ε, θi) ∈ E be a
scatter edge of NS. To implement the Scatter operation, we precompute the following
bitmasks. For every depth k and every NS, we define: (S.1) BLKS[k] has 1 in the
bit-position j = ϕ − 1. (S.2) SRCS[k] has 1 in the bit-position j = θ. (S.3) DSTS[k]
has 1 in the bit-position j iff j = θi for all i (Fig. 7).

Runtime: To simulate the Scatter(D, k), we perform

D ← D | ((BLKS[k]− {D & SRCS[k]}) & DSTS[k]); (2)

Firstly, by the formula (D & SRCS[k]), we extract the values of source bits from
D. Then, by subtracting the values from BLKS[k], all the destination bits are set
to 1 if the source bits is 1, and all to 0 otherwise. Note that this is done by carry
propagation of subtraction “−”. Finally, we extract the destination bits by and-ing
the result with DSTS[k], and put all the destination bits to D.

Simulation of Gather operation. Preprocess: Let e = (ϕi, ε, ϕ) ∈ E be a gather
edge of NS. For every depth k and every NS, we define: (G.1) BLKG[k] has 1 in the
bit-position j ∈ [θ+ 1..ϕ− 1]. (G.2) SRCG[k] has 1 in the bit-position j iff j = ϕi for
all i. (G.3) DSTG[k] has 1 in the bit-position j = ϕ (Fig. 7).

Runtime: To simulate the Gather(D, k), we do the following

D ← D | ((BLKG[k] + {D & SRCG[k]}) & DSTG[k]); (3)

Since this code is similar to one of Scatter except that Gather uses addition, while
Scatter uses subtraction, we omit the details.

Simulation of Propagate operation. Preprocess: Let e = (θ, ε, ϕ) ∈ E be a
propagate edge of NS. For every k and ε-block B with depth k, we define: (P.1)
BLKP[k] has 1 in the bit-position i ∈ B. (P.2) SRCP[k] has 1 in the bit-position
i = min(B). (P.3) DSTP[k] has 1 in the bit-position i = max(B) (Fig. 7).

Runtime: To simulate the Propagate(D, k), we perform the following

A← (D & BLKP) | DSTP[k]; (4)

D ← D | (BLKP[k] & ((∼ (A− SRCP[k]))⊕ A)); (5)
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The above code works since any ε-block is a chain in the same depth, and thus the
propagation of the carry bits in the subexpression (A−SRCP[k]) correctly implements
the ε-closure on a chain as shown in [13, 14].

3.3 Main results
From Navarro and Raffinot (Sec. 1.3.1, [14]), we know that the integer addition
and subtraction can be executed in O(⌈m/w⌉) time and space by simulating carry
propagation. Combining this and the arguments in the previous section, we have the
following lemma.

Lemma 5. By the above construction, the Move(D, c), Scatter(D, k), Gather(D, k),
and Propagate(D, k) operations for N(R) are correctly implemented to run in O(⌈m/w⌉)
time on RAM(+), where c ∈ Σ, 0 ≤ k ≤ d(R), D is any m-bit mask, m is the num-
ber of states in N(R) and w is the word length.

From Lemma 5, in the large automata case with m > w, we can use inexpen-
sive simulation of primitive operations on RAM(+) instead of expensive module
decomposition technique used tabling-based algorithms as in [4, 11]. This will be
an advantage of our algorithm in implementing it on parallel hardwares such as
GPGPUs and FPGAs. Now, we show the main result of this paper.

Theorem 1. The algorithm BP-Match solves the regular expression matching prob-
lem for NET and EXNET of network and extended network expressions in O(nd⌈m/w⌉)
time using O(dm + |Σ|⌈m/w⌉) preprocessing and O(d⌈m/w⌉ + |Σ|⌈m/w⌉) space,
where n = |T |, m = ||R||, d = d(R), w is the word length.

Proof. The correctness follows from Lemma 1, Lemma 4, and Lemma 5. Then, the
result immediately follows from that the for-loop is executed at most d(R) times
and each code can be executed in O(⌈m/w⌉) time from Lemma 5 ⊓⊔

4 Extension for general regular expressions

To generalize our algorithm in Sec. 3 for the full class REG in the Extended SHIFT-
AND approach, we need to simulate backward ε-edges corresponding to the Kleene-
closure “∗”. However, the backward ε-edges from lower to higher bits seems hard to
compute on RAM(+). To overcome this difficulty, we introduce a technique called
barrel shifter as follows.

The idea is to decompose each backward ε-moves from higher to lower bits having
the length J bits into a series of right-shifts “≫” having the widths 20 = 1, 21 =
2, . . . , 2ℓ, where ℓ = ⌈log δ⌉ and δ = O(m) is the maximum length of the backward
ε-edges in TNFA. More precisely, for each back edge e in a certain depth of R, if
the edge e has the width J ≥ 0, we have the unique binary expansion bin(J) =
Jℓ−1 · · · J0 ∈ {0, 1}L such that J =

∑ℓ−1
i=0 Ji2

i. For each k = 0, . . . , d(R) and i =
0, . . . , ℓ − 1, the bitmask BLKB[k][i] is defined by: for each back edge e = (ϕi, ε, θi)
in depth k, we fill the interval Ie = [θi..ϕi] with 1’s if Jk = 1 and with 0’s if
Jk = 0. In run-time, we set jmp ← 1, and repeatedly perform D ← (D & ∼
BLKB[k][i]) | ((D & BLKB[k][i]) ≫ jmp); jmp ← jmp ≪ 1. From the construction,
this operation can be implemented in O(d⌈m/w⌉ logm) time using O(dm logm)
preprocessing and O(d⌈m/w⌉ logm) space.
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Table 1. Summary of experimental results on the hardware implementation, where #op, #add, #reg,
#bram, and #slice, are the numbers of 32 bit operations, 32 bit integer additions, registers, block RAM
lines, resp., per PMM. #pat and #char are the number and the total size of input patterns, resp.

.

Class #op #add #reg #bram #slice frequency throughput load time #pat #char

STR 5 0 3 256 54 363 MHz 2.9 Gbps 0.182 ms 256 8,192

EXT 11 1 6 512 123 202 MHz 1.6 Gbps 0.328 ms 128 4,096

EXNET 20 9 24 512 736 65 MHz 0.5 Gbps 1.055 ms 128 4,096

Theorem 2. The regular expression matching problem for the class REG can be
solved in O(nd⌈m/w⌉ logm) time using O(dm logm+ |Σ|⌈m/w⌉) preprocessing and
O(d⌈m/w⌉ logm+ |Σ|⌈m/w⌉) space.

As an alternative, if there are at most constant number of back edges with
mutually distinct lengths, then we can replace the O(logm) term with O(1). As other
option, if the O(1)-bit-reversal inv is available, we can also replace the O(logm) term
with O(1) on RAM(+, inv) by simulating backward ε-moves by Scatter (or Gather)
and inv. Thus, we obtain the same complexity as Theorem 1.

5 Experimental results

To evaluate the performance, we implemented our regular expression matching al-
gorithm on FPGA in Verilog-HDL for STR, EXT, and EXEXT. We designed the
algorithm as a collection of up to 256 pattern matching modules (PPMs) working
simultaneously [10], where the word length is w = 32 bits, and masks are stored in
block RAMs and a set of registers. We used the Xilinx ISE Design Suite 10.1 and
Synopsys VCS development tools. Having targetted an FPGA device, Xilinx Virtex-
5 LX330 with −1 speed grade, which had 51,840 slices and 288 block RAMs with 36
Kbits, we could install up to 256 PPMs. For more details of the experiments, see the
companion paper [10]. Table. 1 shows the summary of the experimental results on
our hardware. The #bram is given by the number of block RAMs times |Σ| = 256.
Then, we can observe that our hardware achieves the high throughput of 0.5 Gbps
for the class EXNET and of 1.6 Gbps for the class EXT, which is hard to achieve
by software implementation on the current general CPUs. Hence, our algorithm is
suitable to hardware implementation.

6 Conclusion

In this paper, we presented an efficient bit-parallel algorithm that solves the regular
expression matching problem for the class EXNET of extended network expressions
in O(nd⌈m/w⌉) time using O(d⌈m/w⌉) space and O(dm) preprocessing by extending
the Extended SHIFT-AND approach [14]. Furthermore, we show that the problem
for the full class REG of regular expressions is solvable in O(nmd logw/w) time on
RAM(+). Experiments on its hardware implementation showed that the proposed
algorithm is suitable to parallel execution on hardwares. Other advantage is the
guaranteed worst-case time complexity. Thus, it may be useful as a base algorithm
for other approaches such as filtration as mentioned in [8, 14]. Application of the
Extended SHIFT-AND to tree and XML matching [9] will be an interesting future
research.
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