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Abstract

This paper discusses about pattern matching on Variable-to-Fixed-length
codes (VF codes). A VF code is a coding scheme whose codeword lengths are
fixed, and thus it is suitable for comprssed pattern matching. However, there are
few reports showing its efficiency so far. We present some experimental results
about the compression ratios and encoding/decoding speeds besides pattern
matching performance on Tunstall codes and STVF codes. We also present
how an entropy coding affects to VF codes.

1 Introduction

We have addressed speeding up of pattern matching on texts by designing a com-
pression method that is suitable for compressed pattern matching. The compressed
pattern matching problem was first defined in the work of Amir and Benson|AB92|
as the task of performing string matching in a compressed text without decompress-
ing it. Although compressing and searching were hard to go together, from the late
90’s to the beginning of 2000, the compression methods which achieve high search
performance were appeared [SMT*00, SAMNZBY00, RTT02]. This broke out of the
paradigm, as we can use data compression to make pattern matching fast, and gives
a new criterion of adopting a compression method [TSMT01]. Since then, several
compression methods which are suitable for compressed pattern matching have been
proposed [BINP03, BENE03, MTST08, KBN08, KS09, BFL*10].

We have paid attention to Variable-to-Fized-length codes (VF codes for short) and
improved them against such a background [Kid09, YK10]. A VF code is a source
coding that assigns fixed length codewords to variable length substrings in an input
text; all codeword boundaries are obvious and thus VF codes are suitable for pattern
matching. Since existent VF codes have poor compression ratios, they are paid less
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attentions in spite of having preferable engineering aspect that all codewords are the
same length. If we could tolerate taking time long to compress, VE codes achieve to
the level of gzip in compression ratios [UYK™10]. On the other hand, to the author’s
knowledge so far, there are few reports showing the efficiency of pattern matching on
VF codes for real texts in actual.

In this paper, we demonstrate the performance of doing pattern matching on VF
codes by experiments. We tested two VF codes: Tunstall code [Tun67] and STVF
code [Kid09]. Tunstall code, which is a classical and typical VF code, is proved
to be a optimal VF code for a memory-less information source (see [Sav98]); its
average of codeword length par symbol comes asymptotically close to the entropy of
the source when the code length goes to infinity. STVF code is a VF code proposed
by Kida [Kid09], which utilizes a frequency-based-pruned suffix tree as a dictionary®.
Suffix tree is a well-known index structure that stores all substrings in the target text
compactly. STVF code has better compression ratios than Tunstall code and Huffman
code.

Our experimental results showed that doing pattern matching on Tunstall codes
directly for natural language texts is 1.3 ~ 2.4 times faster than the decompressing
and then searching method on gzipped texts by Unix command zgrep. For DNA data,
it is over 6 ~ 15 times faster than zgrep. On the other hand, doing pattern matching
on STVF codes directly for natural language texts is 1.3 ~ 2.0 times slower than
zgrep.

For improving compression ratio, to combine VF codes and an entropy encoding like
Huffman code is a natural idea. We have also investigated on changes in performance
of VF codes with entropy encodings; we experimented combinations of VF codes and
entropy codings and measured their compression ratios, compressing/decompressing
times, and pattern matching speeds. The experiment results showed that entropy
codings depress the pattern matching speeds by the decoding time but improve the
compression ratios for natural language texts by over 20% ~ 40% for Tunstall codes,
and over 24% ~ 30% for STVF codes.

2 Preliminaries

2.1 VF codes

A VF code is a source coding that parses an input string into a consecutive sequence of
variable-length substrings and then assigns a fixed length codeword to each substring.
There are many variations on how they parse the input, what kind of data structures
they use as a dictionary, and how they assign codewords. Among them, the method
that uses a tree structure, called a parse tree, is the most fundamental and common.

!Klein and Shapira [KS09] previously proposed a VF code, called DynC, based on the same idea,
but the encoding algorithm is slightly different from [Kid09].
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Figure 1: An example of a parse tree.

The squares represent leaves, where codewords are assigned. The black circles
represent internal nodes.

Consider that we encode an input text 7' € ¥* by a VF code of length ¢-bits
codewords. Assume that a parse tree 7 that has ¢ leaves is given, and each leaf in 7T
is numbered as a (-bits integer, where ¢t < 2¢. Then, we can parse and encode T with
T as follows:

1. Start the traversal at the root of 7.

2. Read a symbol one by one from 7', and traverse the parse tree 7 by the symbol.
If the traversal reaches to a leaf, then output the codeword assigned at the leaf
before getting back to the root.

3. Repeat Step 2 till T ends.

For example, given the text 77 = AAABBACB and the parse tree of Fig. 1, the
encoded sequence becomes 000/001/101/011. We call a block each factor of T' parsed
by a parse tree. Codeword 011, for the running example, represents block ACB.

A decoding process of a VF code is quite simple. We can decode by replacing a
codeword to a corresponding string as referring the restored parse tree.

2.1.1 Tunstall code

Tunstall code [Tun67] is an optimal VF code (see also [Sav98|) for a memory-less
information source. It uses a parse tree called Tunstall tree, which is the optimal
tree in the sense of maximizing the average block length. Tunstall tree is an ordered
complete k-ary tree that each edge is labelled with a different symbol in 3, where
k = |X|. Let Pr(a) be an occurrence probability for source symbol a € X. The
probability of string x, € ¥F, which is represented by the path from the root to leaf
p, is Pr(z,) = [, Pr(n), where £ is the label sequence on the path from the root to
@ (from now on we identify a node in 7 and a string represented by the node if no
confusion occurs). Then, Tunstall tree 7* can be constructed as follows:

1. Initialize 7* as the ordered k-ary tree whose depth is 1, which consists of the
root and its children; it has £ 4+ 1 nodes.

2. Repeat the following while the number of leaves in 7* is less than 2°
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(a) Select a leaf v that has a maximum probability among all leaves in 7*.

(b) Make v be an internal node by adding k children onto wv.

Let s be the number of internal nodes in 7*. Since the number of leaves in 7* equals
to s(k — 1) + 1, which is less than or equal to 2°. Hence, s = |(2° —1)/(k —1)].

2.1.2 STVF code

A Suffix Tree based VF code (STVF code for short?) is a coding that constructs a
suitable parse tree for the input text by using a suffix tree, which is a well-known
index structure that stores all substrings in the target text compactly. It is, namely,
an off-line compression scheme that encodes after gathering the statistical information
of the whole input text beforehand. Since the suffix tree for the input text includes
the text itself, we can not use the whole tree as a parse tree. We have to prune it
with some frequency-base heuristics to make a compact and efficient parse tree.

Now consider to code T with codeword length /. The pruning algorithm is as
follows: (i) Let a tree that consists of the root of ST p(T'$) and its direct children, be
the first parse tree candidate 77; (ii) Select a node v which has the highest frequency
among all leaves in 7;; Here let L; be the number of leaves in 7; and C, be the
number of direct children of v; (iii) Add all children in ST p(T'$) of v to T, as leaves if
Li+C,—1 <2 and let it be .1 for the new candidate, otherwise stop the pruning;
If child u of v is a leaf in STp(T$), cut the label on the edge from v to u so that
the label length becomes 1, leaving the first character on the edge; (iv) Repeat Step
(ii) and (iii). The encoding/decoding procedures are as the same as those of Tunstall

code.

2.2 Entropy encoding

Shannon’s source coding theorem says essentially that a message of n symbols can be
compressed to nH bits on average (but not further) for a text of its entropy H, and
also says that almost optimal codings exist, which are called entropy encodings.

Huffman coding and arithmetic coding [RL79] are the most common entropy en-
codings. Arithmetic coding is a coding that codes the cumulative frequency of the
entire message into bits, while Huffman coding encodes each character into a bit se-
quence according to its frequency. Therefore, arithmetic coding usually approaches
to the entropy rate much closer than Huffman coding does. There are, however, two
problems on the original arithmetic coding. One is that we have to calculate real num-
ber operations in arbitary accuracy, and the other is that such real number operations
take much time for compressing and decompressing. To avoid these problems, Range
coder[Mar79], a kind of arithmetic coding, simulates the real number operations with

2Strictly, the methods of [Kid09] and [KS09] are slightly different in detail. However, we call them
the same name here since the key idea is the same.
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those of fixed-lenth integers by some way. Range coder is adopted as a high speed
entropy encoder by many compression methods.

It is common idea to do entropy coding after translating the source input into some
forms. It would be also effective in compressing to combine an entropy coding with
VF codes. As stated above, the output of VF code is a sequence of ¢-bits integers,
where each codeword is corresponding to a variable-length substring, called block.
Therefore, to encode it by an entropy coding means to do block encoding, where each
block is parsed by the VF coding. It means only that the number of different blocks is
up to 2¢. Although the number of useless codewords increases when ¢ becomes larger
since the occurrence frequency for each codeword in the medium sequence decreases,
entropy codings can capture the bias of the occurrence. Note that we need to store
the dictionary for entropy coding in addition to the parse tree for VF codes. For

example, the cost of storing the dictionary for Huffman coding increases according to
2L,

2.3 Pattern matching on VF codes

Consider that a text T = T[1 : u| is coded by a VF code into a compressed text Z.
Note that Z is a sequence of blocks Z = by, b, ..., b,, where each block b;(1 < i < n)
is represented by a (-bits integer and corresponding to a factor of T. We denote
by w(b;) the string represented by b;. We define the compressed pattern matching
problem on VF codes as follows:

Definition 1 Given: a pattern P = P[1 : m| and a VF coded text Z = by, by, ..., by,.
Find: all locations at which P occurs in the original text T[1 : u] = w(by)w(bs) - - - w(by)
without decompressing it.

Although we omit the detail discussion, this problem can be solved in O(n + R)
time after an O(|D|+ m?) time preprocessing using O(|D|+ m?) space, where m, n,
R, and |D| are the pattern length, compressed text length, the number of pattern
occurrences, and the size of the parse tree, respectively. The proof is done by Kida
et al.[KSTT99]; they proposed a general framework for compressed pattern matching,
named collage system. Collage system is a formal system that captures compressed
texts encoded by dictionary-based compression methods. They also present a general
pattern matching algorithm on collage systems. VF codes can be framed into (regular)
collage systems; namely, a pattern matching algorithm on VF codes is systematically
delivered from the general algorithm.

3 Experimental Results

In our experiments, we tested Tunstall coding and STVF coding for VF codings, and
tested Huffman coding and Range coding for entropy codings. The codewords of
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Table 1: Text files for experiments

Texts size(byte) |X| Content
E.coli 4638690 4 Complete genome of the E.Coli bacterium
bible.txt 4047392 63 The King James version of the bible

world192.txt 2473400 94 The CIA world fact book
dazai.utf.txt 7268943 141 The all works of Osamu Dazai (UTF-8 encoded)

VF codes are integers of the range of 0 to 2¢ — 1. Although both Huffman coding
and Range coding are theoretically independent from the source alphabet size, most
the programs that are available on the Internet assume that an input is coded with
ASCII or bytewise codes. We made maximum efforts, but we could not find proper
programs. Therefore, in this time, we newly implemented Huffman coding and Range
coding which can deal with a large alphabet over 256.

We have implemented Tunstall coding, STVF coding, Huffman coding, and Range
coding. We abbreviate them as Tunstall, STVF, Huf and RC respectively. We denote
the combination of two compression method as concatenation of the abbreviations
with “+” between them, such as STVF+Huf, Tunstall+RC, and so on. We also
indicate the codeword length of Tunstall and STVF after them in parentheses, such
as STVF+Huf(8), Tunstall4+RC(16), and so on.

All programs we have implemented are written in C++ and compiled by g++ of
GNU, version 3.4. We ran our experiments on an Intel Xeon processor of 3.00GHz
dual core hyper threading with 12GB of RAM running on Red Hat Enterprise Linux
ES release 4. We used E.coli, bible.txt, and world192.txt as test corpora, which are
selected from “the Canterbury corpus®.” We also used dazai.txt, the collection of
japanese novel texts written by Osamu Dazai, from Japanese corpus “J-TEXTS*.”

The file dazai.txt is encoded with UTF-8. For the details, please refer Table 1.

At first, we show the results of compression performance. The results of compres-
sion ratios are shown in Fig. 2. We have compared the compression ratios, compres-
sion/decompression times of STVF, STVF+RC, STVF+Huf, Tunstall, Tunstall+RC,
and Tunstall+Huf, setting the codeword length 8 and 16. We have added the results
of gzip for reference. We measured (compressed file size)/(original file size) as the
compression ratios. As seen from Fig. 2, the compression ratios of STVF are usu-
ally better than those of Tunstall. However, after applying Huf or RC, compression
ratios of them become into almost the same level. In STVF, there are a few or no
improvement by Huf and RC when the codeword length is 16.

The results of compressing times are shown in Fig. 3. We measured CPU times
by time command on Linux. As seen from Fig. 3, the compression does not become
slower so much when the codeword length is 8, nevertheless we applied Huf/RC after
Tunstall/STVF. STVF+Huf and Tunstall4+Huf become slower when the codeword

3http://corpus.canterbury.ac.nz/descriptions/
‘http:/ /www.j-texts.com/
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Figure 2: Compression ratios.
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Figure 3: Compression times.
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w gzip w gzip
0.2
0 4
E.coli bible dazai world192 E.coli bible dazai world192

Figure 4: Decompression times.

length is 16, whereas STVF+RC and Tunstall4+RC do not become slower than STVF
and Tunstall, respectively.

The results of decompressing times are shown in Fig. 4. As seen from Fig. 4,
the decompression of STVF is faster than that of Tunstall. Applying RC/Huf af-
ter STVF /Tunstall makes their decompressing time slower by the decoding time for
RC/Huf. The decompression of Tunstall+Huf and STVF+Huf are faster than those
of Tunstall+RC and STVF+RC, respectively. The difference between them is tend
to be larger when the codeword length is longer.

Next, we show the resutls of pattern matching performance. We have compared
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m STVF, 8 bits m STVF, 16 bits

m STVF-Huf, 8 bits
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Figure 5: Pattern matching times.

pattern matching performance of Tunstall, STVF, Tunstall+RC, STVF+RC, Tun-
stall+Huf and STVF+Huf. We have added the results of zgrep on gzipped texts and
fgrep on uncompressed texts for reference. In this time, we have implemented the
pattern matching algorithms on VF codes whose preprocessing time is O(m?), not
O(m?), for the convenience of implementation. We collected the patterns from the
text at random position. The lengths of patterns are 5 to 50; we collected 50 patterns
for each length.

First, we compare the pattern matching times on patterns of length 15. The
results are shown in Fig. 5. The pattern matching performance becomes worse if
we apply RC/Huf to Tunstall/STVF. As seen from Fig. 5, the pattern matching of
Tunstall+Huf and STVF+Huf are slower than that of Tunstall+RC and STVF+RC,
respectively. STVF, STVF+RC, Tunstall, and Tunstall+RC are faster than zgrep for
E.coli. Only Tunstall(8) is faster than zgrep in any cases.

Finally, we compare the preprocessing times and text scanning times for pattern
matching. We measured them by embeding instructions in the source codes to ob-
tain the CPU time. The results of the preprocessing times and text scanning times
are shown in Fig. 6 and Fig. 7, respectively. Although the preprocessing times for
Tunstall and STVF are almost the same, Tunstall/STVF(16) are slower than Tun-
stall/STVF(8). As seen from Fig. 6, they increase quickly when pattern length is
longer, since we employed an O(m?) implementation. On the other hand, the scan-
ning times are almost constant. Namely, the pattern length does not affect on the
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scanning time. Tunstall is usually faster than STVF. Moreover, scanning of Tun-
stall/STVF(16) are faster than those of Tunstall/STVF(8), respectively.

2

18 0.45 e=@==Tunstall+Huf, 8 bits
16 0.4 W—"— =f=STVF+Huf, 8 bits
1.4 0.35 == Tunstall+Huf, 16 bits

«=@==STVF, 8 bits 03 - =>&=Tunstall+RC, 8 bits
Tunstall, 8 bits ==@=STVF+Huf, 16 bits
e=j==Tunstall+RC, 16 bits
==3¢=Tunstall, 16 bits
015 ——STVF+RC, 16 bits
0.1 STVF, 8 bits

0.05 H“_‘_"—"-‘_‘_‘_. w==STVF, 16 bits
H*-I—I—.—.—I—H —m—Tunstall, 8 bits

5 10 15 20 25 30 35 40 45 50 Tunstall, 16 bits

1.2

1

0.8
0.6
0.4
0.2

0.2

0

5 10 15 20 25 30 35 40 45 50 0

Figure 6: Preprocessing times for pattern

matching. Figure 7: Text scanning times.

4 Conclusions

In this paper, we demonstrated the performance of pattern matching on VF codes by
experiments. When the codeword length is longer, scanning encoded texts becomes
faster, while preprocessing takes much more time since the parse tree becomes larger.
When the pattern length is shorter enough, about shorter than 20, it also revealed
that compressed pattern matching on VF codes was faster than zgrep.

Doing entropy coding to VF codes not only improves compression ratios, but makes
almost no loss in compression/decompression time; unexpectedly, there are situations
that entropy coding can reduce them. The reason is considered to be that the total
[/O time decrease by the reduction in the amount of data stored into a hard disk. On
the other hand, the pattern matching speeds depress by the time needed for doing
entropy decoding.

Since we employed an implementation whose preprocessing for pattern matching
takes O(m?) time, the pattern matching speed becomes worse than that on the uncom-
pressed texts when the pattern is longer than about 20. In any cases, Unix command
fgrep was the fastest. To do pattern matching faster, it is essential to improve the
pattern matching algorithm itself besides its efficient implementation. The algorithm
we realized in this time was a prefix-type algorithm, but a suffix-type algorithm on
collage systems have also been proposed [SMT100]. To implement it for VF codes is
one of our future works. From the lack of time, we could not compare our methods to
the modern compression methods, such as Dense codings [BINP03, BFNE03]|, BPEX
[MTSTO8], and so on. It is also our future work.
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