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Abstract

Nonconstructive proofs are a powerful mechanism in mathematics. Further-
more, nonconstructive computations by various types of machines and automata
have been considered by e.g., Karp and Lipton [15] and Freivalds [10]. They
allow to regard more complicated algorithms from the viewpoint of much more
primitive computational devices. The amount of nonconstructivity is a quanti-
tative characterization of the distance between types of computational devices
with respect to solving a specific problem.

In the present paper, the amount of nonconstructivity in learning of recursive
functions is studied. Different learning types are compared with respect to the
amount of nonconstructivity needed to learn the whole class of general recursive
functions. Upper and lower bounds for the amount of nonconstructivity needed
are proved.

Keywords: inductive inference, learning, recursive functions, nonconstruc-
tivity, advice

1. Introduction

Nonconstructive methods of proof in mathematics have a rather long and dramatic

history. The debate was especially passionate when mathematicians tried to overcome

the crisis concerning the foundations of mathematics.
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However, the situation changed slightly in the forties of the last century, when

nonconstructive methods found their way even to discrete mathematics. In particular,

Paul Erdős used nonconstructive proofs masterly, beginning with the paper [6].

Another influential paper in this regard was Bārzdiņš [2], who introduced the

notion of advice in the setting of Kolmogorov complexity of recursively enumerable

sets. Karp and Lipton [15] introduced the notion of a Turing machine that takes

advice to understand under what circumstances nonuniform upper bounds can be

used to obtain uniform upper bounds.

A further step was taken by Freivalds [10], who introduced a qualitative approach

to measure the amount of nonconstructivity (or advice) in a proof. Analyzing three

examples of nonconstructive proofs led him to a notion of nonconstructive computa-

tion which can be easily used for many types of automata and machines and which

essentially coincides with Karp and Lipton’s [15] notion when applied to Turing ma-

chines.

As outlined by Freivalds [10], there are several results in the theory of inductive

inference of recursive functions which suggest that the notion of nonconstructivity

may be worth a deeper study in this setting, too.

In the present paper we prove several upper and lower bounds for the amount of

nonconstructivity in learning classes of recursive functions. When learning recursive

functions growing initial segments (f(0), . . . , f(n)) are fed to the learning algorithm,

henceforth called strategy. For each initial segment the strategy has then to compute

a hypothesis in which is a natural number. These hypotheses are interpreted with

respect to a suitably chosen hypothesis space ψ which is a numbering. The inter-

pretation of the hypothesis in is that the strategy is conjecturing program in in the

numbering ψ to compute the target function f . One requires the sequence (in)n∈N

of all computed hypotheses to converge to a program correctly computing the target

function f . A strategy learns a class of recursive functions provided it can learn ev-

ery function from it. The model just explained is basically learning in the limit as

introduced by Gold [12]. Many variations of this model have been studied (cf., e.g.,

[4, 9, 23], and the references therein).

On the one hand, for many of these variations it was shown that the class of all

recursive functions is not learnable. Also, several attempts have been undertaken

to classify the difficulty of learning the class of all recursive functions. Adleman

and Blum [1] showed the degree of unsolvability of the problem to learn all recursive

functions to be strictly less than the degree of the halting problem. A further approach

was to characterize the difficulty of learning classes of recursive functions by using

oracles (cf., e.g., [5, 17]).

Our goal is to introduce a different measure, i.e., the amount of nonconstructivity

needed to learn all recursive functions. That is, the strategy receives as a second

input a bitstring of finite length which we call help-word. If the help-word is correct,

the strategy learns in the desired sense. Since there are infinitely many functions to
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learn, a parameterization is necessary, i.e., we allow for every n a possibly different

help-word and we require the strategy to learn every recursive function contained in

{ψ0, . . . , ψn} with respect to the numbering ψ (cf. Definition 4). The difficulty of the

learning problem is then measured by the length of the help-words needed, i.e., in

terms of the growth rate of function d bounding this length.

As in previous approaches, the help-word does not just provide an answer to the

learning problem. There is still much work to be done by the strategy. The usefulness

of this approach is nicely reflected by our results which show that the function d may

vary from arbitrarily slow growing (for learning in the limit) to n + 1 (for minimal

identification).

2. Preliminaries

Any unspecified notations follow Rogers [20]. In addition to or in contrast with

Rogers [20] we use the following. By N = {0, 1, 2, . . . } we denote the set of all natural

numbers. We set N+ = N \ {0}. The set of all finite sequences of natural numbers is

denoted by N∗.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set of

set S. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of, proper subset,

subset, proper superset, superset, and incomparability of sets, respectively.

By P and T we denote the set of all partial and total functions of one variable

over N. The set of all partial recursive and recursive functions of one respectively two

variables over N is denoted by P , R, P2, and R2, respectively.

For any function f ∈ P we use dom(f) to denote the domain of the function f , i.e.,

dom(f) = {x | x ∈ N, f(x) is defined}. Additionally, by Val(f) we denote the range

of f , i.e., Val(f) = {f(x) | x ∈ dom(f)}. We use R{0,1} to denote the set of all f ∈ R
satisfying Val(f) ⊆ {0, 1}. We refer to R{0,1} as to the set of recursive predicates.

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N with

x < y we have, if both f(x) and f(y) are defined then f(x) < f(y). By Rmon we

denote the set of all strictly monotonic recursive functions.

Any function ψ ∈ P2 is called a numbering. Moreover, let ψ ∈ P2, then we write ψi
instead of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well asRψ = Pψ∩R. Consequently,

if f ∈ Pψ, then there is a number i such that f = ψi. If f ∈ P and i ∈ N are such that

ψi = f , then i is called a ψ–program for f . Let ψ be any numbering, and i, x ∈ N;

if ψi(x) is defined (abbr. ψi(x) ↓ ) then we also say that ψi(x) converges. Otherwise,

ψi(x) is said to diverge (abbr. ψi(x)↑ ). Let ψ ∈ P2 be any numbering and let f ∈ P ;

then we use minψ f to denote the least number i such that ψi = f . We refer to minψ f

as a ψ-minimal program of f .

A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [20]) iff Pϕ = P , and

for any numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i) for all i ∈ N.

Göd denotes the set of all Gödel numberings.



4 Rūsiņš Freivalds and Thomas Zeugmann

Furthermore, let NUM = {U | (∃ψ ∈ R2) [U ⊆ Pψ]} denote the family of all

subsets of all recursively enumerable classes of recursive functions and let NUM! =

{U | (∃ψ ∈ R2) [U = Pψ]} denote the family of all recursively enumerable classes of

recursive functions. Note that the elements of NUM! are also often referred to as

indexed families.

Following [18] we call any pair (ϕ,Φ) a measure of computational complexity pro-

vided ϕ is a Gödel numbering of P and Φ ∈ P2 satisfies Blum’s [3] axioms. That is,

(1) dom(ϕi) = dom(Φi) for all i ∈ N and (2) the predicate “Φi(x) = y” is uniformly

recursive for all i, x, y ∈ N.

Furthermore, using a fixed encoding 〈. . .〉 of N∗ onto N we write fn instead of

〈(f(0), . . . , f(n))〉, for any n ∈ N, f ∈ R. A sequence (jn)n∈N of natural numbers is

said to converge to the number j iff all but finitely many numbers of it are equal to j.

A sequence (jn)n∈N of natural numbers is said to finitely converge to the number j iff

it converges in the limit to j and for all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n.

Definition 1 (Gold [11, 12]). Let U ⊆ R and let ψ ∈ P2. The class U is said

to be learnable in the limit with respect to ψ if there is a strategy S ∈ P such that

for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N converges to j.

If U is learnable in the limit with respect to ψ by a strategy S, we write U ∈ LIMψ(S).

We set LIMψ = {U | U is learnable in the limit with respect to ψ}. Finally, let

LIM =
⋃
ψ∈P2 LIMψ.

Freivalds [8] and Kinber [16] introduced the following modification of Definition 1,

where instead of converging to any program for the target function f , the strategy is

required to converge to minψ f .

Definition 2 (Freivalds [8], Kinber [16]). Let U ⊆ R and let ψ ∈ P2. The

class U is said to be ψ-minimal learnable in the limit with respect to ψ if there is a

strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) the sequence (S(fn))n∈N converges to minψ f .

If U is ψ-minimal learnable in the limit with respect to ψ by a strategy S, we write

U ∈ MIN ψ(S). Furthermore, let MIN ψ = {U | U is ψ-minimal learnable in

the limit w.r.t. ψ}, and let MIN =
⋃
ψ∈P2 MIN ψ.

Note that in general it is not decidable whether or not a strategy has already

converged when successively fed some graph of a function. With the next definition

we consider a special case where it has to be decidable whether or not a strategy
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has already learned its input function. That is, we replace the requirement that the

sequence of all created hypotheses “has to converge” by “has to converge finitely.” This

leads to finite identification which has been investigated intensively in the literature

(cf., e.g., Jain, Osherson, Royer, and Sharma [13] and Zilles and Zeugmann [23] and

the references given therein).

Definition 3 (Gold [12], Trakhtenbrot and Barzdin [21]). Let U ⊆ R and

let ψ ∈ P2. The class U is said to be finitely learnable with respect to ψ if there is a

strategy S ∈ P such that for any function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N finitely converges

to j.

If the class U is finitely learnable with respect to ψ by a strategy S then we write

U ∈ FIN ψ(S). Let FIN ψ = {U | U is finitely learnable with respect to ψ}, and

let FIN =
⋃
ψ∈P2 FIN ψ.

Of course, we can also combine ψ-minimal learnability and finite identification.

That is, now the strategy has to converge finitely to a ψ-minimal program of the

target function. We denote the resulting learning type by MIN -FIN ψ.

The strategies used for nonconstructive inductive inference take as input not only

the encoded graph of a recursive function but also a help-word. The help-words are

assumed to be encoded in binary. So, for such strategies we write S(fn, w) to denote

the program output by S, where w is the help-word. Then, for all the inference

types defined above, we say that S nonconstructively identifies f with the help-word

w provided the sequence (S(fn, w))n∈N (finitely) converges to a number j such that

ϕj = f (for LIM and FIN ) and j = minψ f (for MIN ), respectively.

Definition 4. Let ψ ∈ P2, let U ⊆ R, and let d ∈ R. A strategy S ∈ P2 identifies

U with nonconstructivity d(n) in the limit with respect to ψ, if for every n ∈ N there

is a help-word of length at most d(n) such that for every f ∈ U ∩ {ψ0, ψ1, . . . , ψn} the

sequence (S(fn, w))n∈N converges to a program i satisfying ψi = f .

Nonconstructive finite and minimal identification are defined in analogue to the

above.

Looking at Definition 4 as well as at the definition of nonconstructive finite and

minimal identification, it should be noted that the strategy may need to know either

an appropriate upper bound for n or even the precise value of n in order to exploit

the fact that the target function is from f ∈ U ∩ {ψ0, ψ1, . . . , ψn}.

In order to simplify notation in several theorems and proofs given below, we make

the following convention. Whenever we talk about nonconstructivity log n, we assume

that the logarithmic function to the base 2 is replaced by its integer valued counterpart

blog nc+ 1.
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3. Results

Already Gold [11] showed that R /∈ LIM. So, we start our investigations by

asking for the amount of nonconstructivity needed to identify the set R of all recursive

functions in the limit with respect to any Gödel numbering ϕ.

Using an idea from Freivald and Wiehagen [7], we prove that the needed amount

of nonconstructivity is surprisingly small. To show this result, for every function

f ∈ Rmon we define its inverse finv as follows finv(n) = µy[f(y) ≥ n] for all n ∈ N.

Recall that Val(f) is recursive for all f ∈ Rmon . Thus, for all f ∈ Rmon we can

conclude that finv(n) ∈ R.

Theorem 1. Let ϕ ∈ Göd be arbitrarily fixed, and let d ∈ Rmon be any func-

tion. Then there is a strategy S ∈ P2 such that the class R can be identified with

nonconstructivity log dinv(n) in the limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed. Without loss of generality, we can also

assume any complexity function Φ ∈ P2 such that (ϕ,Φ) is a complexity measure.

The key idea of the proof is that, in order to learn any function fromR, it suffices to

have an upper bound for minϕ f . So, assuming any help-word w of length log dinv(n),

the strategy S uses the length of the help-word w to create a bitstring that contains

only 1s and has the same length as the help word. This bitstring is interpreted in the

usual way as a natural number k. By construction, we then have k ≥ dinv(n). Further-

more, since d ∈ Rmon , we directly obtain that d(k) ≥ d(dinv(n)) ≥ n. Consequently,

the strategy S uses k to compute

u∗ =df d(k) ,

and by construction, we have u∗ ≥ n.

Assume any function f ∈ R ∩ {ψ0, ψ1, . . . , ψn}, and let fm and w be the input to

S. Then, the strategy initializes the index set Iinit to be Iinit = {0, . . . , u∗} and checks

whether or not Φi(x) ≤ m for every i ∈ Iinit and 0 ≤ x ≤ m. For all i and x that

passed this test successfully, the strategy then checks whether or not ϕi(x) = f(x). If

this is not the case, i is removed from Iinit . Let Im be the resulting index set.

Finally, the strategy uses the amalgamation technique (cf. Wiehagen [22], Case

and Smith [4]). That is, let amal be a recursive function mapping any finite set I

of ϕ-programs to a ϕ-program such that for any x ∈ N, ϕamal(I)(x) is defined by

running ϕi(x) for every i ∈ I in parallel and taking the first value obtained, if any.

So, the output of S(fm, w) is amal(Im).

It remains to show that the sequence (amal(Im))m∈N converges to a ϕ-program

for f . By construction we know that Iinit contains at least one ϕ-program for f .

Clearly, this program and any other ϕ-program computing a subfunction of f can

never be removed from Iinit . But if a ϕ-program j from Iinit does not compute a

subfunction of f , then there must be an x such that ϕj(x) ↓ 6= f(x). So, as soon
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as m ≥ max{x,Φj(x)}, the program j is removed from Iinit . Since Iinit is finite,

there must exists an m∗ such that Im∗ contains only ϕ-programs computing f or a

subfunction of f . We conclude that amal(Im∗) is a ϕ-programs for f . Furthermore,

I` = Im∗ for all ` ≥ m∗, and thus the strategy S learns f in the limit.

As we have seen, there is no smallest amount of nonconstructivity needed to learn

R in the limit. On the other hand, the amount of nonconstructivity cannot be zero,

since then we would have R ∈ LIM. But one can define a total function t ∈ T such

that t(n) ≥ d(n) for all d ∈ Rmon and all but finitely many n. Consequently, log tinv

is then a lower bound for the amount of nonconstructivity needed to learn R in the

limit.

We continue by asking what amount of nonconstructivity is needed to obtain ϕ-

minimal identification in the limit of the class R. Now, the situation is intuitively

more complex, since LIMϕ \MIN ϕ 6= ∅ for every ϕ ∈ Göd. Interestingly, there are

even Gödel numberings ϕ such that MIN ϕ contains only classes of finite cardinality

(cf. Freivalds [9]). On the other hand, the sufficient amount of nonconstructivity given

in Theorem 2 does not depend on the Gödel numbering. Theorem 2 below is not the

best possible and we shall improve it below, but it shows an easy way to achieve

ϕ-minimal learning of of the class R in the limit.

Theorem 2. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity n+ 1 in the

limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed, and let n ∈ N. The help-word w is a

bitstring b of length n + 1 defined as follows. If ϕi ∈ R, then the ith entry of b

is 1, and 0 otherwise. So, the length of the help-word directly allows the strategy to

compute n.

Next, assume any function f ∈ R ∩ {ψ0, ψ1, . . . , ψn}, and let fm and w be the

input to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which the ith

entry in the help-word is 1. Since all these remaining functions are total, the strategy

searches for the least index j among these functions for which ϕmj = fm. That is, it

essentially uses the identification by enumeration principle (cf. Gold [12]).

The proof of Theorem 2 looks quite simple which may be an indication that a

smaller amount of nonconstructivity may suffice. Unfortunately, so far we could not

show a lower bound for the amount of nonconstructivity needed to achieve ϕ-minimal

learning in the limit of the class R. On the other hand, as Theorem 4 below shows, we

can achieve a much better result when allowing nonconstructivity n + 1. This again

indicates that we have used a too great amount of nonconstructivity in Theorem 2.

And indeed, we can do exponentially better.

Theorem 3. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity 2 · log n in

the limit with respect to ϕ.



8 Rūsiņš Freivalds and Thomas Zeugmann

Proof. The key observation to show the theorem is that it suffices to know the

number of recursive functions in the set {ϕ0, . . . , ϕn}. In order to use this information

appropriately, the first half of the help-word is the binary encoding of n and the second

half of the help-word w is just providing the number, say k, of recursive functions in

the set {ϕ0, . . . , ϕn}. This number is also written in binary but leading zeros are

added in order to ensure that both parts of the help-word have the same length. Thus

2 · log n many bits suffice to represent the help-word.

Next, assume any function f ∈ R ∩ {ψ0, ψ1, . . . , ψn}, and let fm and w be the

input to S. Then the strategy S, by dovetailing its computations, first tries to compute

ϕi(0), . . . , ϕi(m) for all 0 ≤ i ≤ n until it finds the first k programs i1, . . . , ik such that

ϕi(0), . . . , ϕi(m) turn out to be defined for every i ∈ {i1, . . . , ik}. Once the strategy S

has found these programs i1, . . . , ik, it outputs the least program i ∈ {i1, . . . , ik} for

which it verifies ϕmi = fm provided there is such a program, and m otherwise.

Taking into account that there must be n + 1 − k many programs j among the

programs 0, . . . , n such that ϕj ∈ P \ R, for each of these programs j there must be

a smallest yj such that ϕj(yj) ↑ . Let ymax be the maximum of all these yj. Hence,

as soon as m ≥ ymax, the strategy S must find precisely the programs i1, . . . , ik such

that ϕi ∈ R for all i ∈ {i1, . . . , ik}. By assumption, the target function f possesses

a program i with 0 ≤ i ≤ n, and thus for all m ≥ ymax, the strategy must output

minϕ f .

Next, we provide the theorem already mentioned above which shows that with

nonconstructivity n+ 1 a much stronger result is possible.

Theorem 4. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal finitely identified with nonconstructivity n+1

with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed, and let n ∈ N. The help-word w is a

bitstring b of length n+ 1 defined as follows. If ϕi ∈ R and ϕi 6= ϕj for all 0 ≤ j < i,

then the ith entry of b is 1, and 0 otherwise. So, the length of the help-word directly

allows the strategy to compute n.

Note that now the help-word allows for implicitly having a one-to-one enumeration

for the functions f ∈ R ∩ {ϕ0, . . . , ϕn}.

Next, assume any function f ∈ R ∩ {ϕ0, ϕ1, . . . , ϕn}, and let fm and w be the

input to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which the ith

entry in the help-word is 1.

For all these i, the strategy computes ϕmi and checks whether or not they are

pairwise different. As long as this is not the case, the strategy outputs m. If all these

ϕmi are pairwise different, then the strategy outputs the i for which it could verify

fm = ϕmi .

By construction, it is obvious that S finitely converges to minϕ f .
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Again, we still could not prove the amount of nonconstructivity given in Theorem 4

to be the best possible.

We therefore continue to look at the case, where we have to learn an indexed

family U of recursive functions. Note that for every indexed family U and any of its

numberings ψ ∈ R2 we have U ∈MIN ψ (cf. Gold [12]). In contrast, NUM#FIN
(see e.g., [23] and the references therein). So, it is only natural to ask for the amount

of nonconstructivity needed to finitely learn ψ-minimal programs. The answer is

provided by our theorems below.

Theorem 5. Let U be any indexed family, and let ψ ∈ R2 be any numbering

for U . Then there is a strategy S ∈ P2 such that the class U can be ψ-minimal finitely

identified with nonconstructivity 2 · log n with respect to ψ.

Proof. The key observation for the proof is that it suffices to know the number k

of distinct functions in {ψ0, . . . , ψn}. Thus, the help-word w is again divided in two

halves, where the first half is the binary representation of n and the second half

provides the number k (again including leading zeros). Thus 2 · log n many bits suffice

for representing the help-word.

On input fm and w the strategy S computes, by dovetailing its computations,

ψi(x) for all i ∈ {0, . . . , n} and x = 0, 1, 2, . . . until it has verified that there are

exactly k different functions. Let i1, . . . , ik be the least indices of these k different

functions. Next, it checks whether or not there is precisely one i ∈ {i1, . . . , ik} such

that fm = ψmi . If this is the case, the strategy outputs this i. Otherwise, it outputs m.

By construction, it is obvious that S finitely converges to minψ f .

Next we show that the amount of nonconstructivity given in Theorem 5 cannot be

substantially reduced.

Theorem 6. There is an indexed family U and a numbering ψ ∈ R2 for it such

that no strategy S ∈ P2 can ψ-minimal finitely identify the class U with nonconstruc-

tivity c · log n with respect to ψ, where c ∈ (0, 1) is any constant.

Proof. We construct the indexed family U by defining the numbering ψ ∈ R2

for it. For this purpose, we use the following pairing function c : N × N → N, where

c(x, y) = 2x(2y+1)−1. Note that this pairing function is a bijection. It may be traced

back to Pepis [19] and Kalmár [14]. Furthermore, we interpret every function in P2

as a strategy and obtain thus an effective enumeration S0, S1, S2, . . . of all possible

strategies. Below, for ` ∈ N, we use the shortcut i`+1 to denote the encoding f ` of the

initial segment of the function f for which f(z) = i for all i = 0, . . . , `.

For every i ∈ N we define two functions ψ2i and ψ2i+1 as follows. Let x and y be the

uniquely determined numbers such that i = c(x, y). Now, we successively define for

k = 1, 2, 3, . . . the functions values ψ2i(k − 1) = ψ2i+1(k − 1) = i and input ik and y

to the strategy Sx until we find the smallest k such that the following Conditions (A)

and (B) are satisfied.
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(A) There is an ` < k such that each of the values Sx(i, y), . . . , Sx(i
`+1, y) turns out

to be computable in at most k steps.

(B) Sx(i, y) 6= Sx(i
2, y) 6= · · · 6= Sx(i

`, y) = Sx(i
`+1, y).

If Conditions (A) and (B) never turn out to be satisfied then the function values

ψ2i(k) and ψ2i+1(k) are defined for all k ∈ N, and thus ψ2i, ψ2i+1 ∈ R.

On the other hand, if Conditions (A) and (B) turn out to be satisfied then Condi-

tion (B) implies that the sequence Sx(i, y), . . . , Sx(i
`+1, y) tends to converge finitely.

That is, it either converges finitely or it cannot converge finitely at all. Now, we

continue to define the functions ψ2i and ψ2i+1 as follows.

(C) If Sx(i
`, y) = 2i, then we define ψ2i(z) = i+ k + z for all z ≥ k.

Furthermore, we set ψ2i+1(z) = i for all z ≥ k.

(D) If Sx(i
`, y) = 2i+ 1, then we define ψ2i+1(z) = i+ k + z for all z ≥ k.

Furthermore, we set ψ2i(z) = i for all z ≥ k.

(E) If Sx(i
`, y) /∈ {2i, 2i+ 1}, then we define ψ2i(z) = ψ2i+1(z) = z for all z ≥ k.

So again we obtain that ψ2i, ψ2i+1 ∈ R, and consequently, ψ ∈ R2. Finally, we set

the desired class U = Rψ.

It remains to show that there is no strategy S ∈ P2 that ψ-minimal finitely iden-

tifies U with nonconstructivity c · log n with respect to ψ, where c ∈ (0, 1) is any

constant.

Suppose the converse, i.e., there is a strategy S ∈ P2 that ψ-minimal finitely

identifies U with nonconstructivity c · log n with respect to ψ. Then there must be a

v ∈ N such that S = Sv in our enumeration S0, S1, S2, . . . of all possible strategies.

Let d be the function from Definition 4. Furthermore, for every n ∈ N and every

f ∈ {ψ0, . . . , ψn} there has to be a help-word w of length at most d(n) and depending

only on n such that the sequence (Sv(f
m, w))m∈N finitely converges to the minimal

ψ-program of f .

By assumption, we know that there is a c ∈ (0, 1) such that d(n) ≤ c · log n. Hence,
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for n large enough we conclude that d(n) > 1 and (1− c)/2 > (2 + (v + 1))/ log n.

1 >
d(n)

log n
+

2 + (v + 1)

log n

log n > d(n) + 2 + (v + 1)

log n− log 2v+1 > d(n) + 2
n

2v+1
> 2d(n)+2

n+ 2

2v+1
> 2 · 2d(n) + 1

n+ 2

2v+1
> 2w + 1 , since w ≤ 2d(n)

n

2
> 2v(2w + 1)− 1

n

2
> c(v, w) .

Now, let i = c(v, w) and we consider the functions ψ2i and ψ2i+1. By our choice

of n, these functions must be among the functions {ψ0, . . . , ψn}.
Let ` ∈ N+ be the least number such that Sv on two successive inputs outputs the

same hypothesis, i.e., Sv(i, w) 6= · · · 6= Sv(i
`, w) = Sv(i

`+1, w). Such an ` has to exist,

since otherwise Sv can neither finitely identify ψ2i nor ψ2i+1.

If Sv(i
`, w) /∈ {2i, 2i + 1} we are already done, since ψ2i and ψ2i+1 are the only

functions from U having an initial segment where all values are equal to i.

Finally, if Sv(i
`, w) ∈ {2i, 2i+ 1} then by construction (cf. Condition (C) and (D),

respectively, above) we know that ψ2i(z) = ψ2i+1(z) for all z = 0, . . . , ` but clearly

ψ2i 6= ψ2i+1. Thus, the strategy Sv fails to identify finitely either function ψ2i or

function ψ2i+1.

As the proof of Theorem 6 shows, the failure to ψ-minimal finitely identify the

indexed family U with respect to the numbering ψ with nonconstructivity c · log n,

for c ∈ (0, 1), is caused by the requirement to finitely identify the functions from U .

Thus, we directly obtain the following corollary.

Corollary 7. There is an indexed family U and a numbering ψ ∈ R2 for it such

that no strategy S ∈ P2 can finitely identify the class U with nonconstructivity c · log n

with respect to ψ, where c ∈ (0, 1) is any constant.

4. Conclusions

We have presented a model for the inductive inference of recursive functions that

incorporates a certain amount of nonconstructivity. In our model, the amount of

nonconstructivity needed to solve the learning problems considered has been used as

a quantitative characterization of their difficulty.

We studied the problem of learning the whole class R under various postulates.

These postulates range from learning in the limit to finite and minimal identification.
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As far as learning in the limit is concerned, the amount of nonconstructivity needed

to learn R can be very small and there is no smallest amount that can be described

in a computable way (cf. Theorem 1).

This result is nicely contrasted by the fact that we needed nonconstructivity 2·log n

to ϕ-minimal identify the classR in the limit and nonconstructivity n+1 to ϕ-minimal

finitely identify R (cf. Theorems 3 and 4, respectively). That is, each additional

postulate exponentially increased the amount of nonconstructivity needed. It remains,

however, open whether or not these results can be improved.

Furthermore, we investigated the amount of nonconstructivity needed to ϕ-minimal

finitely identify any indexed family of recursive functions. In this setting we obtained

an upper bound of 2 · log n for the amount of nonconstructivity needed and showed

that this amount cannot be substantially improved (cf. Theorems 5 and 6).
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