
TCS -TR-A-11-51

TCS Technical Report

Sparse and Truncated Suffix Trees on Variable-Length
Codes

by

Takashi Uemura and Hiroki Arimura

Division of Computer Science

Report Series A

March 28, 2011

Hokkaido University
Graduate School of

Information Science and Technology

Email: arim@ist.hokudai.ac.jp Phone: +81-011-706-7680
Fax: +81-011-706-7680

Sparse and Truncated Suffix Trees on
Variable-Length Codes

Takashi Uemura1 and Hiroki Arimura1

Graduate School of Infomration Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan

{tue,arim}@ist.hokudai.ac.jp

Abstract. The sparse suffix trees (SST), introduced by (Kärkkäinen
and Ukkonen, COCOON 1996), is the suffix tree for a subset of all suf-
fixes of an input text T of length n. In this paper, we study a special
case that an input string is a sequence of codewords drawn from a reg-
ular prefix code ∆ ⊆ Σ+ recognized by a finite automaton, and index
points locate on the code boundaries. In this case, we present an online
algorithm that constructs the sparse suffix tree for an input string t on
any variable-length regular prefix code, called the code suffix tree (CST),
in O(n+m) time and O(k) additional space for a fixed base alphabet Σ,
where m is the size of an automaton for ∆. Furthermore, we present a
modified algorithm for k-truncated version of code suffix trees that runs
in the same time and space complexities. Hence, these results generalize
the previous results (Inenaga and Takeda, CPM 2006) for word suffix
trees and (Na, Apostolico, Iliopoulos, and Park, Theor. Comp. Sci., 304,
2003) for truncated suffix trees on arbitrary variable-length regular prefix
codes.

1 Introduction

Backgrounds The sparse suffix trees (SST), introduced by Kärkkäinen and
Ukkonen [11] in 1996, is the suffix tree (ST) [6, 13, 17] for storing a subset con-
sisting of k suffixes in an input text T of length n on a base alphabet Σ, where
k ≤ n. In its most general form, the set I = {i1, . . . , ik} ⊆ {1, . . . , n} of index
points which is given as an arbitrary subset of all n text positions. We denote
by SSTI(T) the sparse suffix tree for T with respect to the set I of index points.
[11] showed that a sparse suffix tree on a k-evenly indexed string in O(n) worst-
case time and O(k) space. Although a sparse suffix tree for a string with an
arbitrary index set is well-defined in any sense, interestingly enough, it is still
open since its introduction whether a sparse suffix tree for arbitrary set I of k
index positions can be constructed in O(n) time and O(k) additional space.

For the problem, recently, a collection of word-based suffix indexes have been
introduced [3, 5, 8–10]. To formalize this notion, we introduce the set ∆I(T) ⊆
Σ+ of words, called the induced code, obtained by partitioning an input text T
by the index positions in I. Then, a suffix index is called word-based if the set
∆I(T) is restricted to a set of words in Σ+W , where W is a finite set of symbols,

1

called word delimiters, such that W ∩Σ = ∅. In 1999, Andersson, Larsson, and
Swanson [3] introduced a word-suffix tree as a SSTI(T) on a word alphabet,
and presented a construction algorithm in O(n) average time and O(k) space.
In 2006, Inenaga and Takeda [8] presented the first construction algorithm that
runs in O(n) worst-case time and O(k) space by modifying Ukkonen’s linear time
online construction algorithm for full suffix trees [17]. Their work is most closely
related to this work. Ferragina and Fischer [5] introduced word-suffix arrays and
presented a construction algorithm with O(n) worst-case time and O(k) space.

Our contribution. In this paper, we study the sparse suffix tree construc-
tion in more general setting than that of the word-based suffix trees [3, 8]. In
particular, we consider the sparse suffix tree for a string on an arbitrary regular
prefix code ∆ ⊆ Σ+ which is recognized by a finite deterministic automaton.
The sparse suffix tree of this type is called the code suffix tree (CST), and a
natural generalization of word suffix trees [3, 8]. As a main result of this paper,
we show that the code suffix tree for an input string T of length n on a prefix
code ∆ can be constructed in O(n + m) worst-case time and O(k) space for a
fixed base alphabet Σ, where k is the number of words in T and m is the size of
the automaton for ∆ (Theorem 2).

Key techniques. To show this, we propose a modified version of Ukkonen’s
online suffix tree construction algorithm [17] augmented with a DFA, called a
code automaton, for recognizing ∆, which is similar to the construction in [8].
However, the proofs for correctness and time complexity are not straightforward
due to the complex behavior of the algorithm when it traverses inside of a code
automaton. To overcome this difficulty, we introduce an extended domain of
strings augmented with the erasing element ⊥, which is the inverse of any code-
word in ∆ and acting from left. Using ⊥, we give a general definition of suffix
links, and show that most properties of full suffix trees [17], including the exis-
tence lemma for suffix links, still remains valid when ∆ is a prefix code. Hence,
Theorem 2 above gives a partial answer to a natural question: what is the largest
class of codes for which the approach of Ukkonen’s linear-time construction al-
gorithm [17] is sufficient for constructing sparse suffix trees on a code?

An extension. For every ℓ ≥ 1, an ℓ-truncated suffix tree (ℓ-TST) for T is
a variation of suffix trees that stores all factors of T with length ℓ. Na et al. [14]
introduced ℓ-TST and presented an online construction algorithm in O(n) time
and space. Based on the algorithm for CST, we present a modified version of
the algorithm for ℓ-truncated code suffix trees (ℓ-TCST) that constructs ℓ-TCST
for a text on ∆ in O(n) worst-case time and O(k) space, where k is the number
of words in T (Theorem 3). Finally, we ran experiments on real datasets to
evaluate the usefulness of the proposed methods. For example, CSTs are 3 to 5
times smaller than STs on English and UTF-8 texts.

Organization of this paper. In Sec. 2, we give basic definitions. In Sec. 3,
we present our linear-time construction algorithm ConstructCST for code suffix
trees. In Sec. 4, we extend the algorithm for ℓ-truncated code suffix trees. In
Sec. 5, we show experimental results, and in Sec. 6, we conclude this paper.

2

⊥εΣ ⊥ε#
Σ＼{#}∆1 ∆2 ∆3

⊥ε 0x00-0x7f

⊥ε0

0
1

1

⊥0b110xxxxx

0b1110xxxx

0b11110xxx ε 0x00-0x7f10xxxxxx

10xxxxxx

10xxxxxx∆4 ∆5

Fig. 1. The code automata for prefix codes ∆1,∆2,∆3,∆4, and ∆5 in Example 1,
where ⊥ and ε are the initial and the final states, respectively, and labels with wildcard
x ∈ {0, 1}, e.g., 0x00− 0x7f , represent sets of the corresponding multiple edges.

2 Preliminaries

Basic definitions. We introduce basic definitions on suffix trees according to [4,
6, 11, 14, 17]. We assume that the reader has basic knowledge of the linear time
construction algorithm by Ukkonen [17]. Let Σ be an alphabet of base letters.
We denote by ε the empty string . Let Σ∗ and Σ+ denote the sets of all possibly
empty finite strings and non-empty finite strings on Σ. For a string T , if T = xyz
for some x, y, z ∈ Σ∗, then we call x, y, and z a prefix , a factor (substring), and
a suffix of T , respectively. Let T = a1 · · · an ∈ Σ∗ be a string on Σ of length
|T |Σ = |T | = n, where T [i] = ai ∈ Σ is the i-th letter for every i = 1, . . . , n.
For any 1 ≤ i ≤ j ≤ n, we denote by T [i..j] = ai · · · aj the factor from i to j of
T . If i > j then we define T [i..j] = ε. For a set S ⊆ Σ∗ of strings, the sets of
the prefixes and proper prefixes of all strings in S are denoted by Pre(S) and by
PropPre(S), respectively. |S| and ||S|| denote the cardinality and the total size of
S. For strings x, y, we denote by lcp(x, y) the longest common prefix of x and y.

Prefix Codes. A code is a set ∆ ⊆ Σ+, where each w ∈ ∆ is a non-empty
string, called a codeword (or word , for short) of ∆. A preword is any prefix
u ∈ Pre(∆) and a proper preword is any proper prefix u ∈ PropPre(∆) of a word
in ∆. A code ∆ is either infinite or finite. ∆ is a prefix code if it is prefix-free,
that is, any codeword is not a prefix of some other codeword of ∆.

Example 1. Let Σ be a letter alphabet and B = {1, 0} be a binary alphabet. A
trivial prefix code ∆1 = Σ and the ASCII code ∆2 = [0x00 − 0x7f] ⊆ B8 are
prefix codes of fixed-length. For a word delimitor ♯ ̸∈ Σ, a word alphabet ∆3 =
Σ+♯ is an example of prefix-codes of variable-length ([3, 5, 8–10]). A Huffman
code ∆4 = {00, 01, 1} for the set of symbols {A,B,C} with probabilities p(A) =
1/4, p(B) = 1/4, p(C) = 1/2 ([4]), and the code ∆5 = (10B1) ∪ (110B2) ∪
(1110B3), called the three-byte fragment of UTF-8 ([7]), are also examples of
prefix-codes of variable-length. As seen later, all of these prefix codes are regular
(Fig. 1).

Codeword strings. A word string on ∆ (or ∆-string) is a string T ∈ ∆∗.
Then, an input string or a pre-string of letter length n ≥ 0 is any prefix T =

3

T [1] · · ·T [n] ∈ Pre(∆∗) of a word string on ∆, where T [i] ∈ Σ for i = 1, . . . , n.
Since ∆ is a prefix code and thus Pre(∆∗) = ∆∗PropPre(∆), we have the unique
∆-factoring T = w1 · · ·wkwk+1 ∈ Pre(Σ∗) of T , where w1, . . . , wk ∈ ∆ and
wk+1 ∈ PropPre(∆). Then, the proper preword wk+1 is called the tail of T .
Clearly, T is a complete word string if and only if the tail wk+1 is emtpy. We
define the word length of T by |T |∆ = k, and the letter length by |T |Σ = |T | = n.
where n =

∑k+1
i=1 |wi|.

In this paper, construction of a CST is done in online manner through the
stage i = 0, . . . , n as in [15, 17]. We define the current input T i = T [1] · · ·T [i] =
w1 · · ·wkwk+1, where k ≥ 0, wj′ ∈ ∆, and wk+1 ∈ PropPre(∆). Let j =
1, . . . , k + 1 be any index. The j-th ∆-suffix of T is defined as the suffix of
T starting at the j-th word boundary, i.e., suf∆

j (T) = wj · · ·wkwk+1. For ℓ ≥ 1,
the j-th (∆, ℓ)-factor of T is defined as the factor fac∆,ℓ

j (T) = wj · · ·wh of T ,
where h = min{j + ℓ− 1, k+ 1}. We denote by Suf∆(T) and Fac∆(T, ℓ) the sets
of all ∆-suffixes and all (∆, ℓ)-factors of T , respectively.

Code suffix trees. A code suffix tree (CST, for short) for an input string
T ∈ Pre(∆∗) w.r.t. a prefix code ∆, denoted by CST∆(T), is a compacted trie [6]
that represents all ∆-suffixes of T . Formally, the CST for T is a rooted tree S =
CST∆(T) = (V, child, root , Label(·), SL(·)) that satisfies the following properties.
V is a finite set of tree nodes (or nodes). Each directed edge e = (u, v) is labeled
with a factor of T , Label(v) ∈ Σ+, stored in v. Every internal node except
the root is branching , i.e., it has at least two children. For every base letter
a ∈ Σ, each internal node v has at most one directed edge from v to the a-
child , u = child(v, a), whose label starts with a. SL(·) is a suffix link function,
which will be defined later in Section 3. For each v, we denote by L(v) the string
represented by v, that is, the string obtained by concatenating all labels on the
path from the root to v. All the suffixes are represented by the leaves of CST∆(T)
when T ends with the unique marker T [n] that does not appear elsewhere. All
the factors in T that start at word boundaries are represented as the prefixes
of all leaves, that is, the elements of the set str(tree) = Pre(Suf∆(T)). We give
the naming function [·] below. For any α ∈ str(tree), we define the locus of α,
denoted by [α], to be the unique tree node v ∈ Q such that L(v) = α. This
mapping [·] is one-one.

Clearly, CST∆(T) has at most k leaves and k− 1 internal nodes [11]. To save
the space, we represent Label(v) by a pair ⟨j, i⟩ ∈ N2 of the starting and ending
positions of the label in T such that T [j..i] = Label(v), while ε is represented
by ⟨i+ 1, i⟩ for some i. Assuming this, CST∆(T) occupies only O(k) space. For
any factor α of T that starts at a word boundary, we represent its location in
CST∆(T) by a triple p = ⟨v, j, i⟩ ∈ V ×N2, called a pointer (or a reference) to
α, such that α = L(v)·T [j..i] if it exists. A pointer ⟨v, j, i⟩ is canonical if T [j..i]
is shortest. The locus of a factor α is the canonical pointer for α, and denoted
by loc(α). We often call p a virtual node if j ≤ i, i.e., T [j..i] ̸= ε, and real node
if j > i, i.e., T [j..i] = ε.

4

⊥εΣ
A

B B

B

A

C

C

C

B

A

C

C

⊥ε0

0
1

1

0

00

0
0
0

1
1

1

1
1

1

0
0
0

1
1

1

SL

SL

SL

SL

SL

SL

(a) (b)

Fig. 2. Examples of (a) an ordinary suffix tree for string S = ABABC on alphabet
{A,B,C}, and (b) a code suffix tree for coded string T = 000100011 on prefix code
∆ = {A/00, B/01, C/1}.

3 A Linear-time Online Algorithm for Code Suffix Trees

In this section, we show our algorithm ConstructCST for constructing a code
suffix tree CST∆(T) on a prefix code ∆, which is based on Ukkonen’s online
construction algorithm for suffix trees [17]. The only difference is that it is aug-
mented with a code automaton and code suffix links explained below. Let us fix
an input string T = w1 · · ·wkwk+1 ∈ Pre(∆∗) on a prefix code ∆ ⊆ Σ+ with
letter length n and word length k.

3.1 Code automata and code suffix links

Code automata. In our problem setting, a prefix code ∆ ⊆ Σ+ on Σ is reg-
ular if ∆ is recognized by a finite automaton. A code automaton for a pre-
fix code ∆ ⊆ Σ+ is a possibly cyclic deterministic finite automaton (DFA)
A = (Σ,Q, child, ⊥̂, root) on a base alphabet Σ, where Q is a finite set of code
nodes (or nodes). ⊥̂ and root are the unique initial and final states, called the
source and sink , respectively. The function child : Q×Σ → Q is a transition
function such that for every u, v ∈ Q and a ∈ Σ, child(u, a) = v if and only if
there exists an a-edge from u to v labeled with a. We extend child to a mapping
child∗ : Q×Σ∗ → Q in a standard way [4]. If it is clear from context, we refer to
the code automaton A for ∆ as DFA(∆). In the treatment of this paper, DFA(∆)
need not be minimal in general. As a related work, Takeda, Miyamoto et al. [15]
used code automata to extend Aho-Corasick pattern matching machines on a
prefix code. For example, we show in Fig. 1 the code automata for codes ∆1,
∆2, ∆3, ∆4, and ∆5 in Example. 1.

We give the naming function [·] below. We introduce a special element ⊥ ̸∈ Σ
as the inverse of any word of ∆, i.e., ⊥w = ε for every w ∈ ∆. We define
⊥wα = εα = α if w ∈ ∆ and α ∈ Σ∗. For a proper preword α ∈ PropPre(∆), ⊥α
is a special element different from α. For any α ∈ str(code) = Pre(∆), we define
the locus of α, denoted by [⊥α], to be the unique code node v ∈ Q such that

5

child∗(⊥̂, α) = v. Note that the mapping [·] is many-one and naturally induces
an equivalence relation ≡ on the set str(code). Since DFA(∆) has the unique
final state root = [ε], we see that [⊥α] = [⊥β] = [ε] holds for any codewords
α, β ∈ ∆. We also note that [⊥α] ̸= [α] for any string α since the former is
the node reachable from ⊥̂ in DFA(∆) and the latter is the node reachable from
root in CST∆(T). As a note, the above notations are just for analysis of our
algorithm, and do not affect the behavior and complexity of the algorithm.

By the above encoding, we can represent DFA(∆) as follows: The node set is
Q = { [⊥α] |α ∈ str(code) }. The transition function is given by child([α], a) =
[αa] for every α ∈ str(code) and a ∈ Σ. The source and the sink are [⊥] and [ε],
respectively. If [α] is either a tree node or a code node and a ∈ Σ is any letter,
then we define [α]·a = [α·a]. We define the set dom(tree) = {[α] |α ∈ str(tree)} of
all tree nodes, and dom(code) = { [⊥α] |α ∈ (str(code)−∆)} = Q−{[ε]} of code
nodes. Furthermore, we define dom(pre) = { [α] |α ∈ PropPre(∆) } ⊆ dom(tree),
the domain of all prenodes. By definition, [ε] ∈ dom(tree) but [ε] ̸∈ dom(code).
In what follows, we often use α and [α] interchangeably if no confusion arises.

Code suffix links. Next, we introduce the suffix links for CST∆(T) as fol-
lows. Similarly to Ukkonen’s algorithm, each internal node v = [α] in the CST
has the suffix link of v, denoted by SL∆(v), which is a pointer from v to the
internal node u such that SL∆([α]) = [⊥ · α], where α ∈ str(tree). Equivalently,
if v = [wβ] for some w ∈ ∆,β ∈ str(tree)∪ str(code) then SL∆([wβ]) = [β]. Any
code node v ∈ dom(code) does not have a suffix link. The next lemma is crucial
to the correctness of our algorithm.

Lemma 1 (existence lemma for code suffix links). Let ∆ ⊆ Σ+ be a
prefix-free code and T be any pre-string on ∆. Then, (i) any tree node v in
CST∆(T) has the suffix link SL∆(v) pointing to a branching internal node u in
either CST∆(T) or DFA(∆). Furthermore, (ii) v is a preword node if and only
if SL∆(v) is a code node in DFA(∆), and (iii) v is not a preword node if and
only if SL∆(v) is a tree node in CST∆(T).

Proof. There are two cases on the domain of v. (1) If v = [α] ∈ dom(pre) is a
prenode, then SL∆(v) = [⊥α] belongs to dom(code) by the definition of DFA(∆).
(2) Suppose that = [wα] ∈ dom(tree)\dom(pre) for some w ∈ ∆,α ∈ Σ∗. It
is shown in [11] that a SST has a branching node v if and only if L(v) =
lcp(suf∆

i (T), suf∆
j (T)) for some indexes i and j. Since ∆ is prefix-free and v =

[wα], we know that both of suf∆
i (T) and suf∆

j (T) start with w, and thus, we have
α = lcp(suf∆

i+1(T), suf∆
j+1(T)). From the above claim, the lemma follows. ⊓⊔

3.2 Main algorithm

In Fig. 3, we show the algorithm ConstructCST, and in Fig. 4, the subprocedures
Extend and Terminate. The only difference between our algorithm and Ukkonen’s
algorithm is lines 3 and 4 of ConstructCST that attaches DFA(∆) to the CST.
For an input string T = T [1] · · ·T [n] = w1 · · ·wkwk+1 ∈ Pre(∆∗) on ∆ ⊆ Σ+,

6

Algorithm ConstructCST:
input: A preword string T = w1 · · ·wk ∈ Pre(∆∗) on a prefix code ∆ ⊆ Σ;
output: The sparse suffix tree CST∆(T) for t w.r.t. ∆. ;

1: { global variables: Θ,Θ′: word counters //for ℓ-TCST }
2: Create an empty tree CST∆ with the root node root = [ε];
3: Build DFA(∆) for ∆ with the source ⊥̂ = [⊥] and the sink root = [ε];
4: SL∆(root) = ⊥̂;
5: ϕ← ⟨root , 1, 0⟩; ψ ← ⟨root , 1, 0⟩;
6: { Reset(Θ); Reset(Θ′) //for ℓ-TCST }
7: for i = 1, . . . , n do //Stage i
8: ϕ← Extend(ϕ, i);

{ψ ← Terminate(ψ, i); //for ℓ-TCST}
9: end for

10: return CST∆;

Fig. 3. A construction algorithm for a code suffix tree CST∆(T) for a text T
on a prefix code ∆ ⊆ Σ+.

the algorithm constructs the CST for Ti = T [1..i] in an online manner for every
stage i = 1, . . . , n. At stage 0, the CST consists only of the root node root = [ε]
and DFA(∆). Let T i = T [1..i] be the current input text and CST∆(T i) be the
code suffix tree for T i obtained at the end of stage i. At each step i, the algorithm
extends α to the new suffixes αai by appending the current base letter ai = T [i]
for all ∆-suffixes in CST∆(T i).

This extension process is based on the following idea. Let S∆(i) = Suf∆(T i)
be the set of all ∆-suffixes in T i. For every stage i = 0, . . . , n, we define the set
Bd∆(i) ⊆ dom(tree) ∪ dom(code), the border , by the following recurrence:

• Bd∆(0) = {⊥, ε},
• Bd∆(i) = (Bd∆(i− 1)·ai) ∪ {⊥} if ε ∈ (Bd∆(i− 1)·ai),
• Bd∆(i) = Bd∆(i− 1)·ai otherwise,

where S · a = { αa |α ∈ S } for any set S ⊆ Σ∗ and a ∈ Σ. Then, we have the
following lemma. Recall that dom(tree) is the domain of tree nodes in CST∆(T i).

Lemma 2. For every i = 0, . . . , n, S∆(i) = Bd∆(i) ∩ dom(tree).

Proof. From a similar argument to [15, 17], the following recurrence holds:

(i) S∆(0) = {ε},
(ii) S∆(i) = (S∆(i− 1)·ai) ∪ {ε} if T i = T [1..i] is a complete word string (*),
(iii) S∆(i) = S∆(i− 1)·ai otherwise,

By induction on i ≥ 0, we then can show that the condition (*) holds iff w ∈
S∆(i− 1) ·ai for some w ∈ ∆ iff ε ∈ Bd∆(i− 1) ·ai holds. Furthermore, ⊥α ∈
Bd∆(i) iff α ∈ S∆(i) for any α ∈ Pre(∆). Thus, the result follows. ⊓⊔

7

procedure Extend(ϕ = ⟨s, j, i− 1⟩, i):
1: last← NULL; //oldp
2: while (child(ϕ, T [i]) is not defined) do
3: if j ≤ i then begin
4: ϕ← Split(ϕ);
5: if last ̸= NULL then begin
6: SL∆(ϕ)← last;
7: last← ϕ; end
8: end
9: create a leaf q with label(q)← ⟨i,∞⟩;

10: child(ϕ, T [i])← q;
11: ϕ← Canonize(⟨SL∆(s), j, i− 1⟩);
12: {Decrement(Θ) //for ℓ-TST}
13: end while
14: ϕ← Canonize(⟨s, j, i⟩);

15: {ChildTrans(Θ, T [i]); //for ℓ-TST}}
16: {if toClose(Θ) then SuffixTrans(Θ,ϕ);

//for ℓ-TST}
17: return ϕ; {End of Extend}
procedure Canonize(ϕ = ⟨s, j, i⟩):
1: while j ≤ i do begin
2: u← child(s, T [j]);
3: ⟨q, p⟩ ← label(u);
4: if p− q > i− j then
5: break;
6: j ← j + (p− q + 1);
7: s← u;
8: end
9: return ⟨s, j, i⟩; {End of Canonize}

Fig. 4. The subprocedures Extend and Canonize for the code suffix tree construction.

We call each suffix α in Bd∆(i) the extension point at stage i. Next, we
consider how we can efficiently find the extension points and extend them. The
detection of ε is also crucial to the synchronization of word boundaries. We use a
pointer ϕ to keep track to extension points in Bd∆(i) from longer to shorter. Let
act∆i be the active point at stage i as the pointer ϕ such that L(ϕ) is the longest
suffix of T i−1 that occurs at least twice in T i. For i = 1, . . . , n, the maintenance
of Bd∆(i) proceeds in the following way for all extension points ϕ = [αai] of
three types 1–3. Let Bd∆(0) = {⊥, ε}.

• type 1: If α occurs only at the end of T i−1, then, α is represented by a
leaf, and thus so is αai. As in Ukkonen [17], by representing α as an open
leaf ⟨j,∞⟩, ∞ is interpreted as the current index i, the extension point α
is automatically extended without any management. This correctly extends
all extension points α of type 1.
• type 2: If α occurs at least twice in T i−1, but αai does not occur in T i,

then by induction on i, we can show that act∆i is the first node of type 2
satisfying this condition. Then, we create the new node for αai extending
α by appending a to the tail of α, while the parent α is materialized by
procedure Split if α is virtual. Repeat this process until we reach the first
node ϕ of type 3. This correctly extends all extension points α of type 2.
• type 3: If α occurs in T i−1 at least twice in T i−1, and αai also occurs in
T i, then we can show as in Ukkonen [17] that all extension points on the
suffix links from α to some node in dom(code) ∪ {[ε]}, which is the end of
the border, are already contained in T i. Therefore, these extension points
are correctly extended in CST∆(T i) without any explicit extension.

The procedure Extend in Fig. 4 implements the above incremental computa-
tion of Bd∆(i). From the discussion above, we have the next lemma.

8

u v
w ∈∆

Input string Ti

⊥εu

v

SL

u

word boundary current input pointer i

Code suffix tree CST∆(Ti)

SL

word boundary

Fig. 5. Proof sketch for the time complexity in the case of cyclic code automata

Lemma 3. For every stage i = 1, . . . , n, The procedure Extend in Fig. 4 correctly
computes the border Bd∆(i) from Bd∆(i− 1) and ai = T [i].

Proof. It is easy to see that Extend correctly implements the extensions of suffixes
in Bd∆(i) mentioned above. Then, the most part is shown in a similar way to
Ukkonen [17]. For extension of all three types, the above procedure correctly
extends the original suffix [α] ∈ Bd∆(i− 1) to obtain [αai] ∈ Bd∆(i). Remaining
thing is to show the while-loop from lines 2 to 13 of Extend eventually terminates.
If the while-loop is executed repeatedly, the depth of the extension pointer ϕ
become smaller, and finally, either it ends with extension of type 3 or it enters
the domain dom(code). In the former case, the proof is done. In the latter case,
ϕ enters dom(code) and thus ends with extension of type 3, too. This completes
the proof. ⊓⊔

From Lemma 2 and Lemma 3, we show the following theorem.

Theorem 1 (correctness). For every stage i = 1, . . . , n, the algorithm Con-
structCST in Fig. 3 correctly constructs CST∆(T i).

3.3 Time complexity

The remaining task is to estimate the time complexity of ConstructCST in Fig. 3.
Let Ntree and Ncode be the numbers of tree and code edges traversed during the
computation, respectively. Let N = Ntree + Ncode. In a special case that ∆ is
finite and thus DFA(∆) is acyclic, the linear time complexity of ConstructCST
can be easily proved by applying the telescope argument on the changes of the
depth D(ϕ) of ϕ as used in [17] with a little twist that D(ϕ) is defined by the
number of the code and tree nodes on the path from [⊥] to ϕ.

In the general case that DFA(∆) = A is possibly cyclic, and consequently
∆ is infinite, however, it is not straightforward to show a linear bound of N =
Ntree+Ncode because the extension pointer ϕ can move inside a cycle in dom(tree)
many times without monotonically increasing the depth parameter D(ϕ), and
thus, it is not sufficient to linearly bound Ncode for dom(code). To overcome this
difficulty, we bound the number Ncode by the total number of letters consumed
during the traversal on dom(code). We have the main theorem of this paper.

9

Theorem 2 (linear time construction of code suffix trees). Let ∆ ⊆ Σ∗

be a regular prefix code on Σ recognized by a code automaton A = DFA(∆). Then,
the algorithm ConstructCST in Fig. 3 constructs CST∆(T) for an input text T
in O(n log |Σ| + m) time and O(k) space in online manner, where k = |T |∆,
n = |T |Σ, and m = ||A|| is the size of A.

Proof. We show that the number N = Ntree + Ncode is bounded by i = |T i|
for every stage i. We can show that the number Ntree in dom(tree) is linearly
bounded by i = |T i|. Therefore, we estimate the total number Ncode of all child
and suffix links that the algorithm traverses in dom(code) through all stages. Let
i = 1, . . . , n be any stage, and let T i = T [1] · · ·T [i] = w1 · · ·wkuk+1 ∈ Pre(∆∗)
be the current input string. At stage i, we denote by ∂N i

code the number of suffix
and child edge traversals added to Ncode. Then, there are three cases below when
ϕ traverses inside dom(code): (a) The case that at stage i−1, the extension ends
at node ϕ in dom(code) such that ϕ ̸= [ε]. From the construction of DFA∆ and
Lemma 3, the algorithm executes exactly one extension of type 3 in dom(code) by
going down a child edge. Thus, ∂N i

code ≤ 1 is immediate. (b) Otherwise, at stage
i−1, the extension ends at node ϕ ̸∈ dom(code). This implies that ϕ ∈ dom(tree).
In this case, the algorithm repeats extensions of type 2 in the while-loop from
lines 2 to 13 of Extend by traversing suffix links in Bd∆(i− 1), and terminates
with extension of type 3. Let ϕ = [β] be the final extension point of type 2.
Then, we have two subclasses below on ϕ: (b.1) The case that ϕ ∈ dom(tree).
Since all the preceding extension for Bd∆(i− 1) were done in dom(tree), we have
∂N i

code = 0. (b.2) The case that ϕ ̸∈ dom(tree). Then, ϕ = [β] ∈ dom(code) for a
preword β. Let ϕ = ⟨s, j, i− 1⟩ be the canonical pointer of [β]. From Lemma 3,
we can show that β = uk+1 holds, that is, the string label β = L(ϕ) coincides
the current tail preword uk+1 of T i being scanned. In Extend, we then move
from ϕ = [β] to SL∆(β) = [⊥β] by firstly following one suffix link from the
real node s and by successively going down at most |β| child edges by applying
Canonize(SL∆(s), j, i − 1) at line 11 (See Fig. 5). Therefore, ∂N i

code is at most
|β| + 1. On the other hand, suppose that we are scanning a prefix β = uk+1

of some complete word wk+1. Then, it is not hard to show that the extension
in the case (b.2), where a jump from dom(tree) into dom(code) is performed,
can occur at most once per complete codeword wk+1 during the whole scan,
because once the case (b.2) occurs, only the case (b.3) can occurs iteratively
until ϕ reaches dom(tree). Thus, we can amortize the cost for the case (b.2) over
the whole computation. Combining the above arguments, we have the number
of edge traversals bounded by:

Ncode ≤
n∑

i=0

∂N i
code ≤ (

n∑
i=0

1) + (
k+1∑
j=0

|wj |) ≤ 2n,

where we used the inequality
∑k+1

j=0 |wj | = |T | = n. From similar arguments as in
[17], we can show the remaining part that Ntree ≤ 2n. Hence, the total number of
edge traversals is given by N = Ntree +Ncode ≤ 4n. Space complexity is obvious
since CST∆(T) has at most O(n) real nodes. For the total time complexity,

10

Algorithm Terminate(ψ = ⟨s, j, i− 1⟩, i):
Input: A terminating point ψ and i ≥ 0;

1: ψ ← Canonize(⟨s, j, i⟩); {type 1 extension by letter ai}
2: ChildTrans(Θ′, T [i]);
3: if toClose(Θ′) then
4: v := child(s, T [j]);
5: if label(v) = ⟨j,∞⟩ then label(v)← ⟨j, i⟩;
6: SuffixTrans(Θ′, ψ);
7: return ψ;

Fig. 6. Terminating truncated word suffix trees

the algorithm takes O(m) time for the preprocessing A = DFA(∆) takes, and
takes and O(1) time per suffix link traversal and O(log |Σ|) time per child edge
traversal with an appropriate dictionary structure. Hence, by construction of the
main algorithm, the time complexity is O(n). ⊓⊔

For a fixed base alphabet Σ, the algorithm runs in O(n+m) time and O(k)
space.

4 Application to Truncated Code Suffix Trees

Let T ∈ Pre(∆∗) T = T [1] · · ·T [n] = w1 · · ·wkwk+1 ∈ Pre(∆∗) be an input
prestring on ∆ and ℓ > 0 be a fixed integer. Then, the ℓ-truncated code suffix
tree (ℓ-TCST) of T on ∆, denoted by ℓ-TCST∆(T), is a compacted trie that
represents the set Fac∆(T, ℓ) of all (∆, ℓ)-factors of T . It is easy to see that the
number of nodes in ℓ-TCST∆(T) is linear in the number k′ = |Fac∆(T, ℓ)| of
unique (∆, ℓ)-factors of T . Since k′ is smaller than k = |Suf∆(T)| in real data
sets, we expect that ℓ-TCST is more space efficient than CST for small values
of ℓ.

The modified algorithm ConstructTCST is obtained from the original Con-
structCST of Fig. 3 by inserting Terminate in Fig. 6 after Extend of line 8. The
main difference of the new algorithm from the old one is the use of the termi-
nation pointer ψ for closing suffixes in addition to the extension pointer ϕ for
opening suffixes. At every stage i = 1, . . . , n, Extend first extends each ϕ = α
of type 2 in T i−1 to αai by attaching the i-th letter ai = T [i] ∈ Σ. At the
same time, Terminate keeps track of termination point ψ, which is an open leaf
ψ = ⟨j,∞⟩ with word depth at most ℓ−1, and terminates it whenever ϕ reaches
the depth ℓ by replacing ⟨j,∞⟩ with ⟨j, i⟩, where i is the current index. A key
observation is that there exists at most one open leaf to be closed at every stage i.

To implement this idea, we have to count the length of the open suffixes in
the number of codewords to detect when |L(ψ)| exceeds the limit ℓ. To do this
we use a data structure Θ = ⟨η, wc⟩, where Θ.η = η ∈ dom(code) is a boundary
pointer to a code node and Θ.wc = wc ∈ N is a word counter , with the following
operations:

11

• Reset(Θ) ≡ begin Θ.η ← [⊥]; Θ.wc← 0; end.
• Decrement(Θ) ≡ Θ.wc← Θ.wc− 1;
• ChildTrans(Θ,C) ≡

1: Θ.η ← childDFA(∆)(Θ.η,C);
2: if Θ.η = [ε] then begin Θ.η ← ⊥; Θ.wc← Θ.wc+ 1 end;

• SuffixTrans(Θ,ϕ = ⟨s, j, i⟩) ≡
1: Θ.wc← Θ.wc− 1; ϕ←Canonize(⟨SL∆(s), j, i⟩); return ϕ;

• toClose(Θ) ≡
1: return Θ.wc = k and Θ.η = [ε];

The meaning of the above operations will be easily understood. Using these
operations, we modify the algorithm ConstructCST and procedures Extend and
Canonize by adding comment lines with “for ℓ-TCST.” In Canonize, we replace
the sentence “if p− q > i− j then” at line 4 with “if p− q > i− j or u is a leaf
then.” For time complexity, ChildTrans takes O(log |Σ|) time, and all the other
operations than SuffixTrans takes constant time. By analysis similar to one in
the previous section, we can show that SuffixTrans requires amortized constant
time per operation. From a similar discussion in Sec. 3 and in Na et al. [14], we
can show the following theorem.

Theorem 3 (linear time construction of a TCST on prefix code). If ∆ be
a fixed, possibly infinite prefix code, then the modified algorithm ConstructTCST
constructs a truncated code suffix tree ℓ-TCST∆(T) for an input text T in O(n)
time and O(k) space in online manner, where k = |T |∆ and n = |T |Σ.

5 Experimental Results

We ran experiments on real datasets. Input data were an English text from
the Pizza & Chili Corpus 1, where the delimiters are spaces SPC and LF, and
a UTF-8 text from the Mainichi Newspaper Corpus 1991 in Japanese 2. The
length of each text was 50MB. The English text has 336,578 different words of
the average length 5.20 (byte). The UTF-8 text has 4054 different codes of the
average length 2.96 (byte).

We implemented several types of sparse and truncated suffix trees. ST is the
suffix tree, CST is the code suffix tree in Chapter 3, IST is the suffix tree over the
code alphabet ∆ using four-byte integers as base letters, HST is the code suffix
tree over the (letter-based) Huffman code, and IHST is the code suffix tree over
the word-based Huffman code for ∆. TST, TCST, TIST, THST and TIHST
are their truncated versions with the factor length ℓ = 2, 5, and 10 (words).
These programs were written in C++ and compiled by Microsoft Visual Studio
2010. We ran the programs on an Intel Core i7 920 and 12GB of RAM, running
Windows 7 Professional 64bit.
1 http://pizzachili.dcc.uchile.cl/
2 http://www.nichigai.co.jp/sales/corpus.html

12

Table 1. Node count (106 nodes), where ℓ is the length of code factors.

Data ST CST IST HST IHST ℓ TST TCST TIST THST TIHST

2 28 3.6 2.6 39 4.9
English 87 17 14 105 20 5 56 11 8.3 74 14

10 58 11 8.7 76 14

2 2.5 0.43 0.35 4.0 0.70
UTF-8 85 29 25 105 35 5 43 13 11 58 17

10 70 23 20 89 30

Table 2. Query time (microseconds per query).

Data ST CST IST HST IHST ℓ TST TCST TIST THST TIHST

1.03 0.827 0.686 1.295 0.624 2 0.889 0.718 0.577 1.139 0.546
English 1.233 0.952 0.827 1.497 0.733 5 1.170 0.905 0.764 1.435 0.718

1.263 0.952 0.827 1.514 0.749 10 1.185 0.904 0.827 1.467 0.718

0.537 0.47 0.441 0.787 0.434 2 0.421 0.341 0.305 0.608 0.304
UTF-8 0.88 0.772 0.803 1.138 0.718 5 0.827 0.72 0.684 1.077 0.677

0.886 0.774 0.767 1.138 0.723 10 0.858 0.755 0.787 1.108 0.705

Tables 1 and 2 show the node counts of the suffix trees and the average
query time for 106 strings of the code lengths ℓ = 2, 5, and 10 (words), respec-
tively. In the experiments, we observed that the sparse suffix trees were more
space-efficient and faster than their non-sparse versions, roughly, by the factor
of O(n/k). Truncated suffix trees also improved space efficiency and query time
in both full and truncated versions. IHST was the fastest in the algorithms,
even though HST was slowest. CST was slightly slower than IST, however, it is
comparable because it does not need any additional space and preprocessing.

6 Conclusion

In this paper, we presented an online construction algorithm for CSTs and ℓ-
TCSTs on regular, variable-length prefix codes that runs in O(n+m) time and
O(k) space, where n is the total text size, k is the number of codewords, and m
is the size of a code automata.

As future works, Extensions of this approach to other suffix indexes, e.g.,
DAWG [9], CDAWG [10], and suffix arrays [5] and application to enhanced
suffix arrays [1, 12] and property suffix trees [2, 16] would be interesting. Also, it
would be an interesting future problem to study lowerbounds of the worst case
time complexity of construction of sparse suffix trees with an arbitrary index set
when O(k) space is allowed.

Acknowledgements

The authors are grateful to anonymous referees for many useful comments and
suggestions that significantly improve the quality of this paper. They also would

13

like to thank Thomas Zeugmann, Ayumi Shinohara, Masayuki Takeda, Takuya
Kida, Shin-ichi Minato, Makoto Haraguchi, and Osamu Watanabe for their dis-
cussions and valuable comments, This research was partly supported by MEXT
Grant-in-Aid for Scientific Research (A), 20240014, FY2008–2011, and MEXT/
JSPS Global COE Program, “Center for Next-Generation Information Technol-
ogy based on Knowledge Discovery and Knowledge Federation,” FY2007–2011.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, Replacing suffix trees with en-
hanced suffix arrays, J. of Discrete Algorithms, 2(1), 53–86, 2004.

2. A. Amir, E. Chencinski, C. Iliopoulos, T. Kopelowitz, and H. Zhang, Property
machting and weighted matching, Proc. CPM’06, LNCS 4009, 188–199, 2006.

3. A. Andersson, N. J. Larsson, and K. Swanson, Suffix trees on words, Algorithmica,
23(3), 246–260, 1999.

4. M. Crochemore and W. Rytter, Jewels of Stringology: Text Algorithms, 2002.
5. F. Ferragina and J. Fischer, Suffix arrays on words, Proc. CPM’07, LNCS 4580,

328–339, 2007.
6. D. Gusfield, Algorithms on Strings, Trees, and Sequences, – Computer science and

computational biology, Cambridge, 1997.
7. IETF, UTF-8, a transformation format of ISO 10646, RFC 3629, 2003.

http://tools.ietf.org/html/rfc3629
8. S. Inenaga and M. Takeda, On-line linear-time construction of word suffix trees,

Proc. CPM’06, LNCS, Springer, 60–71, 2006.
9. S. Inenaga and M. Takeda, Sparse directed acyclic word graphs, Proc. SPIRE’06,

LNCS 4209, Springer, 61–73, 2006.
10. S. Inenaga and M. Takeda, Sparse compact directed acyclic word graphs, Jan

Holub, Jan Zdarek (Eds.), Proc. PSC’06, 197-211, 2006.
11. J. Kärkkäinen and E. Ukkonen, Sparse suffix trees, Proc. COCOON’96, LNCS,

Springer, 219–230, 1996.
12. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time longest-

common-prefix computation in suffix arrays and its applications, Proc. CPM’01,
LNCS 2089, 181–192, 2001.

13. E. M. McCreight, A space-economical suffix tree construction algorithm, J. ACM,
23, 262–272, 1976.

14. J.C. Na, A. Apostolico, C.S. Iliopoulos, and K. Park. Truncated suffix trees and
their application to data compression. Theoretical Computer Science, 304:87–101,
July 2003.

15. M. Takeda et al., Processing text files as is: pattern matching over compressed
texts, multi-byte character texts, and semi-structured texts, Proc. SPIRE’02,
LNCS 2476, 2002.

16. T. Uemura, H. Arimura, A linear-time off-line construction of property suffix trees,
IEICE Trans. Inf. & Syst., J91-D(3), 595–607, 2008 (in Japanese). An English
version appears in Chapter 4, T. Uemura, Efficient Construction of Constrained
Suffix Trees, Ph.D thesis, IST, Hokkaido Univ., Feb. 2011 (submitting).

17. E. Ukkonen, On-line construction of suffix-trees, Algorithmica, 14(3), 249-260,
1995.

14

