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(Abstract) Conjugacy classes are important notions in group theory and com-
putational group theory, since in our method for example, computing conjugacy
classes of the symmetric group S, of degree n € N enables us to partition a
set of permutations according to cycle types; also, they are essential in computing
the character table of a group. In this paper, we present the method to compute
the conjugacy classes of a permutation group by utilizing 7DDs, the efficient data
structure for manipulating sets of permutations. The advantages of using mDDs
are that they achieve the compact representation of sets of permutations, which
is suitable for retaining all class elements, while previous methods have had diffi-
culty in storing all class elements of a vast permutation group because of storage
limitations; also they provide convenient operations such as membership test and
computing unions or intersections. These strong points propose useful applica-
tions; for example, 7DDs provide an algorithm to partition a set of permutations
according to cycle types, as stated above. The experimental results for S,, (n < 12)
demonstrate the efficiency of 71DDs. Thus, we have shown that 7DDs are excel-
lent for computing conjugacy classes of some permutation groups, and suggested
effective applications, which have been difficult for previous methods.

1 Introduction

Conjugacy classes are important notions in group theory and computational group
theory, since in our method for example, computing conjugacy classes of the sym-
metric group S,, of degree n € N1 enables us to partition a set of permutations
according to cycle types. Also, they are essential in computing the character table
of a group. So numerous algorithms to compute them have been developed [6].

“He also works for ERATO MINATO Discrete Structure Manipulation System Project, Japan
Science and Technology Agency.
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However, although many algorithms for computing conjugacy classes have been
invented, listing or retaining all elements of conjugacy classes is time and/or space
consuming, particularly when n gets large. For instance, the Basic Orbit Algo-
rithm [6] takes O(n? - n!) products of two permutations to compute all class ele-
ments of Sy, and a simple data structure such as an array takes about (n!-n-log, n)
bits to store them. Also, there is a method to list only class representatives, which
is a less space consuming alternative to listing all class elements; however, it is
sometimes inconvenient or less informative. For example, the simplest algorithm
for computing conjugacy classes, that of Butler and Cannon [6], takes random el-
ements of the input group until we obtain representatives for all classes; however,
it has the main drawback that we have only a small chance to find representatives
of small classes, and also, retaining only class representatives is not appropriate
for membership test, counting the cardinalities of classes, nor computing unions or
intersections.

To solve the above problems, we approach them by utilizing 7DDs [4], the
efficient data structure for manipulating sets of permutations. That is, in this
paper, we present the method to compute the conjugacy classes of a permutation
group and applications by using 7DDs.

The advantages of using 7DDs are that it achieves the compact representation
of sets of permutations, suitable for retaining all class elements, while previous
methods have had difficulty in storing all class elements of a vast permutation group
because of storage limitations. In addition, the Cartesian product operation [4]
can improve the time complexity of computing class elements since it can avoid
multiplying every pair of permutations from each operand set and execute multiple
multiplications simultaneously. To evaluate their efficiency, we have computed the
conjugacy classes of S, for n = 5,6, ...,12 and measured time and memory usage.
The experimental results demonstrate the potential capacities in wDDs.

Also, they provide convenient operations such as membership test and comput-
ing unions or intersections. These strong points propose useful computations; for
example, our algorithm offers a way to partition a set P of permutations according
to cycle types, by first constructing a library of conjugacy classes of S, and then
taking the intersections P (i) “pn Sn (i) for i = 1,2,...,m(S,), where m(S,,) is
the number of cycle types of permutations in S, the index ¢ is assigned according
to the order of construction of classes of Sy, and S, (i) is the i*" conjugacy class of
S, so that P(i) is the set of all permutations in P of the i cycle type (for details,
cf. Section 5.3). Furthermore, constructing a library of conjugacy classes with
convenient algebraic operations will be useful in many ways since we can avoid
constructing them repeatedly, and the operations provide useful algorithms.

Thus in this paper, we have shown that #DDs are excellent for computing
conjugacy classes of some permutation groups, and suggested effective applications,
which have been difficult for previous methods [6]. In other words, #DDs are
our solution to the above problems, i.e., it is the compact expression suitable for
storing all class elements, and it provides convenient operations, suggesting useful
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applications.

In the rest of this paper, we first present the notion of conjugacy classes, which
we aim to compute, together with the basics in group theory in Section 2. And,
we introduce the notion of cycle types in Section 3 to explain an application 71DDs
offer. Then, we describe our data structure in Section 4 and our algorithms in
Section 5. Also, we evaluate our method by experimental results in Section 6.
Finally, we conclude this paper in Section 7 with discussions and plans for future
works.

2 Conjugacy Classes

In this section, we introduce the notion of conjugacy classes, which are what we
aim to compute, together with basics in group theory.

2.1 Groups

A group is an ordered pair (G,*) where G is a set, and % is a binary operation on
G satistying the following axioms:

(1) (axb)xc=ax* (bxc) for all a,b,c € G,

(2) there exists an element e € G, called an identity of G, such that we
have a xe = exa = a for all ¢ € G; and

(3) for every a € G, there exists an element a~!, called an inverse of a,
such that axa ™' =a ' xa =e.

We often abbreviate (G, x) to G for convenience, provided the operation x is obvious
from the context. Also for a,b € GG, we frequently write ab instead of a % b if it

brings no confusion.

2.2 Subgroups

Let (G,x) be a group. Then, an ordered pair (H,*), where ) C H C G, and *
is the operation on G restricted to H, is called a subgroup of (G,*) if H is closed
under the the operation *, and the pair (H,x) satisfies all the axioms of a group.
If H is a subgroup of G, we shall write H < G.

2.3 Permutation Groups

Let n € N, and let A(n) def- {1,2,...,n}. We define S,, as the set of all permu-

tations of A(n), and define o as a function composition of two permutations in
Sp. Then, all the axioms for a group hold for the pair (S, ), and it is called the
symmetric group of degree m. A subgroup of S, is called a permutation group of
degree n.
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2.4 Group Actions

A group action of a group (G, *) on a set A is a map - from G x A to A satisfying
the following axioms:

(1) g1+ (g2 -a) = (g1 *g2) - a for all g1,92 € G,a € A; and
(2) e-a=a for all a € A, where e is an identity of G.

In this case, we call G a group acting on a set A.

2.5 Conjugacy Classes

Let (G, %) be a group acting on a nonempty set A. Then the binary relation ~ on
A defined by:

for any a,b € A, a ~ b if and only if ¢ = g - b for some g € G

where - is the action of G, forms an equivalence relation on A. Thus, the group
action of G on A partitions A, and we obtain the corresponding equivalence classes
of A, which is called the orbits.

Now, we consider the group action - of G on itself by conjugation:
def. -1
b-g = bxgxb ' forallbge G

where *x denotes the group operation of G. We can easily check that this definition
satisfies the axioms for a group action. Thus, this action of G partitions itself into
the orbits, which have the special name, the conjugacy classes of G.

In this paper, we take a permutation group (G, o), where o denotes the function
composition of two permutations, and compute the conjugacy classes of G. In our
approach, we construct the 7DDs such that each 7DD corresponds to a conjugacy
class. And for an experiment, we take G = S, for n = 5,6, ...,12 and evaluate our
method’s efficiency.

3 Cycle Types

There is a notion the cycle type of a permutation, which reveals a structual in-
formation of a permutation. Also, this notion is closely relevant to combinatorial
problems, e.g., for every n € N, the number of cycle types of permutations in
Sp equals the number of partitions of a positive integer n. In particular for our
method, we have an application relevant to cycle types: wDDs provide an algorithm
to partition a set of permutations according to cycle types. So in this section, we
introduce the definition of cycle types and how we execute the computation (for
the formal description of the algorithm, see Algorithm 2 in Section 5.3). Here, we
fix an n € N* and consider the permutations in S,,; so the integers appearing in
cycles are always the ones in A(n) ={1,2,...,n}.



A wDD-Based Method for Generating Conjugacy Classes of Permutation Groups 5

3.1 Cycles and Cycle Decomposition

In order to define cycle types, we need to first introduce a cycle, the notation of the
specific permutations, and the cycle decomnposition of a permutation, the important
notation of any permutation. A cycle is a string (a; ag ... ay,) of integers in A(n)
representing a permutation, which cyclically permutes the integers ay, a9, ..., am,
with m € NT. More specifically, it denotes the permutation which maps a; to
aj+q for i = 1,2,...,mm — 1, maps a,, to a1, and fixes other integers in A(n). For
example, let n = 5, and then, (2 1 3) is the permutation mapping 2 to 1, 1 to 3, 3
to 2, 4 to 4, and 5 to 5. The length of a cycle is the number of integers appearing
in the cycle; and a cycle of length t € N is called a t-cycle. In the above case for
example, the length of the cycle (a; ay ... ay,) is m, or it is an m-cycle. Two cycles
are called disjoint if they have no numbers in common. It is clear that disjoint
cycles commute. Note that a ¢-cycle can be written in t-many ways since we have
t-many choices for the leftmost number of the cycle; however by convention, the
smallest integer in the cycle is usually written at the leftmost position to have the
unique notation of cycles.

Next, we introduce the definition of the cycle decomposition of a permutation
and an important theorem. It is known that for each g € 5,, there exists some
k € A(n), and all the integers in A(n) can be rearranged and grouped into k-many
cycles to represent g in the following form:

(a1 as ... aml) o (a(mH_I) a(m1+2) am2) 0...0 (a(mk—1+1) a(mk—1+2) amk) (1)

where o denotes the function composition of two permutations (cycles), and m;
with 1 < j < k denotes the number of integers appearing from the 1%¢ to the j*
cycles [5]. In other words, every permutation g € S, can be written in the form (1),
called the cycle decomposition of a permutation g. Note that in general, m; < n
since we omit the integers fixed by ¢ in the above form for convenience; however
in this paper, we include all the integers in A(n), and so we always have my = n.
We read the notation (1) of g as follows: for each z € A(n), we first locate = in the
above expression; if z is at the right most position of a cycle (say = = ay, ), then it

means that g maps x to the integer a(,;_, 11y (7o 40 for j = 1) at the leftmost
position of the cycle; if « is not at the rightmost position of a cycle, then it means
that g maps x to the integer appearing to just the right of x. Note that the cycles
in the form (1) are pairwise disjoint, so they commute each other. Thus, the form
is independent of the order of constituent cycles; and also, it is independent of the
leftmost number of each cycle. In this context, we have the following theorem [5]:

Theorem 1 (Uniquness and Existence of Cycle Decompositions [3]). For every
g € Sy, there exists the unique cycle decomposition of g (up to rearranging its
cycles and cyclically permuting the numbers within each cycle).

Proof. See [5]. |
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3.2 Cycle Types

Now, we are ready to introduce the notion of cycle types. Let g € S,, such that the
cycle decomposition of ¢g consists of e;-many 1-cycles, es-many 2-cycles, ..., and
ep-many n-cycles, where e; € N for j =1,2,...,n (note that in particular, e, must
be 0 or 1). Then, we define the cycle type of a permutation g, denoted by type(g),
as follows:

def.
type(g) = (617627"'a6n)

We also define

def. &
Bg) = 2 €
J=1

Note that zn: Jj-ej=n.
j=1

Then, we present an important connection between conjugacy classes and cycle
types. Let G be a permutation group of degree n. Then for each conjugacy class
of G, all elements in the class have the same cycle type. However, the converse
does not hold in general, i.e., a set of all elements in G of a fixed cycle type may
consist of the union of multiple conjugacy classes of G. It is also known that in the
special case of G = S, the set of conjugacy classes of GG exactly corresponds to the
partition of G according to cycle types (for the proof, cf. Proof of Theorem 3 in
Appendix). Thus, for a permutation group G in general, just computing conjugacy
classes is not sufficient for obtaining the partition of G according to cycle types.
Then our approach to compute the partition {é(z)| i=1,2,....,m(G)} of G, where
m(G) is the number of cycle types in G, is as follows: (1) compute the conjugacy
classes Sy (i) of Sy, for i = 1,2,...,m(Sy), where m(S,) is the number of cycle
types in S,; and (2) take the intersections: G(i) = GN S, (i) fori = 1,2,...,m(Sy).
Note that m(G) < m(S,) in general since G C S, which means that we may
have G N S, (i) = (0 for some i. Additionally, our approach actually can partition
any subset P of S, not only subgroups of S,, (for the detail, c¢f. Algorithm 2 in
Section 5.3).

4 BDD, ZDD, and 7DD

In this section, we briefly introduce our data structure 7DDs [4], the fundamental
component of our method. In particular, we describe what characteristics of 7DDs
are the advantages in computing conjugacy classes and their applications. In order
to explain them, we need to first introduce a Binary Decision Diagram (BDD) [1]
and a zero-suppressed BDD (ZDD) [3] since a 7DD is based on them.



A wDD-Based Method for Generating Conjugacy Classes of Permutation Groups 7

F(a, b, ¢) F(a, b, c) S(a, b, c)

i

Binary Decision Tree BDD

Figure 1: BDD and ZDD

4.1 BDD

A Binary Decision Diagram (BDD) [1] is a compact and canonical graph repre-
sentation for a Boolean function. As illustrated in Figure 1, it is derived from a
binary decision tree for a Boolean function F'(a,b,c), which represents a decision
making precess through the input variables, by first fixing the order of the input
variables and then applying the following reduction rules:

(1) delete all redundant nodes whose both edges have the same desti-
nation (cf. Figure 2); and

(2) share all equivalent nodes having the same child nodes and the same
variables (cf. Figure 2).

It is known that for any Boolean function, the above reduction rules provide
the compact and canonical BDD representation. Although the compression ratio
achieved by a BDD depends on the Boolean function being represented, it can be
between 10 and 100 times in some practical cases. Additionally, we can systemati-
cally construct a BDD as a result of a binary logic operation (i.e., AND or OR) for
a given pair of operand BDDs. This algorithm is based on hash table techniques,
and the computation time is almost linear with respect to the size (i.e., the number
of nodes) of the BDD.
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Share
Jump
0\ [1 1
—>>
(1) Delete Redundant Nodes (2) Share Equivalent Nodes
Figure 2: Reduction Rules (1) and (2)
4.2 ZDD

A zero-suppressed BDD (ZDD) [3] is a variant of a BDD customized for manip-
ulating sets of combinations. ZDDs are based on special reduction rules suitable
for sets of combinations, which differ from ordinay ones for BDDs. Broadly speak-
ing, the semantics of a ZDD representation is that a node variable expresses an
item of combinations, and a path from the top to the 1-terminal node corresponds
to the combination containing the node items having the outgoing 1-edges in the
path; then, the set of all such combinations is the semantics of the ZDD repre-
sentation (e.g., in Figure 1, S(a,b,c¢) = {0, {b},{a,b},{a,b,c}}; also, note that the
correspondence between the BDD and ZDD derived from the same binary decision
tree, i.e., F'(a,b,c) = 1 iff {z € {a,b,c}| = has an outgoing l-edge} € S(a,b,c) for
each path). To represent a set of combinations efficiently in the similar way to a
BDD, we first fix the order of items in combinations (node variables) in a ZDD
representation, and then employ the following special reduction rules:

(1) delete all nodes whose 1-edge points directly to the 0-terminal node
(cf. Figure 3); and

(2) share all equivalent nodes having the same child nodes and the same
variables (cf. Figure 2).

Note that just the rule (1) differs from the rule (1) for a BDD, while the rule (2) is
common for a ZDD and a BDD. Similar to ordinary BDDs, ZDDs give compact and
canonical representations for sets of combinations. Also, we can construct ZDDs
by applying algebraic set operations such as union, intersection, and difference of
two sets, which correspond to logic operations in BDDs.

The zero-suppressing reduction rule (1) is extremely effective for sets of sparse
combinations. If the average apperance rate of each item is 1%, ZDDs are possibly
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Jump
_)

(1') Zero-suppressing Reduction Rule

Figure 3: (1’) Zero-suppressing Reduction Rule

up to 100 times more compact than ordinary BDDs. Such situations often appear
in real-life problems; for example, in a supermarket, the number of items in a
customer’s basket is usually much smaller than the number of all items displayed
at the super market. ZDDs are now widely recognized as the most important
variant of BDDs (for details, see Knuth’s book fascicle [2]).

4.3 7DD

We first fix the degree n € N of permutation groups. A 7DD is a variant of
a BDD for representing a set of permutations compactly and canonically. It has
been developed in the similar way to a ZDD. As illustrated in Figure 4, each node
of a 7DD corresponds to an ordered pair (z,y) with z,y € A(n) = {1,2,...,n},
which represents a transposition 7, ,y = (z y) mapping x to y and y to . Roughly
speaking, the semantics of a graph representation of a wDD is the following: each
path from the top node to the 1-terminal node represents a permutation in the
set, which is obtained by multiplying the transpositions of the nodes in the path
having the outgoing 1-edges in the path, from the bottom to the top (e.g., the 7DD
in Figure 4 represents the set {(1 2)(3),(1 3 2),(1 3)(2), (1 2 3)}). To represent
a set of permutations efficiently, in the similar way to a ZDD, we first fix the
order of transpositions (node variables) in a 7DD representation, and then employ
the ZDD’s reduction rules. In particular for a 7DD, the rule (1) means that the
numbers in A(n) which are fixed by every permutation in the set being represented
will never appear in the 7DD expression, which contributes to the compactness of
a 7DD. In fact, it is about 1000 times more compact than explicit representations
for some cases [4].

Additionally, we can systematically construct 71DDs as the result of algebraic
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{(12)(3), (132), (13)(2), (123)}

(2@, 132y 9

{e, (1 2)3)}

Figure 4: An Example of a 7DD

set operations such as computing a union, intersection, and difference in the same
way as ZDDs. Moreover, a 1DD has a powerful Cartesian product operation which
generates all possible composite permutations for two sets of permutations (i.e.,

for any P, P, C S, P, X Py def. {p1 op2| p1 € P1, p2 € P>}, where x denotes the
Cartesian product; from here, we abbreviate Py X P» to Py P). Since the time com-
plexity of these operations depend on the size (i.e., the number of nodes) of 7DDs,
not the number of permutations in the sets, 7DDs sometimes achieve very fast
computation time. Once we have generated mDDs, we can apply various analysis
or testing techniques, such as counting the exact number of permutations in the
set, exploring the satisfiable permutations for a given constraint, and calculating
the minimal or the average cost of all permutations.

Our basic approach for computing conjugacy classes efficiently is to utilize the
Cartesian product operation to compute multiple products simultaneously, and
compactly retain all class elements by 7DD representations. Also, the algebraic set
operations provide the effective applications of the constructed conjugacy classes,
which is another advantage in 7DDs.

5 Our Method

So far, we have described what to compute together with relevant definitions and
notions. In this section, we explain how to execute the computations.
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5.1 The Subgroup Generated by a Subset

Before describing our algorithms, we need to introduce the notion of the subgroup
generated by a subset since it is frequently used for the inputs of the algorithms.
Let (G,x) be a group, and let A be any subset of G. Then, we difine:

< 4> {a1%'a2®*... a,*"| n € N,a; € A,e; € {+1,—1} for each i}

where an identity e € G is included in < A > as the element corresponding to
n=0,and < A % o if A = 0. We can easily check that < A > is closed under x,
and it satisfies all the axioms of a group. So it is a subgroup of G. We call < A >
the subgroup of G generated by A.

Roughly speaking, for a group G, the subset A of G such that < A > = @
is considered to be a compressed set of G or a set of base components of G since
every element of G can be restored as a product of elements of A and their inverses.
Moreover, this compression of G is suitable for our algorithm (in particular for the
Cartesian product operation) since it suffices to compute the action of conjugation
by each element in A, instead of each element in G (i.e., for the conjugacy class

CC(g) of G containing g, we iterate CC(g) < (CC(g) U ( gA{a}CC(g){a_l}))

with the initial value CC(g) < {g} until CC(g) does not increase, instead of
CC(g) « U {9997}
gelG

Note that for a group G and the subset A C G such that < A > = G, |A| tends
to be much smaller than |G| (many groups can be generated by two elements,
and in most cases, we have |A| < 10; moreover, it is theoretically proved that
for any permutation group G of degree n, we have |A| < n/2 [6]). Thus, dealing
with A is a fundamental point for our computation since |A| tends to be much

smaller than |G|, and if we have to compute the action by each element of G
(ie., CC(g) < (CC(g9) U (U {9}CC(9){g™'}))), the number of the Cartesian
gea

product operation will equal the number of simple multiplication of permutations,
where our method has no advantage. In this paper, we always assume that every
permutation group G is given together with its subset A such that < A > =G.

5.2 Algorithm to Compute Conjugacy Classes

Now, we present our first algorithm to compute conjugacy classes of a permutation
group. Let G be a permutation group such that it has m(G)-many conjugacy
classes G(1),G(2), ..., G(m(G)). Then the following Algorithm 1 computes G(7) for
i=1,2,...,m(G), and obtains them as the corresponding 7DDs:

Theorem 2 (Correctness of Algorithm 1). Let a finite permutation group G and a
subset A C G such that < A > = G be inputs for Algorithm 1. Then, the algorithm
stops after finitely many steps. Moreover, the corresponding outputs are exactly the
conjugacy classes of G.
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Algorithm 1 (Compute Conjugacy Classes)
Input: G, AC G such that <A > =G
Output: G(1),G(2),...,G(m(G))
Method:
1+ 0
while G # ) do

i (i+1)

Take an arbitrary §; € G

G(i) < {6;}; Add <+ {6;}

while Add # ) do
x4dd<—'{(%L{G}C?U){a_l})\(?@)}
G(i) < (G(i) U Add)

end while

G« (G\G())

end while

Proof. See Appendix. i

5.3 Algorithm to Partition a Set of Permutations According to
Cycle Types

Next, we provide our second algorithm to partition a set of permutations according
to cycle types, which is based on Algorithm 1 described above. Let P be a set of
permutations of degree n € Nt (i.e., P C S,) such that it has m(P) cycle types
among its elements. Then, the following Algorithm 2 computes all the subsets 15(1)
for i = 1,2,...,m(P) of P, each of which consists of permutations in P of a fixed
cycle type, and obtains them as the corresponding 7DDs:

Algorithm 2 (Partition a Set of Permutations According to Cycle Types)
Input: P, S,,, B C S, such that < B > =5,
Output: P(1), P(2),..., P(im(P))

Method:
Execute Algorithm 1 for the input S5, and B,
and obtain the output S, () for i = 1,2,...,m(Sy)
j+1
fori=1,2,...,m(S,) do

P(j) + PN Sn(i)

if P(j) # (0 then

je(G+1)

end if

end for

Theorem 3 (Correctness of Algorithm 2). Let P, S,, with n € N, and B C S,
such that < B > = S, be inputs for Algorithm 2. Then, the algorithm stops
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after finitely many steps. Moreover, if we denote the corresponding outputs by
P(1),P(2),...,P(in(P)), then, the set {P(1), P(2),..., P(in(P))} is ezactly the par-
tition of P according to cycle types, i.e., each P(j), j € {1,2,...,1m(P)} is the set
of all elements in P of a fized cycle type.

Proof. See Appendix. |

6 Experimental Results

6.1 Setting Up

In order to evaluate our method’s efficiency, we have measured time and memory
usage in generating Sy, computing the conjugacy classes of S;,, and retaining them
as the corresponding 7DDs for n = 5,6,...,12. The machine we used for the
experiment was VT64 Server4600, Opteron6176 2.3GHz, 256MB memory, SuSE
64 Linux.

We have recorded the results in Table 1, where Final (kB) is the final memory
usage after the computation, and Peak (kB) is the maximum memory usage during
the computation. For comparison with 71DDs, we used an array as a standard data
structure for sets of permutations, and recorded its virtual memory usage as Array
(kB). We assume that for a set P of permutations in S, a 7DD takes (30 - (the
number of its nodes)) bits, while an array takes (n - logyn - |P|) bits.

And, C-Ratio (Compression Ratio) is defined as the value Array/Final, and P-
Ratio (Peak Ratio) is defined as the value Peak/Final. Finally, we have recorded
the computation time as Time (s).

6.2 Results and Evaluations

Since simple data structures such as an array are likely to take more than the
exponential function of n for both time and memory usage for dealing with S,
the point is how much 7DDs improve such costs. Also, since 7DDs tend to expand
during computations in some cases [4], we should focus on how much it swells out
to see whether or not wDDs are suitable for computing conjugacy classes.

First, see the C-Ratio in Table 1. Except for n = 5, #DDs take much less
memory usage than an array; in particular, when n gets large (n > 9). For
example, it is 97.70 when n = 10 (i.e., 7DDs are about 100 times more compact
than an array). And focusing on how much the C-Ratio increases as n becomes
larger, we can observe that it gets about 2 ~ 4 times every time n increases by 1;
more detailed observation tells us that it is more than the exponential function of n.
To sum up, #DDs are compact representations of conjugacy classes; in particular,
they are very efficient when n becomes large.
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Table 1: Computing Conjugacy Classes of S,

Sn Final Peak Array | C-Ratio | P-Ratio Time
Ss 0.33 0.39 0.17 0.53 1.19 0.03
Se 1.17 1.33 1.40 1.20 1.14 0.02
S7 4.07 4.66 12.38 3.04 1.15 0.11
Ss 14.07 15.50 121.00 8.60 1.10 0.64
Sy 46.10 52.37 1294.00 28.08 1.14 4.14
S1o0 154.20 215.10 15068.00 97.70 1.40 32.84
S11 491.90 1470.00 189873.00 386.00 2.99 616.40
S12 | 1534.00 | 11274.00 | 2575806.00 | 1679.00 7.35 | 3082.00

Next, see the P-Ratio. For n = 5,6, ...,10, it is between 1.10 and 1.40, which
is very small since it can be thousands in some cases (cf. [4]). However, it is 2.99
and 7.35 for n = 11 and n = 12 respectively, which indicates that it will relatively
increase as n gets larger (n > 10). Thus, it seems that 7DDs do not swell out in
computing the conjugacy classes of S, when n is small, but they tend to expand
when n is large.

Finally, we consider the Time. When we see how the values change as n becomes
larger, the increasing rate is more than the exponential function of n (say, more
than 1.28 - 1076 . 57). So it seems that the computation time will not be feasible
when n is very large; for example, it took more than 14 hours when n = 13.

6.3 Consideration to the P-Ratio

Here, we consider a particularly interesting problem: why the P-Ratio tends to be
very small (between 1.10 and 1.40) for n = 5,6, ..., 10. In other words, why a 7DD
does not expand in computing the conjugacy classes of S, at least for small n.
Then, more detailed experimental results (cf. Table 2 which records the detailed
process of the computation for Sy, which has 30-many conjugacy classes Sy(i) for
1=1,2,...,30; Card def. |So(7)|, Peak % the maximum memory usage, and Final
4 the resulting memory usage in computing Sy(i) for ¢ = 1,2,...,30) indicate an
answer: seeing the memory usage in computations of each class , the conjugacy
classes constructed at the beginning of the computation (say, So9(1), S9(2), ..., and

Sy(7)) tend to expand (i.e., P/F oo Peak/Final is relatively large) in the construc-
tion process, while the classes produced in the latter half of the computation (say,
S9(16), S9(17), ..., and S9(30)) do not expand (i.e., P/F is relatively small); however
in the first half of the process, the total memory usage tends to be relatively small
since there remain many unprocessed permutations kept as a single 7DD, which is
compact since the nodes sharings are likely to occcur, while the memory usage in
the latter half is relatively large since many 7DDs corresponding to the conjugacy
classes have been constructed, and so the nodes sharings are less frequent. As a
result, the peak time (i.e., the moment when the entire memory usage gets the
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Table 2: Detailed Record of Computing Sy

Classes | Card Peak | Final P/F
So(1) 40320 | 32.741 0.570 | 57.440
So(2) 45360 | 34.121 4.654 7.332
So(3) 25920 | 30.750 8.220 3.741
So(4) 25920 | 29.550 | 11.085 2.666
So(5) 20160 | 29.453 | 13.316 2.212
S9(6)
S9(7)
S9(8)

30240 | 40.770 | 16.917 2.410
10080 | 25.868 | 17.981 1.439
18144 | 31.868 | 20.531 1.552
Ss(9) 24192 | 39.728 | 23.704 1.676
9 9072 | 33.773 | 26.145 1.292
9 18144 | 41.104 | 28.241 1.455
9 3024 | 30.956 | 28.350 1.092
11340 | 39.041 | 31.328 1.246
15120 | 41.583 | 34.223 1.215
15120 | 43.613 | 36.255 1.203
11340 | 44.674 | 39.251 1.138
7560 | 44.828 | 40.170 1.116
756 | 40.924 | 39.870 1.026
2240 | 43.005 | 41.228 1.043
10080 | 50.543 | 43.181 1.170
3360 | 46.223 | 43.298 1.068
2520 | 47.021 | 44.921 1.047
7560 | 52.373 | 45.885 1.141
2520 | 49.241 | 46.061 1.069
168 | 46.328 | 45.821 1.011
945 | 46.804 | 46.204 1.013
1260 | 47.460 | 46.163 1.028
378 | 46.774 | 46.095 1.015
36 | 46.200 | 46.091 1.002

1| 46.091 | 46.088 1.000
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Figure 5: An Illustration of Transition of a 7DD Size

largest) will be the one in the latter half of the process, where Peak is not very
far away from the resulting value, i.e., the memory usage after computing Sy(30).
This seems to be a reasonable answer for the question why 7DDs do not expand in
computing conjugacy classes. Also, see Figure 5, a graph representation of Table 2,
describing the transition of the memory usage throughout the computation.

7 Future Works

In this paper, we have evaluated the efficiency of 7DDs for computing the conjugacy
classes of S, for n = 5,6,...,12 and suggested some applications. Althoguh our
results demonstrate the potential capabilities in 7DDs, there remain many things
to be examined and achieved. First, we need to evaluate the efficiency of 7DDs
for computing the conjugacy classes of the permutation groups other than S,
to investigate they are efficient equally for most permutation groups, or only for
specific ones; and if they are depending on some properties of permutation groups,
we shall clarify such properties, and how they affect 7DDs.

Also, it is an interesting problem to clarify the reason why the conjugacy classes
constructed at the beginning of the process tend to expand, while the classes
produced in the latter half do not swell out; in particular, we would like to know
why the conjugacy class S, (1) constructed first has an extremely large value for
P/F, in comparison with other classes. Moreover, we would like to know why the
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P-Ratio suddenly starts to increase and gets larger dramatically for n > 10, while
it has been static and small for n < 9.

Finally, it is also important to consider the ways to utilize 7¥DDs’ advantages,
i.e., retaining all class elements by the compact representation and providing con-
venient algebraic operations. We believe that our approach will offer useful ap-
plications; for example, as we have described, it gives an algorithm to partition
a set of permutations according to cycle types. In this way, it seems a promising
direction to consider how to utilize a library of conjugacy classes with algebraic
operations.
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Appendix

Here, we present the proofs of the theorems described in Section 5.

Proof of Theorem 2

Theorem 2 (Correctuness of Algorithm 1). Let a finite permutation group G and a
subset A C G such that < A > = G be inputs for Algorithm 1. Then, the algorithm
stops after finitely many steps. Moreover, the corresponding outputs are exactly the
conjugacy classes of G.

Proof. First of all, the algorithm will stop at most after |G| (< oo) many While
loops (at the fifth line), since for each i, we have G(i) # () and execute G « (G '\

G(7)) so that we will obtain G = (), and the algorithm will stop after a finitely many
m(G)

steps. And, since we will iterate the While loop until G = ), we have |J G(i) = G,
i=1

where m(G) is the resulting value of 7. Also, since we execute G «+ (G \ G(i)) for

each i, we have G(i) N G(j) = 0 if i # j for any 4,5 € {1,2,...,m(G)}. Thus, we

have confirmed that the set {G(i)| i € {1,2,...,m(G)}} is a partition of G. Now,

we denote the conjugacy class of G containing the initial element §; € G(i) by

CC(i); and so it suffices to show that G(i) = CC(i) for i = 1,2,...,m(G).

Note that every g € G can be written as ajas...a,, for somem € N*, aq,as, ..., a,, €
A since G is a finite group. Moreover, there exists the minimum m(g) € N* to
write g in the form of g = ajay...a,,(g). Furthermore, for any g1,92 € G, there

exists some § € G such that g; = ggo2¢~"' with m(g) < m(g) for all ¢ € G such

that gy = ggog~'. We define the number N(g;, g2, A) def. m(g), which is called the
least conjugation number of go for g1 in the presence of A.

(i = 1) We first show the theorem for i = 1. We start with showing G(1) C
CC(1). In Algorithm 1, we first take an arbitrary d; € G as the initial element of
G(1). Then, it is clear that every x € G newly added to Add must be in the form
of x = (am-.-(az(a101a7 ) azt)...a;,}) = (am...azar)dy (a7 ayt..a;,l) with m € N,
a1,a9,....a;m € A C G (note that m = 0 iff + = §;). And since al_lagl...a,_nl =
(@m...aza1)~", we consequently obtain z = gd1g~!, where g = ay,...aza1 € G.
Thus, we conclude that z € CC(1) since CC(1) = {§6157%| § € G}, showing
G(1) CCC(1).

It remains to show CC(1l) C G(1). Let x € CC(1). Then, = has the form

of © = g6,g~! for some g € G. Moreover, g can be written as g = a,asy...ay, for

ai,az,...,ap € A with k = N(z,01,A). Thus, z = (ayas...a;)61(a1as...a;) ™" =

(araz2...ag)d1 (ay t.ay tar ) = (a1 (as...(akd1a, t)...ay P )a; ). Now, we focus on the
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iteration of the following computations in the algorithm:

Add « {( U {a}G(i){a"'}) \ G(i)} (2)

acA
G (i) + (G(i) U Add) (3)

Note that after k-many iterations of the computations (2) and (3), G(1) contains
all £ € CC(1) such that N(Z,d;,A) < k, including =. Thus, it suffices to show
that the algorithm must execute the above computations at least k-many times.
Then suppose the converse, i.e., suppose that the algorithm stops after a l-many
iterations of the above computations with [ < k. By the iteration condition While
Add # () do (at the ninth line), this means that at the I** iteration, conjugating
any already obtained element of G(1) by any element of A must be some al-
ready obtained element; in particular, we must have (q;...(ag(a; 5a1_1)a2_1)...al_1) =
(am--(G(ar161a7 " )ay')..at) for some ay,az,...,a;m € A with /m < I. Conse-
quently,  can be written as:

-1.-1 -1 -1 -1

T = Qp...014107...02010107 Ay - ...q Qe
A A A Aela—1 A—1 —1 -1

= Qe Qg1 iy (2010187 Gy b @) Gy

This implies that N(z,6;,4) =k —1l+m =k — (I —m) < k = N(z,01,4), a
contradiction. Thus, we have completed the proof for i = 1.

(¢ > 1) Next, we prove the theorem for ¢ > 1. Let ¢ > 1, and suppose that
G(1),G(2),...,G(i — 1) have been already constructed by the algorithm, and each
of them corresponds to a distinct conjugacy class of G. Then, the algorithm
takes an arbitrary ¢; from the remaining (unpartitioned) elements of G, i.e., §; €

i—1
G\ (U G(j)), and so it must be a representative of one of the conjugacy classes
j=1

which have not been constructed yet, which we denote by CC(7). By induction on
i, it suffices to prove that G(i) = C'C(i), which can be shown in the same way as
the proof for 1 = 1. Therefore, we have completed the entire proof. |

Proof of Theorem 3

Theorem 3 (Correctness of Algorithm 2). Let P, S, withn € N*, and B C S,
such that < B > = S, be inputs for Algorithm 2. Then, the algorithm stops
after finitely many steps. Moreover, if we denote the corresponding outputs by
P(1),P(2),...,P(in(P)), then, the set {P(1), P(2),..., P(in(P))} is ezactly the par-
tition of P according to cycle types, i.e., each P(j), j € {1,2,...,m(P)} is the set
of all elements in P of a fized cycle type.

Proof. In this proof, we explicitly write the binary operation o, which is the com-
posite function operation of two permutations. First, it is clear that the algorithm
must stop after m(S,,), a finitely many (m(S,) < |Sn| = n! < 00) loops.
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Next, we shall show that the set {5, (1), 5,(2),...,Sn(m(Sy))} is the partition
of S;, according to cycle types since it directly proves the theorem as the following
claim states:

Claim: Let the set {S,,(1),S,(2), ..., Sn(m(Sy))} be the partition of S,, according
to cycle types. Moreover, let the cycle type corresponding to S, (i) be called the
i cycle type for i = 1,2,...,m(S,). Then, for i = 1,2, ...,m(S,), we have:

PN S,(i) = {p € P| p is a permutation of the i*" cycle type}
Also, we have the following if and only if condition:

P contains a permutation of the i'" cycle type (i.e., P N S,(i) # 0)

“ pn Sp (i), where

l is the least positive integer such that I3(l) has not been constructed

if and only if the algorithm constructs the set P(l)

yet.

Therefore, we conclude that:
{P(1),P(2),..., P(m(P))} = {PNS,(i)| i € {1,2,....,m(S,)}, PNS, (i) # 0} (4)

where m(P) denotes the resulting value of j, which also equals the number of
cycle types in P.

Proof of the Claim. First of all, by the definition of S,,(7), we directly obtain P N
S,(i) = {p € P| p is a permutation of the i*" cycle type} for i = 1,2, ...,m(S,).

Next, we show that the if and only if condition holds. We first consider the
loop for i = 1. In the loop, if PN S,(1) = 0, then, we will just go to i = 2 and
keep j = 1; if P N Sy, (1) # 0, then, we construct P(1) < (P N S,(1)), and we will
go to ¢ = j = 2. Therefore the condition holds for ¢ = 1.

Next, we consider the if and only if condition for ¢ > 1. Suppose that we have
executed the algorithm for 7 = 1,2, ..., (k — 1) with K € N* such that k¥ > 1, and
g =1, where [ is the least positive integer such that ]5(1) has not been constructed
yet (i.e., the algorithm has constructed the sets P(1), P(2), ..., P(l —1)). Then for
i =k, if PN Sy(k) = 0, then, we will just go to i = k + 1 and keep j = [; if
PnS,(k) # 0, then, we will construct P(l) + (P N S,(k)), and we will go to
i=(k+1),j=(l+1). Thus, the condition holds for k; and by induction, it holds
fori=1,2,....,m(Sy).

Finally by what we have shown above (i.e., the if and only if condition), we
directly obtain the equation (4). And, the condition also implies that the number
m(P) of the constructed subsets of P equals the number of cycle types in P. i

Therefore, by this claim and Theorem 2, it suffices to prove that every conjugacy
class of §,, exactly corresponds to a set of elements in S, of a fixed cycle type, i.e.,
for any z,y € S,
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y=T1oxo7 ! for some 7 € S, if and only if 2 and y share the same
cycle type.

Necessity. We first show the necessity. Let z,y € S, such that y = Toz o7}

for some 7 € S,,. Then by Theorem 1, we can assume that x has the unique cycle
decomposition:

X =0100990..00k

with some k& € N1, where o; is an m;-cycle with m; € NT for i = 1,2, ..., k. Now,
we need the following lemma:

Lemma 1 (Conjugation in S,). Let x € S,,. Then by Theorem 1, x has the unique
cycle decomposition:

X =010090...00 (5)

with some k € N, where o; is an m;-cycle with m; € Nt fori=1,2,....,k. Then
for any T € S,,, the conjugate Toxz o™t of x has the following cycle decomposition:

1

TogzoT L= (rooi0o7 No(roogo7 ) o..o(tooort)

where T o ;o T is an my-cycle for i = 1,2,....k. Moreover, if we write o;
for i =1,2,...k as: 0; = (a] @) ... ay,), where a7 € A(n) = {1,2,...,n} for
73 =12,...,m;, then, we have:

Togjor L= (T(ai) T(aé) T(aini))

Also, note that the equation (5) is now written as:

z=(ai aj ... ap, ) o (a @3 ... aZ,)o...0 (ak o .. afnk) (6)

Consequently, we obtain the following equation:

Tooor L= (r(al) 7(ad) ... 7(al, ) o...0 (7(a¥) T(ak) ... T(ak, ))

i.e., the cycle decomposition of T o o o 7-1 is obtained by replacing each entry

a € A(n) of the cycle decomposition (6) of © by T(a).

Proof of the Lemma. First of all, for each o;, observe that ai(aﬁni) = a! and
ai(az-) = a§-+1 for j =1,2,...,m; — 1. Also, observe the following;:

(rooj o7 h)(r(a5)) = 7(03(77H(7(a}))))
—1 T

)(a3)))

=7(oi((77" ©



22 Norihiro Yamada and Shin-ichi Minato

Consequently, (TOO'iOT_l)(T(a;)) =7(a}) if j = my; (TOO’Z'OT_I)(T(CL;)) = T(a§+1)
otherwise. And for all @ € A(n) such that o;(a) = a (i.e., a does not exist in the

cycle 0;), we have:

(Toojo 7'_1)(7'(a)) =

Since {7(a)| & € A(n)} = A(n), we have considered every element in the domain
A(n) of Too;0 771 and so, we conclude that 70 o; o 771
following m;-cycle:

can be written as the

TOoQg;0 = (T(al) T(a2) 7’((1Z )) (7)

1 1

- -1
,Too20T ..., and ToogoT

Note that Too o7~ are pairwise disjoint cycles since
01,09, ..., and o} are pairwise disjoint cycles and 7 is a permutation (injective).
(That is, for any 1,4y € {1.,2, ...,.k}, az € oiy, aﬁ.e 0iy, we have 7(a) # 7(al)
if i1 # o, since i1 # @2 = aj # ai} = 7(a}}) # 7(a}).)

Finally, we consider the following product:

(tooror Yo(roogor Ho..o(roo,or }) (8)

Seeing the form (7), the product (8) can be constructed by first arranging every
integer in A(n) as:

T(a%), T((I%), vy T(a}nl), T(a%), T(ag), vy T(afm), ey T(a’f), T(ag), ey T(afnk)

which forms an arrangement (a permutation) of all integers in A(n); and then from
the left, grouping m;-many integers corresponding to 7 o oy o 7!, grouping next

meo-many integers corresponding to 7o oy o 77!

, ..., and finally grouping my-many
integers corresponding to 7 ooy o7~!. In other words, the product (8) is generated
by rearranging all integers in A(n) and grouping it into k-many cycles, so that it
is a legal syntax of a cycle decomposition of a permutation in S,,. Next, we see the

semantics of (8) as follows:

(toojoT Ho(rooyor YHo..o(rooor )

=To010(t  oT)ooyo (17 oT) 0.0 (T

=70(010090...00;)07 !

=7ozor !
Thus, the form (8) is a cycle decomposition of 7 oz 077!, and by Theorem 1, it is
unique. Finally, together with the equation (7), we have shown that

TozxorT '= il;ll(r(azi) 7(ab) ... 7(ak,.)).
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By this lemma, we immediately obtain the cycle decomposition of y:

y:TOl‘OT_l

=(tooyor Yo(roogor HNo..o(rooror ) (9)

Lis an mg-cycle for i = 1,2, ..., k. Thus, the cycle decomposition (9)

of y has the same number of 1-cycles, 2-cycles, ..., n-cycles as the cycle decompo-
sition (5) of x. Therefore, x and y have the identical cycle type, completing the
necessity.

where Tog;oT™

Sufficiency. Next, we show the sufficiency. Let a,b € S, such that both have the
same cycle type (ep,eg,...,e,). Then without loss of generality, we write the two
cycle decompositions of ¢ and b as follows: from the left, writing e;-many 1-cycles,

eg-many 2-cycles, ..., e,-many n-cycles. Now, we obtain:
4= 010020 ...00; (10)
b=610090...00, (11)

where r € N, and both o; and &; are m;-cycles with m; € N* for i = 1,2,...,r
such that m; < ms < ... < m,. Moreover, for i = 1,2, ..., 7, we write:

o; = (b d ... aini); (12)
6 = (a} @ ... ab,) (13)
where a§,d§ € A(n) for j = 1,2,...,m;. In the forms (10) and (11), we have

included every integer in A(n) by convension; so together with the equations (12)
and (13), the integers in the decompositions are:

1 1 1 2 2 2 ror ro.
al,az,...,aml,al,az,...,amz,...,al,a2,...,amr,
~1 A1 ~ A2 A2 ~92 AT AT N d
al,ag,...,aml,al,aQ,...,am2,...,al,a2,...,amr

Note that they are two arrangements (permutations) of all integers in A(n). Then,
we define a permutation 7 € .S, by:

D
foralli e {1,2,...,7}, j € {1,2,...,m;}. Thus for i = 1,2,...,r, we obtain:

T(a

6; = (a} @b ... ab,))

= (7(a}) 7(a}) - 7(a},))

=71o00;07 ! (by Lemma 1)
Consequenlty, we have:
b=610090..00,

=(roogior Yo (roogor Ho..o(roo, 017}

=7o0010(r tor)ooyo(r tor)o..o(r tor)og, ot

=70(010090..00,)07 !

=ToagoT !

Thus, we have shown that ¢ and b are conjugates, completing the proof. |



