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Abstract

We present a fast approximation algorithm for the 1-median problem. Our
algorithm can be applied to metric undirected graphs with node weight. Given
a node v, our algorithm repeatedly executes a process of finding a node with
higher centrality,in which an approximate centrality of each node v’ is calcu-
lated for the subgraph called the best kNSPGS of (v,v’). The best kNSPGS of
(v,v’) is a subgraph that contains the shortest path tree of v, and approximate
centralities of all the nodes v’ for the subtrees can be calculated more efficiently
than their exact centralities for the original graph. We empirically show that
our algorithm runs much faster and has better approximation ratio than a so-
phisticated existing method called DTZ. We demonstrate the effectiveness of
our algorithm through experiments.

We can use graphs to describe many kinds of relationships in daily life. For exam-

ple, consider a graph with node weight to describe the transportation network. The

node weight means the customer’s demand and the edges mean transport routes with

the cost of its length. In this situation, the facility location problem seeks an optimal

location of facilities to minimize the total cost of the transport and the opening costs

of the facilities. This problem has been studied since 1960s because it can be applied

to many other situations. The k-median problem [1] is a special case of this problem.

In the k-median problem, the number of facilities is fixed to k, but there is no cost to

open facilities. Even now, this is one of the important subjects of research.

Approximation algorithms for the k-median problem have been presented so far

([2], [3]), since k-median problem is NP-hard. Jain et al. proposed an approxima-

tion algorithm for k-median problem by using LP-relaxation [2]. Indyk proposed an

approximation algorithm based on the random sampling [3].

Freeman defined some centrality measures [4]. The closeness centrality is one of

them. This centrality of node v is defined as the reciprocal number of the sum of the

distances from v to other nodes. The solution of the 1-median problem, also known

as the Fermat-Weber problem, is the highest closeness centrality node.

In the field of data mining, a high closeness centrality node has important meaning.

For example, the closeness centrality is utilized to seek authorities from social net-

works and citation networks of papers. Recently, also in the field of biomedicine, this
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approach has been applied to protein-protein interaction networks to find important

proteins.

In these days, we have a necessity for dealing with huge databases because of the

diffusion of the Internet and mass storage. The number of nodes of a huge network

reaches some millions. To the best of our knowledge, however, there is no algorithm

to cope with such a huge graph even for 1-median problem. All of previous algorithms

we know are not feasible for huge graphs because of its large calculation time cost or

its large memory space cost.

For 1-median problem, the computation time by classical method is O(nm log n)1,

where n is the number of nodes, and m is the number of edges. Generally, 1-median

problem is easier than k-median problem. But this calculation cost is too high to cope

with huge graphs. Therefore some practical algorithms are proposed for 1-median

problem. For example, Fujiwara et al. studied on 1-median problem for time-evolving

graphs [6]. Rattigan et al. proposed an approximation algorithm for the centrality

measure using an annotated information to the nodes [7].

In this article, we propose an effective fast approximating algorithm for 1-median

problem to seek a node with high closeness centrality. Our algorithm can be used

for the metric undirected graphs, or graphs with edge lengths satisfying the triangle

inequality. The nodes of the graph can be weighted. Roughly speaking, our algorithm

repeatedly executes a process of finding a node with higher centrality by using a

shortest path tree. This process is expected to be fast because the cost of calculating

closeness centralities of all nodes is O(n) for a tree and much faster than that for a

general graph, namely, O(nm log n).

To efficiently find a node with higher centrality, we make use of subgraphs of given

graphs that contain the shortest path tree. Furthermore, we use sets of graphs called

kNSPGS to improve the performance on accuracy. The computational complexity

doesn’t increase very much by using these techniques.

The remainder of this paper is organized as follows. In Section 2, we introduce

necessary notions and notations. In Section 3, we explain our algorithm and analyze

its complexity. In Section 4, we report the results of our experiments. Our brief

conclusion and future works are described in Section 5.

1 Preliminaries

Assume that we are given an undirected connected graphG = (V,E) with edge lengths

satisfying the triangle inequality. Let n and m be the number of the nodes and edges

respectively, that is, n = |V | and m = |E|. Note that m ≥ n − 1 because a given

1Note that when edge lengths are positive integer, we can reduce the calculation time to O(nm)
by using the method proposed by Thorup [5]. In this paper, we treat graphs in which lengths of
each edge can be assigned a positive real number.
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Figure 1: Example of a kNSPG and a best kNSPGS: The center graph is a
kNSPG T (v0; 4) of the left graph G. The right graph is the best kNSPGS G∗(v6, v0; 4).

graph is assumed to be connected. The nodes can be weighted. The weight of node

v is denoted as W (v). Assume that all the weights of nodes are positive.

The distance between two nodes v and u, which is denoted by d(u, v), is defined as

the minimum path length from v to u, where a path length is the sum of the length of

the component edges. For a subgraph F of G, dF (v, u) denotes the minimum length

of a path between v and u among the paths that are composed of edges in F only.

Note that the distance for all node pairs is not given, and we know only the edge

lengths, or the distances between two adjacent nodes.

We let d(v) denote the weighted sum of the distances from v to all nodes u, that is,

d(v) =
∑

u∈V W (u)d(v, u). Our goal is to efficiently find a node which makes this value

small. For a subgraph F of G and a node v, dF (v) is defined as
∑

u∈V W (u)dF (v, u).

A spanning tree of G is defined as a tree T = (V,E ′), that satisfies E ′ ⊆ E. A

spanning tree T of G is called a shortest path tree of node v if dT (v, u) = dG(v, u) for

all u ∈ V .

Definition 1 (kNSPG) For a graph G = (V,E), k-neighborhood of v ∈ V is defined

as the set of the nearest k nodes from v including v itself, and denoted as Nk(v).

For v0 ∈ V , the k-neighbor dense shortest path graph of v0 (denoted as T (v0; k)), the

kNSPG of v0 for short, is defined as follows:

1. T (v0; k) has all the edges of a shortest path tree of v0.

2. For v, u ∈ Nk(v0), T (v0; k) has an edge {v, u} if and only if {v, u} ∈ E

Note that T (v0; 1) is the shortest path tree of v0. An example of a kNSPG is

illustrated in Fig. 1. The center graph is the kNSPG T (v0; 4) of the left graph G. In

this graph, N4(v0) = {v0, v1, v2, v3}.
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Definition 2 (Closest v0-neighbor) For G = (V,E), the closest v0-neighbor of v ∈
V in T (v0; k), which is denoted as C(v, v0; k), is defined as the nearest node in Nk(v0)

from v, that is, C(v, v0; k) = arg min
u∈Nk(v0)

dT (v0;k)(v, u). If v is in Nk(v0), C(v, v0; k) is v

itself.

In the graph of Fig. 1, C(v8, v0; 4) = v0 and C(v1, v0; 4) = v1. Note that V is

partitioned into {{v0, v4, v8, v9}, {v1}, {v2, v5, v6}, {v3, v7}} by the value of C(v, v0; 4).

Definition 3 (v-subtree and v-subtree weight) For a kNSPG T (v0; k) of G =

(V,E) and v ∈ V , the v-subtree of T (v0; k), denoted as ST (v, v0; k), is defined as

follows.

1. For v ∈ Nk(v0), ST (v, v0; k) is defined as a subtree of T (v0; k) that is composed

of all the nodes of which closest v0-neighbor is v.

2. For v 6∈ Nk(v0), ST (v, v0; k) is defined as a subtree of T (v0; k) that is composed

of all the nodes u to which path from v is included in the shortest path from v0
to u.

The weight of the v-subtree of T (v0; k), denoted as SW (v, v0; k), is defined as the

sum of all the weights of nodes in ST (v, v0; k).

In the middle graph of Fig. 1, the subgraphs surrounded by dotted lines are v-

subtrees of T (v0; 4) for v = v0, v1, v2, v3, v4. If all the node weights are 1, SW (v0, v0; 4)

= 4 and SW (v4, v0; 4) = 3.

Definition 4 (kNSPGS) For G = (V,E) and for v0, v ∈ V , a subgraph G′ of G is

said to be a kNSPG of v0 with shortcuts from v, a kNSPGS of (v0, v) for short, if G′

is made from T (v0; k) by adding edges {v, u} ⊂ E \E ′ for at most one node u of each

w-subtree for w ∈ Nk(v0) \ {C(v, v0; k)}, where E ′ is the set of edges in T (v0; k). The

set of kNSPGS of (v0, v) is denoted by G(v, v0; k).

We call G∗ ∈ G(v, v0; k) the best kNPGS of (v0, v), which is denoted as G∗(v, v0; k),

if G∗ = minG′∈G(v,v0;k) dG′(v).

The right graph G∗(v6, v0; ; 4) of Fig. 1 is an example of (the best) kNSPGS of

(v0, v6). A graph which has the edge {v6, v3} instead of the edge {v6, v7} is also another
example of kNSPGS. Any kNSPGS of (v0, v6) cannot have the edge {v5, v6} because

C(v5, v0; 4) = C(v6, v0; 4) holds.

2 Algorithm

In this section, we describe our algorithm and analyze it theoretically.
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2.1 Basic facts

Our algorithm is based on the following facts.

Theorem 1 For graph G = (V,E), for any subgraph G′ = (V,E ′) of G, inequality

dG(v) ≤ dG′(v) holds for all v ∈ V .

When E ′ includes all the edges of a shortest path tree of v0, dG(v0) = dG′(v0)

Proof For all pairs of nodes (v, u) ∈ V 2, dG(v, u) ≤ dG′(v, u), because all the edges

in G′ are included in G. Therefore, obviously dG(v) ≤ dG′(v) holds.

When E ′ includes all the edges of a shortest path tree of v0, dG(v0) = dG′(v0) holds

because G′ has the shortest paths from v0 to any other nodes. 2

Corollary 1 For graph G = (V,E), let G′ = (V,E ′) be a subgraph of G that contains

all the edges of a shortest path tree of v0. If some v ∈ V satisfies dG′(v) < dG′(v0),

the following inequality holds.

dG(v) < dG(v0)

Proof

dG(v) ≤ dG′(v)
< dG′(v0)
= dG(v0),

where the first inequality and the last equality hold by Theorem 1, and the second

inequality holds by the assumption of this corollary. 2

2.2 Outline

For given G = (V,E), our algorithm repeatedly finds a node v with dG(v) that is the

smaller than dG(v0) of a node v0, which is the node found in the last repetition. The

node v0 is initially selected randomly and the repetitions continue until no v with

dG(v) that is smaller than dG(v0) is found by our upper bound calculation of dG(v)

for all v ∈ V .

To efficiently find v with dG(v) < dG(v0), we make use of subgraphs F that contain

the shortest path tree of v0.

For such subgraph F , it is enough to find v with dF (v) < dF (v0) instead of v with

dG(v) < dG(v0) by Corollary 1. Furthermore, dF (v) for all v ∈ V can be calculated

more efficiently than dG(v) for all v ∈ V . The simplest such subgraph F is the shortest

path tree T (v0; 1) of v0 itself, for which dT (v0;1)(v) for all v ∈ V can be calculated in

O(m log n) time including the construction time of T (v0; 1). We, however, found by

our preliminary experiments that dT (v0;1)(v) is too loose as an upper bound of dG(v).
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The second simplest one is the kNSPG T (v0; k) of v0, for which dT (v0;k)(v) for all

v ∈ V can be also calculated in O(m log n) time if O(k = 3
√
m). Accordingly to our

experimental result shown in Sec. 3.1, however, dT (v0;k)(v) is not enough close to dG(v)

for many nodes v even if k = 3
√
m.

In our algorithm, we try to find a good upper bound of dG(v) among dG′(v) of the

kNSPGSs G′ of (v0, v).

In Fig. 2, the shortest path length from node v6 is shown at each node in paren-

theses for three subgraphs of G in Fig. 1: the shortest path tree T (v0; 1), the kNSPG

T (v0; 4) and the best kNSPGS G∗(v6, v0; 4). Upper bounds of dG(v6), or dG′(v6) for

these subgraphs G′, are 98, 89 and 54, respectively, and the value of dG(v6) is 47.

Thus, the upper bound of dG(v6) is improved well by using G∗(v6, v0; 4).

Since the exact values of dG∗(v,v0;k)(v) for all v ∈ V require O(mn) time for calcu-

lation, we calculate a close upper bound of dG∗(v,v0;k)(v) by stopping the calculation

for effect of an added edge at O(log n) depth from v. Then, such upper bounds of

dG∗(v,v0;k)(v) for all v ∈ V can be also calculated in O(m log n) time.

Figure 2: Shortest path length from v6: The parenthesized value at each node
is the shortest path length from v6.

A pseudocode of our algorithm FAOM (Fast Approximation of One Median) is

shown in Fig. 3. FAOM repeatedly executes algorithm EstimatedHigherCentralityN-

ode which tries to find a node v with dG(v) < dG(v0) by calculating an upper bound

of dG∗(v′,v0;k)(v
′) for each v′ ∈ V and selecting the node v with the smallest upper

bound.

The calculation of an upper bound of dG∗(v,v0;k)(v) is done by calculating δ(v),

which is the improvement by the upper bound s of dG∗(v,v0;k)(v) from dT (v0;k)(v), that

is, δ(v) = s− dT (v0;k)(v). The values of δ(v) for all v ∈ V are calculated by algorithm

ImprovementByShortCut, which is shown in Fig. 5. We can prove the following

theorem by using lemmas that are proved in Sec. 2.3.

Theorem 2 For k =O( 3
√
m), FAOM runs in O(ml log n) time and O(m) space, where

l is the number of executions of EstimatedHigherCentralityNode in the algorithm.
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Algorithm FAOM

Require: G = (V,E), k: parameter
Ensure: high-centrality-node
1: v0 = randomly selected node in V
2: while TRUE do
3: v = EstimatedHigherCentralityNode(G, v0, k);
4: if dG(v) < dG(v0) then
5: v0 = v;
6: else
7: return v0;
8: end if
9: end while

Algorithm EstimatedHigherCentralityNode

Require: G = (V,E), v0 ∈ V : initial node, k: parameter
Ensure: higher-centrality-node
1: make T (v0; k);
2: calculate dT (v0;k)(v) for all v ∈ V ;
3: calculate δ(v) for all v ∈ V ;
4: return arg min

v∈V \{v0}
dT (v0;k)(v)− δ(v)

Figure 3: Pseudocode of algorithm FAOM

2.3 Complexity Analysis

In algorithm EstimatedHigherCentralityNode, we first construct T (v0; k) for the node

v0 that is obtained in the last execution and for a fixed parameter k. It seems that

the larger k becomes, the tighter the obtained upper bound of dG(v) for each v ∈ V

becomes, but larger k will make the algorithm slower and require more memory space.

We analyze the time and space complexities of algorithm FAOM by considering

the effect of k.

Lemma 1 For a given graph G = (V,E), dT (v0;k)(u, v) for u, v ∈ Nk(v0) and

dT (v0;k)(v, C(v, v0; k)) for all the nodes v ∈ V can be calculated in O(m log n+k3 log k)

time and O(m+ k2) space.

Proof In this proof, we use d and C(v) instead of dT (v0;k) and C(v, v0; k), respectively,

for simplicity.

At first, consider the process of making a kNSPG T (v0; k). This process can be done

in O(m log n) time and O(m) space by making the shortest path tree using Dijkstra’s

algorithm and adding edges inside Nk(v0).

Dijkstra’s algorithm constructs the shortest path tree of v0 by repeatedly growing

the shortest path tree of v0 for Ni(v0) to that for Ni+1(v0) starting from that for
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N1(v0) = {v0}. Thus, we can know Nk(v0) when the number of nodes in the growing

shortest path tree reaches to k. At that time, we can construct the subgraph I of G

that is induced by Nk(v0) and can calculate dT (v0;k)(u, v) for u, v ∈ Nk(v0) by executing

Dijkstra’s algorithm for I and for each node in Nk(v0). The total cost of this process

is O(k3 log k) time and O(k2) space.

For the ith nearest node vi is added to the growing shortest path tree as its ith

node. We show that additional O(1) time is enough for calculating d(vi, C(vi)) for

all i = 1, 2, ..., n by mathematical induction. First, d(vi, C(vi)) = d(vi, vi) = 0 for

all i = 1, 2, ..., k. Assume that d(vj, C(vj)) is already calculated for j ≤ i. When

vi+1 is added to the growing shortest path tree, edge {vj, vi+1} for some j ≤ i is also

added to the tree and d(vi+1, C(vi+1)) can be calculated in O(1) time using the equation

d(vi+1, C(vi+1)) = d(vi+1, vj) + d(vj, C(vj)). Thus, the calculation of d(v, C(v)) for

all v ∈ V costs additional O(n) time and O(n) space.

By the above arguments, we obtain T (v0; k) and d(u, v) for u, v ∈ Nk(v0) and

d(v, C(v)) for all the nodes v ∈ V in O(m log n+ k3 log k) time and O(m+ k2) space.

2

Lemma 2 For a graph G = (V,E), if T (v0; k) and dT (v0;k)(u, v) for u, v ∈ Nk(v0) and

dT (v0;k)(v, C(v, v0; k)) for all the nodes v ∈ V are given, we can calculate dT (v0;k)(v)

for all nodes v ∈ V in O(n+ k2) time and O(n+ k2) space.

Proof In this proof, we also use d instead of dT (v0;k) for simplicity.

First of all, calculate SW (v, v0; k) for all v ∈ V . This can be done in O(n) time

and O(n) space by using depth fast search for each v-subtree for v ∈ Nk(v0).

For v ∈ Nk(v0), we can show that d(v) can be obtained in O(k2) time as follows.

Since

d(v)− d(v0) =
∑
u∈V

W (u) {d(v, u)− d(v0, u)}

=
∑

c∈Nk(v0)

∑
u∈ST (c,v0;k)

W (u) {d(v, u)− d(v0, u)}

=
∑

c∈Nk(v0)

∑
u∈ST (c,v0;k)

W (u) {(d(v, u)− d(c, u))− (d(v0, u)− d(c, u))}

=
∑

c∈Nk(v0)

∑
u∈ST (c,v0;k)

W (u) {d(v, c)− d(v0, c)}

=
∑

c∈Nk(v0)

SW (c, v0; k) {d(v, c)− d(v0, c)}

holds, d(v) can be calculated by d(v0) +
∑

c∈Nk(v0)

SW (c, v0; k) {d(v, c)− d(v0, c)}, of

which calculation requires O(k) time. For all v ∈ Nk(v0), repeating this calculation k

times, now we obtain the d(v) for v ∈ Nk(v0) in O(k2) time.
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Next, calculate the sum of the weight of all nodes, which is denoted as Wall, in

O(k) time because Wall is
∑

u∈Nk(v0)
SW (u, v0; k).

For any v 6∈ Nk(v0) and its parent node u ∈ V ,

d(v)− d(u) = −SW (v, v0; k)d(v, u) + (Wall − SW (v, v0; k))d(v, u)
= (Wall − 2SW (v, v0; k))d(v, u)

holds. This means that d(v) can be calculated in O(1) time if d(u) is already known.

Since d(u′) for u′ ∈ Nk(v0) is already known, any v 6∈ Nk(v0) can be calculated in O(1)

time by mathematical induction. Therefore, this calculation costs O(n) time in total.

By summing all the costs, O(n+k2) time, O(n+k2) space is enough for calculating

d(v) for all v ∈ V . 2

By the lemma 1 and 2, for a given graph G = (V,E), we can calculate dT (v0;k)(v)

for all the nodes v ∈ V in O(m log n + k3 log k) time and O(m + k2). Considering

the time complexity of the algorithm, parameter k should be set to a value that is at

most O( 3
√
m)

Lemma 3 If SW (v, v0; k) for all v ∈ V, dT (v0;k)(v, C(v, v0; k)) for all v ∈ V and

dT (v0;k)(v, u) for all u, v ∈ Nk(v0) are given, δ(v) for all v ∈ V can be calculated in

O(m log n) time and O(m+ k2) space.

Proof For a given graph G = (V,E) and kNSPG T (v0; k) = (V,E ′), fix v ∈ V .

Let T ′ be the subgraph of G that is made by adding an edge {v, u0} ∈ E \ E ′ to

T (v0; k) as shown in Fig. 4. Define D as

D = dT (v0;k)(v, u0)− dT ′(v, u0).

Then

D = dT (v0;k)(v, C(v, v0; k)) + dT (v0;k)(C(v, v0; k), C(u0, v0; k))
+ dT (v0;k)(C(u0, v0; k), u0)− dG(v, u0)

holds. Suppose that D > 0, that is, the distance between v and u0 can be shortened

by adding an edge {v, u0} to T (v0; k). Then, for all the nodes u ∈ ST (u0, v0; k),

dT ′(v, u) = dT ′(v, u0) + dT ′(u0, u)
= dT (v0;k)(v, u0)−D + dT (v0;k)(u0, u)
= dT (v0;k)(v, u)−D
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Figure 4: Improvement by shortcuts.

holds. This means that dT ′(v) is smaller than dT (v0;k)(v) by at least DSW (u0, v0; k).

Furthermore, let u be a node on the shortest path between u0 and C(u, v0; k) of

T (v0; k). Let D′ denote the shortened distance between v and u by adding an edge

{v, u0} to T (v0; k), that is,

D′ = dT (v0;k)(v, u)− dT ′(v, u).

Then

D′ = dT (v0;k)(v, C(v, v0; k)) + dT (v0;k)(C(v, v0; k), C(u0, v0; k))
+ dT (v0;k)(C(u0, v0; k), u)− (dG(v, u0) + dT (v0;k)(u0, u))

holds. As long as D′ > 0 and u 6∈ Nk(v0), for all nodes w ∈ ST (u, v0; k) \
ST (u′, v0; k), where u′ is the child node of u on the path to u0,

dT ′(v, w) = dT ′(v, u) + dT ′(u,w)
= dT (v0;k)(v, u)−D′ + dT (v0;k)(u,w)
= dT (v0;k)(v, w)−D′

holds. This means that dT ′(v) is smaller than dT (v0;k)(v) by additional

D′(SW (u, v0; k)− SW (u′, v0; k)).

We can keep on this calculation to the upstream as long as D′ > 0 and u 6∈ Nk(v0).

For each step, calculation cost is O(1) time. Therefore the total calculation time is

proportional to the calculation depth. If we stop this calculation at O(log n) depth, the

total calculation cost is upper bounded by O(log n) even in the worst case.

During calculating δ(v) for all the node v ∈ V , the above calculation is done twice

for all the edges in E \ E ′. Therefore, this can be done in O(m log n) time in total.

As for the required space, O(m + k2) space is enough for keeping the original graph

and the node distances in T (v0; k). 2
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According to Theorem 1, for any v ∈ V , dG(v) ≤ dT (v0;k)(v)−δ(v). Therefore if the

some v ∈ V satisfies dT (v0;k)(v)− δ(v) ≤ dT (v0;k)(v0) = dG(v0), we get dG(v) ≤ dG(v0).

We will test its effectiveness in experiments.

Algorithm ImprovementByShortCut

Require: G = (V,E), T (v0; k) = (V,E ′), initial node v0 ∈ V ,
Ensure: δ(v) for all v ∈ V
1: for all v ∈ V do
2: for all u ∈ V such that {v, u} ∈ E do
3: if C(u, v0; k) 6= C(v, v0; k) then
4: δu(v) = ImprovementByOneShortCut(v, u);
5: end if
6: end for
7: δ(v) =

∑
c∈Nk(v0)

maxu∈ST (c,v0;k) δu(v);
8: end for
9: return δ

Algorithm ImprovementByOneShortCut

Require: G = (V,E), T (v0; k) = (V,E ′), v, u ∈ V
Ensure: δu′(v) for u′ = C(v, v0; k)
1: result = 0;
2: D = d(v, C(v)) + d(C(v, v0; k), C(u, v0; k)) + d(C(u, v0; k), u)− d(v, u);
3: sw = 0;
4: repeat = 0;
5: while D > 0 do
6: result = result+ (SW (u, v0; k)− sw)D;
7: if u = C(u) or repeat > log n then
8: return result
9: end if
10: repeat = repeat+ 1;
11: sw = SW (u, v0; k);
12: D = D − 2d(u, parent of u);
13: u = parent of u;
14: end while
15: return result

Figure 5: calculation of δ(v) for all v ∈ V

3 Experiments

We conducted experiments to demonstrate the effectiveness of our algorithm.

As datasets, we used the maximum connected component of “Collaboration net-

work of Arxiv Astro Physics category” (17903 nodes and 197031 edges, ‘CA-AstroPh’
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for short) and the maximum connected component of “AS peering information in-

ferred from Oregon route-views”(11174 nodes and 23409 edges, ‘oregon1 010526’ for

short) of Stanford Large Network Dataset Collection[8], and also used automatically

generated graphs based on Erdos-Renyi model [9] (4986 nodes and 15118 edges, ‘ER’

for short) and Barabasi-Albert model [10] (5000 nodes and 14968 edges, ‘BA’ for

short).

ER is a random graph model, in which all the pairs of nodes are connected ran-

domly with a given probability, which was set to in our experiments. BA is scale-free

graph model, in which generated graphs have a similarity to real-world datasets like

a characteristic of power-law distribution of node degrees. Since a graph of ER is not

guaranteed to be connected, we used a maximum connected component of a gener-

ated graph. In ER and BA, we added the node weights randomly between 0 and 1,

the edge lengths randomly between 1 and 2. Note that, these edge lengths satisfy

triangle inequality. In CA-AstroPh and oregon1 010526, we assigned 1.0 to all the

node weights and 1.0 to all the edge lengths.

All the experiments were conducted using a machine with Intel(R) Core(TM) i7-

2600 3.40GHz processor, 8G of RAM, and Ubuntu 12.04. We implemented our algo-

rithms in Python 2.7.

3.1 Effect of edges inside Nk(v0) and shortcuts

To see the effect of adding the edges inside Nk(v0) to the shortest path tree of v0, and

the effect of adding shortcuts to a kNSPG of v0, we conducted experiments on the

approximation ratio for estimation of dG(v) for all the node v.

For each of the randomly selected 100 initial nodes v0, we calculated dT (v0;1)/dG(v),

dT (v0;k)/dG(v) and (dT (v0;k)(v) − δ(v))/dG(v) for all the nodes v. Then, we made a

histogram of the values for each of the three. The result for the CA-AstroPh is shown

in Fig. 6.

As you can see on this graph, the approximation ratio is improved by using edge

inside Nk(v0) and shortcuts.

3.2 Number of repetitions of main loop

We examined the number of repetitions of the main loop, that is, the number of

execution of EstimatedHigherCentralityNode. We randomly selected 100 nodes from

a given graph and counted the number of repetitions of main loop by giving each

selected node to our algorithm as an initial node. The result is shown in Table 1. As

compared with the number of nodes, the number of repetitions is very small on any

graph in our experiments. As a result, our algorithm runs fast for the datasets.
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Figure 6: Effect of edges inside Nk(v0) and shortcuts: The frequency of the
value of dT (v0;1)(v)/dG(v), dT (v0;k)(v)/dG(v) and (dT (v0;k)(v) − δ(v))/dG(v) are shown
as a dotted line, a dashed line and a solid line, respectively. Note that parameter k
was set to b 3

√
mc = 58.

Table 1: Repetition times of main loop

#repetition
#node #edge 1 2 3 4 5 6 7

CA-AstroPh 17903 197031 2 15 30 34 15 3 1
oregon1 010526 11174 23409 0 54 46 0 0 0 0
BA 5000 14968 0 48 30 15 4 3 0
ER 4986 15118 12 34 31 14 5 2 2

3.3 Effect of k

We also conducted an experiment on the effect of k.

We evaluated our algorithm’s accuracy by the number of times where the exact

1-median is obtained, and also evaluated its efficiency by its average wall clock time.

For each k = 1, 2, 4, . . . , 512, we executed our algorithm 100 times by giving randomly

selected initial nodes.

The result is shown in Fig. 7.

As you can see on this graph, the larger k becomes, the larger the number of exact

outputs becomes, though the calculation cost increases.
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3.4 Comparison to a previous method

We used approximation algorithm DTZ(Distance To Zone) for comparison. DTZ is

a method to estimate the distance between nodes using annotating approach. We

selected DTZ because DTZ shows the best performance among the methods using

annotating approach according to the report in [7]. DTZ has a two parameters k and

d. These are the number of divided regions and the number of repetitions, respectively.

We compared Exact, DTZ and our method (FAOM) on a computation time and

an approximation ratio, where Exact is a method of calculating the correct 1-median

using Dijkstra’s algorithm for each node. The approximation ratio is defined as

dG(v̂)/dG(v∗), where v∗ is the correct 1-median and v̂ is its estimation by an algo-

rithm. The result is shown in Table 2.

As you can see on this table, our method FAOM is overwhelmingly fast. Our

algorithm outperformed DTZ also on accuracy except for ER dataset.

4 Conclusion and Future Work

In this paper, we have proposed a fast approximation algorithm for the 1-median

problem.

Our method, FAOM, is based on the fact that closeness centralities of all nodes of

a tree can be calculated much faster than those of a general graph.

FAOM shows good performance on accuracy and calculation time as compared with

an existing method called DTZ through experiments. Especially on the calculation

speed, FAOM runs more than 100 times faster than DTZ for real datasets when

parameter k is not so large.

Furthermore, it is shown that our algorithm don’t require much space as compared

to the space to memorize a given graph in order evaluation.

How to choose parameter k is remained as the future work.

14



Table 2: Comparison Exact, DTZ and FAOM: The results are the average over
100 runs for each method. The unit of calculation time is milli second.

BA ER oregon1 010526 CA-AstroPh

Method time approx. time approx. time approx. time approx.

Exact 97,919 1.000000 100,652 1.000000 361,943 1.000000 2,115,636 1.000000
DTZ(k=2,d=1) 14,261 1.361994 14,424 1.141948 75,896 1.193440 203,754 1.414486
DTZ(k=5,d=1) 15,284 1.106395 15,066 1.085089 75,917 1.159146 205,134 1.224624
DTZ(k=2,d=5) 43,212 1.069461 45,096 1.071289 308,623 1.215059 770,141 1.256972
DTZ(k=5,d=5) 56,369 1.102151 54,647 1.084036 316,501 1.222761 793,480 1.120214
FAOM(k=1) 275 1.034788 200 1.081792 381 1.000000 1,526 1.040308
FAOM(k=2) 305 1.034788 263 1.081792 392 1.000000 1,687 1.042018
FAOM(k=4) 320 1.031950 325 1.081792 396 1.000000 1,912 1.039726
FAOM(k=8) 332 1.033483 358 1.081792 379 1.000000 2,213 1.034022
FAOM(k=16) 318 1.036259 377 1.081792 372 1.000000 2,356 1.035492
FAOM(k=32) 326 1.024823 385 1.081792 398 1.000000 2,749 1.023037
FAOM(k=64) 410 1.031825 409 1.080757 424 1.000000 3,010 1.040712
FAOM(k=128) 510 1.033758 490 1.079958 472 1.000000 3,299 1.025930
FAOM(k=256) 993 1.010458 885 1.080207 788 1.000000 4,053 1.024322
FAOM(k=512) 3,029 1.002329 2,627 1.080207 2,151 1.000000 6,800 1.025059
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