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Abstract

We address the problem of improving variable-length-to-�xed-length codes
(VF codes). A VF code is an encoding scheme that uses a �xed-length code,
and thus, one can easily access the compressed data. However, conventional
VF codes usually have an inferior compression ratio to that of variable-length
codes. Although a method proposed by T. Uemura et al. in 2010 achieves a good
compression ratio comparable to that of gzip, it is very time consuming. In this
study, we propose a new VF coding method that applies a �xed-length code to
the set of rules extracted by the Re-Pair algorithm, proposed by N. J. Larsson
and A. Mo�at in 1999. The Re-Pair algorithm is a simple o�-line grammar-
based compression method that has good compression-ratio performance with
moderate compression speed. Moreover, we present several experimental results
to show that the proposed coding is superior to the existing VF coding.

1 Introduction

Our objective is to develop an e�ective variable-length-to-�xed-length code (VF code).

A VF code is a coding scheme that parses an input text into a consecutive sequence

of substrings, and then, it assigns a �xed length codeword to each parsed substring.

Such a code enables us to access any block randomly because the codeword boundaries

are clear, which is a valuable feature from an engineering viewpoint. For example, VF

codes have been reevaluated to speed up the search for compressed texts [KS08,Kid09].

Early VF codes [TW87, Ziv90, SG97, YY01], typi�ed by Tunstall code [Tun67],

usually have inferior compression ratios than those of other well-known compression

tools such as gzip and bzip because all the codewords have equal length; therefore it is

di�cult to eliminate data redundancy e�ectively. For example, the compression ratio

of the Tunstall code is usually 60% or less. Consequently, for practical applications,

less attention has been paid to early VF codes.
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The compression ratio of a conventional VF code depends on a parse tree, which is a

dictionary tree for parsing input text. To improve the compression ratios of VF codes,

Uemura et al. [UYK+10] proposed a method that trains the parse tree by scanning

the input text repeatedly. Although it achieves a good compression ratio compared

to that of gzip, it requires excessive computational time. In fact, this method is

approximately 100 times slower than Tunstall coding. An alternative approach is

required to achieve both rapid compression and a high compression ratio.

The key to improvement lies in how rapidly we can construct a better dictionary,

i.e., the method of parsing text is an important issue. This issue is common to

grammar-based compression [KY00], a compression scheme that translates an input

text into a set of grammar rules, and then encodes the rules. Each rule corresponds

to a substring in the text, i.e., grammar-based compression uses a rule set as a dictio-

nary for coding. In such a compression scheme, a smaller set of rules gives a better

compression ratio. Extracting the rule set from the text is related to the method of

parsing the text. Although �nding the optimal grammar is NP-hard [CLL+05], sev-

eral excellent heuristic algorithms have been proposed [LM99,NMWM94,MTST08].

Combining such algorithms with VF coding is a promising idea.

In this study, we propose a method to apply �xed-length coding to the rules ex-

tracted by the Re-Pair algorithm, proposed by Larsson and Mo�at [LM99]. The

Re-Pair algorithm is a simple o�ine grammar-based compression algorithm that iter-

atively replaces the most frequent bigrams in an input text into nonterminal symbols

until all the bigrams become unique. Our method encodes the rules extracted by the

Re-Pair algorithm with �xed-length codewords, whereas the original algorithm uti-

lizes variable-length codewords to achieve an extremely good compression ratio. To

minimize the decrease in the compression ratio compared to the original algorithm, we

exploit a simple characteristic of the algorithm; the minimum output size frequently

occurs in the process of repeated bigram replacement. Because all the codewords have

equal length in our method, we can easily estimate the �nal output size for each in-

termediate rule set of the Re-Pair algorithm. Therefore, by preserving the best point

and rewinding the rule set back to this point, we can obtain the minimum output

with a reasonable cost.

The performance of the proposed method is explained by evaluation experiments

for some corpus. The experimental results show that the compression ratio of the

proposed method is approximately equal to that of bzip even though it uses �xed-

length codewords. The compression speed is approximately the same as that of the

original Re-Pair algorithm. Pattern-matching performance is also demonstrated on

compressed texts, and it is con�rmed that the compressed pattern matching with

our VF code is faster than UNIX zgrep, which is a typical decompress-then-search

method, i.e., gunzip-then-grep.

Our contributions can be summarized as follows:

• We developed a new VF coding that has superior compression ratio and com-

pression time compared with those of the existing VF coding. The proposed
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method is based on a general concept. However, it was not so obvious whether

the method was really e�ective.

• We demonstrated experimentally that pattern matching can be performed faster

on a text compressed by our method than that on the text compressed by the

decompress-then-search method, which is one of the advantages of VF codes

over other high-compression methods using variable-length codewords.

2 Related Studies

The compressed matching problem was �rst de�ned in the study of Amir and Ben-

son [AB92] as the task of performing string matching in a compressed text without

decompressing it. Many pattern matching algorithms have been proposed for each

compression method [KTS+99, NR99, NT00]. However, almost all of them are not

faster than the decompress-then-search method.

From late 90's to the beginning of 2000, practical and e�ective methods were

proposed [SMT+00, RTT02]. These methods increased search speed approximately

linearly with the compression ratio, i.e., they can perform pattern matching on com-

pressed texts faster than that by an ordinary-search algorithm on uncompressed texts.

From 2000 onward, researchers began to develop a new compression method suit-

able for searching. Therefore, Brisaboa et al. proposed a series of Dense Codes

[BINP03, BFNE03, BFnNP10, BFL+10]. Klein and Ben-Nissan [KBN08] devised a

variation of the Dense Code using the Fibonacci codes for text compression.

For VF codes, Klein and Shapira [KS08] and Kida [Kid09] independently presented

VF code based on a su�x tree (STVF code). In the STVF code, a frequency-base-

pruned su�x tree is used as a parse tree. Although the compression ratio of the STVF

code is superior to that of classical VF codes such as Tunstall code [Tun67], it is still

inferior to state-of-the-art compression methods.

On the other hand, various practical algorithms for grammar-based compression

have also been devised. Bisection [KYNC00] is considered as a grammar-based com-

pression algorithm in which the grammar belongs to the class of a straight-line pro-

gram. In addition, algorithms for restricted context-free grammars (CFG) have

been presented [KY00, NMWM94, LM99]. Among them, Re-Pair [LM99] and Se-

quitur [NMWM94] are particularly useful. Maruyama et al. [MTST08] presented a

compression method based on context-sensitive grammar.

3 Re-Pair Algorithm

The Re-Pair algorithm [LM99] is a simple o�ine grammar-based compression method,

based on CFGs. Formally, a CFG is represented by a quadruple (Σ, V, σ, R), where
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Algorithm 1 The Re-Pair algorithm
Input: A text T = T [1..n] and an alphabet Σ = {a1, a2, · · · , a|Σ|}.
Output: The binary coded sequence of the rule set R for T .

1: s← |Σ|+ 1, R← ∅;
2: add (σ ⇒ T ) to R; // we identify T with the right-side of σ below.
3: for all i ∈ {1, · · · , |Σ|} add (αi ⇒ ai) to R;
4: replace every ai in T with αi;
5: while the frequency of the most frequent bigram in T is not equal to 1 do

6: (β, γ)← the most frequent bigram;
7: add (αs ⇒ βγ) to R;
8: replace all the bigrams βγ in T with αs by the left-to-right manner;
9: s← s+ 1
10: end while

11: encode R with an entropy encoding.

Σ = {a1, a2, · · · , a|Σ|} is the terminal alphabet, V = {α1, α2, · · · , α|V |} is the non-

terminal alphabet, σ ∈ V is the start symbol, and R is a �nite relation from V to

(Σ ∪ V )∗. Note that Σ and V are disjoint sets.

The CFG constructed by the Re-Pair algorithm consists of rules in which

σ ⇒ αi1αi2 · · ·αim (∀ik ∈ {1, · · · , |Σ|+ |V | − 1}),

αi ⇒

{
ai if 1 ≤ i ≤ |Σ|,
αjαk (1 ≤ j, k < i) if i > |Σ|,

and all the bigrams on the right sides of the rules are unique. Algorithm 1 shows

the Re-Pair algorithm. The algorithm replaces the most frequent bigrams in the

sequence with a new non-terminal symbol and adds the replacement into R as a rule.

The algorithm repeats this procedure until there are no repeated bigrams, i.e., the

frequencies of all bigrams are equal to one. The start symbol σ generates the obtained

sequence after the repetition. Finally, the algorithm encodes the set of rules with a

proper entropy encoding.

4 Proposed Method

We can easily encode the rule set with a �xed-length code so that αi is coded by a

dlg se-bits integer, where s denotes the number of non-terminal symbols except for

the start symbol σ. However, the compression ratio is usually inferior to the original.

Our concept for improving the compression ratio is based on the observation that

adding a new rule does not always improve the ratio. Although the sequence always

becomes shorter by replacing bigrams with a new rule, the rule set becomes larger.

Therefore, the codeword length is increased, and thus, the �nal output becomes larger.

If we �nd the best value of s, we can obtain minimum output in this framework. Note

that s monotonically increases by one for each repetition.
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The �nal output is obtained as a sum of encoded rules. For the original Re-Pair

algorithm, it is di�cult to predetermine whether the output will become shorter prior

to replacing bigrams because the algorithm employs a variable-length code.

By using a �xed-length code, we can easily estimate the output size. Each non-

terminal symbol αi is encoded into a dlg se-bits integer. We have to output s − |Σ|
bigrams in addition to the information of Σ as the dictionary, that is, the dictionary

size is 2(s− |Σ|)dlg se bits plus some auxiliary bits for Σ. The right-hand side of the

start symbol σ is encoded in |σ|dlg se bits as the encoded sequence, where |σ| is the
length of the right-hand side of σ. Therefore, the estimated output size f(s, |σ|) is

given as follows:

f(s, |σ|) = [2(s− |Σ|) + |σ|] · dlg se.

The term |Σ| is an invariant factor and |σ| depends on the number of repetitions,

which corresponds to the size of the rule set R. This means that f depends only on

s. In other words, the value of s controls the �nal output size.

By computing f(s, |σ|) for each intermediate rule set, we can �nd the best value

of s for f after all repetitions are completed. We denote this value s by ŝ. It is not

su�cient only to compare the current value of f with the next value after replacement,

because the value may fall into a local minimum.

There are two approaches to output σ with α1, · · · , αŝ. The �rst approach is to

rewind the rule set, constructed by the Re-Pair algorithm, to the intermediate set

for ŝ and replace T . The second approach is to preserve s and T when the current

minimum value of f is updated during repetitions. In the �rst approach, we can

reduce the memory consumption required for encoding; however, we need to partially

expand σ when we output it. In the second approach, we require a lot of memory;

however, the output procedure is simple. Algorithm 2 shows the �rst approach.

The function R(i) in Algorithm 2 denotes the bigram of the right-hand side of the

i-th rule αi. For example, for (αi ⇒ βγ) ∈ R, R(i) = (β, γ). In this algorithm, we

identify the rule αi with its subscript i, and σ[i] denotes the i-th non-terminal symbol

of the right-hand side of σ.

5 Experiments

5.1 Compression Performance

We implemented our proposed algorithm, Re-pair-VF, and compared it to STVF

algorithm (STVF) [Kid09], the original Re-Pair algorithm1, gzip, and bzip2. We

measured compression ratios, and compression and decompression times. We used

the default options for gzip and bzip2. Re-pair-VF and STVF are variable-to-�xed

1We used the program implemented by S. Maruyama (http://code.google.com/p/re-pair/).
He states it as an implementation of the original Re-Pair. However, its performance in compression
ratio seems slightly inferior because a simpler binary encoding is employed.
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Algorithm 2 Proposed method
Input: A text T = T [1..n] and an alphabet Σ = {a1, a2, · · · , a|Σ|}.
Output: The binary coded sequence of the rule set R for T .

1: s← |Σ|+ 1, R← ∅;
2: b←∞, ŝ← s;
3: add (σ ⇒ T ) to R; // we identify T with the right-hand side of σ below.
4: for all i ∈ {1, · · · , |Σ|} add (αi ⇒ ai) to R;
5: replace every ai in T with αi;
6: while the frequency of the most frequent bigram in T is not equal to 1 do

7: (β, γ)← the most frequent bigram;
8: add (αs ⇒ βγ) to R;
9: replace all the bigrams βγ in T with αs by the left-to-right manner;
10: if f(s, |σ|) < b then
11: b← f(s, |σ|);
12: ŝ← s;
13: end if

14: s← s+ 1;
15: end while

16: output ŝ and the information of Σ;
17: for i← |Σ|+ 1 to ŝ do
18: output R(i) with dlg ŝe bits for each symbol;
19: end for

20: for i← 1 to the size of the right-hand side of σ do

21: call procedure rewind-output(σ[i], ŝ, R);
22: end for

23: procedure rewind-output(s, ŝ, R)
24: if s ≤ ŝ then
25: output s with dlg ŝe bits;
26: else

27: (β, γ)← R(s);
28: call procedure rewind-output(β, ŝ, R);
29: call procedure rewind-output(γ, ŝ, R);
30: end if

31: end procedure
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Table 1: Text �les used in our experiments.
Texts size (byte) |Σ| Contents

Dazai.utf.txt 7,268,943 141 Japanese texts (encoded by UTF-8)
DBLP2003.xml 90,510,236 97 XML data
GBHTG119.dna 87,173,787 4 DNA sequences
Reuters21578.txt 18,805,335 103 English texts

length encodings, whereas Re-Pair, gzip, and bzip2 are variable-to-variable length

encodings. Our program is written in C++ and compiled by g++ version 3.4. We

performed the experiments on a workstation equipped with an Intel Xeon (R) 3GHz

CPU with 12GB RAM, operating Red Hat Enterprise Linux ES Release 4.

We used XML data, DNA data, English texts, and Japanese texts in our exper-

iments (see Table 1 for details). �Dazai.utf.txt� is the complete works of Osamu

Dazai2; the text is written in Japanese and encoded by UTF-8. �DBLP2003.xml�

consists of all the 2003 data from dblp20040213.xml3. �GBHTG119.dna� is a collec-

tion of DNA sequences from GenBank4; we eliminated all meta data, spaces, and line

feeds. �Reuters21578.txt� (distribution 1.0)5 is a sample collection of English texts.

Table 2 lists the compression ratios for each �le and the compression method

measured as (compressed �le size)/(original �le size). As shown in the table, Re-pair-

VF is better than STVF and gzip for natural language texts. In particular, Re-pair-VF

is approximately 1.3 times better than gzip, which is almost the same as Re-Pair.

Table 3 lists the compression times. The results show that Re-pair-VF is approxi-

mately two times faster than STVF, which is almost the same as Re-Pair. This means

that ŝ de�ned in Section 4, can be selected with almost no increase in time.

Table 4 lists the decompression times. Re-pair-VF is as fast as STVF and is

approximately three times faster than bzip2.

5.2 Pattern Matching Performance

We implemented pattern matching algorithms for Re-pair-VF and STVF according to

the way of Kida et al. in 2003 [KMS+03]. to demonstrate Re-pair-VF's pattern match-

ing performance on compressed texts. We used UNIX zgrep for pattern matching on

the text compressed by gzip. We chose patterns with lengths 5�50 characters from

the text. We measured pattern matching times for 50 patterns for each length and

calculated the average. In this study, we only mention the results on Reuters21578.txt

because of space constraints. Table 5 lists the results of matching throughput perfor-

mance averaged, i.e., (original text length)/(pattern matching time). Re-pair-VF is

the fastest among all the methods, and notably, it is 1.7�2.1 times faster than zgrep.

2http://j-texts.com/
3http://www.informatik.uni-trier.de/~ley/db/
4http://www.ncbi.nlm.nih.gov/genbank/
5http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 2: Compression ratios in percentage.
Re-pair-VF Re-Pair STVF gzip bzip2

Dazai.utf.txt 25.86 26.02 39.88 33.41 22.93
DBLP2003.xml 13.67 12.97 28.30 17.30 11.26
GBHTG119.dna 28.02 31.72 24.93 28.23 26.00
Reuters21578.txt 27.96 27.84 46.26 36.98 25.80

Table 3: Compression times in seconds for each data.
Re-pair-VF Re-Pair STVF gzip bzip2

Dazai.utf.txt 4.444 4.408 8.886 0.79 1.134
DBLP2003.xml 52.976 54.468 121.192 2.82 23.221
GBHTG119.dna 57.272 57.134 131.924 18.19 16.773
Reuters21578.txt 13.536 13.534 24.444 1.372 3.344

Table 4: Decompression times in seconds for each data.
Re-pair-VF Re-Pair STVF gzip bzip2

Dazai.utf.txt 0.128 0.132 0.568 0.079 0.374
DBLP2003.xml 2.112 1.932 1.944 0.666 3.342
GBHTG119.dna 1.800 2.200 1.456 0.910 5.513
Reuters21578.txt 0.392 0.438 0.750 0.203 1.012

6 Conclusions

In this study, we proposed a new VF coding based on the Re-Pair algorithm. The

experimental results demonstrated that the proposed coding is superior to the existing

VF codes with respect to compression ratio and compression time. Even though

the Re-pair-VF algorithm uses �xed-length codewords, it shows a good compression

performance, similar to bzip2. Moreover, we showed that pattern matching on a text

compressed by the proposed coding can be performed much faster than an ordinary

decompress-then-search approach such as zgrep.

Although compared to STVF, the proposed coding improves compression speed, it

is much slower than gzip and bzip2. Therefore, further improvements are necessary.

In the future, we intend to develop VF codes that employ online grammar-based

compression methods such as SEQUITUR [NMWM94].
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