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(Abstract) We present an algorithm to compress hypergraphs into the data struc-

ture ZDDs and analyze the computational complexity. Since a ZDD provides an

approach to solve large-scale problems that are difficult to compute in a reasonable

amount of time and space, it is important to compress hypergraphs efficiently. Our

algorithm uses multikey Quicksort given by Bentley and Sedgewick. By conduct-

ing experiments with various datasets, we show that our algorithm is significantly

faster and requires smaller memory than an existing method.

1 Introduction

A hypergraph is a generalization of a graph. While a graph describes an adjacency

relation for two vertices, a hypergraph describes that for any multiple vertices.

Thus a hypergraph is defined to be a pair (V, E) of a set V and a family E of subsets

of V , where the sets in E are called hyperedges. Since a hypergraph can represent

a wide variety of information, there are many applications in computer science.

Recently datasets which are considered as hypergraphs have become widely avail-

able. Since such datasets tend to be very large in size, an efficient method to

handle them has become increasingly important.

A zero-suppressed binary decision diagram (ZDD) is a compressed data struc-

ture for hypergraphs [9]. Although compression efficiency generally depends on

hypergraphs, a ZDD is designed to be effective for sparse hypergraphs, that is, a

hypergraph whose hyperedge sizes tend to be much smaller than the size of a ground

set. Sparse hypergraphs often appear in real-life, e.g. as transaction databases. An

advantage of a ZDD is not only compression efficiency. The greatest feature is an

ability to manipulate hypergraphs without explicitly decompressing them. Many

operations including intersection, union and difference can be efficiently performed
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on ZDDs. As demonstrated in [18],[3] etc, a computation method to construct a

desired hypergraph with ZDD operations allows us to solve problems that are diffi-

cult to compute in a reasonable amount of time and space in a usual method. It is

thus considered as a practically efficient method to handle large-scale hypergraphs.

ZDDs and similar data structure BDDs have been applied to various combina-

torial problems. Sekine et al. [17] presented a BDD-based algorithm to compute

the Tutte polynomial of a graph. This algorithm has many applications because

many counting problems in graph theory and related areas are reduced to this

computation. For example, it was applied to the exact computation of network

reliability [16]. Coudert [3] advocated a ZDD-based approach to solve graph op-

timization problems by showing algorithms for three primitive problems to which

many graph optimization problems are reducible. Based on this approach, Knuth

presented an algorithm to compute all minimal hitting sets, as an exercise in his

famous book [8]. The minimal hitting set computation is known to be equivalent to

the dualization of monotone Boolean functions, and there are many applications in

computer science, especially in data mining, logic, and artificial intelligence (see for

example [4] [5]). Recently, practically fast algorithms for this problem have been

developed by many researchers (see [12]). Toda [18] presented a BDD and ZDD-

based algorithm for the problem, and experimentally showed that this algorithm

is highly competitive with existing algorithms.

Recently much attention has been paid to the analysis of large-scale databases.

Minato and Arimura [10] proposed a ZDD-based approach for database analysis

problems. Generating frequent itemsets from databases plays an important role

in frequent itemset mining (see [7]). While many generation algorithms have been

proposed, Minato et al. [11] presented a combination of one of the most efficient

state-of-the-art algorithms, called LCM, and ZDDs. This method is called LCM

over ZDDs.

In this paper, we present a fast algorithm to compress hypergraphs into ZDDs.

A naive compression method constructs a ZDD by repeating the union operation

provided in a usual ZDD library (see for example [10][14]). While it is easy to

implement, unfortunately there are some drawbacks on performance. Yet another

method is used in the LCM over ZDDs mentioned above. This method constructs

a ZDD in a bottom up fashion while receiving sets successively generated by LCM.

Our algorithm has the same basic principle to LCM over ZDDs, while we fur-

ther improve it in cooperation with multikey Quicksort, which is a sort algorithm

for strings given by Bentley and Sedgewick [1]. We analyze the computational

complexity of our algorithm. Furthermore, by conducting experimental compari-

son with various datasets, we show that our algorithm is significantly faster and

requires smaller memory than the naive method based on the union operation.

This paper is organized as follows. In Section 2 we introduce the data struc-

ture ZDDs. In Section 3 we present an algorithm and analyze the computational

complexity. Section 4 provides experimental results.
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Figure 1: The ZDD
for the set family
{{2, 3}, {1, 3}, {1, 2}}

��

��

'&%$ !"#a
��

��

/.-,()*+b
�� ��

99
99

+3 /.-,()*+b
�� ��

44
4

⊥

(a) Node elimination

�� �� �� uukkkkkkk'&%$ !"#a
��

''PPPPPPP '&%$ !"#a
ww ��

'&%$ !"#a
��

''PPPPPPP/.-,()*+b
�� ��

;;;
'&%$ !"#c

�� ��
;;;

+3 /.-,()*+b
�� ��

;;;
'&%$ !"#c

�� ��
:::

(b) Node sharing

Figure 2: Reduction rules on ZDDs

2 A Compressed Data Structure for Hypergraphs

Since we use a special data structure for hypergraphs, we provide necessary notions

and results in this section. We identify hypergraphs with set families if the ground

set is clear from the context.

2.1 Introduction to ZDDs

A zero-suppressed binary decision diagram (ZDD) is a graph-representation for

hypergraphs. Figure 1 shows an example of ZDD. The node at the top is called

the root. Each internal node has the three fields V, LO, HI. The field V holds an

element in a ground set, where for simplicity we suppose that a ground set consists

of positive numbers. The fields LO and HI point to other nodes, which are called

LO and HI children, respectively. The arc to a LO child is called a LO arc and

illustrated by a dashed arrow, while the arc to a HI child is called a HI arc and

illustrated by a solid arrow. There are only two terminal nodes > and ⊥.

For efficient compression, ZDDs satisfy the following two conditions. They must

be ordered : if a node u points to an internal node v, then V (u) < V (v). They

must be reduced : the following two reduction operations can not be applied.

1. For each internal node u whose HI arc points to ⊥, redirect all the incoming

arcs of u to the LO child, and then eliminate u (Fig. 2(a)).

2. For any nodes u and v, if the subgraphs rooted by u and v are equivalent,

then share the two subgraphs (Fig. 2(b)).

We can understand ZDDs as follows. Given a ZDD, each path from the root

to > corresponds to a set in such a way that an element k is included in the set

if a path contains the HI arc of a node with label k; otherwise, k is excluded. For

example, in Fig. 1, the paths 1© 99K 2© → 3© → > and 1© → 2© → > correspond

to {2, 3} and {1, 2}, respectively. Note that although the node 3© does not appear

in the latter path, the node elimination rule implies that the HI arc of 3© points

to ⊥, and thus 3 must be excluded.
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It is known (see for example [9][8]) that for any ground set V , every hypergraph

on V corresponds to a unique ZDD if the order of elements in V is fixed. ZDD nodes

are maintained by a hash table, called a uniquetable, so that for a triple (k, l, h) of

a node label and two ZDD nodes, there is a unique ZDD node p with V (p) = k,

LO (p) = l, and HI (p) = h. Given a triple (k, l, h), the function zdd unique returns

an associated node in the uniquetable if exists; otherwise, create a new node p

such that V (p) = k, LO (p) = l, and HI (p) = h; register p to the uniquetable

and return p. A uniquetable guarantees that two nodes are different if and only if

the subgraphs rooted by them represent different set families. Thus, for example,

equivalence checking of set families can be done in constant time.

2.2 A Naive Construction Method

We describe a naive algorithm to construct the ZDD for a set family E := {U1, . . . , Um}
on a ground set V . For each set Ui, we construct the ZDD for the set family con-

sisting only of Ui. We then add them by using the union operation. Here the union

operation computes Z(F ∪ G) for Z(F) and Z(G), where Z(S) denotes the ZDD

representing a set family S. As argued in [18], this construction method requires

O(|E| · |V |) time.

Since the union operation is provided in a usual ZDD library, the naive method

is easy to implement, however there are some drawbacks.

• A practical efficiency depends on the order to add sets.

• The worst-case time depends on the size of a ground set even if the size of a

set tends to be much smaller than the size of a ground set.

• Many ZDD nodes created during the computation may not appear in an

output ZDD.

3 Algorithm

In this section, we first observe that ZDDs are isomorphic to processes of sorting

hyperedges and then present our algorithm.

Figure 3 shows an example of such a correspondence. Suppose that we are

given hypergraph (V, E), where V consists of positive numbers. Each hyperedge

U ∈ E is represented as the array of numbers in U , ordered in increasing order.

The d-th entry of U always means the d-th largest number in U . For the sake of

simplicity, we assume that every hyperedge contains +∞. We sort all hyperedges

in lexicographical order by recursively partitioning E into the equal part E= and

the greater part E> for the minimum number v at position d of hyperedges. Note

that the following procedure should be initially started with d = 0.

function sort(E , d)
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Figure 3: The process of sorting s[0], . . . , s[4] and the corresponding ZDD.

if |E| ≤ 1 then

return;

end if

v ← the minimum number among the d-th entries of sets in E ;
if v = +∞ then

return;

end if

E= ← the set of hyperedges with the d-th entries equal to v;

E> ← E \ E=;
sort(E=, d+ 1); sort(E>, d);

end function

The sorting process can then be represented as an ordered binary tree such that

each node holds a partitioning number v; the left and the right children of a node

correspond to E> and E=, respectively. When we consider the left and the right

children of a node as the LO and the HI children, this binary tree satisfies the

order condition of ZDD nodes, and furthermore it is irreducible with respect to

the node elimination rule, because v < +∞ implies E= 6= ∅. Note that all recursive

function calls exactly correspond to the nodes in this tree. By sharing equivalent

subgraphs, we obtain the corresponding ZDD. It would be easy to observe that

this correspondence is bijective.

This sort algorithm has a close relation to the ternary partitioning algorithm,

called multikey Quicksort, given by Bentley and Sedgewick [1]. Their algorithm

sorts strings in a similar way, but there are two different points. Firstly, a parti-

tioning number v need not be the minimum number and there are many ways for

the choice, from computing the true median to choosing a random value. Secondly,
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it partitions E into the three parts E<, E= and E>, where E<, E= and E> consists of

hyperedges with the d-th entries smaller than, equal to and greater than v, respec-

tively. An efficient partitioning method is important. The performance of multikey

Quicksort is well-analyzed. We extract the following two theorems from [1], where

c denotes a constant. A worst-case and an expected-time algorithms that establish

c = 3 and c = 3/2 are given in [15] and [6], respectively.

Theorem 1. If multikey Quicksort partitions around a median computed in cn

comparisons, it sorts n k-vectors in at most cn(log n+ k) scalar comparisons.

Let Hn denote the harmonic numbers, defined by Hn =
∑

1≤i≤n 1/i.

Theorem 2. A multikey Quicksort that partitions around the median of 2t + 1

randomly selected elements sorts n k-vectors in at most 2nHn/(H2t+2 − Ht+1) +

O(kn) expected scalar comparisons.

When we sort sets with multikey Quicksort, the worst-case number of compar-

isons does not depend on the size of a ground set. Thus it would be effective if a

sparse set family is given. However, since multikey Quicksort is based on a ternary

partitioning method, it is isomorphic to ternary search trees and does not lead to

ZDDs directly.

In view of the observation above, our idea is that we first sort sets with multikey

Quicksort and then construct a ZDD, based on the binary partitioning method.

Algorithm 1 shows the construction part. Since an input set family E is already

sorted, finding the minimum number v and partitioning E into E= and E> can be

done quickly: since the hyperedges with the d-th entries equal to v are all lined up

from the beginning and we need not search all hyperedges.

Algorithm 1 Compute the ZDD for a set family E .
function zcomp(E , d)

if E = ∅ then
return ⊥;

end if
v ← the minimum number among the d-th entries of sets in E ;
if v = +∞ then

return >;
end if
E= ← the set of hyperedges with the d-th entries equal to v;
E> ← E \ E=;
hi← zcomp(E=, d+ 1); lo← zcomp(E>, d);
return zdd unique(v, lo, hi);

end function

Theorem 3. Suppose that an input set family E is given as an array of hyper-

edges sorted in lexicographical order. Algorithm 1 can be implemented to run in
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O(N log2(
∑

U∈E |U |/N)) time, where N denotes the number of nodes in the binary

tree that is obtained from an output ZDD by not sharing equivalent subgraphs. The

required space is proportional to the size of an output ZDD.

Proof. Since E is already sorted, in order to partition E to E= and E>, it is sufficient

to find the last hypergraph whose d-th entries equals v. This can be efficiently done

by skipping as many hypergraphs as possible. Consider for example the following

procedure.

1. Let the current hypergraph be the first one.

2. Search only the 2i-th hypergraphs from the current hypergraph for i =

1, 2, · · · while the d-th entries equal v.

3. If the last hypergraph is not found, then go to the 2nd step.

4. Return the last hypergraph.

Since the 2nd step is over in at most log |E=| steps, the overall procedure requires

O(log2 |E=|) time. Since the d-th entries equal to v are not examined in later

recursive calls, the sum of all the sizes |E=| equals the sum of all hyperedge sizes.

From Jensen’s inequality, it follows that the total time is O(N log2(
∑

U∈E |U |/N)).

Since Algorithm 1 constructs an output ZDD in a bottom up fashion, all nodes

requested by zdd unique appear in the output ZDD. Note that since the maximum

depth of a recursive function call corresponds to the maximum length of a path in

an output ZDD, it is clear that the space required to keep track of the recursive

function calls is dominated by an output ZDD size.

4 Experiment

Implementation and Environment. We implemented our algorithm and the naive

method presented in Section 2.2 in C. We furthermore implemented the combina-

tion of multikey Quicksort and the naive method, in which an input data file is

sorted with multikey Quicksort and then the naive method is executed. In these

programs, we used the BDD Package Sapporo-Edition-1.0 developed by Minato,

in which ZDDs are available and various basic operations for ZDDs are provided.

The (non-tuned) implementation of multikey Quicksort was obtained from [2]. All

experiments were performed on a 2.67GHz Xeon R©E7-8837 with 1.5TB RAM, run-

ning SUSE Linux Enterprise Server 11. We compiled our code with version 4.3.4

of the gcc compiler.

Problem Instances. The following instances were obtained from the Hypergraph

Dualization Repository [13], where n denotes an instance parameter.
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• BMS-WebView-2 (bms(n)): a hypergraph such that the size of a ground set

is 3,341 and each hyperedge is the complement of a set of maximal frequent

itemsets with support threshold n, of datasets “BMS-WebView2” taken from

the Frequent Itemset Mining Dataset Repository.

• Uniform random (rand(n)): a hypergraph such that the size of a ground set

is 50 and the number of hyperedges is 1,024,000 and each vertex is included

in a hyperedge in the probability n/10, generated by Prof. Alain Bretto.

The following instances were obtained from the Frequent Itemset Mining Dataset

Repository.

• T40I10D100K: this data set was generated using the generator from the IBM

Almaden Quest research group.

• retail: this dataset contains the (anonymized) retail market basket data from

an anonymous Belgian retail store, donated by Tom Brijs.

• accidents: this dataset contains (anonymized) traffic accident data, donated

by Karolien Geurts.

We furthermore generated instances of the following type.

• Threshold function (TH(n)): a hypergraph whose hyperedges correspond to

prime conjunctive normal forms of the threshold function with 30 variables

that returns 1 if at least n variables are 1. The number of hyperedges is(
30
n−1

)
.

All instances are given as data files with the following format: each row corre-

sponds to a hyperedge, and entries are non-zero positive numbers (and less than

or equal to the maximum number allowed in a BDD package); the entries in a row

are sorted in increasing order and separated by a white space. Since some data

sets obtained from the Frequent Itemset Mining Dataset Repository did not have

a correct form, we formated them: in particular all entries are incremented by one

so that they are positive.

Comparison of Algorithms We compared our algorithm zcomp, the naive method,

and the combination of multikey Quicksort and the naive method. Note that zcomp

means the combination of multikey Quicksort and Algorithm 1. In this experiment,

the rows in data files were rearranged at random. The results are shown in Fig. 4

and Table 1.

5 Conclusion

We presented a new algorithm for constructing ZDDs for hypergraphs. This al-

gorithm sorts hyperedges with multikey Quicksort and then construct a ZDD in
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Figure 4: Comparison of running time and maximum memory usage, where the
horizontal coordinate of a point represents an instance parameter n.

a bottom up fashion. We analyzed the computational complexity of the construc-

tion part. We furthermore conducted experiments with various datasets. The

experiments showed that our algorithm is significantly faster and requires smaller

memory than an existing method.
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