
TCS -TR-A-13-64

TCS Technical Report

Efficient Computation of the Number of Paths in a

Grid Graph with Minimal Perfect Hash Functions

by

Hiroaki Iwashita, Yoshio Nakazawa,

Jun Kawahara, Takeaki Uno, and Shin-ichi Minato

Division of Computer Science

Report Series A

April 26, 2013

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Efficient Computation of the Number of Paths in a Grid
Graph with Minimal Perfect Hash Functions

Hiroaki Iwashita∗†‡ Yoshio Nakazawa§ Jun Kawahara¶ Takeaki Uno‖

Shin-ichi Minato‡†

April 26, 2013

Abstract

It is not easy to find the number of self-avoiding walks from (0,0) to (n,n), be-
cause the number increases rapidly with the increase of n and mathematical formula
for calculating it is not known. Our challenge is to develop advanced algorithmic
techniques through efforts of finding the answer to the larger n. The idea of Knuth’s
algorithm is so effective that it can compute the answer to n = 11 in a second and
n = 21 in a few days, even though it is designed for general graphs. In this paper,
we specialize it in grid graphs and maximize space and time efficiency. Our program
have successfully computed the answer to n = 25, which had not known before.

1 Introduction

A path (way to go from a vertex to another vertex without visiting any vertex twice)
in a grid graph is called a self-avoiding walk (SAW), which is known to be introduced
by the chemist Flory as a model of polymer chains [1]. In spite of its simple definition,
many difficult mathematical problems are hidden behind the SAW [2, 3]. They include a
problem of counting the number of paths connecting opposite corners of a (n+1)×(n+1)
grid graph, which have become popular through a YouTube-animation [4]. The answer is
known to grow as λ n2+o(n2) and λ ' 1.7 [5]. When n = 10, it is about 1024 and cannot be
counted one by one in a realistic time even if we could find trillions of paths in a second.

We are studying advanced algorithmic techniques through efforts of finding the answer
to the larger n. According to The On-Line Encyclopedia of Integer Sequences (OEIS) [6],

∗iwashita@erato.ist.hokudai.ac.jp
†ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Technology

Agency, Sapporo, Japan.
‡Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
§Amateur programmer.
¶Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
‖Principles of Informatics Research Division, National Institute of Informatics, Chiyoda, Tokyo, Japan.

1

2 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

(a) G3,3 (b) Paths between 1 and 9

Figure 1: Paths in a graph

Rosendale computed the answers up to n = 11 in 1981 and Knuth computed the answer to
n = 12 in 1995. Bousquet-Mélou et al. presented the answers up tp n = 19 in their paper
[5] in 2005. Their algorithm is based on the method of Conway et al. [7], which makes
good use of the fact that the target is a grid graph. On the other hand, Knuth introduced an
algorithm for general graphs called SIMPATH in 2008 [8][9, exercise 225 in 7.1.4], which
constructs a zero-suppressed binary decision diagram (ZDD) [10] representing a set of all
paths between two vertices in a graph. We have extended the answers up to n = 21 in 2012
by reimplementing SIMPATH to directly count the number of paths instead of building the
ZDD structure [11]. It would be notable that the implementation is not dedicated to grid
graphs but is made for general graphs.

We specialize it in grid graphs and maximize space and time efficiency. On the premise
that the graph is a square grid, we can foretell the exact number of entries in the hash table
filled in the algorithm. It allows us to use a simple array with a minimal perfect hash
function instead of an ordinary hash table, which has a large impact on actual space and
time efficiency. We improve it still more by additional techniques such as in-place update
and parallel processing.

This paper is organized as follows. Section 2 introduces the original algorithm for
general graphs. The basic idea specific to grid graphs is shown in Section 3. Detailed
techniques to further improve space and time efficiency are described in Section 4. Sec-
tion 5 shows experimental results and Section 6 mentions some additional ideas. Finally,
conclusions are drawn in Section 7.

2 Original Algorithm for General Graphs

Input to the original algorithm [11] is an undirected graph G = (V,E) and two vertices
s, t ∈ V where V = {v1, . . . ,vm} is a set of vertices and E = {e1, . . . ,en} is a set of edges.
The output is the number of all paths between s and t. For example, if the input is a 3×3
grid graph and two vertices at opposite corners, the output will be 12 as shown in Figure 1.

The algorithm is a kind of dynamic programming. A path can be represented by a
subset of edges E ′ ⊆ E. The algorithm performs breadth-first search in the 2E space that
corresponds to all decision patterns on edge selections. Figure 2 illustrates the compu-
tation for G3,3, where dotted and solid branches represent exclusion and inclusion of the

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 3

Figure 2: Computation for G3,3

corresponding edge respectively. A branch is pruned when it makes an inconsistent situa-
tion with the final target, e.g. making a cycle or an unexpected endpoint.

Each node p at level i has a frontier state and an integer value. A frontier is a set of
the vertices that are contiguous with both decided and undecided edges. The frontier state
is represented by a map, matep : Vi→ Vi ∪{0}, where Vi ⊆ V is the frontier at level i. It
maintains information about path fragments formed by a set of selected edges as follows:

matep[v] =


v if vertex v is not a part of any path fragment,
w if vertices v and w are endpoints of a path fragment,
0 if vertex v is an intermediate point of a path fragment.

An entry for matep[v] is created when vertex v is entering the frontier and an entry for
matep[v] is deleted when vertex v is leaving the frontier.

Since the mate table includes sufficient information of constraints for future edge se-
lections, nodes with equivalent mate tables can be merged during the computation. The
integer values of merged nodes are summed. The final result is the value totaled at the leaf
node. This algorithm is implemented using a hash table of which keys are mate tables and
values are integers.

4 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

(a) For general graphs (b) For plane graphs

Figure 3: Frontier state representation

3 Basic Idea for Grid Graphs

3.1 Frontier States

Let v(i, j) be the vertex at row i and column j of an n×n grid graph (1≤ i≤ n, 1≤ j ≤ n)
and we compute the number of paths between v(1,1) and v(n,n). We visit the vertices
in the order of v(1,1), . . . ,v(1,n), v(2,1), . . . ,v(2,n), . . . and make decisions on vertical line
{v(i−1, j),v(i, j)} and horizontal line {v(i, j−1),v(i, j)}. The frontier at the step visiting v(i, j) is
{v(i,1), . . . ,v(i, j), v(i−1, j+1), . . . ,v(i−1,n)}.

The original algorithm keeps vertex identifiers of path endpoints in matep (Figure 3a),
while we can compress the information efficiently on the premise that the graph is embed-
ded in the plane (Figure 3b). Pairs of path endpoints always form nested structure on the
frontier because no path fragments can intersect. We do not need to record all information
of endpoint pairs but record only whether they are left or right endpoints. Let s= c1c2 · · ·cn

be a string representing a frontier state at a step visiting v(i, j) where Σ = { , , , }
and ck ∈ Σ is a character representing the state of vertex at the k-th column in the frontier:

ck =


if the k-th vertex is a left endpoint of a path fragment,
if the k-th vertex is a right endpoint of a path fragment,
if k = j and the k-th vertex is an intermediate point of a path fragment,
otherwise.

We consider the endpoint connected to v(1,1) is always a right endpoint. is a special
character only for c j, meaning that it is different from as we cannot include the next
horizontal line {v(i, j),v(i, j+1)}.

Examples of state transitions are shown in Figure 4. We have no alternatives of ver-
tical line selections in every step, because {v(i−1, j),v(i, j)} must be excluded if v(i−1, j) is
not an endpoint and {v(i−1, j),v(i, j)} must be included if v(i−1, j) is an endpoint. Branches
are always made by selection of horizontal lines. A frontier state changes only when hor-
izontal line {v(i, j−1),v(i, j)} is included except for to changes. The state transition is
summarized in Figure 5.

Since pairs are nested, the number of valid frontier states is closely related to
Motzkin numbers [12]. Let x1 < x2 and M(x1,y1)→(x2,y2) be a set of routes from coordinates
(x1,y1) to coordinates (x2,y2) on x2− x1 steps of (1,1), (1,−1), or (1,0) moves without

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 5

Figure 4: Examples of state transitions on a 6×6 grid graph

Current state Next state
Line excluded Line included

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

· ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· ·
· · · · · · · · · · · · N/A (making cycle)

· · · · · · · · · · · · N/A (branching)

· · · · · · · · · · · · N/A (branching)

· · · · · · · · · · · · N/A (branching)

Figure 5: State transition table

6 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

(a) Main states: M(0,1)→(6,0) (b) Blocked states: M(0,1)→(5,0)

Figure 6: Possible frontier states for a 6×6 grid graph

visiting negative y-coordinates. The n-th Motzkin number is given by Mn =
∣∣M(0,0)→(n,0)

∣∣.
They are given by recurrence relation:

M0 = M1 = 1 ,

Mn =
3(n−1)Mn−2 +(2n+1)Mn−1

n+2
.

(1)

We divide frontier states into two classes: main states and blocked states. A main state
does not have and a blocked state has at the j-th position. Let Σ′ = Σ \ { }, S j be
a set of frontier states after visiting j-th column, and S′ ⊂ S j be a set of main states. S′

does not include , i.e. S′ ⊂ Σ′n. It corresponds to M(0,1)→(n,0) (Figure 6a) where , ,
and characters are associated with (1,1), (1,−1), and (1,0) moves respectively. The
number of main states is given by:

Nn =
∣∣M(0,1)→(n,0)

∣∣ = Mn+1−Mn . (2)

Let S′′j = S j \S′ be a set of blocked states after visiting j-th column. As all blocked states
have at the j-th position, it can be ignored in enumerating S′′j . That corresponds to
M(0,1)→(n−1,0) (Figure 6b) and the number of blocked states is given by:

Nn−1 =
∣∣M(0,1)→(n−1,0)

∣∣ = Mn−Mn−1 . (3)

Therefore, the number of frontier states is:

Nn +Nn−1 = Mn+1−Mn−1 . (4)

3.2 Basic Algorithm

Since the domain of frontier states has become clear, we can define a minimal perfect hash
function ϕ j : S j → {1, . . . ,Nn +Nn−1} for each column position 1 ≤ j ≤ n. It allows us
to use a simple array instead of an ordinary hash table to keep intermediate results. A
simple implementation is to define some lexicographical order on the frontier states, and
to calculate the order of a given state string by scanning its characters one by one. An
improved implementation is described later in Section 4.2.

Algorithm 1 shows the basic method for computing the number of paths in a grid graph.
The count array keeps the integers that represent the numbers of cases for all frontier states
at the current step. For example, if we apply this algorithm to a 24×24 grid graph using
56-byte integers, count requires (M25−M23)×56 bytes = 413 gigabytes of memory. The
tmp array is a temporary storage, which is the same size as count.

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 7

Algorithm 1 Computing the number of paths in a grid graph
1: count[k]← 0 for all 1≤ k ≤ Nn +Nn−1;

2: count[ϕ1(

n︷ ︸︸ ︷
· · ·)]← 1;

3: for i = 1 to n do
4: for j = 1 to n−1 do
5: tmp[k]← 0 for all 1≤ k ≤ Nn +Nn−1;
6: for all s ∈ S j do
7: t← the next state of s when {v(i, j),v(i, j+1)} is excluded;
8: tmp[ϕ j+1(t)]← tmp[ϕ j+1(t)]+ count[ϕ j(s)];
9: u← the next state of s when {v(i, j),v(i, j+1)} is included;

10: if u is defined then
11: tmp[ϕ j+1(u)]← tmp[ϕ j+1(u)]+ count[ϕ j(s)];
12: end if
13: end for
14: count[k]← tmp[k] for all 1≤ k ≤ Nn +Nn−1;
15: end for
16: tmp[k]← 0 for all 1≤ k ≤ Nn +Nn−1;
17: for all s ∈ Sn do
18: t← the string made from s by replacing its with ;
19: tmp[ϕ1(t)]← tmp[ϕ1(t)]+ count[ϕn(s)];
20: end for
21: count[k]← tmp[k] for all 1≤ k ≤ Nn +Nn−1;
22: end for

23: return count[ϕ1(

n︷ ︸︸ ︷
· · ·)];

8 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

Figure 7: Data dependency

4 Techniques to Improve the Efficiency

4.1 In-place Update of the Array

If we eliminate the tmp array, the memory usage of Algorithm 1 can be reduced by half.
We put it into practice by reordering the access to the count array elements. Let 1 ≤ j ≤
n−1, α ∈ Σ′ j−1, β ∈ Σ′n− j−1, and c ∈ Σ′. We choose the minimal perfect hash functions
that holds the following relations:

ϕ j(s) = ϕ j+1(s) for all s ∈ S′, and
ϕ j(α cβ) = ϕ j+1(αc β) for all α cβ ∈ S′′j where c ∈ Σ′. (5)

Hereafter, we write as count(s) to denote count[ϕ j(s)] because position j is not important
anymore.

Data dependency in the count array is illustrated in Figure 7. For instance,
in Figure 7 represents a set of the frontier states that have at position j and at
position j + 1 when we are processing a horizontal line between columns j and j +
1. A directed edge from to show that a value read from count(α β) is
added into count(α β) for all α β ∈ S′. Since count(α β) is used to calcu-
late the new value of count(α β), we update count(α β) before adding the value
of count(α β) into count(α β). Storage for count(α β) and count(α β) is
the same location. We update count(α β) and count(α β) simultaneously because
they depend on each other.

4.2 Fast Mapping from Frontier States to Serial Numbers

Hash functions are evaluated frequently and have a large impact to the total speedup. In
this section, we describe a minimal perfect hash function for main states. One for blocked
states can be made in the same way by ignoring and considering that the string size is
n−1. The hash function for all frontier states can be made with their combination.

The minimal perfect hash function for main states ϕ ′ : S′→{1, . . . , |S′|} is implemented
as a sum of two subfunctions:

ϕ
′(s) = ϕ

′
L(l)+ϕ

′
R(r) (6)

where l is the left half of string s and r is the right half of s. The sizes of s, l, and r are
n, m = bn/2c, and n−m, respectively. This composition works because the main states

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 9

correspond to M(0,1)→(n,0). The left half must be in M(0,1)→(m,h) and the right half must
be in M(m,h)→(n,0), where 0 ≤ h ≤ m. We allocate serial numbers to main states in order
of h. Let baseh + i denote the i-th serial number of the main states passing through (m,h).
It is given by:

base0 = 0 ,
baseh+1 = baseh +

∣∣M(0,1)→(m,h)
∣∣ · ∣∣M(m,h)→(n,0)

∣∣ . (7)

When 1 ≤ il ≤
∣∣M(0,1)→(m,h)

∣∣ is a serial number of string l in M(0,1)→(m,h) and 1 ≤ ir ≤∣∣M(m,h)→(n,0)
∣∣ is a serial number of string r in M(m,h)→(n,0), the subfunctions can be de-

fined as:
ϕ ′L(l) = baseh +(il−1) ·

∣∣M(m,h)→(n,0)
∣∣ ,

ϕ ′R(r) = ir .
(8)

Main states are implemented as 2n-bit codes under such 2-bit code assignments as
= 00, = 01, and = 10. We divide a 2n-bit code into the left 2m-bit subcode and

the right 2(n−m)-bit subcode. The two subfunctions can be implemented by the simple
arrays that are indexed directly by the subcodes. The total size of the two arrays is about
2n+1 and is small enough in comparison with the size of the count array.

4.3 Fast Enumeration of All Main States

As shown in Section 4.1, we want to enumerate all frontier states in some specific order
for in-place update of count entries. It is also acceptable to enumerate all main states in
some specific order and visit each blocked state while visiting a main state related to it.

A simple implementation would be a single array of states sorted in the desired order.
Although it is very fast and accepts any state order, it consumes memory as much as the
count array. We introduce a method with much better memory efficiency for visiting main
states in lexicographic order. We divide main states again into the left and right halves. A
left state array lstate has ordered collection of 〈l,h〉 values where l is a left state subcode
and l corresponds to M(0,1)→(m,h). A right state array rstateh (0 ≤ h ≤ m) has ordered
collection of right state subcodes in M(m,h)→(n,0). All main states can be visited by the
following double loop:

for each 〈l,h〉 in lstate do
for each r in rstateh do

visit lr;
end for

end for.

Running time of this double loop would be almost the same as the single array implemen-
tation because most of the time is consumed in the inner loop and it is just scanning an
array in the same way as the single array implementation.

10 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

4.4 Shared Memory Parallel Processing

Let s = c1c2 · · ·cn be a state string and the current step is for the horizontal line connecting
columns j and j + 1. As shown in Figure 5, the transition patterns of state strings have
much locality: except for modification of c j and c j+1, at most one position can be changed
from to or from to .

We can partition the states into 2n−2 groups across which no transition occurs, based
on an (n−2)-bit binary code “g(c1) · · · g(c j−1)g(c j+2) · · · g(cn)” where g : Σ′→{0,1} is
defined to be

g(c) =

{
0 if c = ,
1 if c = or c = .

(9)

It is suitable for shared memory parallel processing since data update within a group is
independent of other groups. We use the leftmost m-bit of the binary code for task allo-
cation, where m is decided to make enough number of tasks and not to make each task
too small. Actually, m ' n/2 is a convenient choice in combination with the technique
described in Section 4.3.

5 Experimental Results

We have compared the original sequential program for general graphs [11] and three new
programs for grid graphs:

GGCount-SB a sequential program based on the techniques in Section 3 and Section 4.1
using count array of 56-byte integers,

GGCount-SF an improved version of GGCount-SB with the techniques in Section 4.2
and Section 4.3, and

GGCount-PF a parallel version of GGCount-SF with the technique in Section 4.4, using
12 CPU cores.

All those programs are written in C++. Experiments were performed on 2.67GHz Intel
Xeon E7-8837 CPUs with 1.5TB memory, running 64-bit SUSE Linux Enterprise Server
11. Results for (n+ 1)× (n+ 1) grid graphs are shown in Table 1 and Table 2. In
comparison with the original implementation [11], space and time efficiency has been
improved five times and ten times respectively in the sequential processing (GGCount-
SF); time improvement of one another digit is achieved by the parallel processing using
12 CPU cores (GGCount-PF). GGCount-SF used slightly more memory than GGCount-

SB, while it achieved three times speedup.

As the parallel program runs fast enough, it is worth exchanging space costs for time
costs using the Chinese Remainder Theorem in the same way as [5]. Using a 64-bit modu-
lar arithmetic version of GGCount-PF, we have succeeded in finding the answer to n = 25
as well as confirming the past results for n = 22,23,24 by Spaans [6]. The numbers are
shown in Table 3. For n = 25, we performed 9 runs with coprime moduli, of which each

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 11

Table 1: Memory usage (megabytes)

n [11] GGCount-SB GGCount-SF GGCount-PF

10 3 1 1 1
11 7 2 3 3
12 18 6 6 6
13 44 15 15 15
14 145 40 41 41
15 432 110 111 111
16 1290 304 306 306
17 3676 847 849 849
18 9993 2367 2376 2376
19 34298 6641 6663 6663
20 95329 18688 18729 18729
21 297260 52723 52791 52791
22 ∼700000 149108 149254 149254
23 >1500000 422634 422861 422861

Table 2: Computation time (seconds)

n [11] GGCount-SB GGCount-SF GGCount-PF

10 0.2 0.2 0.0 0.0
11 0.7 0.5 0.1 0.0
12 2.4 1.6 0.3 0.1
13 8.6 5.1 1.0 0.2
14 38.0 16.7 4.7 0.5
15 140.1 53.7 14.0 1.9
16 508.1 172.5 45.8 7.9
17 1763.7 554.1 146.4 20.9
18 6003.0 1755.0 459.3 67.6
19 17961.9 5687.2 1759.6 212.4
20 61570.0 18121.4 4616.1 652.0
21 208001.7 56263.6 17917.2 3244.3
22 >604800 178439.6 53671.1 5695.0
23 >604800 554159.8 170475.7 21313.0

12 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

run took 18 hours on 30 CPU cores and used 480 gigabytes of memory. We also confirmed
a successful run for n = 26 on the same machine using 2 days and 1400 gigabytes; it will
take three weeks to get the exact answer.

It was not difficult to modify Algorithm 1 to compute the number of cycles [13] instead
of paths. The numbers of main and blocked states for cycle enumeration are Mn and Mn−1

respectively; count array is initialized to be 1 for · · · ; the answer is the total number
of cycles found during the main loop. The answers to (n+1)×(n+1) grid graphs (n≤ 25)
are shown in Table 4. For n = 25, we performed 9 runs with coprime moduli, of which
each run took 9 hours on 30 CPU cores and used 260 gigabytes of memory.

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 13

Ta
bl

e
3:

T
he

nu
m

be
ro

fp
at

hs
be

tw
ee

n
op

po
si

te
co

rn
er

s
of

an
(n

+
1)
×
(n

+
1)

gr
id

gr
ap

h
n

#p
at

h

1
2

2
12

3
18

4

4
85

12

5
12

62
81

6

6
57

57
80

56
4

7
78

93
60

05
32

52

8
32

66
59

84
86

98
16

42

9
41

04
42

08
70

26
32

49
68

04

10
15

68
75

80
30

46
47

50
01

32
14

10
0

11
18

24
13

29
15

14
24

80
49

24
14

70
88

52
36

12
64

52
80

39
34

32
70

01
89

63
35

71
85

15
84

82
11

8

13
69

45
06

64
76

15
21

36
16

64
27

47
01

54
89

07
35

89
96

48
8

14
22

74
49

71
46

76
81

27
39

63
18

26
45

93
27

98
98

63
38

76
13

32
34

40

15
22

66
74

55
68

86
26

72
74

63
74

56
73

96
71

30
98

93
48

66
32

48
85

40
83

19
02

8

16
68

74
54

45
60

91
49

93
15

87
63

15
63

13
24

89
23

28
24

58
79

45
96

80
99

45
72

85
41

93
06

17
63

44
81

46
11

23
79

63
97

13
10

29
75

40
79

55
24

40
04

49
44

39
86

86
64

80
69

36
46

36
93

87
85

53
36

18
17

82
11

28
40

84
20

65
12

98
93

38
49

46
65

23
25

27
51

67
83

80
65

70
47

67
65

59
31

45
24

74
60

58
26

69
27

82
53

2

19
15

23
34

49
71

70
48

79
99

30
80

74
28

10
31

92
29

69
08

99
45

42
55

32
32

94
55

57
76

02
98

66
73

73
55

06
05

92
87

75
69

25
58

44

20
39

62
89

21
99

82
30

37
56

02
07

29
95

17
13

33
62

50
21

06
33

97
05

73
94

63
77

15
15

23
71

13
37

70
10

68
23

64
03

57
06

70
44

72
06

49
40

39
8

21
31

37
47

51
05

01
37

10
27

20
42

05
38

13
73

82
21

45
13

10
33

12
19

36
98

72
36

53
06

13
51

99
13

46
43

33
79

38
93

85
79

39
65

57
69

92
24

60
21

31
64

63
86

8

22
75

59
70

28
66

67
34

53
39

66
15

19
12

33
15

22
26

19
35

31
03

73
20

72
40

94
81

16
73

91
41

04
79

51
79

25
79

27
43

63
12

34
98

70
38

88
33

17
63

49
87

27
11

71
40

44
39

79
2

23
55

43
54

29
35

52
37

47
70

09
91

43
18

48
90

61
43

79
30

69
03

79
97

09
64

33
13

32
55

69
58

64
64

84
00

84
07

33
48

85
54

45
66

38
69

24
02

08
75

71
12

42
06

00
85

40
85

13
48

29
33

94
57

20

24
12

37
17

12
23

12
07

06
47

58
33

87
44

86
26

73
57

08
32

37
30

41
98

90
12

94
35

39
67

87
27

08
04

84
95

16
95

51
59

30
48

56
41

39
45

50
79

21
53

03
71

91
85

80
28

21
25

12
28

09
26

60
03

04
58

13
86

79
10

94

25
84

02
97

48
57

88
11

33
47

10
07

08
37

45
43

68
09

12
72

96
05

42
93

77
53

83
54

98
24

74
26

23
93

70
28

49
78

98
21

52
56

92
91

78
57

70
83

97
09

60
12

16
25

60
25

06
02

73
16

54
97

18
40

21
06

49
40

49
97

83
75

60
42

47
40

8

14 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

Ta
bl

e
4:

T
he

nu
m

be
ro

fc
yc

le
s

in
an

(n
+

1)
×
(n

+
1)

gr
id

gr
ap

h
n

#p
at

h

1
1

2
13

3
21

3

4
93

49

5
12

22
36

3

6
48

71
50

37
1

7
60

38
41

64
89

31

8
23

18
52

73
39

46
12

65

9
27

35
92

64
06

79
16

80
61

01

10
98

88
08

81
10

46
28

35
95

06
80

99

11
10

93
31

35
58

10
13

56
29

94
66

98
36

13
71

12
36

95
49

17
96

20
39

88
49

53
38

78
68

33
46

44
45

7

13
38

15
77

03
68

85
77

84
53

04
44

55
30

85
12

42
05

52
67

35
3

14
12

02
85

78
93

40
53

38
59

55
84

05
12

42
13

59
28

77
51

69
31

37
17

15

15
11

57
09

32
65

73
59

85
30

16
22

02
37

13
53

57
39

57
03

61
12

84
80

94
90

44
16

5

16
33

95
38

44
02

33
86

62
15

58
99

23
02

71
36

98
92

20
32

80
64

19
33

07
48

31
28

22
87

54
35

17
30

38
44

27
83

37
98

07
35

85
00

34
08

76
02

90
76

15
69

76
09

01
61

88
85

65
97

13
15

51
12

41
07

47
45

18
82

89
94

78
09

40
75

45
46

93
51

55
19

37
23

99
94

56
39

74
44

61
23

51
45

80
13

83
31

96
06

68
22

88
29

56
45

86
45

19
68

94
54

18
31

13
50

80
56

83
07

43
25

76
94

61
00

73
91

80
27

58
48

84
43

59
45

83
19

32
33

19
41

83
58

10
29

21
54

64
70

51
57

9

20
17

47
59

10
25

31
68

79
54

99
79

78
69

52
65

56
65

41
05

63
22

67
41

50
52

88
69

80
37

07
82

03
55

54
63

41
65

02
48

49
45

89
21

66
70

36
79

17
1

21
13

49
87

57
05

62
29

38
96

24
71

02
86

31
46

63
26

11
22

16
67

83
33

34
70

22
84

70
33

02
91

40
08

47
32

16
75

90
71

80
26

24
34

01
51

44
92

20
92

04
34

38
15

1

22
31

76
98

32
47

32
74

88
59

89
59

08
54

10
34

95
51

94
12

79
94

09
86

30
32

48
12

63
66

24
82

62
58

99
72

24
15

03
42

90
80

49
79

50
56

39
95

95
18

09
23

95
50

46
09

24
22

34
5

23
22

78
02

23
92

96
70

57
46

91
22

35
07

87
46

71
96

39
39

54
39

45
23

80
61

92
78

03
44

35
88

15
89

66
87

83
41

20
18

98
09

91
74

42
51

09
66

97
37

38
47

72
98

17
49

34
09

22
72

34
97

40
50

87

24
49

76
03

73
74

05
53

00
32

74
45

22
24

00
44

35
46

83
04

98
79

84
29

93
54

46
62

10
53

70
76

81
45

31
37

85
90

77
91

44
19

51
13

95
19

54
68

57
92

71
95

63
20

50
35

31
04

70
87

39
91

78
11

45
50

44
33

64
08

9

25
33

10
98

66
96

18
03

01
14

43
20

03
29

78
09

66
52

32
95

96
52

35
03

43
58

82
54

31
14

89
02

95
46

60
38

82
76

31
90

70
53

11
05

52
07

10
03

52
10

69
70

63
15

47
46

77
76

91
57

73
87

58
38

27
11

04
74

60
80

46
62

16
19

17
19

9

Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions 15

Figure 8: The number of frontier states against n

6 Additional Techniques

6.1 Using Line Symmetry

The problem is line symmetrical with respect to the line passing through v(1,1) and v(n,n);
the number of paths starting from {v(1,1),v(1,2)} is exactly the same as the number of
paths starting from {v(1,1),v(2,1)}. It means that the answer can be computed by doubling
the number of paths for one size. This method, however, would not contribute to much
computational reduction because the two cases are merged soon in the breadth-first search
algorithm.

One could make some algorithm utilizing line symmetry by introducing diagonal fron-
tiers instead of horizontal frontiers. That approach seems difficult because it have to over-
come faster growth of the number of frontier states than using horizontal frontiers. Fig-
ure 8 compares the peak numbers of frontier states appeared in the algorithm for general
graphs [11].

6.2 Using Point Symmetry

If we use the point symmetry of the problem, Algorithm 1 can be stopped at the middle
of computation. We can compute the answer by enumerating every pair of main states
that matches. Figure 9 shows that paths are completed by A = and B =

(C =) when B (C) is turned over and they are combined. The
total number of paths found here is

count(A)× (count(B)+ count(C)) .

16 H. IWASHITA, Y. NAKAZAWA, J. KAWAHARA, T. UNO, AND S. MINATO

Figure 9: Example of matching

Numbers stored in count grows exponentially against the number of loop iterations
in the algorithm. This technique reduces the memory usage by half because integer size
can be halved when we only compute numbers for the upper half of the graph. As for
the time cost, however, this technique might be at a disadvantage. Time growth of the
matching process against n was larger than that of the basic algorithm in our preliminary
experiments.

7 Conclusions

We have maximized space and time efficiency by focusing only on grid graphs. On the
premise that the graph is a square grid, we were able to clarify the exact set of possible
frontier states and to analyze their transition patterns. They allowed us to use simple arrays
instead of dynamic hash tables and to integrate various techniques, such as in-place update
and parallel processing, into the algorithm. Our algorithm for grid graphs have achieved
double-digit performance improvement on the original algorithm for general graphs. It
have extended the numbers recorded in OEIS [6][13] and have verified those past results
correctly.

The YouTube-animation [4] demonstrated the importance of algorithmic techniques
against combinational explosion. We were able to realize it through this challenge. We
would like to thank all staff involved in the animation and its 1.3 million viewers who took
interest in this issue, which was a major force to boost our study.

REFERENCES 17

References

[1] Paul J. Flory. “The Configuration of Real Polymer Chains”. In: Journal of Chemical
Physics 17 (3 1949), pp. 303–310.

[2] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, 1993. ISBN: 978-0-
8176-3891-7.

[3] E. W. Weisstein. Self-Avoiding Walk. URL: http://mathworld.wolfram.com/
Self-AvoidingWalk.html.

[4] MiraikanChannel. Time with class! Let’s count! URL: http://www.youtube.
com/watch?v=Q4gTV4r0zRs.

[5] M. Bousquet-Mélou, A. J. Guttmann, and I. Jensen. “Self-avoiding Walks Cross-
ing a Square”. In: Journal of Physics A: Mathematical and General 38 (2005),
pp. 9159–9181.

[6] The On-Line Encyclopedia of Integer Sequences. A007764 Number of noninter-
secting (or self-avoiding) rook paths joining opposite corners of an n× n grid.
URL: http://oeis.org/A007764.

[7] A. R. Conway, I. G. Enting, and A. J. Guttmann. “Algebraic Techniques for Enu-
merating Self-avoiding Walks on the Square Lattice”. In: Journal of Physics A:
Mathematical and General 26 (1993), pp. 1519–1534.

[8] D. E. Knuth. Don Knuth’s Home Page. URL: http://www-cs-staff.stanford.
edu/~uno/.

[9] D. E. Knuth. The Art of Computer Programming, Volume 4A, Combinatorial Algo-
rithms, Part 1. 1st. Addison-Wesley Professional, 2011. ISBN: 0321751043.

[10] S. Minato. “Zero-suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems”. In: Proceedings of the 30th ACM/IEEE Design Automation Conference.
1993, pp. 272–277.

[11] H.Iwashita, J. Kawahara, and S. Minato. ZDD-Based Computation of the Number
of Paths in a Graph. Tech. rep. TCS-TR-A-12-60. Division of Computer Science,
Graduate School of Information Science and Technology, Hokkaido University,
2012. URL: http://www-alg.ist.hokudai.ac.jp/tra.html.

[12] R. Donaghey and L. W. Shapiro. “Motzkin Numbers”. In: Journal of Combinatorial
Theory, Seires A 23.3 (1977), pp. 291–301.

[13] The On-Line Encyclopedia of Integer Sequences. A140517 Number of cycles in an
n×n grid. URL: http://oeis.org/A140517.

