
TCS -TR-A-13-67

TCS Technical Report

Implicit Generation of Pattern-Avoiding Permutations

Based on πDD

by

Yuma Inoue, Takahisa Toda and Shin-ichi Minato

Division of Computer Science

Report Series A

September 21, 2013

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Implicit Generation of Pattern-Avoiding Permutations

Based on πDDs

Yuma Inoue
Division of Computer Science

Graduate School of Info. Sci. and Tech.

Hokkaido University

Sapporo 060-0814, Japan

Takahisa Toda
JST ERATO Minato Project

Graduate School of Info. Sci. and Tech.

Hokkaido University

Sapporo 060-0814, Japan

Shin-ichi Minato∗

Division of Computer Science

Graduate School of Info. Sci. and Tech.

Hokkaido University

Sapporo 060-0814, Japan

September 21, 2013

Abstract

Pattern-avoiding permutations are permutations where none of the subse-
quences match the relative order of a given pattern. Pattern-avoiding permu-
tations are related to practical and abstract mathematical problems and can
provide simple representations for such problems. For example, some floor-
plans, which are used for optimizing very-large-scale integration(VLSI) circuit
design, can be encoded into pattern-avoiding permutations. The generation of
pattern-avoiding permutations is an important topic in efficient VLSI design
and mathematical analysis of patten-avoiding permutations. In this paper,
we present an algorithm for generating pattern-avoiding permutations, and
extend this algorithm beyond classical patterns to generalized patterns with
more restrictions. Our approach is based on the data structure πDDs, which
can represent a permutation set compactly and has useful set operations. We
demonstrate the efficiency of our algorithm by computational experiments.

1 Introduction

A permutation π avoids a pattern σ if no subsequence in π is order isomorphic to σ.

Two numerical sequences a = a1a2 . . . an and b = b1b2 . . . bm are order isomorphic

if a and b have the same length and satisfy the rule ai < aj if and only if bi < bj
for all i, j. Permutations that avoid pattern σ are called σ-avoiding permutations.

∗He also works for JST ERATO Minato Project.

1

2 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

Research of pattern-avoiding permutations dates back to stack sort, which was

proposed by Knuth in [10]. In stack sort, we can use a single stack to sort elements.

Knuth showed that a permutation is stack sortable if and only if it is a 231-avoiding

permutation. Several variations of the stack sorting problem, such as the twice

stack sorting problem [9], and the double-ended queue sorting problem [15], have

been proposed, and pattern-avoiding permutations were developed in that context.

After pattern-avoiding permutations were proposed, many researchers engaged

in studies to compute the number of the permutations that avoid given patterns.

For example, 1342-avoiding permutations have been enumerated by a mathemat-

ical approach [3], and 1324-avoiding permutations can be counted by computer

programs [12]. Moreover, the relation of classes on pattern-avoiding permuta-

tions has also been examined. Two classes A1 and A2 are Wilf-equivalent if

|A1| = |A2|, where |S| denotes the cardinality of set S. In [16], the nontrivial

Wilf-equivalence between 4132-avoiding and 3142-avoiding was discovered. The

generation of pattern-avoiding permutations can contribute to not only the dis-

covery of unknown Wilf-equivalent classes, but also the identification of bijective

functions between such classes.

Relations between pattern-avoiding permutations and mathematical problems

have been studied actively [6, 7]. In particular, Yao et al. revealed a bijection be-

tween mosaic floorplans and Baxter permutations, which are generalized pattern-

avoiding permutations [18], and Ackerman et al. proposed a simple encoding and

decoding between them in [1]. A floorplan is a topological partition of a rect-

angle into multiple rectangles, and a mosaic floorplan is a subclass of floorplans.

Floorplans have practical applications in areas such as VLSI design. Storing all

pattern-avoiding permutations into a database is equivalent to preparing a database

of floorplans. Database queries such as searching by criteria and random sampling

are useful for VLSI design. Therefore, generating pattern avoiding permutations

can contribute to solving practical problems.

Wilf provided a generating algorithm for identity patterns and posed the ques-

tion about the complexity of generation of pattern-avoiding permutations for gen-

eral patterns [17]. In [4], Bose et al. proved that the permutation pattern matching

problem is NP-complete and the enumerating problem is #P-complete. They also

proposed a decision algorithm for the special case when the pattern is a separable

permutation. The complexity of this algorithm is O(kn6), which Ibarra[8] im-

proved to O(kn4), where n is the permutation length and k is the pattern length.

However, as far as we know, no generating algorithm for general patterns except

for brute force method has been proposed.

In this paper, we provide an efficient algorithm for generating pattern-avoiding

permutations. Furthermore, we extend our algorithm to handle some generalized

patterns, such as vincular patterns and bivincular patterns.

Our algorithm is based on a permutation decision diagram (πDD), which is a

data structure for compact representation of sets of permutations [14]. A πDD

not only achieves high compression of sets of permutations, but also supports rich

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 3

algebraic set operations such as union and intersection. The computation time

of these operations depends on the size of the πDDs and not on the number of

permutations. If the πDD is small, computation is fast especially when the number

of permutations is large.

The rest of this paper is organized as follows. Section 2 presents the nota-

tions and definitions of permutations and patterns. Section 3 describes the ba-

sics of πDDs. Section 4 presents our algorithm for generating pattern-avoiding

permutations and its extension to some generalized patterns. Section 5 presents

experimental results, and Section 6 concludes this paper.

2 Permutations and Patterns

2.1 Permutations

A permutation of length n (n-permutation for brevity) is a bijection from {1, 2, ..., n}
to itself. Let π be an n-permutation. We write a permutation in the one-line form

as π = π1π2 . . . πn, and denote iπ = πi. For example, π = 4312 is a 4-permutation

and 3π = 1.

Multiplication over permutations x and y is defined as x · y = yx1yx2 . . . yxn ,

which is y after applying x. Note that the leftmost permutation is applied first.

For example, let x = 45213 and y = 41352, then x · y = 52143 (Fig. 1). Note

that multiplication over permutations is non commutative. We denote by en the

identity permutation of length n, where en satisfies ien = i for each 1 ≤ i ≤ n.

In this paper, we use the multiplication x · y in order to permutes the numbers

in y according to the order of numbers in x, that is, yi is placed in the kth position

with xk = i. We call this operation the rearrangement of y according to x. For

example, let r = 54321, which is the reverse of e5, and π = π1π2π3π4π5. Then we

obtain r · π = π5π4π3π2π1, which is the reverse of π.

A transposition is a permutation that exchanges only two elements. More pre-

cisely, a transposition τ(i,j) is a permutation such that iτ(i,j) = j, jτ(i,j) = i, and

kτ(i,j) = k for all other numbers k. Any n-permutation can be uniquely repre-

sented as the product of at most n− 1 transpositions based on a straight selection

sorting algorithm [11]. This algorithm repeatedly swaps the value k and the kth

element from right to left. For example, consider the decomposition of the permu-

tation 54213 into a product of transpositions (Fig. 2). The 5th element of 54213

is 3, hence we exchange 5 and 3, and obtain 54213 = 34215 · τ(3,5). Since the 4th

element of 34215 is 1, we then obtain 54213 = 31245 · τ(1,4) · τ(3,5). Repeating this

procedure, we finally obtain 54213 = τ(1,2) · τ(2,3) · τ(1,4) · τ(3,5).

2.2 Permutation Patterns

A permutation π contains a pattern σ if there is at least one subsequence in π which

is order isomorphic to σ, where the subsequence need not consist of consecutive

4 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

1
2
3
4
5

45213 41352
1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

52143
1
2
3
4
5

1
2
3
4
5

・ =

Figure 1: An example of the multi-
plication of permutations.

1
2
3
4
5

54213
1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

τ(1,2)
1
2
3
4
5

1
2
3
4
5

=
1
2
3
4
5

τ(2,3) τ(1,4) τ(3,5)・ ・ ・

Figure 2: Decomposition of 54213
into transpositions.

numbers in π. In other words, let k be the length of σ. There are indexes 1 ≤ i1 <

i2 < . . . < ik ≤ n such that πix < πiy if and only if σx < σy, for all pairs of x and

y. For example, the permutation 4213 contains pattern 312 because 423 and 413

are order isomorphic to the pattern. Conversely, π avoids σ if π does not contain

σ.

The above pattern is called a classical pattern because some generalizations

have been proposed. For example, the vincular pattern, which is also called gen-

eralized pattern, is a well-known generalization [2]. While the defining restriction

in classical patterns is order isomorphism, vincular patterns additionally have an-

other restriction: adjacency of element positions in the permutation. We use the

underline notation to represent adjacencies. If the ith and the (i + 1)th elements

are underlined, the corresponding numbers in the permutation must be adjacent.

For example, we consider the permutation 4213 and the vincular pattern 312. Both

423 and 413 are order isomorphic to 312, but 423 does not match 312 because the

second and third elements are not adjacent in the permutation. In contrast, 413

matches the pattern because 1 and 3 are adjacent in 4213. Thus, 4213 contains

312.

Vincular patterns have been extended to bivincular patterns [5]. A bivincular

pattern is restricted by adjacency of positions and additionally by consecutiveness

of values. We use the two-line form with bars and underlines to represent bivincular

patterns. The first row represents consecutiveness and an identical order, and the

second row represents adjacencies and a relative order. For example, the bivincular

pattern
123
312

represents a pattern where the 1st and the 2nd smallest values must be

consecutive, the 2nd and the 3rd element in a subsequence must be adjacent in a

permutation, and the relative order must match 312. Thus, the permutation 4213

avoids
123
312

. Indeed both subsequences 423 and 413 are order isomorphic to 312

but 423 does not match the bivincular pattern because 2 and 3 are not adjacent

in the permutation, and 413 also does not match the bivincular pattern because 1

and 3 are not consecutive.

The problem considered in this paper can be stated as follows: for given a

positive integer n and a pattern σ, generate all σ-avoiding permutations of length

n.

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 5

0 1

c

01100010 10

ccc

bb

a

c

b

a

Figure 3: A binary decision tree and
a ZDD for a set of combinations.

x

0

x x

F0

x

(1) merging rule (2) deletion rule

0 1 0 1

F1F0 F1 F0

F0

Figure 4: Two reduction rules on
ZDDs.

3 πDDs

A πDD is a data structure which canonically represents and efficiently manipulates

a set of permutations. The efficiency of our algorithm is based on the compact

representation and rich set operations of πDDs. πDDs are based on zero-suppressed

binary decision diagrams (ZDDs) [13], which are decision diagrams for sets of

combinations (families of sets).

3.1 ZDDs

A ZDD is derived by reducing a binary decision tree. Figure 3 shows the ZDD for

the family of sets {{a, b}, {a, c}, {c}}. A ZDD has five components: internal nodes

with an item labels, 0-edges, 1-edges, the 0-terminal node, and the 1-terminal node.

Each path represents a combination of items: if a 1-edge originates from a node

with label x, the combination contains x, while a 0-edge from x means that the

combination excludes x. If a path reaches the 1-terminal node, the combination

represented by the path is in the set represented by the ZDD. On the other hand,

if a path reaches the 0-terminal node, the combination is not in the set.

A ZDD is a compact and canonical form if we fix the order of the items and

apply the following two reduction rules:

(1) Merging rule: share all nodes which have the same child nodes and the same

labels

(2) Deletion rule: delete all nodes whose 1-edge point directly to the 0-terminal

node.

These rules are illustrated in Fig. 4. In the worst-case scenario, the size of a ZDD

(the number of nodes in a ZDD) can grow exponentially with respect to the number

of items. In many practical cases, though, a ZDD provides efficient compression.

In addition, ZDDs support efficient set operations such as union, intersection,

and set difference. Since these operations are realized by recursive algorithms with

hash table techniques, the computation time of these operations depends on the

number of nodes in ZDDs, not on the cardinality of the sets represented by the

ZDDs.

6 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

P ∪Q Union {π | π ∈ P or π ∈ Q}.
P \Q Difference {π | π ∈ P and π /∈ Q}.
P.Swap(x, y) Swap {π · τ(x,y) | π ∈ P}.
P ×Q Cartesian product {α · β | α ∈ P and β ∈ Q}.

Table 1: πDD operations.

1

τ(1,2)

0

τ(2,3)
τ(3,4)

τ(1,4)

Figure 5: The πDD for
{2143, 2431, 4321} =
{τ(1,2) · τ(3,4), τ(1,2) ·
τ(1,4), τ(2,3) · τ1,4)}.

3.2 πDDs

We introduce a πDD, which represents a set of permutations by deriving it from a

ZDD. As shown in Sect. 2.1, any permutation can be uniquely decomposed into a

product of transpositions. Hence, by assigning transpositions to nodes in a ZDD,

each path in the ZDD represents a permutation. This is the basic idea of a πDD.

Since the transpositions τ(i,j) into which a permutation is decomposed are ordered

in increasing order of j, the order of transpositions in a πDD can be fixed. πDDs

obtain a compact and canonical form by applying the above two reduction rules in

the same way to ZDDs, and set operations are also available. Figure 5 shows an

example of a πDD.

Table 1 shows the πDD operations used in this paper. While the union and

set difference operations are available like ZDDs, the swap and Cartesian product

operations are unique to πDDs. In particular, Cartesian product is very useful

because multiplication over permutations results in rearrangement. That is, by

applying Cartesian product operator, we can execute rearrangements of multiple

numerical sequences at once.

4 Main Results

In this section, we propose an algorithm for generating all σ-avoiding n-permutations.

This algorithm makes use of the following fact: the set of σ-avoiding permuta-

tions is the complement of the set of permutations that contain σ. Hereafter,

Avn(σ) denotes the set of σ-avoiding n-permutations, Sn denotes the set of all

n-permutations, and Cn(σ) denotes the set of n-permutations that contain σ. As

stated above, Avn(σ) = Sn \ Cn(σ) holds. The generation of the set of permu-

tations which contain σ is easily possible by simple rearrangements as shown in

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 7

1

τ(1,4)

τ(2,3)

τ(3,4)

τ(1,2)

τ(2,4)

τ(1,3)

Figure 6: The πDD for S4.

Sect. 4.2. In general, the time to compute set difference depends on the cardinal-

ities of the sets. On the other hand, the set difference operation of πDD can be

efficient because it depends on the size of the πDDs.

First, we introduce the algorithm for generating Sn. Next, we show the al-

gorithm for generating Cn(σ) for classical patterns. The algorithm can be easily

extended to vincular and bivincular patterns, which is demonstrated in Sect. 4.3

and 4.4.

4.1 Generating all n-permutations

Let Sn denote the πDD for Sn. We can recursively construct Sn. Suppose we

obtained Sn−1. We consider (n − 1)-permutations as n-permutations with nπ =

n. Thus, Sn−1.Swap(k, n) consists of all n-permutations π such that nπ = k.

Therefore, Sn can be obtained by computing Sn−1.Swap(1, n)∪ Sn−1.Swap(2, n)∪
. . . ∪ Sn−1.Swap(n − 1, n) ∪ Sn−1. Algorithm 1 realizes this procedure by loops.

Figure 6 shows S4. While the cardinality of Sn is n!, the size of Sn is O(n2) as

shown in Fig. 6. This is demonstrating a high compression ratio of πDDs.

Algorithm 1 Construct Sn.
S0 ← πDD for {en}
for i = 1 to n do

Si ← Si−1

for j = 1 to i− 1 do
Si ← Si ∪ (Si−1.Swap(i, j))

end for
end for
return Sn

8 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

4.2 Generating permutations containing a classical pattern

Hereafter, unless otherwise noted, k denotes the length of a given pattern σ. In

order to generate Cn(σ), we assign all
(
n
k

)
sequences that are order isomorphic to

σ into
(
n
k

)
possible positions in an n-permutation. This is achieved in three steps

as follows:

A. Generate all permutations whose k-prefix is ordered in increasing order,

B. Rearrange the k-prefix of each permutation which generated in step A into

isomorphic order to σ,

C. Distribute the k-prefix of each permutation which generated in step B over
(
n
k

)
possible positions in an n-permutation.

Figure 7 shows the process of generating C4(312). Step B and C involve the

rearrangements of multiple permutations. This means that this process can be

done by Cartesian products of πDDs as shown in Sect. 3.2. Let A denote the πDD

for permutations which generated in step A, and let B and C denote the πDDs for

the rearrangements which correspond to step B and C respectively. Note that the

permutations represented in B are not the permutations obtained after step B by

rearranging those in A. The permutations in B are the permutations as operations

to apply those in A.z The same applies to C. Then, Cn(σ) can be obtained by

computing C× B×A (Fig. 8). Note that the Cartesian products must be applied

in the reverse order of the three steps we execute, that is, we first apply B to A
and then apply C to the result of the first application.

We show the method for the construction of A at the end because it is similar

to the construction of C but more complicated.

{1234, 1243, 1342, 2341}

n = 4, σ = 312, k = 3

Step A

{3124, 4123, 4132, 4231}Step B

{3124, 3142, 3412, 4312,
 4123, 4132, 4312, 3412,
 4132, 4123, 4213, 2413,
 4231, 4213, 4123, 1423 }

Step C {3124, 3142,
 3412, 4312,
 4123, 4132,
 4213, 2413,
 4231, 1423 }

Remove
duplicated
permutations

= C4(312)

Figure 7: The process of generating C4(312).

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 9

{1234, 1243,
 1342, 2341}

n = 4, σ = 312, k = 3

{3124}{1234, 1243,
 1423, 4123}

{3124, 3142,
 3412, 4312,
 4123, 4132,
 4213, 2413,
 4231, 1423 }

C4(312)

=

=

××

××

Figure 8: Cartesian product in generating C4(312).

4.2.1 Construction of B

B is the πDD consisting only of the permutation given as a pattern. To construct

this πDD, we first decompose a given pattern into a product of transpositions as

given in Sect. 2.1. The πDD for this decomposition can be easily constructed in a

bottom-up fashion.

4.2.2 Construction of C

C is the πDD for the set of n-permutations π such that there are k indexes 1 ≤
p1 < p2 < . . . < pk ≤ n with piπ = i. This means that if π is in C, the numerical

sequence 12 . . . k must be in π as its subsequence. A simple method to construct

C is as follows. We generate all n-permutations that satisfy the above condition,

then convert each permutation to the πDD consisting only of the permutation.

We then calculate the union of all these πDDs. This algorithm is simple and easy

to implement. However, this is not efficient because this algorithm has to repeat

union operations
(
n
k

)
times.

Our basic idea to reduce the number of πDD operations is based on Pascal’s

triangle, in which the recursion
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
holds. Let Posi,j be the set of

all n-permutations π containing at least one subsequence πk1πk2 . . . πkl satisfying

the following two conditions:

1. kl is less than or equal to i,

2. the subsequence matches the sequence 12 . . . j.

It is obvious that C is the πDD for Posn,k. If we can calculate Posi,j using Posi−1,j

and Posi−1,j−1 like Pascal’s triangle, we can obtain C with only O(kn) operations.

In order to achieve this idea, we restrict Posi,j with the two additional conditions

as follows:

1. For any two distinct members π, π′ ∈ Posi,j there is at least one index x such

that px ̸= p′x.

10 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

2. For each i+ 1 ≤ x ≤ n, x is fixed, i.e., xπ = x.

Although the two conditions are not necessary to step C, these conditions simplify

our algorithm. Here, we can partition Posi,j into the two sets: the set including π

with πi ̸= j and the other set. The former set equals Posi−1,j , and the latter one

can be obtained by assigning j into the ith position of permutations in Posi−1,j−1.

Hence, let Pi,j denote the πDD for Posi,j , this is achieved by Pi−1,j−1.Swap(i, j)

because the ith element is i from the second condition and j is not assigned yet.

Thus, Pi,j = Pi−1,j ∪Pi−1,j−1.Swap(i, j) holds. The dynamic programming for this

recursion is encoded in Algorithm 2.

Algorithm 2 Construct C.
P0,0 ← πDD for {en}
for i = 1 to n do

for j = 0 to k do
if j > 0 then

Pi,j ← Pi−1,j ∪ Pi−1,j−1.Swap(i, j)
else

Pi,j ← Pi−1,j

end if
end for

end for
return Pn,k

4.2.3 Construction of A

Let Inci,j denote the set of all i-permutations in which the j-prefix is ordered in

increasing order. More precisely, π ∈ Inci,j satisfies 1 ≤ π1 < π2 < . . . < πj ≤ i.

Inci,j can be obtained in a similar way to Posi,j . Let Ii,j denote the πDD for

Inci,j . Inci,j is dividable into two sets: the set including π with πj = i and the

other set. Unfortunately, however, Ii,j ̸= Ii−1,j ∪ Ii−1,j−1.Swap(i, j) does not holds

while Pi,j = Pi−1,j ∪ Pi−1,j−1.Swap(i, j) holds. This difference is caused by the

fact that π ∈ Inci−1,j−1 can be πj ̸= j. For example, we suppose that we want to

obtain π such that π1 = 2 and π2 = 3, π = τ1,2 · τ2,3 = 312 does not satisfy π2 = 3

because 2τ1,2 ̸= 2. This is avoidable by performing calculations in the decreasing

order, for example, π = τ2,3 · τ1,2 = 231. Thus, we start from In,k and end to I0,0
in the construction of A.

There is one more difference from the construction of Pi,j as follows: the (i−j)-

suffix of each permutation in Inci,j is in any order. In other words, |Inci,j | =(
i
j

)
· (i− j)!. Hence, after we construct Incn,k, then rearrange (n−k)-suffix of each

permutation in Incn,k into any orders. The πDD for this rearrangement can be

obtained by the construction like Algorithm 1. Algorithm 3 describes the entire

process.

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 11

Algorithm 3 Construct A.
In,k ← πDD for {en}
for i = n− 1 to 0 do

for j = k to 0 do
if j < k then

Ii,j ← Ii+1,j ∪ Ii+1,j+1.Swap(i, j)
else

Ii,j ← Ii+1,j

end if
end for

end for

sufk ← πDD for {en}
for i = k + 1 to n do

sufi = sufi−1

for j = k + 1 to i− 1 do
sufi ← sufi ∪ sufi−1.Swap(i, j)

end for
end for
return sufn × I0,0

4.3 Generating permutations containing a vincular pattern

The additional restriction of vincular patterns is adjacency of positions. Therefore,

we can generate vincular pattern-avoiding permutations by a slight modification of

step C from Sect. 4.2.2. We call the modified step C’. C′ denotes the πDD which

correspond to step C’.

If the jth and the (j − 1)th elements must be adjacent, we define Pi,j =

Pi−1,j−1.Swap(i, j), which is not united Pi−1,j . Hence,

Pi+1,j+1 = Pi,j+1∪Pi,j .Swap(i, j)

= Pi,j+1∪Pi,j−1.Swap(i−1, j−1).Swap(i, j)

That is, π ∈ Pi−1,j−1.Swap(i−1, j−1).Swap(i, j) must be πj−1 = i−1 and πj = i.

Pi,j+1 is dividable into Pi−1,j+1 and Pi−1,j−1.Swap(i − 2, j − 1).Swap(i − 1, j), in

which πj−1 = i − 2 and πj = i − 1, as in Pi+1,j+1, and so forth. This recursive

structure shows that π ∈ Pi+1,j+1 must be πj = πj−1+1: the jth and the (j−1)th

elements are adjacent. Therefore, we obtain Algorithm 4 for C′ by adding a branch

to Algorithm 2.

4.4 Generating permutations containing a bivincular pattern

Bivincular patterns have the three restrictions: a relative order, adjacencies of

positions and consecutiveness of values. Hence, we use step C’ in Sect. 4.3 and

change step A to A’ in the same way as C was changed to C’.

12 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

Algorithm 4 Construct C′.

P0,0 ← πDD {en}
for i = 1 to n do

for j = 0 to k do
if j > 0 then

if j-th and (j − 1)-th elements must be adjacent then
Pi,j ← Pi−1,j−1.Swap(i, j)

else
Pi,j ← Pi−1,j ∪ Pi−1,j−1.Swap(i, j)

end if
else

Pi,j ← Pi−1,j

end if
end for

end for
return Pn,k

If the ith and the (i+1)th values must be consecutive, we define Ii,j = Ii+1,j+1.Swap(i, j),

as in C’. Algorithm 5 describes the process to obtain A′.

Algorithm 5 Construct A′.

In,k ← πDD for {en}
for i = n− 1 to 0 do

for j = k to 0 do
if j < k then

if j-th and (j + 1)-th element must be consecutive then
Ii,j ← Ii+1,j+1.Swap(i, j)

else
Ii,j ← Ii+1,j ∪ Ii+1,j+1.Swap(i, j)

end if
else

Ii,j ← Ii+1,j

end if
end for

end for

sufk ← πDD for {en}
for i = k + 1 to n do

sufi = sufi−1

for j = k + 1 to i− 1 do
sufi ← sufi ∪ sufi−1.Swap(i, j)

end for
end for
return sufn × I0,0

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 13

1. Generate Sn

2. Generate Cn(σ)

3. Calculate Sn＼Cn(σ)

n,σ

Avn(σ)

Step C’

Step C

Step A’

Step A
Step B

classicalclassical vincular

vincular
bivincular bivincular

× ×

Figure 9: The summary of our algorithms.

4.5 Summary of our algorithms

Our algorithms can be summarized as the follows. First, we construct the πDD for

Sn. Next, we construct the πDD for Cn(σ) by choosing the steps to take according

to the pattern to avoid. Finally, we calculate the set difference of Sn and Cn(σ),

and hence obtain Avn(σ). This procedure is illustrated in Fig. 9.

5 Experimental Results

We implemented our algorithm in C++ and carried out computational experi-

ments. We compared the performance of our algorithm to that of the naive method,

which generates all n-permutations and, for each n-permutation, decides whether

it contains σ by checking the order isomorphism between all k-subsequences and

σ.

Tables 2 and 3 show the results for the generating permutations avoiding a

classical pattern. The tables show the best, the worst, and the average computation

time and memory consumption for generating all patterns with length k = 2,3,4,

and 5. Note that the naive method both stores and outputs all pattern-avoiding

permutations as a list of arrays. In almost all cases, our algorithm is more efficient

than the naive method. For example, in n = 11, our method requires only 0.3% of

the time and 1% of the memory required by the naive one. It should be noted that

there are differences between the best and worst performance for the same case in

the results of our algorithm, while the naive method hardly shows any differences.

However, in almost all worst-case scenarios, the performance of our algorithm is

better than the best-case scenario of the naive one. Computation time and memory

consumption of both methods increase exponentially with respect to n, but our

algorithm has a smaller growth rate than the naive method.

14 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

Table 3: Memory consumption (kB) for generating classical pattern-avoiding per-
mutations.

πDD Method Naive Method
n k k

2 3 4 5 2 3 4 5
best 1600 1596 1596 1596 1072 1332 2160 5756

8 average 1600 1598 1916 1599 1072 1336 2162 5759
worst 1600 1600 1972 1600 1072 1340 2164 5764
best 1600 1964 2748 2744 1072 1600 10316 19460

9 average 1600 2233 2933 2768 1072 1600 10319 19463
worst 1600 2768 4208 2792 1072 1600 10324 19468
best 1600 2760 4212 7156 1072 3476 74684 295940

10 average 1784 3509 6856 7376 1072 3476 74686 295943
worst 1968 4260 7444 7700 1072 3476 74688 295948
best 1600 4208 7676 13720 1072 6796 361444 2884764

11 average 2186 5876 17641 25233 1072 6796 361447 2884767
worst 2772 6792 25084 27000 1072 6796 361448 2884768
best 1976 7112 25316 49108 — — — —

12 average 3112 16106 48405 93525 — — — —
worst 4248 25084 94788 102940 — — — —-
best 2764 12708 51436 188416 — — — —

13 average 4954 32130 168848 337123 — — — —
worst 7144 51084 201264 408460 — — — —
best 2760 24440 187372 396432 — — — —

14 average 7754 111634 542621 1282547 — — — —
worst 12748 190460 779640 1587600 — — — —
best 4228 47620 389140 1543108 — — — —

15 average 9112 234836 1560720 4986352 — — — —
worst 13996 406440 3092572 6471388 — — — —

Table 2: Computation time (s) for generating classical pattern-avoiding permuta-
tions.

πDD Method Naive Method
n k k

2 3 4 5 2 3 4 5
best 0.000 0.000 0.000 0.000 0.012 0.012 0.032 0.044

8 average 0.000 0.002 0.004 0.001 0.014 0.017 0.038 0.050
worst 0.000 0.008 0.012 0.008 0.016 0.024 0.044 0.064
best 0.000 0.000 0.004 0.004 0.056 0.120 0.420 0.732

9 average 0.004 0.005 0.009 0.009 0.058 0.121 0.448 0.776
worst 0.008 0.016 0.016 0.024 0.060 0.124 0.480 0.836
best 0.004 0.004 0.016 0.024 0.492 1.148 5.684 15.773

10 average 0.008 0.011 0.028 0.036 0.494 1.170 6.135 16.970
worst 0.012 0.020 0.044 0.060 0.496 1.184 6.596 18.525
best 0.000 0.012 0.044 0.092 5.420 13.129 87.946 409.694

11 average 0.008 0.029 0.101 0.174 5.446 13.292 94.406 429.715
worst 0.016 0.052 0.152 0.276 5.512 13.457 100.654 452.252
best 0.004 0.024 0.152 0.428 — — — —

12 average 0.014 0.087 0.444 0.921 — — — —
worst 0.024 0.156 0.780 1.392 — — — —-
best 0.016 0.048 0.568 1.824 — — — —

13 average 0.022 0.284 1.787 4.309 — — — —
worst 0.022 0.544 3.072 6.888 — — — —
best 0.008 0.116 1.960 6.448 — — — —

14 average 0.032 1.029 6.769 19.036 — — — —
worst 0.056 1.968 12.021 32.370 — — — —
best 0.016 0.300 5.688 23.814 — — — —

15 average 0.052 3.513 24.771 85.655 — — — —
worst 0.088 6.860 48.415 160.562 — — — —

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 15

0

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(se
c)

k

naive
πDD

Figure 10: Computation time when
n = 10.

1M

10M

100M

1G

1 2 3 4 5 6 7 8 9 10av
er

ag
e

m
em

or
y

us
ag

e
(b

yt
e)

k

naive
πDD

Figure 11: Memory consumption
when n = 10.

Figure 10 and 11 show the results for classical patterns. These results show the

average time and memory consumption for all pattern, where n is fixed at 10 and k

is varied. Memory consumption of the naive method is proportional to the number

of pattern-avoiding permutations, but that of the πDD method decreases when

k ≥ 5. This shows that πDD can achieve high compression when the cardinality of

the set is near n!, such as in the case of Sn. The results also show the computation

time depends on the size of πDDs. In contrast, the computation time of the naive

method is in proportion to
(
n
k

)
, which is the number of subsequences that must be

checked.

Table 4 presents the results for vincular patterns. We generated Baxter per-

mutations, because there are the huge number of vincular patterns for each k,

which is k! · 2k−1. Baxter permutations are defined as avoiding the two vincular

patterns, 31 42 and 24 13, and appear in many mathematical problems [1, 6, 7].

Our algorithm generates Avn(31 42, 24 13) = Sn \ (Cn(31 42) ∪ Cn(24 13)). On

the other hand, the naive method checks the order isomorphism between all k-

subsequences and the two patterns simultaneously. B(n) denotes the number of

Baxter permutations of length n.

The performance of our algorithm for vincular patterns is as good as that for

classical patterns. Our algorithm is faster and consumes less memory than the

naive method.

When n = 15, the time for calculating the difference Sn \ Cn(σ) is 1.110 s,

which is about 2% of the entire computation time. In general, calculating the set

difference for sets with a large cardinality without πDDs is not efficient, but, πDD’s

difference operation is not bottleneck in this problem. Most of the computation

time is due to the Cartesian product operations between three πDDs, which require

46.020 s.

The number of permutations and the size of the corresponding πDD are shown

in Table 5, where it is clear that πDD achieves a high compression ratio.

16 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

Table 4: Experimental results for generating Baxter permutations.
πDD Method Naive Method

n B(n) Time (s) Memory (kB) Time (s) Memory (kB)

8 10754 0.016 2760 0.036 2752
9 58202 0.028 4164 0.380 5676
10 326240 0.060 12984 4.888 37864
11 1882960 0.212 26828 65.556 181112
12 11140560 0.908 98924 941.331 1442904
13 67329992 3.678 383272 — —
14 414499438 13.419 824732 — —
15 2593341586 50.499 3151164 — —
16 16458756586 193.704 12403488 — —
17 105791986682 745.779 40788188 — —

Table 5: the πDD for Baxter permutations (n = 15).
#permutations #nodes in πDD

Sn 1307674368000 105
Cn(31 42) ∪ Cn(24 13) 1305081026414 4094585

Avn(31 42, 24 13) = Baxter perm. 2593341586 2158472

Table 6: Experimental results for generating Avn

(
123
231

)
.

πDD Method Naive Method

n #Avn

(
123
231

)
time (sec) memory (KB) time (sec) memory (KB)

8 5335 0.004 3084 0.024 3080
9 31240 0.004 3084 0.188 3972
10 201608 0.020 4196 2.260 20080
11 1422074 0.052 12948 30.638 156568
12 10886503 0.184 26436 444.364 1191712
13 89903100 0.916 98656 6962.859 9834280
14 796713190 3.808 382712 — —
15 7541889195 15.357 1510640 — —
16 75955177642 62.408 3327380 — —
17 810925547354 254.896 12887884 — —
18 9148832109645 1016.132 50354060 — —

We show the results for bivincular patterns. Specifically, we generatedAvn

(
123
231

)
,

which is known to be related to chord diagrams, (2+2)-free posets and ascent se-

quences [5]. Table 6 presents the result of generating Avn

(
123
231

)
. Both our algo-

rithm and the naive method show better performance than the result on Baxter

Implicit Generation of Pattern-Avoiding Permutations Based on πDD 17

permutations because the pattern length, number of patterns, and the cardinality

of Avn

(
123
231

)
are all decreasing. For n = 13, the πDD method can generate the

permutations in under 1 s while the naive one requires about 2 h.

6 Conclusion

In this paper, we proposed an algorithm for generating several pattern-avoiding

permutations using πDDs. Experimental results show that our algorithm is faster

and consumes less memory than the naive method. In addition, our approach

outputs a πDD on memory, which has rich set operations. This means that we can

submit additional queries such as membership test or random sampling for the set

of pattern-avoiding permutations efficiently and immediately.

A future work is to improve further the computation time and memory con-

sumption of our algorithm. Moreover, we are also interested in analyzing the rela-

tionship between pattern-avoiding permutations and floorplans. In future work, we

plan to develop several functions such as search by criteria and random sampling

to use πDDs to populate a floorplan database.

References

[1] E. Ackerman, G. Barequet, and R. Pinter. A Bijection Between Permuta-

tions and Floorplans, and its Applications. Discrete Applied Mathematics,

154(12):1674–1684, 2006.

[2] E. Babson and E. Steingŕımsson. Generalized Permutation Patterns and a

Classification of the Mahonian Statistics. Séminaire Lotharingien de Combi-

natoire, 44, 2000.

[3] M. Bóna. Exact Enumeration of 1342-Avoiding Permutations: A Close Link

with Labeled Trees and Planar Maps. Journal of Combinatorial Theory, Series

A, 80(2):257 – 272, 1997.

[4] P. Bose, J. Buss, and A. Lubiw. Pattern matching for permutations. Infor-

mation Processing Letters, 65(5):277–283, 1998.

[5] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2+2)-free posets,

ascent sequences and pattern avoiding permutations. J. Comb. Theory Ser.

A, 117(7):884–909, Oct. 2010.

[6] H. Canary. Aztec Diamonds and Baxter Permutations. The Electronic Journal

of Combinatorics, 17, 2010.

[7] E. Fusy. Bijective Counting of Involutive Baxter Permutations. Fundam. Inf.,

117(1-4):179–188, Jan. 2012.

18 Yuma Inoue, Takahisa Toda and Shin-ichi Minato

[8] L. Ibarra. Finding pattern matchings for permutations. Information Process-

ing Letters, 61(6), 1997.

[9] J.West. Sorting twice through a stack. Theoretical Computer Science, 117:303–

313, 1993.

[10] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,

1968.

[11] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,

1973.

[12] D. Marinov and R. Radoičić. Counting 1324-avoiding permutations. The

Electronic Journal of Combinatorics, 9(2), 2003.

[13] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial prob-

lems. Proc. of 30th ACM/IEEE Design Automation Conf.(DAC-93), pages

272–277, 1993.

[14] S. Minato. πDDs: A New Decision Diagram for Efficient Problem Solving in

Permutation Space. Proc. of 14th International Conference on Theory and

Applications of Satisfiability Testing, pages 90–104, 2011.

[15] V. R. Pratt. Computing permutations with double-ended queues, parallel

stacks and parallel queues. Proc. of the fifth annual ACM symposium on

Theory of computing, pages 268–277, 1973.

[16] Z. E. Stankova. Forbidden subsequences. Discrete Math., 132:291–316, 1994.

[17] H. Wilf. The patterns of permutations. Discrete Math., 257:575–583, 2002.

[18] B. Yao, H. Chen, C. K. Cheng, and R. L. Graham. Floorplan representations:

Complexity and connections. ACM Transactions on Design Automation of

Electronic Systems, 8(1):55–80, 2003.

