
TCS -TR-A-14-71

TCS Technical Report

A Compact and Fast Index Structure
for Families of Sets

by

Shuhei Denzumi, Jun Kawahara, Koji Tsuda,

Hiroki Arimura, Shin-ichi Minato,

and Kunihiko Sadakane

Division of Computer Science

Report Series A

April 12, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682
Fax: +81-011-706-7682

A Compact and Fast Index Structure

for Families of Sets

Shuhei Denzumi1 Jun Kawahara2 Koji Tsuda3,4

Hiroki Arimura1 Shin-ichi Minato1,4 Kunihiko Sadakane5

1)Graduate School of IST, Hokkaido University, Japan
2)Nara Institute of Science and Technology (NAIST), Japan

3)National Institute of Advanced Industrial Science and Technology (AIST), Japan
4)ERATO MINATO Discrete Structure Manipulation System Project, JST, Japan

5)National Institute of Informatics (NII), Japan
{denzumi,arim,minato}@ist.hokudai.ac.jp,jkawahara@is.naist.jp,

koji.tsuda@aist.go.jp,sada@nii.ac.jp

April 12, 2014

Abstract

In many real-life problems, we are often faced with manipulating fam-
ilies of sets. Manipulation of large-scale set families is one of the impor-
tant fundamental techniques for web information retrieval, integration,
and mining. For this purpose, a special type of binary decision diagrams
(BDDs), called Zero-suppressed BDDs (ZDDs), is used. However, cur-
rent techniques for storing ZDDs require a huge amount of memory and
membership operations are slow. This paper introduces DenseZDD, a
compressed index for static ZDDs. Our technique not only indexes set
families compactly but also executes fast member membership operations.
We also propose a hybrid method of DenseZDD and ordinary ZDDs to
allow for dynamic indices.

1 Introduction

Binary Decision Diagrams (BDD) [1] are a graph-based representation of Boolean
functions and widely used in VLSI logic design and verification. A BDD is con-
structed reducing a binary decision tree, which represents a decision making
process through the input variables. If we fix the order of the input variables
and apply the following two reduction rules, then we obtain a minimal and
canonical form for a given Boolean function:

1. Delete all redundant nodes (whose two children are identical) and

2. Merge all equivalent nodes (having the same index and pair of children).

Among unique canonical representations of Boolean functions, BDDs are
smaller than others such as CNF, DNF, and truth tables for many classes of
functions. BDDs have the following features:

1

• Boolean functions are uniquely represented like other representations.

• Multiple functions are stored compactly by sharing common subgraphs.

• Fast logical operations are executed on Boolean functions.

Zero-suppressed Binary Decision Diagrams (ZDDs) [8] are variation of tradi-
tional BDDs, used to manipulate families of sets. Using ZDDs, we can implicitly
enumerate combinatorial item set data and efficiently compute set operations
over the ZDDs. In the rest of this section, we use the term BDD to indicate both
the original BDD and the ZDD unless specified because any ZDD is regarded
as a BDD representing some function.

Though BDDs are more compact than other representations of Boolean func-
tion and set families, they are still large; a node of a BDD uses 20 to 30 bytes
depending on implementations [9]. BDDs become inefficient if the graph size is
too large to be held in memory. Therefore the aim of this paper is to reduce
the size (number of bits) used to represent BDDs. We classify implementations
of BDDs into three types:

• Dynamic: The BDD can be modified. New nodes can be added to the
BDD.

• Static: The BDD cannot be modified. Only query operations are sup-
ported.

• Freeze-dried: All the information of the BDD is stored, but it cannot be
used before restoration.

Most of the current implementations of BDDs are dynamic. There is previous
work on freeze-dried representations of BDDs by Starkey and Bryant [16] and
later, by Mateu and Prades-Nebot [7]. Hansen, Rao and Tiedemann [4] devel-
oped a technique to compress BDD and reduce the size of the BDD to 1-2 bits
per node. However there is no implementation of BDDs that is specialized for
static case.

This paper is the first to propose a static representation of ZDDs, which we
call DenseZDDs. The size of ZDDs in our representation is much smaller than
an existing dynamic representation [9]. Not only compact, DenseZDD supports
much faster membership operations than [9]. Experimental results show that
DenseZDDs are five times smaller and membership queries are twenty to several
hundred times faster, compared to [9]. Note that our technique can be directly
applied to compress traditional BDDs too.

2 Preliminaries

Let e1, . . . , en be items such that e1 < e2 < · · · < en. Let S = {a1, . . . , ac},
c ≥ 0, be a set of items. We denote the size of S by |S| = c. The empty set is
denoted by ∅. A family is a subset of the power set of all items. A finite family
F of sets is referred to as a set family.1 The join of families F1 and F2 is defined
as F1 t F2 = { S1 ∪ S2 |S1 ∈ F1, S2 ∈ F2 }.

1In the original ZDD paper by Minato, a set is called a combination, and a set family is
called a combinatorial set.

2

6

5

3

44

1

F

2

1

0

22

1

3 3

Figure 1: An example of
ZDD

Sharing rule

0 1

Z0

i

Z1

i
01

1

Z0 Z1

i

0

merge

1

Z0

i

0

0 Z0

delete

Zero-suppress rule

Figure 2: Reduction
rules of ZDDs

4

1

3

2

3

1

2

1

2
1

Automaton

4 3 2 1 1

0 0 0 0

1 1 1 1

ZDD

Figure 3: Worst-case
example of a straight-
forward translation

In the appendix, we describe existing succinct data structures. The balanced
parenthesis sequence (BP), the Fully Indexable Dictionary (FID), and some
basic structures used in this paper are reviewed. We also explain operations on
the data structures such as rank c, selectc, and so on.

2.1 Zero-Suppressed Binary Decision Diagrams (ZDDs)

A zero-suppressed binary decision diagram (a ZDD) [8] is a variant of a binary
decision diagram [1], customized to manipulate finite families of set. A ZDD
is a directed acyclic graph satisfying the following conditions. A ZDD has two
types of nodes, terminal and nonterminal nodes. A terminal node v has as
attribute a value value(v) ∈ {0, 1}, indicating whether it is a 0-terminal node or
a 1-terminal node, denoted by 0 and 1, respectively. A nonterminal node v has
as attributes an integer index (v) ∈ {1, . . . , n} called the index, and two children
zero(v) and one(v), called the 0-child and 1-child. The edges from nonterminals
to their 0-child (1-child resp.) are called 0-edges (1-edges resp.). In the figures,
terminal nodes are denoted by squares, and nonterminal nodes are denoted by
circles. 0-edges are denoted by dotted arrows, and 1-edges are denoted by solid
arrows. We define triple(v) = 〈index (v), zero(v), one(v)〉, called the attribute
triple of v. For any nonterminal node v, index (v) is larger than the indices of
its children.2 We define the size of the graph, denoted by |G|, as the number of
its nonterminals.

Definition 1 (set family represented by ZDD) A ZDD G rooted at a node
v ∈ V represents a finite family of sets F (v) on Un defined recursively as follows:
(1) If v is a terminal node: F (v) = {∅} if value(v) = 1, and F (v) = ∅ if
value(v) = 0. (2) If v is a nonterminal node, then F (v) is the finite family of
sets F (v) = ({eindex(v)} t F (one(v))) ∪ F (zero(v)).

2In ordinary BDD or ZDD papers, the indices are in ascending order from roots to termi-
nals. For convenience, we employ the opposite ordering in this paper.

3

Table 1: Main operations supported by ZDD. The first group is the primitive
ZDD operations used to implement the others, yet they could have other uses

index (v) Returns the index of node v.
zero(v) Returns the 0-child of node v.
one(v) Returns the 1-child of node v.
getnode(i, v0, v1) Generates (or makes a reference to) a node v

with index i and two child nodes v0 = zero(v) and v1 = one(v).
topset(v, i) Returns a node with the index i reached by traversing only 0-edges.

If such a node does not exist, return the 0-terminal node.

member(v, S) Returns true if S ∈ F (v), and returns false otherwise.
count(v) Returns |F (v)|.
offset(v, i) Returns v such that F (v) = { S ⊆ Un |S ∈ F, ei 6∈ S }.
onset(v, i) Returns v such that F (v) = { S\{ei} ⊆ Un |S ∈ F, ei ∈ S }.
apply�(v1, v2) Returns v such that F (v) = F (v1) � F (v2), for � ∈ {∪,∩, \,⊕}.

The example in Fig. 1 represents a sets family F = { {6, 5, 4, 3}, {6, 5, 4, 2},
{6, 5, 4, 1}, {6, 5, 4}, {6, 5, 2}, {6, 5, 1}, {6, 5}, {6, 4, 3, 2}, {6, 4, 3, 1}, {6, 4, 2, 1},
{6, 2, 1}, {3, 2, 1} }.

A set S = {a1, . . . , ac} describes a path in the graph G starting from the
root. At each nonterminal node, the path continues to the 0-child if ei 6∈ S
and to the 1-child if ei ∈ S. The path eventually reaches the 1-terminal (or
0-terminal resp.), indicating that S is accepted (or rejected resp.).

In ZDD, we employ the following two reduction rules to compress the graph:
(a) Zero-suppress rule: A nonterminal node whose 1-child is the 0-terminal node.
(b) Sharing rule: Two or more nonterminal nodes having the same attribute
triple. By applying above rules, we can reduce the graph without changing its
semantics. If we apply the two reduction rules as much as possible, then we
obtain a canonical form for a given family of sets.

We can reduce the size of ZDDs by using a type of attributed edges [11] named
0-element edges. By using the 0-element edge, which simplifies construction of
DenseZDD. We can implement 0-element edges by 1-edges with empty set flags.
This attribute indicates that the pointing subgraph includes the empty set ∅
in the family represented by the subgraph. If it is set, it means that the node
pointed to by the 1-edge represents a set family including the empty set ∅.
includes the empty set ∅. We have to place a couple of constraints on using
0-element edges to keep the uniqueness of the graphs: (1) Use the 0-terminal
node only. (2) Do not use 0-element edges at the 0-edge on each node. Each
nonterminal node v has an ∅-flag empflag(v) on its 1-edge to implement 0-
element edges. If empflag(v) = 1, the subgraph pointed by the v’s 1-edge
includes the empty set ∅ in the family represented by the subgraph. In this
paper, effective ∅-flags are denoted as circles at starting points of 1-edges.

Table 1 summarizes operations of ZDDs. The upper half shows the primi-
tive operations, while the lower half shows other operations which can be im-
plemented by using the primitive operations. The operations index (v), zero(v),
one(v), topset(v, i) and member(v, S) do not create new nodes. Therefore they
can be done on a static ZDD. The operation count(v) does not create any node;
however we need an auxiliary array to memorize which nodes are already visited.

4

6

5

3

44

0

F

22

1

3 3

Figure 4: The ZDD
using 0-element edges
that is equivalent to the
ZDD in Fig. 1

6

5

3

44

0

22

1

3 3

4

1

3

2

5

6

7

8

9

10

0

0001011000100100 0100100000100011

))) (((()(((((()) (()) ())))) ())) ((

Figure 5: A zero-edge
tree and a dummy node
vector obtained from
the ZDD in Fig. 4

6

5

3

44

0

22

1

3 3

1

3

2

5

3

7

4

6

5

-9

6

8

7

0

8

0

9

-10

10

0

4

1

3

2

5

6

7

8

9

10

0

Root

2

Figure 6: A one-child
array obtained from the
ZDD in Fig. 4

2.2 Problem of Existing ZDDs

Let m be the number of nodes of a given ZDD and n be the number of dis-
tinct indices of nodes. Existing ZDD implementations have the following prob-
lems. First, they require too much memory to represent a ZDD. Second, the
member(v, S) operation is too slow, needing Θ(n) time in the worst case. In
practice, the size of query sets is usually much smaller than n, and so an O(|S|)
time algorithm is desirable. However it is impossible to attain this in the cur-
rent implementation [9] because the member(v, S) operation is implemented by
using the zero(v) operation repeatedly.

For example, we traverse 0-edges 255 times when we search S = {e1} on
the ZDD for F = {{e1}, . . . , {e256}}. If we translate a ZDD to an equivalent
automaton by using an array to store pointers (see Fig. 3), we can execute
searching in O(|S|) time. ZDD nodes correspond to labeled edges in the au-
tomaton. However, the size of such automaton via a straightforward translation
can be Θ(n) times larger than the original ZDD [2] in the worst case. Therefore,
we want to perform member(v, S) operations in O(|S|) time on ZDDs.

Minato proposed Z-Skip Links [10] to accelerate the traversal of ZDDs of
large-scale sparse datasets. His method adds one link per node to skip nodes
that are concatenated by 0-edges. Therefore the memory requirement of this
augmented data structure cannot be smaller than original ZDDs. Z-Skip-Links
make membership operations much faster than using conventional ZDD oper-
ations when handling large-scale sparse datasets. However, the computation
time is probabilistically analyzed only for average case.

3 Data structure

In this section, we describe our data structure DenseZDD which solves the two
problems defined in Section 2.2. We obtain the following results.

5

Theorem 1 Let u be the size of the ZDD that removes the zero-suppress rule
only for nodes pointed to by 0-edges. A ZDD with m nodes on n items can be
stored in 2u+m logm+ 3m+ o(u) bits so that the primitive operations except
getnode(i, v0, v1) are done in constant time. In other words, u is the size of
the ZDD with dummy nodes that are described below. The getnode(i, v0, v1)
operation is done in O(logm) time.

Theorem 2 A ZDD with m nodes on n items can be stored in O(m(logm +
log n)) bits so that the primitive operations are done in O(logm) time except
getnode(i, v0, v1). The getnode(i, v0, v1) operation is done in O(log2m) time.

3.1 DenseZDD

A DenseZDD DZ = 〈U,M, I〉 is composed of three data structures: a zero-edge
tree U , a dummy node vector M , and a one-child array I.

Zero-edge tree : The spanning tree of ZDD G formed by the 0-edges is called
the zero-edge tree of G and denoted by TZ . In a zero-edge tree, all 0-edges are
reversed and the 0-terminal node becomes the root of the tree. The preorder
rank of each node is used to identify it. Zero-edge trees are based on the same
idea as left or right trees by Maruyama et al. [6].

An important difference between our structure and theirs is the existence of
dummy nodes. We call nodes in the original ZDD as real nodes. We use the
zero-edge tree with dummy nodes, denoted by T ′Z . We create dummy nodes on
each 0-edge to guarantee that the depth of every real node v in the zero-edge
tree equals index (v). We define the depth of the 0-terminal node, the root of
this tree, to be 0. Let U be the BP of T ′Z . The length of U is O(mn) because we
create n− 1 dummy nodes for one real node in the worst case. An example of a
zero-edge tree and its BP are shown in Fig. 5. Black circles are dummy nodes
and the number next to each node is its preorder rank. The 0-terminal node is
ignored in the BP because we know the root of a zero-edge tree is always that
node.

Dummy node vector : A bit vector of the same length as U is used to
distinguish dummy nodes and real nodes. We call it the dummy node vector of
T ′Z and denote it by BD. The i-th bit is 1 if and only if the i-th parenthesis of U
is ‘(’ and its corresponding node is a real node in T ′Z . An example of a dummy
node vector is also shown in Fig. 5. The 0-terminal node is also ignored. Let
the FID of BD be M . Using M , we can determine whether a node is dummy or
real, and compute preorder ranks among only real nodes. We can also obtain
positions of real nodes on BP from their preorder ranks by the select operation
on M .

One-child array : An integer array to represent the 1-child of each node
is called the one-child array and denoted by CO. This array contains node
preorder ranks of all 1-children in preorder on TZ . That is, its i-th element is
the preorder rank of the 1-child of the nonterminal node whose preorder rank
is i. We also require one bit for each element of the one-child array to store the
∅-flag. If empflag(v) = 1 for a nonterminal node v, the corresponding element in
the one-child array will be negative. An example of a one-child array is shown

6

in Fig. 6. Let I be the compressed representation of CO. In I, one integer is
represented by dlog(m+ 1)e+ 1 bits, including one bit for the ∅-flag.

4 Algorithm

4.1 Conversion of an Ordinary ZDD to a DenseZDD

We show how to construct the DenseZDD. We first build the zero-edge tree
from the given ZDD. A pseudo-code is given in Fig. 9 in the appendix. The
zero-edge tree consists of all 0-edges of the ZDD, with their directions being
reversed. For a nonterminal node v, we say that v is a 0r-child of zero(v). To
make a zero-edge, we use a list revzero in each node, which stores 0r-children
of the node. The lists for all the nodes are computed by a depth-first traversal
of the ZDD. This is done in O(m) time and O(m) space, since each node is
visited at most twice and the total size of revzero is the same as the number of
nonterminal nodes.

We obtained a zero-edge tree T , but it is not an ordered tree. We de-
fine preorder rank prank(v) for every node v before traversal. The nodes in
revzero are sorted in descending order of their pairs 〈index , prank〉, that is,
index (revzero[i]) ≥ index (revzero[i + 1]) for 1 ≤ i < |revzero(v)|. Then, nodes
with higher indices are visited first. This ordering is useful to reduce the num-
ber of dummy nodes and to implement ZDD operations simply. It seems im-
possible to define visiting order of nodes by preorder rank of their 1-children
during computing preorder, but it is possible. Since a ZDD node v satisfies
index (v) > index (zero(v)) and index (v) > index (one(v)), we can decide prank
for every node by the pseudo code in Fig. 7, which is a BFS algorithm based
on index value starting from 0-terminal. To compute prank efficiently, we con-
struct the temporary BP for the zero-edge tree. Using the BP, we can compute
the size of each subtree rooted by v in T in constant time and compact space.

Next, we create dummy nodes imaginarily. For a node v, we create q =
max{ i ∈ {1, . . . , n} | i = index (revzero[j]) − 1, 1 ≤ j ≤ |revzero(v)| } dummy
nodes d1, . . . , dq such that triple(di) = 〈index (v)+ i, di−1,0〉, and empflag(di) =
0, 1 ≤ i ≤ q. For convention, d0 denotes v.

To sum up, the DenseZDD for the given ZDD is composed of the zero-
edge tree, the one-child array, and the dummy node vector. We traverse the
zero-edge tree in DFS order as if dummy nodes exist and construct the BP
representation U , the dummy node vector M , and the one-child array I. The
BP and dummy node vector are constructed for the zero-edge tree with dummy
nodes. On the other hand, the one-child array ignores dummy nodes. DenseZDD
DZ = 〈U,M, I〉 is obtained. Pseudo-codes are given in algorithms in Fig. 8,
and 9 in the appendix.

4.2 Primitive ZDD Operations

We show how to implement primitive ZDD operations on DenseZDD DZ =
〈U,M, I〉 except getnode. We give an algorithm for getnode in Section 5.

In the zero-edge tree, there are two types of nodes: real nodes and dummy
nodes. Real nodes are those in the ZDD, while dummy nodes have no corre-
sponding ZDD nodes. Real nodes are numbered from 1 to m based on preorders

7

in the tree. Below a node is identified with this number, which we call its node
number. We can convert between the node number i of a node and the posi-
tion p in the BP sequence U by p := select1(M, i) and i := rank1(M,p). The
0-terminal has node number 0 and nonterminal nodes have positive node num-
bers. If a node number of a negative value is used, it means a node with an
∅-flag.

In addition, we consider an additional primitive operation for DenseZDDs:
chkdum(p). This operation checks if a node at position p on U is a dummy node
or not. If it is a dummy chkdum returns false; otherwise it returns true. This
operation is implemented by simply looking at the p-th bit of M . If the bit is
0, then the node is dummy; otherwise it is a real node.

index (i) : Since the item of the node is the same as the depth of the node, we
can obtain index (i) := depth(U, select1(M, i)).

one(i) : one(i): Because 1-children are stored in preorder of the parents of
nodes, we can obtain one(i) := I[i].

topset(i, d) : The node topset(i, d) is the ancestor of node i in the zero-edge
tree with index d. A naive solution is to iteratively climb up the zero-edge tree
from node i until we reach a node with index d. However, as shown above,
the index of a node is identical to its depth. By using the power of the suc-
cinct tree data structure, we can directly find the answer by topset(i, d) :=
rank1(M, level ancestor(U, select1(M, i), d)).

zero(i) : Implementing the zero operation requires a more complicated tech-
nique. Consider a subtree T of the zero-edge tree consisting of the node i, its
real parent node r, all real children of r, and dummy nodes between those nodes.
As a pre-condition, the zero-edge tree is constructed by Algorithm 9 in the ap-
pendix. That is, for the children of r, the nodes with higher index value have
smaller preorder, and the imaginary parents of the children are dummy nodes
(or i) that are added on the edge between r and the child having the highest
index value. Computing zero(i) is equivalent to finding r. Because the chil-
dren of r are ordered from left to right in descending order of their depths, and
dummy nodes are shared as much as possible, the deepest node in T is on the
leftmost path from r. Furthermore, the parents of other real children are also on
the leftmost path. This property also holds in the original zero-edge tree. The
dummy node vector BD stores flags in the preorder in the zero-edge tree. Then
BD[pr] = BD[pi] = 1, where pr and pi are positions of nodes r and i in the BP
sequence U , and BD[j] = 0 for any pr < j < pi. Therefore we can find pr by a
rank operation. In summary, zero(i) := rank1(M, parent(U, select1(M, i))).

4.3 Compressing the Balanced Parentheses Sequence

The balanced parentheses sequence U is of length 2u, where u is the number of
nodes including dummy nodes. Let a ZDD have m real nodes and the number
of items be n, u is mn in the worst case. Here we compress the BP sequence U .

The BP sequence U consists of at most 2m runs of identical symbols. To see
this, consider the substring of U between the positions for two real nodes. There

8

is a run ‘)))...’ followed by a run ‘(((...’ in the substring. We encode lengths
of those runs using some integer encoding scheme such as the delta-code or the
gamma-code [3]. An integer x > 0 is encoded in O(log x) bits. Because the
maximum length of a run is n, U can be encoded in O(m log n) bits. The range
min-max tree of U has 2m/ logm leaves. Each leaf corresponds to a substring
of U that contains logm runs. Then any tree operation can be done in O(logm)
time. The range min-max tree is stored in O(m(log n+ logm)/ logm) bits.

We also compress the dummy node vector BD. Because its length is 2u ≤
2mn and there are only m ones, it can be compressed in m(2+logm)+o(u) bits
by FID. The operations select1 and rank1 take constant time. We can reduce
the term o(u) to o(m) by using a sparse array [14]. The operation select1 is done
in constant time, while rank1 takes O(logm) time. From the discussions above,
we can prove Theorem 1 and Theorem 2. For the proof, see the appendix.

5 Hybrid method

In this section, we show how to implement dynamic operations on DenseZDD.
Namely, we need to implement the getnode(i, v0, v1) operation. Our approach
is to use a hybrid data structure using both the DenseZDD and a conventional
dynamic ZDD. Assume that initially all the nodes are in a DenseZDD. Let m0 be
the number of initial nodes. In a dynamic ZDD, the operation getnode(i, v0, v1)
is implemented by a hash table indexed with the triple 〈i, v0, v1〉.

We show first how to check whether the node v := getnode(i, v0, v1) already
exists. That is, we want to find a node v such that index (v) = i, zero(v) = v0,
one(v) = v1. If v does not exist, we create such a node using the hash table as
well as a dynamic ZDD. If it exists, in the zero-edge tree, v is a real child node of
v0. Consider again the subtree of the zero-edge tree rooted at v0 and having all
real children of v0. All children of v0 with index i share the common (possible
dummy) parent node, say w. Because w is on the leftmost path in the subtree,
it is easy to find it. Namely, w := level ancestor(U, select1(M, rank1(M, v0) +
1), i). The node v is a child of w with one(v) = v1. Because all children of
w are sorted in the order of one values by the construction algorithms, we can
find v by a binary search. For this, we use degree and child operations on the
zero-edge tree.

Theorem 3 The existence of getnode(i, v0, v1) can be checked in O(t logm)
time, where t is the time complexity of primitive ZDD operations.

If the BP sequence is not compressed, getnode takes O(logm) time. Otherwise
it takes O(log2m) time. We should check the hash table before checking the
zero-edge tree if dynamic nodes are already exist. As well as a conventional
ZDD, hashing increases constant fanctors of time bounds significantly and add
space bound O(x log x) where x is the number of dynamic nodes.

6 Experimental Results

We ran experiments to evaluate the compression, construction, and operation
times of DenseZDDs. We implemented the algorithms described in Sec. 3 and 4

9

Table 2: Comparison of performance, where δ denotes the dummy node ratio
data set #items #nodes #itemsets size (bytes) comp. ratio δ

Z Z DZ DZc DZ DZc
grid5 40 584 8,512 17,520 2,350 2,196 0.134 0.126 0.28
grid10 180 377,107 4.1×1020 11,313,210 1,347,941 1,265,773 0.119 0.112 0.20
grid15 420 1.5×108 2.3×1048 4,342,789,110 678,164,945 647,843,001 0.156 0.149 0.19
webview5 952 2,299 11,928 10,592,760 3,871,679 1,851,889 0.365 0.174 0.93
webview10 1,617 6,060 70,713 281,700 1,034,471 477,299 0.367 0.169 0.93
webview20 2,454 30,413 634,065 912,390 290,661 140,873 0.318 0.154 0.92
webview50 2,905 93,900 4.4×106 181,800 44,846 24,596 0.246 0.135 0.88
webview100 3,149 353,092 2.7×107 68,970 11,455 7,967 0.166 0.115 0.75
webviewALL 3,149 465,449 3.2×107 13,963,470 4,964,303 2,413,625 0.355 0.172 0.92
randjoin128 32,696 6,751 2.5×108 202,530 408,149 99,117 2.015 0.489 0.99
randjoin2048 32,768 377,492 1.8×1013 11,324,760 2,415,648 1,511,658 0.213 0.133 0.82
randjoin8192 32,768 1.3×106 3.7×1015 38,094,930 5,328,502 4,386,452 0.139 0.115 0.42
randjoin16384 32,768 1.9×106 2.8×1016 56,447,280 7,056,418 6,113,910 0.125 0.108 0.14

Table 3: Converting time and random searching time
data set conversion time (sec) traverse time (sec) search time (sec)

read convert const. comp. Z DZ DZc Z DZ DZc
grid5 0.001 0.001 0.009 0.000 0.000 0.001 0.006 0.029 0.038 0.229
grid10 0.461 0.634 0.449 0.060 0.075 0.247 1.388 0.005 0.013 0.056
grid15 124.887 407.502 112.379 8.186 41.214 102.673 398.397 0.006 0.011 0.064
webview5 0.256 0.690 1.361 0.055 0.066 0.154 0.250 1.966 0.045 0.099
webview10 0.217 0.226 0.564 0.041 0.017 0.042 0.073 1.901 0.043 0.100
webview20 0.066 0.036 0.313 0.022 0.005 0.014 0.027 1.875 0.046 0.101
webview50 0.013 0.019 0.050 0.004 0.002 0.020 0.005 1.314 0.273 0.102
webview100 0.004 0.002 0.017 0.001 0.000 0.004 0.007 0.777 0.129 0.376
webviewALL 0.551 0.927 1.644 0.108 0.091 0.207 0.346 1.706 0.049 0.105
randjoin128 0.004 0.053 0.149 0.008 0.001 0.002 0.003 0.527 0.044 0.095
randjoin2048 0.243 0.742 0.946 0.029 0.093 0.126 0.145 8.071 0.044 0.098
randjoin8192 0.858 2.573 1.259 0.043 0.338 0.240 0.304 15.604 0.039 0.092
randjoin16384 1.270 5.016 1.471 0.070 0.676 0.353 0.447 19.501 0.040 0.093

in C/C++ languages on top of the SAPPORO BDD package [9]. The package
is general implimentation of ZDD with 0-element edges, and uses 30 bytes per
ZDD node. We performed experiments on eight quad-core 3.09 GHz AMD
Opteron 8393 SE processors (i.e, 32 CPU cores in total) and 512 GB DDR2
memory shared among cores running. SUSE 10 Our algorithms use a single
core since they are not parallelized.

We show the characteristics of the ZDDs in Table 2. Original ZDDs are de-
noted by Z. DenseZDDs without/with compression of the balanced parentheses
sequences of the zero-edge trees are denoted by DZ/DZc , respectively.

As real data sets, for N = 5, 10, 20, 50, 100, the source ZDD webviewN was
constructed from the data set BMS-Web-View-23 by using mining algorithm
LCM over ZDD [12] with minimum support N . For artificial data sets, the
ZDD gridN represents all self-avoiding paths on an N ×N grid graph from the
top left corner to the bottom right corner [5]4. Finally, randjoinN is a ZDD that
represents the join C1 t · · · t C4 of four ZDDs for random families C1, . . . , C4

3http://fimi.ua.ac.be
4An algorithm animation: http://www.youtube.com/watch?v=Q4gTV4r0zRs

10

consisting of N sets of size one drawn from the set of n = 32768 items.
In Table 2 we show the sizes of the original ZDD, the DenseZDD with/without

compression and their compression ratio. We compressed FID for dummy node
vector if the dummy node ratio is more than 75%. In almost cases, we observe
that the DenseZDD is from 2.5 to 9 times smaller than the original ZDD, and
that compressed DenseZDD is from 6 to 9 times smaller than the original ZDD.
The compressed DenseZDD is quarter the size of the DenseZDD in the best
case, and is half the size of the original ZDD in the worst case. For most of our
data sets, the ratio δ of the number of dummy nodes to the size of DenseZDD
is roughly 90%, except for gridN and randjoin16384 .

In Table 3, we show the conversion times from ZDDs to DenseZDDs, traver-
sal times, and search times on ZDDs and DenseZDDs. Conversion time is com-
posed of four parts: time to read a file containing a stored ZDD and reconstruct
the ZDD, convert it to raw parentheses, bits, and integers, construct succinct
representation of them, and compress the BP of the zero-edge tree. The conver-
sion time appears almost linear in the input size showing its scalability for large
data. Traverse operation used zero(v) and one(v), while membership operation
used topset(v, i) and one(v). We observed that the DenseZDD has almost twice
longer traverse time and more than 10 times shorter search time than an original
ZDD. These results show the efficiency of our implementation of the topset(v, i)
operation on DenseZDD using level-ancestor operations.

From the above results, we conclude that DenseZDDs are more compact
than ordinary ZDDs unless the dummy node ratio is extremely high, and the
membership operations for DenseZDDs are much faster if the number of items
is large or the dummy node ratio is small. We observed that in DenseZDDs,
traversal time is approximately double and search time approximately one-tenth
compared to the original ZDDs. The traversal is accelerated especially for large-
scale sparse datasets because the number of nodes connected by 0-edges grows as
large as the index number n. Recently, processing of “Big Data” have attracted
a great deal of attention, and we often deal with a large-scale sparse dataset,
which has more than ten thousands of items as the columns of a dataset. In the
era of Big Data, we expect that DenseZDD will be effective for various real-life
applications, such as data mining, system diagnosis, and network analysis.

7 Conclusion

In this paper, we have presented a compressed index for static ZDDs named
DenseZDD. We also proposed a hybrid method for dynamic operations on
DenseZDD so that we can manipulate DenseZDD and conventional ZDD to-
gether. For future work, the one-child array should be stored in more compact
space. Constructing the DenseZDD from the normal ZDD using external mem-
ory is an important open problem. We will implement the hybrid method on
our ZDD package and convert/update algorithm with less memory. We expect
that our technique can be extended to other variants of BDDs.

Acknowledgments

The authors would like to thank Prof. Roberto Grossi, Prof. Rajeev Raman,
and Dr. Yasuo Tabei for their discussions and valuable comments. This work
was supported by Grant-in-Aid for JSPS Fellows 25-193700. This research was

11

partly supported by Grant-in-Aid for Scientific Research on Innovative Areas
— Exploring the Limits of Computation, MEXT, Japan and ERATO MINATO
Discrete Structure Manipulation System Project, JST, Japan. KT is supported
by JST CREST and JSPS Kakenhi 25106005. KS is supported by JSPS KAK-
ENHI 23240002.

References

[1] Randal E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[2] Shuhei Denzumi, Ryo Yoshinaka, Hiroki Arimura, and Shin-ichi Minato.
Notes on sequence binary decision diagrams: Relationship to acyclic au-
tomata and complexities of binary set operations. In Prague Stringology
Conference 2011, pages 147–161, Prague, 2011.

[3] Peter Elias. Universal codeword sets and representation of the integers.
IEEE Transactions on Information Theory, IT-21(2):194–203, 1975.

[4] Esben Rune Hansen, S. Srinivasa Rao, and Peter Tiedemann. Compress-
ing binary decision diagrams. In 18th European Conference on Artificial
Intelligence, pages 799–800, 2008.

[5] Donald E. Knuth. Combinatorial Algorithms, part 1: Volume 4A of The
Art of Computer Programming. Addison-Wesley Professional, Boston, 1st
edition, 2011.

[6] Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi
Sakamoto. ESP-index: A compressed index based on edit-sensitive parsing.
Journal of Discrete Algorithms, 2013.

[7] P. Mateu-Villarroya and J. Prades-Nebot. Lossless image compression using
ordered binary-decision diagrams. Electronics Letters, 37:162–163, 2001.

[8] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combi-
natorial problems. In 30th international Design Automation Conference,
pages 272–277, 1993.

[9] Shin-ichi Minato. SAPPORO BDD package. Division of Computer Science,
Hokkaido University, 2012. to be released.

[10] Shin-ichi Minato. Z-skip-links for fast traversal of zdds representing large-
scale sparse datasets. In ESA 2013, volume 8125 of LNCS, pages 731–742,
Heidelberg, 2013. Springer.

[11] Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision
diagram with attributed edges for efficient Boolean function manipulation.
In 27th international Design Automation Conference, pages 52–57, 1990.

[12] Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura. LCM over ZBDDs:
Fast generation of very large-scale frequent itemsets using a compact graph-
based representation. In Advances in Knowledge Discovery and Data Min-
ing, volume 5012 of LNCS, pages 234–246, Heidelberg, 2008. Springer.

12

[13] Gonzalo Navarro and Kunihiko Sadakane. Fully-functional static and dy-
namic succinct trees. ACM Transactions on Algorithms, 2010. Accepted A
preliminary version appeared in SODA 2010.

[14] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed
rank/select dictionary. In Ninth Workshop on Algorithm Engineering and
Experiments, pages 60–70, 2007.

[15] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding k-ary trees, prefix sums
and multisets. ACM TALG, 3(4):43:1–43:25, 2007.

[16] Mike Starkey and Randy Bryant. Using ordered binary-decision diagrams
for compressing images and image sequences. Technical Report CMU-CS-
95-105, Carnegie Mellon University, 1995.

13

A Succinct data structures

A.1 Succinct data structures for rank/select

Let B be a binary vector of length u, that is, B[i] ∈ {0, 1} for any 0 ≤ i < u.
The rank value rank c(B, i) is defined as the number of c’s in B[0..i], and the
select value selectc(B, j) is the position of j-th c (j ≥ 1) in B from the left. Note
that rank c(B, selectc(B, j)) = j holds if j ≤ rank c(B,n− 1), the number of c’s
in B. The predecessor predc(B, i) is defined as the position j of the rightmost
c = B[j] to the left of B[i]. The predecessor is computed by predc(B, i) :=
selectc(B, rank c(B, i)).

The Fully Indexable Dictionary (FID) is a data structure for computing rank
and select on binary vectors [15].

Theorem 4 (Raman et al. [15]) For a binary vector of length u with n ones,
its Fully Indexable Dictionary uses

(
u
n

)
+O(u log log u/ log u) bits of space and

computes rank c(B, i) and selectc(B, i) in constant time on the Ω(log u)-bit word
RAM.

This data structure uses asymptotically optimal space because any data struc-
ture for storing the vector uses d

(
u
n

)
e bits in the worst case. Such a data structure

is called a succinct data structure.

A.2 Succinct data structures for trees

An ordered tree is a rooted unlabeled tree such that children of each node have
some order. A succinct data structure for an ordered tree with n nodes uses
2n + o(n) bits of space and supports various operations on the tree such as
finding the parent or i-th child, computing the depth or the preorder of a node,
etc., in constant time [13]. An ordered tree with n nodes is represented by
a string of length 2n called a balanced parentheses sequence (BP), defined by
a depth-first traversal of the tree. Starting from the root, we write an open
parenthesis ‘(’ if we arrive at a node from above, and a close parenthesis ‘)’ if
we leave from a node upward.

In this paper, the following operations are used. Let P denote the BP
sequence of a tree. A node is identified with the position of the open parenthesis
in P representing the node.

• depth(P, i): the depth of a node at position i. (The depth of a root is 0.)

• preorder(P, i): the preorder of a node at position i.

• level ancestor(P, i, d): the position of the ancestor with depth d of node
i.

• parent(P, i): the position of the parent of node i (identical to level ancestor(P ,
i, depth(P, i)− 1)).

• degree(P, i): the number of children of node i.

• child(P, i, d): the d-th child of node i.

14

The operations take constant time.
A brief overview of the data structure is the following. The BP sequence is

partitioned into equal-length blocks. The blocks are stored in leaves of a rooted
tree called range min-max tree. In each leaf of the range min-max tree, we store
the maximum and the minimum values of node depths in the corresponding
block. In each internal node, we store the maximum and the minimum of values
stored in children of the node. By using this range min-max tree, all tree
operations are implemented efficiently.

B Proof

Following is the proof for Theorem 1 and 2.

Proof 1 We first prove Theorem. 1. From the above discussion, the BP U
of zero-edge tree costs 2u = O(mn) bits where u is the size of corresponding
quasi-ZDD. The one-child array needs m logm bits for 1-children and m bits
for ∅-flags. Using FID, the dummy node vector is stored in m(2 + logm) + o(u)
bits. Therefore, the DenseZDD can be stored in 2u+m logm+ 3m+ o(u) bits
and primitive operations except getnode are done in constant time because the
rank1, select1, and any tree operations take constant time. Since the getnode
finds a target node by binary search, it takes O(logm) (described in Sec. 5).

Next, we prove Theorem 2. When we compress U , it can be stored in
O(m log n) bits and the min-max tree is stored in O(m(log n + logm)/ logm)
bits. The dummy node vector can be compressed in m(2 + logm) + o(m) bits
by FID with sparse array. But, the time order of any tree operations and the
rank1 operation is changed from constant time to O(logm) time. Therefore,
the DenseZDD can be stored in O(m(logm + logn)) bits and primitive opera-
tions take O(logm) times larger than the above time because all of them use tree
operations or rank1 on M .

15

C Pseudo codes

C.1 Algorithm to Compute Preorder of Nodes in Advance

'

&

$

%

Global vaiables: L1, . . . , Ln are list which are empty initially.
ALGORITHM Compute Preorder (L0)
Input: L0: a list stores only 〈{0}, [0, stsize(0)− 1]〉;

1: for i = 0, . . . , n
2: for each 〈A, [l, r]〉 ∈ Li in arbitrary order % A is a set of nodes
3: for each v ∈ A in descending order of 〈prank(one(v)), empflag(v)〉
4: prank(v)← l++;
5: for each j ∈ {j |w ∈ revzero(v), j = index (w)} in descending order
6: A← { w |w ∈ revzero(v), index (w) = j };
7: r ← l + sum{ stsize(w) |w ∈ B };
8: append 〈B, [l, r]〉 to Lj ;

% That is, the prank of descendants of nodes in B are in [l, r].
9: l← r + 1;

10: return;

Figure 7: An algorithm which computes the preorder rank prank(v) of each
node v. Sets of nodes are implemented by arrays or lists in this code. The
prank(0) is 0.

16

C.2 Algorithm to Compute a Zero-edge Tree and a Dummy
Node Vector'

&

$

%

ALGORITHM Convert ZDD BitVectors (v, paren, dummy, onechild)
Input: ZDD node v, list of parentheses paren,
list of bits dummy, list of integers onechild

1: i = index (v);
2: for each w ∈ revzero(v) in ascending order of prank(w);
3: while i+ 1 < index (w)
4: append ‘(’ to paren, and ‘0’ to dummy;
5: ++i;
6: append ‘(’ to paren, and ‘1’ to dummy;
7: append prank(one(w)) · (−1 · empflag(w)) to onechild;
8: Convert ZDD BitVectors(w, paren, dummy, onechild);
9: append ‘)’ to paren, and ‘0’ to dummy;

10: while i > index (v)
11: append ‘)’ to paren, and ‘0’ to dummy;
12: −−i;
13: return;

Figure 8: Algorithm for obtaining the BP representation of the zero-edge tree,
the dummy node vector, and the one-child array.

17

C.3 Algorithm to Convert a DenseZDD from an Ordinary
ZDD'

&

$

%

ALGORITHM Construct DenseZDD (W : list of ZDD root)
Output: DenseZDD DZ

1: for each v ∈ V compute revzero fields for all descendants of v;
2: compute stsize field for all 0r-decsendants;
3: Compute Preorder({〈{0}, [0, stsize(0)− 1]〉});
4: create empty lists paren, dummy, onechild;
5: append ‘(’ to paren, and ‘0’ to dummy;
6: Convert ZDD BitVectors(0, paren, dummy, onechild);
7: append ‘)’ to paren, and ‘0’ to dummy;
8: make BP U from paren;
9: make FID M from dummy;

10: make compressed representation I of onechild;
11: return DZ ← 〈U,M, I〉;

Figure 9: Algorithm for constructing the DenseZDD from a source ZDD.

18

