
TCS -TR-A-14-74

TCS Technical Report

Packet Classification for Global Network View of

Software-Defined Networking

by

Takeru Inoue, Toru Mano, Kimihiro Mizutani,

Shin-ichi Minato, and Osamu Akashi

Division of Computer Science

Report Series A

July 16, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Packet Classification for Global Network View of

Software-Defined Networking

Takeru Inoue∗† Toru Mano† Kimihiro Mizutani†

Shin-ichi Minato‡ Osamu Akashi†

July 16, 2014

Abstract

In software-defined networking, applications are allowed to access a global
view of the network so as to provide sophisticated functionalities, such as
quality-oriented service delivery, automatic fault localization, and network
verification. All of these functionalities commonly rely on a well-studied tech-
nology, packet classification. Unlike the conventional classification problem
to search for the action taken at a single switch, the global network view re-
quires to identify the network-wide behavior of the packet, which is defined
as a combination of switch actions. Conventional classification methods, how-
ever, fail to well support network-wide behaviors, since the search space is
complicatedly partitioned due to the combinations.

This paper proposes a novel packet classification method that efficiently
supports network-wide packet behaviors. Our method utilizes a compressed
data structure named the multi-valued decision diagram, allowing it to ma-
nipulate the complex search space with several algorithms. Through detailed
analysis, we optimize the classification performance as well as the construc-
tion of decision diagrams. Experiments with real network datasets show that
our method identifies the packet behavior at 20.1 Mpps on a single CPU core
with only 8.4 MB memory; by contrast, conventional methods failed to work
even with 16 GB memory. We believe that our method is essential for realizing
advanced applications that can fully leverage the potential of software-defined
networking.

1 Introduction

Software-Defined Networking (SDN) [1] is a new paradigm that separates the con-

trol and forwarding planes in a network. The control plane, which is operated

∗takeru.inoue@ieee.org
†NTT Network Innovation Laboratories, Yokosuka, Japan.
‡Graduate School of Information Science and Technology, Hokkaido University, Sapporo,

Japan.

1

2 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

by a logically centralized controller, provides a global view of the distributed net-

work state. This global view allows SDN applications running on the control plane

to readily identify network-wide packet behaviors, e.g., which path the packet tra-

verses, whether the packet is discarded in the network, and what actions the packet

is subjected to at middle boxes. Many applications have been developed that utilize

the network-wide packet behavior to offer sophisticated functionalities.

• In quality-oriented services [2] and an upcoming infrastructural paradigm

called “network fabric” (separation of intelligence from the network core) [3,

4], the network edge is assumed able to determine the network-wide behavior

for every incoming packet.

• Reference [5] proposed an automatic fault localization technique that exploits

the differences between actual packet behavior monitored in the network and

the theoretical behavior estimated from the global view.

• References [6–11] estimate the network-wide packet behavior from the net-

work status, in order to verify conformity with a network policy.

An method that can efficiently determine the network-wide behavior of a packet

is essential to successfully implementing these advanced applications; they cannot

work if only the action to be taken at a single switch can be identified.

1.1 Summary and Limitations of Prior Art

Packet classification [12–20], a functionality that determines the action taken on

a packet based on multiple header fields, has been a key technology in modern

networks to provide services beyond basic packet forwarding, such as access con-

trol, quality of services, and traffic monitoring and analysis. Packet classifica-

tion has been extensively studied in the past fifteen years, and the state-of-the-art

method [16] looks up large classifiers with tens of thousands of rules very efficiently.

These well-studied methods are, however, easily overwhelmed by the complexity

of handling network-wide behaviors. This is because, as shown in Fig. 1, network-

wide behavior is defined as the combinations of switch actions. Our preliminary

experiments on the Stanford backbone network [10], which is a medium-scale net-

work with 16 switches, 757,170 forwarding rules, and 1,584 ACL rules, revealed

that the classification method of [16] fails to construct a classifier of the network-

wide behaviors, exhausting the available computer memory of 16 GB. The main

cause of this failure is that the search space defined by the packet header was par-

titioned into a huge number of blocks; 652 million rules were required to express

the complicated space, but the conventional methods baulk at this number.

In order to efficiently handle such a complicated partitioned space, some net-

work verifiers [6–8] employ Binary Decision Diagrams (BDDs) [21], which are a

compressed data structure designed to represent Boolean functions. Due to the

great space efficiency of BDDs, only 6.6 MB memory was required to represent

Packet Classification for Global Network View of Software-Defined Networking 3

Field1	
 Field2	
 Action	

*	
 [3,4]	
 Drop	

[4,5]	
 *	
 A1	

[6,7]	
 *	
 A3	

[0,3]	
 *	
 A2	

A1	

Field1	

Fi
el

d2
	

0	
 7	

0	

7	

Drop	

A2	
 A1	
 A3	

Actions at switches	

Network-wide packet behaviors	

B	

A2	

A3	

Field1	
 Field2	
 Action	

[0,3]	
 [2,5]	
 B2	

[4,5]	
 *	
 B1	

[7,7]	
 [1,3]	
 B3	

*	
 *	
 Drop	

Field1	
 Field2	
 Action	

[2,2]	
 [1,3]	
 C2	

[4,5]	
 *	
 C1	

[6,7]	
 *	
 C3	

*	
 *	
 Drop	

Example network	

B1	

B2	

B3	

C3	

C2	

C1	

A	
 B	
 C	

A	
 C	

I	

Field1	

Fi
el

d2
	

0	
 7	

0	

7	

B2	

B3	

Field1	

Fi

el
d2
	

0	
 7	

0	

7	

C
2	

C1	
C3	

Drop	
 Drop	

Field1	

Fi
el

d2
	

0	
 7	

0	

7	
 Drop	

B1	

I	

II	

III	
IV	

V	

VI	

VII	

VIII	

IX	

X	

XI	

XII	

A	
 B	
 C	
II	

A	
 B	
 C	
III	

XII	

:	

A	
 B	
 C	

Figure 1: Search space defined by packet header and network-wide packet behaviors.
The example network at the top includes three switches (A, B, and C), each of which has
three ports. Each switch has a table that maintains several rules, and each rule associates
two header fields (field1 and field2 of 3-bit) with actions. The two-field header space (a
square) is divided into only seven blocks at switch A, but it is partitioned into 17 blocks
for the twelve network-wide behaviors as shown in the bottom.

the Stanford backbone in our experiments. However, a behavior must be looked

up by linear search which is impractically slow; considering the several Boolean

functions represented in BDDs, each of which maps the header space exclusively

to a network-wide packet behavior, these functions must be tested individually to

determine the packet behavior (e.g., in Fig. 1, twelve Boolean functions have to be

tested one by one). In our experiments on the Stanford backbone, which has 1,093

network-wide behaviors, only 5.78 Kpps was achieved with BDDs. Classification

throughput should exceed 10 Mpps in order to examine packets at line rate on 10

Gbps links.

As discussed so far, no method has been introduced that can identify network-

wide packet behavior with the necessary time and space efficiency. This deficiency

imposes the following limitations on the SDN applications discussed earlier on.

4 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

• Quality-oriented services and network fabric cannot be realized in a complex

network like the Stanford backbone, whose complicated network-wide packet

behaviors cannot be maintained by network edge switches using conventional

classification methods.

• Reference [5] only employs predefined test packets for failure detection, since

it is hard for conventional methods to identify the theoretical network-wide

behavior for arbitrary packets; this restriction might hinder the resolution of

faulty behaviors of production traffic.

• References [6–11] can test only a few properties every few msec, which may

cause serious policy violations to be overlooked if a lot of properties have to

be checked in real-time.

Similar limitations are faced by other applications. In addition, the limitations will

hinder the advent of more advanced SDN applications. To remove the limitations

and leverage the full potential of SDN, it is imperative to develop a new classifica-

tion method satisfying the following requirements; the complicated header space

of network-wide packet behaviors should be represented compactly enough to fit

within a fast cache memory, and packets at the rate of beyond 10 Mpps should be

classified based on their network-wide behavior. Rapid construction and update

of classifiers are also appreciated.

1.2 Our Contributions

This paper proposes a novel packet classification method that meets the above

requirements. Our idea is simple but very effective. Boolean functions, each of

which is associated with a single behavior, are unified into a single multi-valued

function representing a whole classifier by itself. This multi-valued function is rep-

resented by a data structure named the multi-valued decision diagram (MDD) [22],

a variant of BDD. Since this unification removes the slow linear search from the

classification process, the throughput can be greatly improved while maintaining

the space-efficiency of BDDs.

Our method is two-fold.

• An efficient algorithm that constructs the MDD from a set of BDDs repre-

senting Boolean functions, is presented. The construction process is analyzed

and optimized by reducing it to Huffman coding. Upon receipt of a new

packet behavior, the MDD can be incrementally updated in a short time.

• A very simple and fast algorithm examines the MDD to classify packets based

on their behaviors. Another algorithm further accelerates the classification

process by regarding a bunch of header bits as a single variable. The time-

space tradeoff entailed in the bit aggregation is analyzed.

Packet Classification for Global Network View of Software-Defined Networking 5

Our method is evaluated with three real network configurations: Internet21,

Stanford backbone network [10], and Purdue campus network [23]. In the case of

Stanford, the MDD only requires 8.4 MB of memory, which fits within fast CPU

cache. The classification throughput is 20.1 Mpps on a single CPU core, nearly

3,500 times faster than conventional BDD methods. The MDD is constructed in

0.93 sec, and a new behavior can be added just in 29 msec.

Our method does not require any special hardware support like TCAMs, and

can be applied to any use case without significant difficulties. In this paper, our

method is implemented as a fully software-based classifier assuming its use in

software-based SDN applications, but it is so simple that it can be realized as a

hardware-based system.

The rest of this paper is organized as follows. After defining our problem in

Section 2, Section 3 reveals deficits of conventional methods. Section 4 designs our

method, and Section 5 elaborates algorithms used in the method. Section 6 reports

the experiments and their results, and Section 7 discusses application aspects.

Section 8 summarizes related work, and Section 9 concludes this paper.

2 Problem Statement

The logical search space defined by the L-bit packet header is denoted by X =

{0, 1}L, and is called the header space [10] (e.g., a square in Fig. 1 represents a

header space of L = 3 + 3). Packet header x corresponds to a point in the header

space, x ∈ X . The protocol-specific semantics of the packet header are ignored in

our method, and a packet header is considered as a flat sequence of bits.

The header space is partitioned into equivalent subspaces, each of which corre-

sponds exclusively to a single behavior (e.g., the bottom square of Fig. 1 has twelve

equivalent subspaces). An equivalent subspace is not necessarily continuous, and

can consist of several blocks, where block is used to specify a continuous subspace.

Let Xi be an equivalent subspace that maps to the i-th behavior, the subspace is

defined as,

Xi = {x ∈ X : fi(x) = >},
where fi(x) is a Boolean function indicating whether a packet with header x follows

the i-th behavior, fi : X → {⊥,>}, and ⊥ is false and > is true. Since equivalent

subspaces are mutually exclusive, Xi ∩Xj = ∅ (i 6= j), and collectively exhaustive,⋃
iXi = X , they form a partition of header space X , P , as follows,

P = {XI, XII, · · · , X|P |}.

The equivalent subspaces, Xi’s, and corresponding Boolean functions, fi’s, are

obtained by utilizing switch actions as follows [8]. Given P1 and P2 as arbitrary

partitions of X , we define operation ⊗ as,

P1 ⊗ P2 = {X ∩ Y : X ∈ P1, Y ∈ P2, X ∩ Y 6= ∅}.
1http://vn.grnoc.iu.edu/Internet2/fib/

6 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

Using this operation, the whole header space is then partitioned into equivalent

subspaces as follows,

P =
⊗

j

Pj , (1)

where Pj is a partition defined by the actions of the j-th switch (e.g., a square in

the middle of Fig. 1)2. This operation divides the header space into several blocks,

which become combinatorially finer (e.g., the bottom square is much finer than

middle squares in Fig. 1). In other words, intersecting rules of different switches

spawn new blocks to distinguish network-wide behaviors, while rules on a single

switch are simply masked by higher-priority rules if intersected.

Multi-valued function F is defined by,

F : X → {nil, I, II, · · · , |P |},

where F (x) = i if and only if header x is in the i-th equivalent subspace, x ∈ Xi.

A multi-valued function that cannot be “nil” is called a complete multi-valued

function, and can be used as a packet classifier.

Our goal in this paper is to construct an efficient data structure representing a

complete multi-valued function, F , given a set of Boolean functions, fi’s.

3 Inefficiencies of Conventional Packet Classification
Methods

This section identifies why conventional packet classification methods fail to sup-

port network-wide packet behaviors. There are two major conventional approaches;

algorithmic methods [12–16] usually construct a decision tree to represent the

header space, while architectural methods [17–20] often try to reduce the number

of rules to fit them in space-limited TCAMs. These conventional methods com-

monly depend on the following assumption; the header space is a multi-dimensional

space defined by each header field (not each bit like our definition), and it is covered

by a set of hypercubes, where a hypercube is a convex block defined by a range or

prefix in each field. To resolve possible conflicts among hypercubes, they are given

an overall total order. Normally, hypercubes are specified by a list of “5-tuple”

rules (i.e., source/destination IP, source/destination port, and protocol).

The computational complexity of both conventional approaches depends on the

number of hypercubes, as follows.

• In a decision tree, the root node represents the whole header space, which

is recursively divided at every intermediate node until a few rules are left

2Note that these partitions, Pj ’s, might be given for each port as well as each switch, depending
on network configuration.

Packet Classification for Global Network View of Software-Defined Networking 7

at a leaf node. The space complexity is known as O(ND) for O(logN)

classification time [24], where N is the number of hypercubes and D is the

number of header fields. The required space in practice could be smaller than

this worst-case bound, but it still depends on the number of hypercube rules

because the decision tree must be large enough to divide the rule set into

several subsets with a few rules.

• Rule reduction methods reduce the number of hypercube rules by merging

those of the same action into a single large hypercube; in the following ex-

ample, the left set of hypercube rules is reduced to the right set.

IP destination Action
0.0.0.0/3 Drop
32.0.0.0/3 A1
64.0.0.0/2 Drop
128.0.0.0/1 Drop

IP destination Action
32.0.0.0/3 A1
0.0.0.0/0 Drop

The time complexity of TCAM razor, the most-cited rule reduction method,

is roughly considered to be O(DNAL2), where A is the number of ac-

tions/behaviors, since it performs dynamic programming of O(NAL2) [25]

for each header field.

The number of hypercubes, N , is examined for the three real networks (the

statistics are given in Section 6). To our knowledge, there is no technique that can

calculate a set of hypercubes to represent a header space of network-wide behavior,

and so hypercubes are extracted from BDDs of fi’s.

Internet2 Stanford Purdue
of hypercubes 35,700 652,115,821 834,648,394

The numbers for Stanford and Purdue networks are extremely large. This is be-

cause Stanford and Purdue include multi-field rules, which incurs the curse of

dimensionality [26]. Internet2 dataset includes single-field rules only, and so it has

a moderate number of hypercubes.

Against these networks, we evaluate three conventional methods: two decision

tree methods, HyperCuts [12] and HybridCuts [16], and one rule reduction method,

TCAM razor [18]. Open-source implementations were available for HyperCuts3

and HybridCuts4, while our own implementation was developed for TCAM razor.

As shown in the following table, the single success was achieved by HybridCuts for

Internet2; otherwise, the conventional methods exhausted 16 GB memory or did

not finish in a half hour.

Internet2 Stanford Purdue
HyperCuts fail (memory) fail (memory) fail (memory)
HybridCuts success fail (memory) fail (memory)
TCAM razor fail (timeout) fail (timeout) fail (timeout)

3http://hypercuts.masicek.net/, by Charles University.
4http://github.com/lwj4333765/HybridCuts, by the authors of HybridCuts.

8 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

To recap, although the header space of network-wide behavior requires a huge

number of hypercube rules to represent it, the computational complexity of con-

ventional methods is directly dependent on the number. In order to remove this

dependency, our method should be constructed from a compressed representation

like BDDs where individual rules do not need to be examined.

4 Abstract Procedure of Proposed Method

This section describes the abstract procedure of our method; algorithms to imple-

ment the procedure are given in Section 5.

Our method, first, builds incomplete multi-valued function Fi from the Boolean

function of the i-th behavior, fi. Function Fi maps the header space to just the

i-th behavior, as follows,

Fi : X → {nil, i},
where Fi(x) = i if fi(x) = >, or Fi(x) = nil otherwise.

Since two equivalent subspaces, Xi and Xj (i 6= j), are mutually exclusive, two

incomplete multi-valued functions, Fi and Fj , never define behaviors for the same

packet header; i.e., ∀x ∈ X , Fi(x) = nil∨Fj(x) = nil. These two incomplete multi-

valued functions can be unified into a single one without conflict, by introducing

the following unification operation,

Fi(x)] Fj(x) =





Fi(x) if Fj(x) = nil,

Fj(x) if Fi(x) = nil,

undefined otherwise.

(2)

This operation is clearly associative and commutative.

Performing this operation over multi-valued functions of all the behaviors yields

the multi-valued function of classifier, F (x), as follows,

F (x) =

|P |⊎

i=I

Fi(x). (3)

Since the equivalent subspaces are collectively exhaustive, F (x) is complete, that

is, ∀x ∈ X , F (x) 6= nil.

To incrementally update classifier F , we consider that rules of another multi-

valued function, F ′, would be inserted above the original rules. More formally,

F (x) is overwritten by F ′(x) just in the subspace X ′ in which F ′(x) is defined,

∀x ∈ X ′, F ′(x) 6= nil. This update operation is defined as,

F ′(x) � F (x) =

{
F ′(x) if F ′(x) 6= nil,

F (x) otherwise.
(4)

Packet Classification for Global Network View of Software-Defined Networking 9

F	

Construction	
 fI	
 fII	
 ...	
 f|P|	

Functions	
 Representations	

FI	
 FII	
 ...	
 F|P|	

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

F(K)	

Unification	

Bit aggregation	

Update	

BDDs	

MDDs	

f ’	

F ’	

F’ (K)	

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {nil, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = nil otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = nil _ Fj(x) = nil. These two
incomplete multi-valued functions can be unified into a one
without confliction, by introducing the following unification
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = nil,

Fj(x) if Fi(x) = nil,

undefined otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (2)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= nil.

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= nil. Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= nil,

F (x) otherwise.
(3)

Note that update operation � is equivalent to unification
operation] when the latter is defined, and so update operation
� can be applied to unify incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

F (K) : {0, 1, · · · , 2K � 1} L
K ! {nil, I, II, · · · , |P |}.

Necessarily, F (K)(x) = F (x), 8x 2 X . This paper uses F (K)

only when it has to be distinguished by K, and uses simply
F otherwise.

IV. ALGORITHMS IN PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and F (K)(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs the MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

Figure 2 presents an example of BDD and MDD for Fig. 1.
A BDD [20] is an acyclic directed graph with a single root

node and two terminal nodes, false ? and true >. Each non-
terminal node is labeled as b-th bit in the header, b 2 [1, L],
and it has two labeled arcs, 0-child and 1-child, each of which
indicates the b-th bit is 0 or 1; if the bit is skipped, it can
be both 0 and 1 (i.e., a “don’t care” bit). A path from the
root to a terminal corresponds to packet header x, and the
terminal at the end of path indicates the value of f(x). The
maximum height (the longest path) is L. A BDD is canonical
for a function and bit order. The size of BDD is defined as the
number of non-terminal nodes in it, and the size is denoted
by |f(x)| if the BDD represents function f(x).

A MDD [21], [22] is also an acyclic directed graph
with a single root, but it can have more than two terminal
nodes, nil, I, II, · · · , |P |. Each non-terminal node is labeled
by aggregated bits, and it can have more than two children
arcs, 0, 1, · · · , 2K � 1. The maximum height is L/K. Other
properties are same with the BDD.

In our method, a BDD is used to represent a Boolean func-
tion that maps the header space to a single packet behavior,
while a MDD is used to express a multi-valued function of
packet classifier.

B. Construction and Updates of Multi-Valued Decision Dia-
grams

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with nil- and i-terminals,
respectively. The time complexity is clearly constant, O(1).
The MDD size is obviously same with the BDD size, i.e.,
|Fi(x)| = |fi(x)|.

Reference [21] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and �

to multi-valued functions, so as to calculate (2) and (3). The
worst-case MDD size can be quite large by the operation,
|A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x) are
multi-valued functions and 3 is an arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [40],
[41]; in our experiments, the size was never greater than the
total size of operands. These observations gives the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|, (4)

the time complexity of the operation with CASE algorithm is
given by,

O(2K(|A(x)| + |B(x)|)). (5)

The time complexity of CASE algorithm is defined by the
number of nodes and that of children per node [21], since the

F(K)	

(new rule)	
 BDDs	

MDDs	
Bit aggregation	

Figure 2: Flowchart of classifier construction and update in our method.

Note that update operation � is equivalent to unification operation] when the

latter operation is defined, but this paper distinguishes them for clarity.

In order to accelerate the packet classification process, a multi-valued function in

which continuous K bits are aggregated into a single variable is defined as follows,

F (K) : {0, 1, · · · , 2K − 1} L
K → {nil, I, II, · · · , |P |}.

Necessarily, F (K)(x) = F (x), ∀x ∈ X . This paper uses F (K) only when it has to

be specified by K, or uses simply F otherwise.

Last, the construction and update procedures of our method are summarized

as a flowchart in Fig. 2.

• In classifier construction, Boolean functions mapped to behaviors, fi’s, are

converted to multi-valued functions, Fi’s, which are unified into the multi-

valued function of classifier, F , and further converted to F (K) by bit aggre-

gation.

• To incrementally update classifier F (K), new rule f ′ is converted into F ′(K)

through bit aggregation, and then inserted to the classifier.

5 Algorithms in Proposed Method

Given a set of BDDs representing Boolean functions, fi’s, which are obtained us-

ing existing techniques like [8], the algorithms proposed in this section construct

10 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

01

1

2

4

3

5 5

4

5

6

123 4 5 6 7 8 910 11 12

1,2

3,4

0

3,4

1

3,4

2

3,4

3

5,6

02

5,6

13 2 1 3

5,6

0

5,6

0 2

5,6

1 3

5,6

0

5,6

1 3

5,6

2

0 123 2310 0 3 2 1 01 2 3 1 2 3 0 01 23 1230 0 3 1 2

BDD of fI	
 MDD of F(2)	

0	
 1	

III	
 II	
 I	
 IV	
 V	
 VI	
 VII	
 VIII	
 X	
 IX	
 XI	
 XII	

0	

1	

2	

3	
3	

4	
 4	
 4	

5	

0,1	

2,3	
 2,3	
 2,3	
 2,3	

4,5	
 4,5	
 4,5	
 4,5	
 4,5	
 4,5	
 4,5	
 4,5	

Figure 3: BDD (left) and MDD of K = 2 (right). The BDD represents the Boolean
function mapped to behavior “I” of Fig. 1, while the MDD represents the multi-valued
function mapped to all twelve behaviors of Fig. 1. Since consecutive two-bits are aggregated
in the MDD, non-terminal nodes are labeled by the two-bits while arcs are labeled by 0- to
3-child. A packet header of x = 010111 is indicated by the red paths in the both diagrams.

the MDD of F (K). After reviewing decision diagrams in Section 5.1, Section 5.2

analyzes the unification and update operations performed on MDDs. Section 5.3

introduces the bit aggregation algorithm, and Section 5.4 proposes a search algo-

rithm for the packet classification.

5.1 Decision Diagrams

As shown in Fig. 3 (left), a BDD [21] is an acyclic directed graph with a single root

node and two terminal nodes, ⊥ and >. Each non-terminal node is labeled as b-th

bit in the header, b ∈ [0, L − 1], and it has two labeled arcs, 0-child and 1-child,

each of which indicates the b-th bit is 0 or 1. A path from the root to a terminal

corresponds to a packet header, x, or a set of headers (a hypercube) when some

bits are skipped (e.g., the red BDD path in Fig. 3, on which the fifth bit is skipped,

expresses a hypercube of 01011∗). The terminal node at the end of path indicates

the value of f(x). The maximum height, or the longest path, is L. Common prefix

and suffix are shared among paths for compression (e.g., two paths, 00 ∗ 11∗ and

01111∗, share their prefix 0 and suffix 11∗ in Fig. 3); it is believed that BDDs are

well compressed for most practical functions [27]. The size of BDD is defined as

the number of non-terminal nodes in it, and the size is denoted by ||f || if the BDD

represents function f .

An MDD [22], which is shown in Fig. 3 (right), is also an acyclic directed graph

with a single root, but it can have more than two terminal nodes, nil, I, II, · · · , |P |.
Each non-terminal node is labeled by aggregated bits, and it can have more than

two children arcs, 0, 1, · · · , 2K−1. The maximum height is L/K. Other properties

are the same as those of BDD.

Packet Classification for Global Network View of Software-Defined Networking 11

In our method, a BDD is used to represent a Boolean function that maps the

header space to a single packet behavior, while an MDD is used to express a multi-

valued function. BDD of fi(x) is easily converted to MDD of Fi(x), by replacing

⊥- and >-terminals with nil- and i-terminals, respectively. The time complexity of

this operation is clearly constant, O(1). MDD size is obviously the same as BDD

size, i.e., ||Fi|| = ||fi||.

5.2 Unification and Update Operations

5.2.1 CASE Algorithm

Reference [22] defines an efficient algorithm named CASE that performs arbitrary

operations over two operand MDDs and constructs the resulting MDD. This CASE

algorithm allows our method to apply operations] and � to multi-valued functions

so as to calculate (2) and (4).

The worst-case MDD size can be quite large, ||A3B|| ≤ ||A|| · ||B||, where A

and B are multi-valued functions and 3 is an arbitrary operator. However, the

size is usually considerably smaller than this worst-case upper bound, closer to

||A|| + ||B|| [28]; in our experiments, the size was never greater than the total

size of operands, though impractical counter examples can be considered. This

observation yields the following assumption.

Assumption 1. The size of MDD performing a single operation is less than or

equal to the total size of operand MDDs,

||A3B|| ≤ ||A||+ ||B||. (5)

The time complexity of CASE algorithm is defined by the number of nodes and

that of children per node [22], and so it is fixed with Assumption 1 as follows,

O(2K(||A||+ ||B||)), (6)

where the algorithm involves ||A|| + ||B|| node creations, at each of which 2K

children are set. Note that A and B must share a common K to apply CASE

algorithm.

5.2.2 Unification

The MDD size and time complexity of (3) is analyzed. Using (5), the MDD size is

bounded as follows,

||F || ≤
|P |∑

i=I

||Fi||. (7)

12 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

FIV	
FV	

6	
||Fi|| = 	

FVI	
FXI	

6	
 6	
 6	

FVII	
FVIII	

7	

FXII	
FI	

7	
 7	
 9	

FII	
 FIII	

9	

FX	
 FIX	

9	
 9	
 10	

F(x)	

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

FIV	
 FV	

(FIV	
 FV)	
 (FVI	
 FXI)	

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

B. Procedure of Proposed Method

Our method, first, builds an incomplete multi-valued func-
tion, Fi(x), from the Boolean function of i-th behavior, fi(x).
The multi-valued function, Fi(x), maps the header space only
to i-th behavior, as follows,

Fi : X ! {undef, i},

where Fi(x) = i if fi(x) = >, or Fi(x) = undef otherwise.
Since two different subspaces, Xi and Xj (i 6= j), are

mutually exclusive, two incomplete multi-valued functions,
Fi(x) and Fj(x), never define behaviors for the same packet
header; i.e., 8x 2 X , Fi(x) = undef _ Fj(x) = undef .
These two incomplete multi-valued functions can be melded
into a one without confliction, by introducing the following
operation,

Fi(x)] Fj(x) =

8
><
>:

Fi(x) if Fj(x) = undef,

Fj(x) if Fi(x) = undef,

not available otherwise.

This operation is associative and commutative.
Performing this operation over all the incomplete multi-

valued functions, Fi(x)’s, the multi-valued function of clas-
sifier, F (x), is obtained as follows,

F (x) =

|P |]

i=I

Fi(x). (1)

Since the subspaces are collectively exhaustive, F (x) is com-
plete, that is, 8x 2 X , F (x) 6= undef .

In order to incrementally update classifier F (x), we con-
sider that F (x) is overwritten by an incomplete multi-valued
function, F 0(x), if it is defined, F 0(x) 6= undef . Roughly
speaking, rules of F 0(x) would be inserted above those of
F (x). This update operation is defined by,

F 0(x) � F (x) =

(
F 0(x) if F 0(x) 6= undef,

F (x) otherwise.
(2)

Note that operation � is equivalent to operation] when the
latter is defined, and so operation � can be applied to meld
incomplete multi-valued functions.

For the lookup acceleration, a multi-valued function in
which consecutive K bits are aggregated into a single variable
is defined as follows,

FK : {0, 1, · · · , 2K � 1} L
K ! {undef, I, II, · · · , |P |}.

Let X 2 X be the input of this aggregated variable repre-
sentation, we have FK(X) = F (x) if X is equivalent to x.
Obviously, F 1 ⌘ F .

IV. ALGORITHMS OF PROPOSED METHOD

Given a set of BDDs representing Boolean functions,
fi(x)’s, algorithms proposed in this section construct MDDs
of F (x) and FK(X). After reviewing decision diagrams in
Section IV-A, Section IV-B constructs a MDD from a set of
BDDs, and Section IV-C accelerates lookup operations on the
MDD.

A. Decision Diagrams

A BDD [16]is an acyclic directed graph with a single root
node and two terminal nodes, false ? and true >. Each non-
terminal node is labled by a bit number in [1, L], and it has
two labeled arcs, 0-child and 1-child, each of which represents
the bit number is 0 or 1; if a bit is skipped, it can be 0 and
1 (i.e., a “don’t care” bit). A path from the root to a terminal
corresponds to packet header x, and the terminal at the end
of path indicates the value of f(x). A BDD is canonical for
a function and bit order.

A MDD [17], [18]is also an acyclic directed graph with a
single root, but it can have more than two terminal nodes,
undef, I, II, · · · , |P |. Each non-terminal node is labeled by an
aggregated bits, and it can have more than two children arcs,
0, 1, · · · , 2K � 1. Other properties are same with the BDD.

In our method, a BDD is used to represent a Boolean
function of a header space mapped to a single packet behavior,
while a MDD is used to express a multi-valued function of a
header space of packet classifier. Figure 2 shows a BDD and
MDD of Fig. 1.

B. Multi-Valued Decision Diagram Construction

The BDD of fi(x) is easily converted to the MDD of Fi(x),
by replacing ?- and >-terminals with undef- and i-terminals,
respectively. The size of BDD of fi(x) is obviously same with
that of MDD of Fi(x) in terms of the number of nodes in a
diagram, that is, |fi(x)| = |Fi(x)|, where |A(x)| is the size
of diagram representing function A(x). The space complexity
of this step is O(|fi(x)|), while the time complexity is clearly
constant, O(1).

Reference [17] defines an efficient algorithm named CASE
that performs arbitrary operations over two MDDs. This CASE
algorithm allows our method to apply operations] and � to
multi-valued functions, so as to calculate (1) and (2). The size
of MDD can be quite large with operations; i.e., reference [17]
shows |A(x)3B(x)|  |A(x)||B(x)|, where A(x) and B(x)
are multi-valued functions and 3 is arbitrary operator. How-
ever, the size is usually considerably smaller than this worst-
case upper bound, with something like |A(x)| + |B(x)| [38];
in our experiments, the size was never greater than the total
size of operands. Our method is established on the following
theorem.

Theorem 1. Assume that the size of MDD after performing
an operation is usually less than or equal to the total size of
operand MDDs,

|A(x)3B(x)|  |A(x)| + |B(x)|,

the time and space complexity of the operation is given by,

O(2K(|A(x)| + |B(x)|)).

The complexity is defined by the number of nodes and that
of children per node.

From Theorem 1, the following lemma is given for (1).

Figure 4: Huffman tree representing the optimal calculation order of (3) for Fig. 1. Leaf
nodes are MDDs of Fi’s, while internal nodes represent] operations. The MDD sizes,
||Fi||’s, are shown at the bottom.

Since operation] is associative and commutative, operations in (3) can be

performed in an arbitrary order. In addition, the time complexity of each operation

in (3) varies depending on the size of operand MDDs. We can, therefore, optimize

the calculation order.

Theorem 1. The time complexity of (3) optimized with Huffman coding is given

by,

O

(
2K

|P |∑

i=I

`(Fi)||Fi||
)
, (8)

where `(Fi) is the path length from the root to leaf Fi on the Huffman tree.

Proof. Since each operation takes only two operands at a time in the CASE algo-

rithm, the calculation order can be illustrated as a binary tree, like Fig. 4. Every

function Fi on a leaf is used at each internal node up to the root, and so the time

complexity of (3) is bounded by (8) using (6).

The optimal calculation order is given as a binary tree minimizing (8); this

optimization can be regarded as Huffman coding [29], as leaf MDDs and their

sizes are replaced with symbols and their weights (frequencies), respectively. This

binary tree is also known as a Huffman tree. Note that the time complexity ignores

Huffman tree construction, since it is negligible compared with MDD operations.

5.3 Bit Aggregation

This subsection defines the bit aggregation algorithm that accelerates packet clas-

sification. Algorithm 1 constructs the MDD of F (K) from that of F , by aggregating

continuous K bits into a single variable. Note that in Algorithm 1, F or F (K) refers

to the root node of MDD representing function F or F (K), not to the function it-

self. This algorithm recursively creates MDD nodes by finding their 2K children

at K bits ahead from the node; x′ means K continuous bits from F.b, where F.b

Packet Classification for Global Network View of Software-Defined Networking 13

Algorithm 1: Aggregate

Input: F
Output: F (K)

if F is non-terminal or F not found in cache then
create F (K)

for x′ ← 0 to 2K − 1 do // x′ is K-bit from F.b
F ′ ← descendant reached by x′ from F
F (K).child[x′]← Aggregate(F ′) // set x′-th child

cache[F]← F (K)

return cache[F]

is the smallest bit number labeling node F (e.g., F.b = 0 at the root of MDD in

Fig. 3). To avoid repeatedly visiting the same node, visited nodes are cached; this

algorithm assumes that all terminal nodes would have been set to the cache in

advance. The time complexity of this algorithm is O(2K ||F ||).
Since the maximum height of MDD is shrunk to L/K by bit aggregation, the

worst-case search path length is also reduced by a factor of K. This is a great

acceleration, but there is a tradeoff between the search time and memory space,

as follows.

We set the following assumption about MDD size.

Assumption 2. The bit aggregation algorithm (Algorithm 1) shrinks the MDD

size by a factor of K,

||F (K)|| ≈ ||F
(1)||
K

, (9)

assuming that MDD nodes are roughly equally distributed over each run of K bits

(i.e., bits between [Ki,K(i + 1)− 1], i ∈ [0, L/K − 1]).

Since the memory requirement of MDD F (K) is given by the product of MDD

size and memory requirement of each node [30], it is derived with Assumption 2

as follows,

||F (1)||
K

(
|b|+ 2K |child|

)
, (10)

where |b| is the width of bit numbers and |child| is that of child IDs. Given

|b| = |child|, the memory requirement is minimized at K = 2, and increases

exponentially for K > 2.

The memory requirement might be reduced by introducing heterogeneous MDDs [30],

in which non-terminal nodes are allowed to maintain a different number of children

and different number of bits. This heterogeneity is also utilized by conventional

decision tree methods. However, it prevents efficient MDD traversal introduced in

the next subsection, and so we only use MDDs of uniform K in our method.

14 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

Algorithm 2: Search

Input: F (K), pkt // pkt is in K-bit array

Output: packet behavior ∈ {I, II, · · · , |P |}
while F (K) is non-terminal do

x′ = pkt[F (K).b/K] // get K-bit from F (K).b

F (K) = F (K).child[x′] // go to next node

return F (K) // terminal node of behavior

5.4 Packet Classification

Algorithm 2 presents the search algorithm that identifies the network-wide behav-

ior of a given packet. It simply follows a path based on the packet. The time

complexity is determined just by the maximum height of F (K), that is, O(L/K),

because this algorithm includes no operation other than MDD traversal; in con-

trast, conventional decision tree methods usually involve linear search at a leaf

node to select a single rule.

This algorithm is also very efficient in terms of implementation. A packet header

is represented as an array of K-bit elements; i.e., i-th K-bit element on the header

can be accessed by index i, like pkt[i]. The array element itself becomes a child

index without fixing numbers of children and bits, which makes this algorithm

very efficient in actual implementation. Our algorithm directly handles the raw

bit sequence of the packet header by a K-bit array, and so the packet does not need

to be pre-processed at all; other implementations might assume that the header

fields of interest would be extracted in advance5.

6 Experiments

This section evaluates our method in terms of memory usage in Section 6.1, con-

struction and update time in Section 6.2, and classification throughput in Sec-

tion 6.3.

Our method was implemented in C++. The parameter of bit aggregation, K,

was chosen from 1, 2, 4, and 8, in order to align K-bit array elements with bytes.

The widths of bit numbers and child IDs, |b| and |child|, were defined as 32 bits.

Our method was compared with HybridCuts [16] as well as a classification method

utilizing BDDs [8]. For HybridCuts, parameters “binth” and “spfac” were set to

eight and four, which showed the best performance in terms of memory usage

and throughput. Search process was added to the original implementation by us.

The BDD classification method relies on a set of BDDs of fi’s to determine the

network-wide behavior. It was also implemented in C++ by us.

5For instance, http://www.arl.wustl.edu/~hs1/PClassEval.html and http://hypercuts.

masicek.net/

Packet Classification for Global Network View of Software-Defined Networking 15

Table 1: Statistics of Three Real Networks

Internet2 Stanford Purdue

of switches 9 16 1,646
of ports used 56 58 2,736
of rules (FIB) 126,017 757,170 0
of rules (ACL) 0 1,584 3,605
of header bits of interest 32 88 104
of network-wide packet behaviors 86 1,093 10,353

Configuration datasets of the three real networks, Internet2, Stanford backbone

network [10], and Purdue campus network [23], were employed in the experiments.

The network statistics are shown in Table 16. Configuration rules of FIB (For-

warding Information Base) specify the destination IP field only, while those of

ACL (Access Control List) are written as 5-tuple7. Some rules specify the VLAN

field, but it was ignored in our experiments in order to use a packet trace generator

named ClassBench [31], which supports 5-tuple only. This omission, however, has

no significant impact on our results, because the MDD size is only 20 % larger at

most when the VLAN field is considered.

The experiments were conducted using a single core of Xeon 3.5 GHz with 8

MB cache and 16 GB main memory (DELL PowerEdge Server).

6.1 Memory Usage

Figure 5 shows the MDD size (the number of nodes in an MDD). The size was

smaller than the total number of nodes in a set of BDDs, as indicated by (7).

Internet2 Stanford Purdue
of BDD nodes 37,903 547,298 561,635

Figure 5 shows a good fit with (9), which validates Assumption 2; the discrepancy

is 9.6 % at maximum (Purdue with K = 8).

The amount of memory used by an MDD is shown in Fig. 6, while the size of

each MDD node, |b|+ 2K |child|, is given in the following table (the memory usage

of an MDD is the product of MDD size and node size).

6The numbers of network-wide packet behaviors in Table 1 are somewhat different from [8].
We are unable to explain this difference, but in the most complicated Purdue network, our number
is greater than that of [8] (3,917) and so this difference does not favor us.

7Since Purdue network has no FIB rule, network-wide packet behaviors are defined only at the
network edge.

16 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

1

10

100

1000

0 2 4 6 8 10
M

D
D

 si
ze

 [K
]	

K	

Internet2
Stanford
Purdue

Figure 5: MDD size. The dotted lines indicate (9).

0.1

1

10

100

0 2 4 6 8 10

M
em

or
y

us
ag

e
[M

B
]

K	

Internet2
Stanford
Purdue

Figure 6: Memory usage of MDD. The dotted lines indicate (10). The horizontal line is
memory usage of HybridCuts for Internet2.

K Node size [B]
1 12
2 20
4 68
8 1028

The memory usage is minimized at K = 2 and increases exponentially for larger

K, as expected by (10), but it still fits within the CPU cache (8 MB) even for

K = 8 in Internet2 and Stanford, and for K = 4 in Purdue. Although the memory

usage is relatively large, 56 MB, at K = 8 in Purdue, the CPU cache remained

viable for this seven-fold data; this issue is discussed in the throughput evaluation.

BDD memory usage is as follows.

Internet2 Stanford Purdue
BDD memory usage [MB] 0.454 6.568 6.740

MDD has smaller memory usage than BDD when K ≤ 4 in Internet2 and Stanford

and K ≤ 2 in Purdue.

HybridCuts successfully constructed a classifier just for Internet2 as described in

Section 3, which requires 739 KB of memory. HybridCuts could be comparable to

our method if the header space was represented by a small number of hypercubes,

but it does not scale with the header space complexity of network-wide packet

behavior.

Packet Classification for Global Network View of Software-Defined Networking 17

0

0.2

0.4

0.6

0.8

Optimal Ascending Random

Ti
m

e
[s

ec
]	

Internet2	

0

5

10

15

20

25

30

Optimal Ascending Random

Stanford	

0.562	

0

500

1000

1500

2000

2500

Optimal Ascending Random

Purdue	

6.35	

Figure 7: Computation time of MDD unification. Each point is the average of 10 trials.

0.001

0.01

0.1

1

10

0 2 4 6 8 10

Ti
m

e
[s

ec
]

K	

Internet2
Stanford
Purdue

Figure 8: Computation time of bit aggregation. Each point is the average of 10 trials.

6.2 Construction and Update Time

Figure 7 demonstrates the time to unify BDDs of fi’s into a single MDD of F (1)

by the operations of (3). We evaluated three calculation orders: the optimal order

of Theorem 1, ascending order (a minimum MDD is added to the current unified

MDD at every step), and random order. As shown in Fig. 7, the optimal order

outperforms the others. Even for the complicated Purdue network, MDDs were

unified just in 6.35 sec, which is usually acceptable as an initial construction; note

that it can be incrementally updated on demand, as is detailed later.

MDD of F (1) was converted to that of F (K) by the bit aggregation algorithm

presented in Algorithm 1. The aggregation time is shown in Fig. 8. As expected,

the time grows exponentially with K, but it remained under 2.5 sec which is

considered acceptable.

It is worth noting that the calculation time of BDDs is less than 1 sec according

to [8], which has to be added to the total construction time of our method.

HybridCuts required 2.17 sec to construct a classifier for Internet2. This is

slower than our method with the random calculation order, because HybridCuts

processes each hypercube rule individually while our method handles them collec-

tively in a compressed manner.

For MDD updates, we assume that the packet classifier is updated by a new rule

associated with a new network-wide behavior. First, the new rule was randomly

chosen from the original rules, and then the MDD of classifier was constructed from

18 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

1

10

100

1000

0 2 4 6 8 10
Ti

m
e

[m
se

c]

K	

Internet2
Stanford
Purdue

Figure 9: Computation time to update an MDD. Each point is the average of 100 trials.

1

10

100

0 2 4 6 8 10

of

 h
op

s

K	

Internet2
Stanford
Purdue

Figure 10: Average hop counts on an MDD to classify a packet. The dotted lines guide
∝ 1/K. The horizontal line is average hop counts of HybridCuts for Internet2.

the remaining rules. We finally measured the time to perform update operation �

over the MDDs of new rule and original classifier. Figure 9 shows the update time.

It is less than 10 msec for Internet2, and less than 30 msec for Stanford. Even

for Purdue with K = 8, the MDD was updated in just 200 msec; these results are

entirely acceptable unless time constraints are extraordinarily severe.

6.3 Classification Throughput

Traditionally, classification throughput of packet classification has been evaluated

by the number of memory accesses per packet. However, modern processors have

complicated architectures with multi-level cache hierarchy, which has a significant

impact on throughput, and so classification throughput was measured by actually

processing packet headers. In addition to Xeon, classification throughput was also

measured using a single core of Core i7 1.7 GHz with 4 MB cache and 8 GB main

memory (Apple Macbook Air), in order to examine the impact of hardware.

In the experiments, the classification throughput was measured as follows. First,

a million packets with IP and TCP/UDP headers were generated by ClassBench

based on the network configurations. The packets were then written into a file

in network-byte order. Finally, each packet was read from the file and classified.

Note that packets should be generated based on the configurations as done by

ClassBench, in order to match all behaviors; randomly generated packets are likely

Packet Classification for Global Network View of Software-Defined Networking 19

0

10

20

30

40

50

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [M

pp
s]
	

K	

Internet2	

Average
Worst-case

0

5

10

15

20

25

0 2 4 6 8 10
K	

Stanford	

Average
Worst-case

Xeon	

0

2

4

6

8

10

12

0 2 4 6 8 10
K	

Purdue	

Average
Worst-case

0

1

2

3

4

5

6

0 2 4 6 8 10
K	

Stanford	

Average
Worst-case

0

2

4

6

8

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [M

pp
s]
	

K	

Internet2	

Average
Worst-case

0

1

2

3

4

0 2 4 6 8 10
K	

Purdue	

Average
Worst-case

Core i7	

Figure 11: Classification throughput measured on Xeon 3.5 GHz at the top, and on Core
i7 1.7 GHz at the bottom. Each cross is the average of 30 trials, and each trial processed
a million packets. The worst-case throughput is indicated by dashed lines. The horizontal
lines in Internet2 are throughput of HybridCuts.

to match larger subspaces (probably a “default rule”), but never match smaller

ones.

Figure 10 shows the average number of hops from the root to a terminal on

the MDD of F ′(K). Considering that the number of worst-case hops at K = 1

is equivalent to the number of bits of interest given in Table 1, the average hop

number was roughly 2/3 of the worst-case. The average hop number follows 1/K

with maximum deviation of 17 % (Stanford with K = 8), and it is less than 10 even

with K = 8 for all networks, which ensures the fast classification of our method.

The hop number is much less than the 288 bits of the TCP/IP header, since header

fields of no interest are simply skipped on MDDs.

The classification throughput measured on the Xeon is demonstrated at the top

of Fig. 11. It exceeded 10 Mpps at K = 8 for all networks; at 10 Mpps, even short

packets of 125 bytes can fill a 10 Gbps link. The throughput of our method scales

linearly against K for all networks, though the MDD is larger than the CPU cache

for Purdue with K = 8. Figure 11 also shows the worst-case throughput estimated

using the worst-case hop number shown in Fig. 10. Even for the worst-case, the

throughput is rather high.

Interestingly, the classification throughput shows different behaviors on Core

i7, as shown at the bottom of Fig. 11. The throughput is quite high, greater than

3 Mpps at K = 8 for all networks, but it does not scale linearly, rather it scales

logarithmically.

20 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

0
5

10
15
20
25
30
35

0.1 1 10 100
Memory usage [MB]	

Core i7	

0

2

4

6

8

10

12

0.1 1 10 100

Ti
m

e
[n

se
c]
	

Memory usage [MB]	

Xeon

Figure 12: Computation time required for a single hop versus memory usage, measured
on Xeon 3.5 GHz at the top and on Core i7 1.7 GHz at the bottom. The dotted line shows
the linear regression on (log(x), y).

This difference in scaling is investigated in depth. Figure 12 shows the compu-

tation time required for a single hop versus the memory usage of MDD. The hop

time on Xeon stays nearly constant, while that on Core i7 increases logarithmically

with MDD size; this is the reason for the scaling difference. We do not dive into

the details of CPU architecture and cache hierarchy, which is beyond the scope

of this paper, but these results justify our evaluation strategy; the classification

throughput should be evaluated based on actual measurements in order to consider

the hardware impact.

Throughput of HybridCuts was 7.26 Mpps on Xeon for Internet2, as shown in

Fig. 11; it is slower than our method of K ≥ 2, though the average hop count

was quite small, 3.46. This is because each hop took 31.8 nsec, which is nearly

four times of our method. HybridCuts has to examine decision criteria at every

node, while our simple search algorithm finds the next node just by array access.

Moreover, HybridCuts has to find a rule from “binth” number of rules by linear

search at a leaf node.

The BDD classification method was slower by several orders of magnitude due

to the linear search performed over all behaviors, as follows.

Internet2 Stanford Purdue
Throughput by BDDs [Mpps] 0.0849 0.00578 0.00153

7 Discussion from Application Aspects

This section discusses our method in terms of applications. Section 7.1 chooses the

best K based on the experiments’ results. Section 7.2 discusses the contributions

of our method to SDN applications.

7.1 Choice of Best K

Network operators are needed to choose the best K to deploy their applications.

Our evaluation in Section 6 revealed a tradeoff between the throughput and con-

Packet Classification for Global Network View of Software-Defined Networking 21

0

5

10

15

20

25

0 20 40 60 80 100 120
Th

ro
ug

hp
ut

 [M
pp

s]
	

Update rate [update/sec]	

Stanford	
K=8	

K=4	

Figure 13: Classification throughput versus update rate. Internet2 and Purdue are
omitted since they showed similar results.

struction/update time; large K improves the throughput, but degrades the con-

struction/update time. This tradeoff is shown in Fig. 13 (the construction time is

not shown to depict the tradeoff on a two-dimensional plane). The figure tells us

that K should be set to 4 or 8, since the points of K = 4 and 8 form a Pareto

frontier, i.e., they cannot be improved without degrading some property. If the

network were much simpler, K = 16 might be included in the Pareto frontier, but

MDDs of K = 16 require 128× memory capacity compared to K = 8, which would

probably make it difficult to fully leverage small CPU caches. In contrast, only

K = 4 would form a Pareto frontier in more complicated networks.

7.2 Contributions to SDN applications

7.2.1 Network Fabric

Network fabric [3,4] is an idea to improve the economic efficiency and manageability

of networks by separating the “intelligence” from the network core. An application

program of network fabric constructs a classifier of network-wide packet behaviors

based on the network policies. The classifier is then set to edge switches, which tag

the header of every incoming packet with some sort of “behavior label”. The la-

beled packets are forwarded through the network core based on the behavior labels.

This simple network core can consist of low-cost switches and can be managed just

by the labels independently of protocols used in external networks.

To realize the network fabric, the network edge is required to determine the

network-wide behavior for every packet at line rate, but that is virtually impossible

for conventional classification methods, which failed to construct the classifier or

achieved unacceptably low throughput given complex policies like those of the

Stanford backbone. Reference [4] estimated that the classification rate of 6.7 Gbps

on a single CPU core is enough, and the rate could be enhanced using computer

clustering techniques like RouteBricks [32] for a large domain. However, no specific

classification method that can deal with network-wide packet behaviors is listed in

the paper. Our method is the first one that can realize the network fabric even if

the network policy is complex.

22 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

7.2.2 Fault Localization

In network fault localization [5], the application software calculates network-wide

packet behaviors that could be monitored in the network, in advance. A few

probe packets are then selected for each behavior, and the packets are exchanged

periodically between switches. If the actually monitored behavior is not identical

to the pre-calculated one, the application investigates possible causes as in solving

a set cover problem.

Reference [5] assumes that only a small number of predefined packets are em-

ployed, since no conventional classification method can classify arbitrary packets.

This limitation, which was recognized as a match fault deficiency in [5], implies

that faulty behaviors of other packets are overlooked; more importantly, failures

occurring on production traffic are not detected. Our classifier allows the applica-

tion software to examine all packets without ignoring any of them. Our efficient

method, of course, does not need to compromise the sampling rate.

7.2.3 Network Verification

Network verification [6–11] is used to check network properties, such as reachability

(e.g., packets of a given header subspace sent from a client can get to a specified

server), loop-free (no packet in the subspace would traverse any cyclic path), and

waypointing (packets from the outside of network should pass through a firewall).

The property tests rely on packet classification in order to map the header space

to a network-wide packet behavior represented as a directed subgraph.

Assume that in Stanford backbone network, a new rule should be applied imme-

diately to fix a security hole and several properties must be checked with the new

rule before deploying it. Subgraphs representing packet behaviors can be updated

in 26 msec by [8], while the classifier is updated in 29 msec in our method (Fig. 9);

our method is comparably fast. The new behaviors are, then, confirmed with

each packet or each header subspace to be tested; assuming that many properties

equal to the number of rules in the network, e.g., 100,000, have to be checked, our

method only requires 5.0 msec for the lookups while [8] requires 17.3 sec, which

can be critical in a severe security incident.

8 Related Work

This section discusses related work; conventional packet classification methods [12–

20] are not discussed, since they were thoroughly examined in Section 3.

To fully leverage efficient packet classifiers, fast packet I/O mechanisms should

be created to receive packets at line rates. Recent research on system technolo-

gies [33] resulted in 14.9 Mpps on a single CPU core, which is roughly equal to

our results. Our classification method with the fast packet I/O can provide SDN

Packet Classification for Global Network View of Software-Defined Networking 23

applications with the quick identification of network-wide packet behavior on fast

links.

OpenFlow8, one version of SDN, defines the multi-table pipeline; it divides a

large classifier into multiple small ones. If the original complicated header space

is divided into many parts, the complexity of each part might be greatly reduced.

However, the multi-table pipeline focuses on rules specified on a single switch,

not network-wide packet behaviors, and it is supposed to handle each dimension

with a separate table. Therefore, each machine holds only a few tables (e.g., four

tables [34]), and so our problem is not significantly mitigated.

Several papers [35–38], some of which were written in the context of SDN [37,38],

discussed algorithms to distribute classification rules among multiple switches with-

out changing their semantics, in order to store the rules in space-limited TCAMs.

They are, however, not arranged to identify the network-wide packet behavior.

Multiple-bit striding was utilized to accelerate trie traversal [39, 40], and this

technique looks similar with our bit aggregation. Our method is, however, estab-

lished on MDDs, not simple tries, and so Algorithm 1 is designed to handle path

convergence by caching visited nodes and to care skipped nodes of don’t care bits.

BDDs have often been used to deal with complicated header spaces along with

various network applications such as firewall analysis [41], network state verifi-

cation [6–8], policy enforcement [42], and traffic analysis [43]. However, work to

date did not focus on classification throughput, and so speeds are low. Firewall

Decision Diagrams (FDDs) [44,45] can be used to represent the header space in a

compressed manner, but they were designed to be human readable, not to be effi-

ciently manipulated by computers; e.g., the network verifier using FDDs [9] seems

to be at least 1,000 times slower than those with BDDs [6, 8]. Prefix DAG [46]

employs a data structure similar to MDDs, but it focused on a simple classification

problem with a single header field, in which classifiers are readily constructed even

if all rules are extracted.

BDDs and MDDs have been intensively studied in the LSI-CAD community.

Reference [47] minimized the total size of given BDDs by applying different bit

orders to them, while our interest includes the size of MDD. The memory usage

of MDD was optimized in [30], but the MDD structure is made complicated and

degrading the classification throughput.

9 Conclusions

This paper has developed a packet classification method that efficiently represents

the complicated header space defined with network-wide packet behaviors. To fully

leverage the global network view provided by SDN, packet classification methods

are required to well handle network-wide packet behaviors, not actions taken on

8http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

24 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

a single switch. Although packet classification has been studied intensely, conven-

tional classification methods are unable to handle network-wide behaviors at all.

Our method is based on compressed decision diagrams and is supported by sev-

eral new algorithms; it is simple but surprisingly efficient. Numerical experiments

on three actual networks showed that our method can identify the network-wide

packet behavior at 10 Mpps or more for all three networks. Our work is the only

one to solve this hard but important problem in SDN. Moreover, thanks to the in-

troduction of SDN, complex network policies can now be automatically processed

by application programs without being manually written in the inefficient 5-tuple

format, and so our efficient internal representation will get more opportunities

beyond the example applications shown in this paper.

In future work, we will develop SDN applications that utilize our classification

method, and evaluate its feasibility with field experiments. Powerful techniques

studied in computer science, such as compressed self-indexes [46] and Boolean

expression minimization [48], will be applied to our method.

References

[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:

enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,

38(2):69–74, 2008.

[2] S. Agarwal, M. Kodialam, and T.V. Lakshman. Traffic engineering in software

defined networks. In IEEE INFOCOM, pages 2211–2219, 2013.

[3] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian.

Fabric: A retrospective on evolving sdn. In ACM HotSDN, pages 85–90,

2012.

[4] Barath Raghavan, Mart́ın Casado, Teemu Koponen, Sylvia Ratnasamy, Ali

Ghodsi, and Scott Shenker. Software-defined internet architecture: Decou-

pling architecture from infrastructure. In ACM HotNets, pages 43–48, 2012.

[5] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Au-

tomatic test packet generation. In ACM CoNEXT, pages 241–252, 2012.

[6] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network configu-

ration in a box: towards end-to-end verification of network reachability and

security. In IEEE ICNP, pages 123–132, 2009.

[7] R. McGeer. Verification of switching network properties using satisfiability.

In IEEE ICC, pages 6638–6644, 2012.

[8] Hongkun Yang and S.S. Lam. Real-time verification of network properties

using atomic predicates. In IEEE ICNP, pages 1–11, 2013.

Packet Classification for Global Network View of Software-Defined Networking 25

[9] A.R. Khakpour and A.X. Liu. Quantifying and querying network reachability.

In IEEE ICDCS, pages 817–826, 2010.

[10] Peyman Kazemian, George Varghese, and Nick McKeown. Header space anal-

ysis: Static checking for networks. In USENIX NSDI, pages 113–126, 2012.

[11] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and

P. Brighten Godfrey. VeriFlow: Verifying network-wide invariants in real

time. In USENIX NSDI, pages 15–28, 2013.

[12] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet

classification using multidimensional cutting. In ACM SIGCOMM, pages 213–

224, 2003.

[13] Hyesook Lim and Ju Hyoung Mun. High-speed packet classification using

binary search on length. In ACM/IEEE ANCS, pages 137–144, 2007.

[14] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. Packet

classification algorithms: From theory to practice. In IEEE INFOCOM, pages

648–656, 2009.

[15] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. EffiCuts:

Optimizing packet classification for memory and throughput. SIGCOMM

Comput. Commun. Rev., 40(4):207–218, 2010.

[16] Wenjun Li and Xianfeng Li. HybridCuts: A scheme combining decomposition

and cutting for packet classification. In IEEE HOTI, pages 41–48, 2013.

[17] Hao Che, Z. Wang, Kai Zheng, and Bin Liu. DRES: Dynamic range encoding

scheme for TCAM coprocessors. IEEE Transactions on Computers, 57(7):902–

915, 2008.

[18] A.X. Liu, C.R. Meiners, and E. Torng. TCAM razor: A systematic approach

towards minimizing packet classifiers in tcams. IEEE/ACM Transactions on

Networking, 18(2):490–500, 2010.

[19] A. Bremler-Barr and D. Hendler. Space-efficient TCAM-based classification

using gray coding. IEEE Transactions on Computers, 61(1):18–30, 2012.

[20] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy. Exact worst case TCAM

rule expansion. IEEE Transactions on Computers, 62(6):1127–1140, 2013.

[21] R.E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, 1986.

[22] A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton. Algorithms for discrete

function manipulation. In IEEE ICCAD, pages 92–95, 1990.

26 T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi

[23] Yu-Wei Eric Sung, Sanjay G. Rao, Geoffrey G. Xie, and David A. Maltz.

Towards systematic design of enterprise networks. In ACM CoNEXT, pages

22:1–22:12, 2008.

[24] Mark H. Overmars and Frank A. van der Stappen. Range searching and point

location among fat objects. Journal of Algorithms, 21(3):629–656, 1996.

[25] Subhash Suri, Tuomas Sandholm, and Priyank Warkhede. Compressing two-

dimensional routing tables. Algorithmica, 35(4):287–300, 2003.

[26] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-

dimensional spaces: Index structures for improving the performance of multi-

media databases. ACM Comput. Surv., 33(3):322–373, 2001.

[27] Ryo Yoshinaka, Jun Kawahara, Shuhei Denzumi, Hiroki Arimura, and

Shin’ichi Minato. Counterexamples to the long-standing conjecture on the

complexity of BDD binary operations. Information Processing Letters,

112(16):636–640, 2012.

[28] Donald E. Knuth. The Art of Computer Programming: Combinatorial Algo-

rithms Part 1, volume 4A. Addison-Wesley, USA, 2011.

[29] David A Huffman. A method for the construction of minimum redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[30] S. Nagayama and T. Sasao. On the optimization of heterogeneous MDDs.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 24(11):1645–1659, 2005.

[31] D.E. Taylor and J.S. Turner. ClassBench: a packet classification benchmark.

In IEEE INFOCOM, volume 3, pages 2068–2079 vol. 3, 2005.

[32] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin

Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Rat-

nasamy. RouteBricks: exploiting parallelism to scale software routers. In

ACM SOSP, pages 15–28, 2009.

[33] Luigi Rizzo. netmap: a novel framework for fast packet I/O. In USENIX

ATC, pages 101–112, 2012.

[34] Heng Pan, Hongtao Guan, Junjie Liu, Wanfu Ding, Chengyong Lin, and Gao-

gang Xie. The FlowAdapter: Enable flexible multi-table processing on legacy

hardware. In ACM HotSDN, pages 85–90, 2013.

[35] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable

flow-based networking with DIFANE. In ACM SIGCOMM, pages 351–362,

2010.

Packet Classification for Global Network View of Software-Defined Networking 27

[36] Chad R. Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. Split: Op-

timizing space, power, and throughput for TCAM-based classification. In

ACM/IEEE ANCS, pages 200–210, 2011.

[37] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimiz-

ing the ”one big switch” abstraction in software-defined networks. In ACM

CoNEXT, pages 13–24, 2013.

[38] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in software-

defined networks. In IEEE INFOCOM, pages 545–549, 2013.

[39] Jahangir Hasan and T. N. Vijaykumar. Dynamic pipelining: Making IP-

lookup truly scalable. SIGCOMM Comput. Commun. Rev., 35(4):205–216,

2005.

[40] Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, Qunfeng Dong, Bin Liu, Wei

Meng, Huichen Dai, Xin Tian, Zhonghu Xu, Hao Wu, and Di Yang. Wire

speed name lookup: A GPU-based approach. In USENIX NSDI, pages 199–

212, 2013.

[41] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and

P. Mohapatra. Fireman: a toolkit for firewall modeling and analysis. In IEEE

S&P, pages 199–213, 2006.

[42] Yu-Wei Eric Sung, Carsten Lund, Mark Lyn, Sanjay G. Rao, and Subhabrata

Sen. Modeling and understanding end-to-end class of service policies in oper-

ational networks. In ACM SIGCOMM, pages 219–230, 2009.

[43] Lihua Yuan, Chen-Nee Chuah, and P. Mohapatra. ProgME: Towards pro-

grammable network measurement. IEEE/ACM Transactions on Networking,

19(1):115–128, 2011.

[44] Mohamed G. Gouda and Alex X. Liu. Structured firewall design. Computer

Networks, 51(4):1106–1120, 2007.

[45] A.X. Liu and M.G. Gouda. Diverse firewall design. IEEE Transactions on

Parallel and Distributed Systems, 19(9):1237–1251, 2008.

[46] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán

Heszberger. Compressing ip forwarding tables: Towards entropy bounds and

beyond. SIGCOMM Comput. Commun. Rev., 43(4):111–122, 2013.

[47] Amit Narayan, Adrian J. Isles, Jawahar Jain, Robert K. Brayton, and Al-

berto L. Sangiovanni-Vincentelli. Reachability analysis using partitioned-

ROBDDs. In IEEE/ACM ICCAD, pages 388–393, 1997.

[48] Kirill Kogan, Sergey Nikolenko, William Culhane, Patrick Eugster, and

Eddie Ruan. Towards efficient implementation of packet classifiers in

SDN/OpenFlow. In ACM HotSDN, pages 153–154, 2013.

