
TCS -TR-A-14-77

TCS Technical Report

An Efficient Algorithm

for Enumerating Eulerian Paths

by

Muhammad Kholilurrohman and Shin-ichi Minato

Division of Computer Science

Report Series A

October 3, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

An Efficient Algorithm
for Enumerating Eulerian Paths

Muhammad Kholilurrohman1 and Shin-ichi Minato1,2

1 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Japan

2 ERATO MINATO Discrete Structure Manipulation System Project,
Japan Science and Technology Agency, Sapporo, Japan

Abstract. Although a mathematical formula for counting the number of
Eulerian circles in a directed graph is already known [1, 2], no formula is
yet known for enumerating such circles if the graph is an undirected one.
In computer science, the latter problem is known to be in #P-complete
[3], enumerating the solutions of such problem is known to be hard. In
this paper, an efficient algorithm to enumerate all the Eulerian paths in
an undirected graph, both simple graph and multigraph, is proposed.

Keywords: enumeration, Eulerian circle, Eulerian path, graph theory,
undirected graph

1 Introduction

In graph theory, Eulerian path (or Eulerian trail) is a path in a graph which visits
every edge exactly once. If the path starts and ends on the same vertex, then it
is called an Eulerian circle. Eulerian path problem dates back to 1736, when for
the first time Leonhard Euler discuss in his paper [4] the famous Seven Bridges
of Königsberg problem. He proved the necessary condition for the existence of
Eulerian circle that all the vertices of the connected graph must have an even
degree, while the necessity condition was proved later by Carl Hierholzer [5] in
1873. Hereafter, if we mention about graph, then we always refer to a connected
graph.

There are some algorithms for constructing Eulerian path, one of them is
called Hierholzer’s algorithm, which takes linear time [6]. Thus, finding one Eu-
lerian path is considerably easy, but enumerating all of the Eulerian paths of a
given graph remains hard.

If the graph is directed, then we can count the Eulerian circles in it using a
mathematical formula discovered by de Bruijn, van Aardenne-Ehrenfest, Smith
and Tutte. The formula is called BEST theorem [1] [2], named after the people
who discovered it.

Theorem 1 (BEST theorem). Let D be a directed graph with vertices V =
{v1, v2, · · · , vm}, and suppose that the in-degree (which is the same as out-degree)
of a vertex vi is di. Let t(D) be the number of directed spanning trees rooted at

2

any fixed vertex v in D. The BEST theorem states that the number of Eulerian
circles Eul(D) in D can be stated mathematically as:

Eul(D) = t(D)

m∏
i=1

(di − 1)! (1)

Despite the number of Eulerian cycles in a directed graph can be expressed
in a simple mathematical equation, there is no any mathematical expression if
the graph is undirected. In this paper, we introduce an efficient algorithm for
this problem, which is much faster than naive brute force algorithm in many
cases. The idea of our algorithm is based on the algorithm introduced by Knuth,
which is called simpath [7] (exercise 225 in 7.1.4). Generally speaking, simpath is
an algorithm that constructs a directed acyclic graph (DAG) which later can be
transformed efficiently into a Zero-suppressed Binary Decision Diagram (ZDD)
[8], a kind of data structure that can be used to represent a set of all simple
paths3 between two given vertices of a given graph. Simpath is so powerful that
a ZDD representing 64528039343270018963357185158482118 simple paths con-
necting two opposite corners of a 13 × 13 grid graph is constructed within just
a few seconds. Like simpath, our algorithm makes good use of DAG to represent
all Eulerian paths. In this paper we show that counting paths on such DAG can
be efficiently done without having to count the path one by one.

This paper is organized as follows. Algorithm to enumerate simple paths
(simpath) and the data structure (ZDD) used in the algorithm is introduced
in Section 2. The details of our algorithm are discussed in Section 3. Next in
Section 4, we present the experimental results of this algorithm on some graphs.
Lastly, we conclude the paper in Section 5.

2 Enumerating Simple Paths

In this section we start our discussion from the naive backtrack algorithm for
enumerating all simple paths between given vertices s and t, then the explanation
about ZDD, and at last about simpath algorithm.

2.1 Naive Method

Let G = (V,E) be an undirected graph having vertices V = {v1, v2, · · · , vm} and
edges E = {e1, e2, · · · , en}. Let the source and the destination of the paths as
vertices s and t, where s, t ∈ V . We want to enumerate all simple paths between
s and t, which is called s-t path.

One of the simplest ways to enumerate such paths is by using a naive back-
track algorithm. But, using this method is infeasible in term of time, because the
time needed for backtracking is proportional to the number of the s-t paths. Even
for a relatively small graph, backtrack algorithm is considered to be impractical.

3 Simple path is a path which does not pass through a vertex more than once.

3

2.2 Zero-suppressed Binary Decision Diagram (ZDD)

Zero-suppressed Binary Decision Diagram (ZDD) [8] is a labeled directed acyclic
graph obtained by reducing a binary decision tree graph. Just like binary deci-
sion tree, each node (drawn as circle) in ZDD has two edges, namely 0-edge and
1-edge, which connect a node to its two child nodes, 0-child and 1-child, respec-
tively. 0-edge of a node ei is denoted as ei = 0, and 1-edge is denoted as ei = 1.
In this paper, 0-edge is drawn using a dashed-line, while 1-edge is drawn using
a solid line. By traversing the nodes of a ZDD from its root node4, eventually
we will reach either 0-terminal or 1-terminal, which is respectively expressed as
a squared box labeled by 0 or 1. Here we always refer to an ordered ZDD, hence
for the input variables e1, e2, · · · , en, they will appear ordered regardless of the
path we traverse from the root to the terminal node (although maybe there will
be some missing variables due to the ZDD reduction rules).

ZDD can be obtained from a binary decision tree graph by recursively ap-
plying these two rules until no further reduction is possible.

1. Eliminate all the nodes whose 1-edge points to the 0-terminal node. Then
connect the edge from its parent node to the other sub-graph directly.

2. Share all equivalent sub-graphs.

ZDD is proved to be ideal for compactly expressing family of sets [8]. For ex-
ample, Figure 1 (d) shows how family of sets F = {{e1, e3}, {e2}} is expressed
compactly using ZDD compared to its corresponding binary decision tree graph.

(a) (b)

s

t

e3

e1

e2

(c) (d)

e1

0 0 1 0 0 1 0 0

e2 e2

e3 e3 e3 e3

0 1

e1

e2 e2

e3

0 1

e1

e2

e3

Fig. 1. A triangle graph, a binary decision tree, a DAG, and a ZDD

This family of sets F = {{e1, e3}, {e2}} is representing all s-t paths of the
triangle graph in (a). In binary decision tree (b), the set {e1, e3} is represented
by the path with e1 = 1, e2 = 0, e3 = 1, which is called as 1-path because it
is connected to 1-terminal. The path representing {e2} is also connected to the
1-terminal, and the others are connected to 0-terminal. Thus, the number of s-t
paths correspond to the number of 1-paths in the binary decision tree, which is
also equivalent with the number of 1-paths in the ZDD.

4 Root node is the node at the top of a ZDD.

4

The number of 1-paths in a ZDD can be enumerated as follows. First, we
assign 0 to 0-terminal node and 1 to 1-terminal node. Next, for the others, the
value of a node is the same as the sum of values of its child nodes. Finally, the
value of the ZDD’s root node is the same as the number of s-t paths of the given
graph. Thus, the time needed for enumerating s-t paths is proportional to the
number of nodes in ZDD, not to the number of s-t paths. If the compression
rate of ZDD is high, the enumeration time can be very fast.

2.3 Simpath

A ZDD can be obtained by reducing a binary decision tree using ZDD reduction
rules. But, creating ZDD by this way is time consuming, because for n input
variables, the size of binary decision tree is already O(2n).

To speed up the process, simpath does not create a binary decision tree,
instead it creates a DAG which then can be effectively reduced into a ZDD. The
construction of the DAG is done in breadth-first search manner, pruning out the
branch that will not produce any s-t path as early as possible. For example in
Figure 1 (a), if both edges e1 and e2 are not selected, no s-t path is able to be
constructed, so the branch when e1 = 0 (shown as 0-edge of the node e1) and
e2 = 0 can be directly appointed to 0-terminal node without having to concern
about the assignment of e3. Simpath also merges two nodes with the same index
(the same level in the DAG) when it is known that the two branches will produce
the same output value for any combinations of the rest of the input variables.
Thanks to branch pruning and node merging, the constructed DAG is usually
much more compact than the corresponding binary decision tree and can be
efficiently reduced into a ZDD.

Branch pruning and node merging is carried out based on the information
of the vertices. Each node in the DAG represents current selected edges. These
selected edges form path fragments, and each vertex will have one of the following
three states which need to be remembered by the node:

1. not included in any path fragments, or
2. intermediate point of a path fragment, or
3. endpoint of a path fragment.

In a computer memory, we can use an array to express the state of each
vertex. In his book, Knuth calls this array as mate array, which is a mapping
from V to V ∪ {0}.

mate[v] =

v if vertex v is untouched so far

0 if vertex v is touched by exactly two edges

u if vertex u and v are endpoints of a path fragment

At first, each vertex is assigned to have a mate value equal to itself (mate[v] = v).
When an edge is selected, we need to update the mate value of some vertices5.

Suppose mate[m] = m̂ and mate[j] = ̂. If edge j-m is selected, we need to assign

5 At most the mates of 4 vertices need to be updated when an edge is selected.

5

mate[m] ← 0, mate[j] ← 0, mate[m̂] ← ̂, mate[̂] ← m̂, in exactly this order.
Figure 2 explains what this assignment is doing.

ĵ
mate[ĵ] = j

j
mate[j] = ĵ

m
mate[m] = m̂

m̂
mate[m̂] = m

ĵ
mate[ĵ] ← m̂

j
mate[j] ← 0

m
mate[m] ← 0

m̂
mate[m̂] ← ĵ

(a) (b)

Fig. 2. Updating Mate

A set of selected edges is accepted when the vertices s and t are connected
and no other path fragment exists, and is rejected when:

1. an edge is added to an intermediate point of a path fragment, or
2. it is known that s and t cannot be connected by current edges selection, or
3. a path connecting s and t is formed and some other path fragments remain.

Actually, each node does not have to remember the state of all vertices. All
we need is the information of the vertices which shall be called frontier, the set
of vertices contained in both processed and unprocessed edge. For example in
Figure 3, if we let the thin solid line be the unprocessed edges, thick solid line be
the selected edges, and dashed line be the edges not selected, then the frontier
is {v5, v6, v7}.

v1

v3 v7

v6

v5
v2

v4

v8

v9

v10 v1

v3 v7

v6

v5
v2

v4

v8

v9

v10

(a) (b)

Fig. 3. Two path fragments which can be merged

At this stage, further selection of the unprocessed edges that makes Figure 3
(a) has an s-t path will also makes (b) has an s-t path. If we look closer, we
know that both (a) and (b) have the same mate values for each vertex in the
frontier. So, we do not need to process (b) further, instead we can merge the
node representing (b) to the node representing (a).

The algorithm 1 bellow is the pseudocode for simpath. The CheckTerminal
function is the part where the decision is made, whether we need to proceed to
the next edge selection, or we have to appoint the current DAG branch to 0-
terminal, or we can appoint the DAG branch to 1-terminal. Line 10 of the code
is executed when there is already an equivalent node (node having the same
mate) created in the current level of DAG, thus the node merging happens.

6

Algorithm 1: Simpath [7]

input : An undirected graph, s, and t
output: ZDD representing all simple paths

1 N1 ← {noderoot};
2 Ni ← ∅ for i = 2, · · · , n+ 1; // Ni holds nodes in level i
3 for i← 1 to n do // process nodes in level i
4 foreach node ∈ Ni do
5 foreach x ∈ {0, 1} do // processing 0-edge and 1-edge

6 node′ ← CheckTerminal(node, i, x);
// CheckTerminal returns 0-terminal, 1-terminal, or nil

7 if node′ = nil then
8 Create a new node and set it to node′;
9 if there exists node′′ ∈ Ni s.t. node′′ is equivalent to node′

then
10 node′ ← node′′

11 else
12 Ni+1 ← Ni+1 ∪ {node′}

13 Create x-edge to connect node and node′.

14 Using ZDD reduction rule, reduce the DAG into ZDD;

3 Enumerating Eulerian Paths

In this section, we discuss about the basic idea of the proposed algorithm, the
use of mate, and the idea of node merging.

We distinguish two similar Eulerian paths having different direction. Hence,
the Eulerian cycle v1 → v2 → v3 → v1 is counted separately form v1 → v3 →
v2 → v1. Notice that the problem of enumerating Eulerian cycles can be trans-
formed into enumerating Eulerian paths by adding an additional edge. For exam-
ple, adding an edge vm−vm+1 to the graph having vertices V = {v1, v2, · · · , vm},
then the problem of enumerating Eulerian cycle starting from vm back to vm is
now become the problem of enumerating Eulerian paths from vm to vm+1.

3.1 Basic Idea

Assume there are xi edges connected to vertex vi. We want to make pairing of
edges, so that every edge in this vertex has a pair. The number of combination
of such edge pairing6 is:

f(xi) =

(
xi
2

)
·
(
xi − 2

2

)
· · ·
(

2

2

)
. (2)

In Subsection 2.2, we used a binary decision tree for expressing all possible
combination of edge selection, and connected the set of edge selection that forms

6 Assign xi ← xi + 1 for vertex s and t, because their degree are odd.

7

an s-t path to 1-terminal node. Using similar idea, suppose we replace the binary
decision DAG with a “multi-decision” DAG whose the number of child nodes
in level i is f(xi), each expressing one of the combination of edge pairing in
vertex vi as described above. Because we are considering all combinations of any
possible edge matching in all vertices, we can be sure that the entire Eulerian
paths are represented in the DAG. The node labelled v1, v2, · · · , vm will appear
during our traversal from the root node of the DAG, each node represents one
possible edge pairing in the corresponding vertex. If the overall edges pairing in
these nodes are not forming an Eulerian path, we connect the traversed path of
the DAG to 0-terminal and otherwise to 1-terminal.

Actually, the way we construct the DAG is slightly different from what has
been explained above. Instead of the vertices, we process the edges one by one.
This enables us to use the idea of mate array to hold the information of each
vertex. In simpath, each vertex has exactly one mate value, because each vertex
can be passed through by at most one path fragment. The Eulerian path is
different; one vertex can be used by multiple path fragments. To accommodate
this, we need to modify the mate array so that each vertex will be able to keep
track on the path fragments currently using it. Thus, we will need to use array
of “lists of vertices”7 to express the state of each vertex. If we denote deg(vi) to
be the degree of vertex vi, then the maximal size of the mate[vi] for each vertex
vi will be8:

deg(vi)

2
. (3)

At first, when there is still no any path fragment connected to vertex vi, the
size of mate[vi] is 0. Then, there are two choices if an edge is added to vi:

1. connect to the endpoint of a path fragment that is already in there, or
2. create a new path fragment with endpoint at this vertex. In this case, incre-

ment the size of mate[vi], for accommodating the new path fragment. Choice
2 is only available if the number in Equation 3 is not reached yet.

In Figure 4 (a), vertex v has four edges e1, e2, e3 and e4. Suppose we process
the edges in that order. For the root node, there is still nothing connected to
vertex v, so we just put edge e1 as the node 1 in (b) as a new path fragment.
Next, there are two possibilities when we are adding edge v2, whether to connect
this edge to the already existing edge e1, or we do not connect to any of the
path fragment already in the vertex. When we are expanding node 3, we cannot
make a new path fragment because the maximal number of Equation 3 is already
reached, so we just connect the edge e3 to the existing path fragments. The time
when we finish processing all edges connected to a vertex, then we get the all
possible edge matching in that vertex is already expressed in the DAG. In our
algorithm, we do not necessarily process all the edges connected to a vertex at
once. Sometimes we leave some edges unprocessed, and instead process another
edge not directly connected to this vertex.

7 More practically, we are using an array of a resizable array.
8 Again, we need to make deg(vi)← deg(vi) + 1 for vertices s and t.

8

v

e1

e2e4

e3

1

2 3

4 5 6

7 8 9

(b)(a)

Fig. 4. Edge matching on a vertex

3.2 Mate Update and Node Merging

As in simpath, our algorithm works by processing the edges one by one. Each edge
has two vertices, at each step we consider edge matching in these two vertices.
If there are k path fragments connected to p and l path fragments connected to
q, then k × l combinations of edge matching have to be considered. In addition,
if there is still a chance to add a new path fragment to the vertex p and q, we
have to consider in overall (k + 1)× (l + 1) cases.

But there is good news here; we can reduce this number into smaller cases
by removing the duplicates, treating mate[v] as a weighted set instead of a list of
vertices. Let us writemate[p] as {α1, α2, · · · , αg} andmate[q] as {β1, β2, · · · , βh},
g ≤ k and h ≤ l. Now, the cases can be reduced into at most (g + 1)× (h+ 1).
To implement mate[p] we need three operators, namely inc(αi) to increment,
dec(αi) to decrement, and w(αi) to know the weight of αi. For the sake of
simplicity, we will write p.operator(αi) instead of mate[p].operator(αi).

Updating mate when αi and βj is connected9 is done in the similar way as
in simpath, except that now we are dealing with weighted set, which makes us
have to see case by case according to which category do αi and βj belong. These
categories are:

1. αi = q or βj = p (i.e. p and q are connected by a path fragment).
2. αi = p or βj = q (i.e. there is a path fragment/self-loop connecting p back

to p or q back to q).
3. αi = x or βj = y, where x, y 6= {p, q}, x, y ∈ V (i.e. there is a path fragment

connecting p to x or q to y).
4. a newly added mate (in simpath we initialize mate[v] = v, but here initial-

ization is not needed).

For example if both αi and βj belong to category 1, mate update is done as
follows. Suppose mate[p] = {α1} = {q}, (p.w(α1) = 3) and mate[q] = {β1} =
{p}, (q.w(β1) = 3), which is illustrated in Figure 5. Because the weight of each
mate is 3, there are three path fragments connecting p to q. The dashed line in

9 Simply ignore if αi or βj equals 0, which represents body of a path fragment.

9

the left figure shows the 3× 3 = 9 possibilities of connecting vertex p to q using
edge p−q. But, 3 cases will end up with a cycle being formed. This leaves us with
the remaining 3× 3− 3 = 6 cases as shown in the right figure, which correspond
to the number of child nodes need to be created. Joining any two different path
fragments here will result the same, mate[p] = {0, q}, (p.w(0) = 1, p.w(q) = 2)
and mate[q] = {0, p}, (q.w(0) = 1, q.w(p) = 2). Hence, the mate of these 6 child
nodes will be the same. In conclussion, if αi and βj from category 1 are going to
be connected, we need to create p.w(αi)

2−p.w(αi) child nodes each having mate
as follow. Copy the mate of the parent’s node, then assign p.dec(αi), q.dec(βj),
p.inc(0), q.inc(0).

α1

path fragment 2

path fragment 1

path fragment 3

α1
α1

β1

β1
β1

α1

path fragment 2

path fragment 1

path fragment 3

α1
α1

β1

β1
β1

p pq q

Fig. 5. Connecting two path fragments

Table 1 bellow summarizes all cases. At first copy the mate of the parent’s
node. Then, update this mate according to the assignment in the “Update rule”
column. “Number of Child Nodes” column shows how many child nodes having
identical mate need to be created, the weight in this column is based on mate of
the parent’s node. Shortly we will know that these child nodes can be merged,
so that actually we can just create one child node.

Node merging in this algorithm is done based on the same idea used in
simpath. Two nodes from the same level in the DAG can be merged if the mates
of their vertices in frontier are the same. The only difference is that this time
the mate of a vertex is considered as a weighted set. Therefore, we need that the
mate of each vertex is sorted before comparison. The algorithm for enumerating
Eulerian paths is also similar to Algorithm 1 except at line 5 and 13, because
instead of having only two child nodes, now each node can have multiple child
nodes. Also, we do not reduce the DAG, thus line 14 is not needed.

4 Experimental Results

In this section, we present the results of our experiment. The algorithm was
implemented using C++11 and run on a machine with 4 GB memory Intel R©

CoreTMi3-2330M CPU @ 2.20GHz × 4.
At first, we present the result for graphs having multiple edges and compare

the results with the corresponding simple graph. Then, for the Aztec diamond
graph [9], we present the results up to n = 8.

10

Table 1. The Rules in Updating the Mate

No.
Category

Update Rule
Number of

α β Child Nodes

1 1 1 p.dec(q), p.inc(0), q.dec(p), q.inc(0) p.w(q)2 − p.w(q)

2 1 2 p.dec(q), p.inc(0), q.dec(p), q.inc(0) p.w(q)× q.w(q)

3 1 3 p.dec(q), p.inc(0), q.dec(p), q.inc(0) p.w(q)× q.w(y)

4 1 4 p.dec(q), p.inc(0), q.dec(p), 2× q.inc(q) p.w(q)

5 2 2
2× p.dec(p), p.inc(0), p.inc(q),

p.w(p)× q.w(q)
2× q.dec(q), q.inc(0), q.inc(p)

6 2 3
2× p.dec(p), p.inc(0), p.inc(y),

p.w(p)× q.w(y)
q.dec(y), q.inc(0), y.dec(q), y.inc(p)

7 2 4 2× p.dec(p), p.inc(0), p.inc(q), q.inc(p) p.w(p)

8 3 3
x.dec(p), x.inc(y), p.dec(x), p.inc(0),

p.w(x)× q.w(y)
q.dec(y), q.inc(0), y.dec(q), y.inc(x)

9 3 4 x.dec(p), x.inc(q), p.dec(x), p.inc(0), q.inc(x) p.w(x)

10 4 4 p.inc(q), q.inc(p) 1

4.1 Multigraph

The proposed algorithm in this paper is relatively fast for processing multi-
graph10 compared to its “corresponding” simple graph. For example, let the left
graph in Figure 6 be a(n) and the right one be b(n). Let n be an odd number.
We want to enumerate all Eulerian paths starting from vertex 1. The results for
some n are summarized in Table 2.

(a)

e1 …

1

2

e2 e3 e4 en

(b)

1

…2 3 4 5 n+1

n+2

e1 e2 e3 e4
en

en+1
en+2

en+3 en+4 e2n

Fig. 6. Simple Graph vs Multigraph

It turns out that the nodes created for counting Eulerian paths in a(n) and
b(n) are greatly different. For b(13), the 6227020800 Eulerian paths are stored
in the DAG having merely 131 nodes compared to a(13) which needs 529397
nodes. This shows that node merging when processing b(n) is done effectively,
which also makes the processing time of b(n) much faster. We also compare our
algorithm with a backtrack based algorithm. Notice that the number of Eulerian

10 Here, a multigraph is a graph with multiple edge, but without self-loop.

11

Table 2. Simple Graph vs Multigraph

n
a(n) b(n)

solutionsproposed algorithm backtrack proposed algorithm backtrack
nodes time time nodes time time

3 16 0.006962 0.000973 8 0.003770 0.000385 6

5 72 0.023053 0.015367 16 0.008759 0.005399 120

7 463 0.033030 0.388146 30 0.018849 0.096984 5040

9 3940 0.131531 30.007690 52 0.025878 5.796462 362880

11 41774 1.370419 3612.151051 85 0.023074 638.443941 39916800

13 529397 20.117619 time out 131 0.025434 time out 6227020800

15 - time out time out 194 0.030318 time out 1307674368000

31 - time out time out 1786 0.160600 time out 8.22284× 1033

51 - time out time out 9776 1.222678 time out 1.55112× 1066

101 - time out time out 118014 29.145220 time out 9.42595× 10159

paths of these kind of graphs are actually n!, same as the number of possible
permutation of e1, e2, · · · , en.

4.2 Aztec Diamond

The Aztec diamond in this paper is a bit different from the usual11 Aztec dia-
mond. The Aztec diamond here as shown in Figure 7 is the same as the graph
described by Audibert in his book [9]. Starting from the lower vertex of the left-
most edge, i.e. vertex number 1, we want to count the number of Eulerian cycles
coming back to this vertex. Using backtrack algorithm, we could only count the
Eulerian cycles up to n = 3, which took 150.041790 seconds. For n = 4, the
running time is already more than 1 hour, so we stopped the program. On the
contrary, using our proposed algorithm we could count the Eulerian paths up to
n = 8. The detailed results are presented in Table 3.

1

2

3

4

1

3

2

6

7

5

8

9

10

11

12

4 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Fig. 7. Aztec Diamond for n = 1, 2, and 3

11 The general term of Aztec diamond refers to a similar graph but with the leftmost,
rightmost, uppermost, and lowermost edges are 2.

12

Table 3. The Result for Aztec Diamond Using Proposed Algorithm

n nodes time solutions

1 8 0.000228 2

2 40 0.015503 80

3 286 0.032317 264320

4 2164 0.071024 67131225600

5 17271 0.500763 1282298454848135168

6 148224 6.153548 1823958835474044219224391680

7 1382302 73.527219 192178269775153104174170778660103782400

8 14083862 942.330957 1495157006436041186484738405257449073460914460033024

5 Conclussion

We have explained the algorithm for enumerating Eulerian paths in a undirected
graph, which can be used for both simple graph and multigraph. The algorithm
is much faster compared to a naive backtrack algorithm in many cases. Also,
treating mate of a vertex as a weighted set makes the computation in the algo-
rithm efficient, removing the need to repeat the same operation over and over.
Unfortunately, there is a side effect of treating mate of a vertex as a weighted
set ; the indexing of the Eulerian paths becomes difficult, which will we leave as
future work.

References

1. van Aardenne-Ehrenfest, T., de Bruijn, N. G.: Circuits and trees in oriented linear
graphs. Simon Stevin 28, 203–217 (1951)

2. Tutte, W. T., Smith, C. A. B.: On unicursal pahts in a network of degree 4. American
Mathematical Monthly 48, 233–237 (1941)

3. Brightwell, G. R., Winkler, Peter: Note on Counting Eulerian Circuits. CDAM Re-
search Report LSE-CDAM-2004-12 (2004)

4. Euler, Leonhard: Solutio Problematis ad Geometriam Situs Pertinentis. Comment.
Academiae Sci. I. Petropolitanae 8, 128–140 (1736)

5. Hierholzer, Carl: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren. Mathematische Annalen 6 (1), 30–32 (1873)

6. Fleischner, Herbert: X.1 Algorithms for Eulerian Trails. Eulerian Graphs and Re-
lated Topics: Part 1, Volume 2, Annals of Discrete Mathematics 50, Elsevier pp.
X.1-13 (1991)

7. Knuth, D. E.: The Art of Computer Programming, Volume 4A, Combinatorial Al-
gorithm, Part 1. 1st.Addison-Weasley Professional (2011)

8. Minato, Shin-ichi: Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems. In Proc. of 30th ACM/IEEE Design Automation Conference (DAC’93),
pp. 272-277 (1993)

9. Audibert, Pierre: Mathematics for Informatics and Computer Science. ISTE Ltd.
pp. 832 (2010)

