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(Abstract) Finding pareto-optimal solutions is a basic approach in multi-objective

combinatorial optimization. In this paper, we focus on 0-1 multi-objective knap-

sack problems, and present an algorithm to enumerate all pareto-optimal solu-

tions of them, inspired by (Bazgan, Hugot, and Vanderpooten, Computers & OR,

36(1):260–279, 2009). Our algorithm is based on dynamic programming techniques

using an efficient data structure, called zero-suppressed binary decision diagram

(ZDD), which handles set of combinations compactly. In our algorithm, we utilize

ZDDs for pruning inessential partial solutions. As an output of the algorithm, we

can obtain a useful ZDD indexing all pareto-optimal solutions. The results of our

experiments showed that our algorithm is clearly faster than previous method in

several three-objective and four-objective instances, which are harder problems to

be solved.

1 Introduction

In multi-objective combinatorial optimization, efficient solutions have the property

called pareto-optimality, that any objective can not be improved whithout changing

other objective for the worse. A solution with the pareto-optimality is called pareto-

optimal solution. Several results and annotated bibliographies of multi-objective

combinatorial optimization can be found in [7].

In this paper, we focus on the 0-1 multi-objective knapsack problem which is the

one of multi-objective combinatorial optimization problems. The single-objective

version of this problem is well-studied in the literature [6]. Multi-objective cases

have many practical applications for example capital budgeting [10], and selecting

transportation investment alternatives [11].

To find a reduced set or the complete set of pareto-optimal solutions is a typical

approach in multi-objective combinatorial optimization. In the 0-1 multi-objective
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knapsack problem, metaheuristics are better to find an approximately reduced set

in many cases [5] [12]. Only for the bi-objective case, labeling algorithm [4] and

ϵ-constraint method [3] can find the complete set. For general cases, the dynamic

programming and some pruning based approach has been proposed [1]. Bazgan et

al. showed that their approach is faster than labeling algorithm and ϵ-constraint

method in bi-objective cases. Moreover, they conducted experiments to find the

complete set in three-objective cases.

In this paper, we propose a more practical algorithm to find the complete set of

pareto-optimal solutions inspired by the Bazgan’s approach. The algorithm uses

an efficient data structure, named zero-suppressed binary decision diagram (ZDD),

which can index a huge number of combinations in compact form [8]. There are

many practical applications of ZDDs in combinatorial optimization problems in-

cluding the single-objective knapsack problem [2] [9]. We designed pruning heuris-

tics using ZDDs which indexes all feasible solutions. It is more accurate than

conventional methods. In addition, we can get the useful ZDD indexing all the

pareto-optimal solutions as the output of our algorithm.

We conducted computational experiments to compare Bazgan’s algorithm and

our algorithm. The results of computation time showed that our algorithm is

clearly faster than Bazgan’s algorithm for various types of three-objective and four-

objective instances, which are harder problems to be solved. We also investigated

the compression efficiency of output ZDDs.

This paper is organized as follows. In section 2, we formally define the 0-1 multi-

objective knapsack problem and describe ZDDs. Section 3 presents the framework

of our algorithm. Pruning conditions using our algorithm are described in section 4.

Section 5 presents the algorithmic issues. Computational experiments and results

are reported in section 6. In section 7, we conclude this paper.

2 Preliminaries

2.1 0-1 Multi-objective Knapsack Problem

The 0-1 multi-objective knapsack problem is known as one of multi-objective com-

binatorial optimization problems. Given n items I = {1, . . . , n} and an integer

capacity C > 0. In m-objective cases, each item i ∈ I has an integer weight

wi > 0, and a m-dimensional non-negative integer-valued vector vi = (vi1, . . . , v
i
m).

A solution of the problem is a combination of items X ⊆ I. The total weight of a

solution X is denoted by w(X) =
∑

i∈X wi. If X is a feasible solution, it satisfies

w(X) ≤ C. We define the set of all the feasible solutions X = {X ⊆ I|w(X) ≤ C}.
The value of a solution X is denoted by the sum of the valued vectors v(X) =∑
i∈X vi. Let us define the order relation < on valued vectors as follows:

a < b ⇐⇒

{
ai ≤ bi, ∀i ∈ {1, . . . ,m}, and

aj < bj , ∃j ∈ {1, . . . ,m}.
(1)
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We also define a partial order relation ∆ on X , called dominance relation, using

the order relations < as follows:

∀X,X ′ ∈ X , X∆X ′ ⇐⇒ v(X) < v(X ′). (2)

IfX∆X ′, we say thatX is dominated byX ′ orX ′ dominatesX. On the dominance

relation, a solution X ∈ X is called pareto-optimal solution, if X is not dominated

by any feasible solution X ′ ∈ X . Let P be the set of all the pareto-optimal

solutions. A typical goal of the problem is to find a reduced set P ′ ⊆ P or the

complete set P. In this paper, our goal is to find the complete set P.

2.2 Zero-suppressed Binary Decision Diagram

Zero-suppressed binary decision diagram (ZDD) is a data structure to represent

a set of combinations in compact form. A ZDD is a directed acyclic graph Z =

(N ,A) with node set N and arc set A. It has two terminal nodes ⊤ and ⊥.
Each non-terminal node α ∈ N has two arcs 0-arc and 1-arc. A node pointed by

x-arc of α is denoted by αx, and called x-child of α. A ZDD has a root node ρ

which is not pointed by any arcs. In 0-1 multi-objective knapsack problems, we

manipulate the set of items I with ordering as 1 < . . . < n. Each non-terminal

node α ∈ N has a label ℓ(α) ∈ I where ℓ(α) < ℓ(αx) (x ∈ {0, 1}). We suppose

that ℓ(⊤) = ℓ(⊥) = n+ 1 for convenience.

A path from a node α to the terminal ⊤ represents a combination X ⊆ I. Item

i ∈ I belongs to X iff the path has a 1-arc which goes out a node labeled with i.

We define the set of combinations represented by a node α ∈ N as follows:

X (α) = {X ⊆ I | A path α to ⊤ corresponds to X}. (3)

Especially, X (ρ) is the whole set represented by Z.
ZDDs can be reduced by the following two rules.

1. Share any isomorphic subgraphs.

2. Delete all nodes whose 1-arc points ⊥.

We can use the above two rules in any order. Then the form of the ZDD is uniquely

determined, and we call it irreducible ZDD (show Fig. 1). We suppose that ZDD

is irreducible unless otherwise noted. Note that any irreducible ZDD for X has no

arc which points ⊥, and we can construct it in O(nC) time [2].

3 Framework of Dynamic Programming over ZDDs

3.1 Basic Concept

Let Z = (N ,A) be the ZDD with a root node ρ where X (ρ) = X . Then we try

to extract the set P from Z by the dynamic programming (DP). In the DP, we
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Figure 1: An example of ZDD for a 0-1 multi-objective knapsack problem

manage sets of states corresponding to feasible solutions. A state s consists of a

m-dimentional valued vector s.v and a node s.α ∈ N .

The DP consists of n phases. Let Si be a set of states that each state s ∈ Si

satisfies ℓ(s.α) = i+ 1. Then Si corresponds to a set of solutions consisting of the

first i items {1, . . . , i}. Initially, let S0 = {sϕ} where sϕ.v = 0, and sϕ.α = ρ. It

represents the empty knapsack. At the phase i we extend all the states s ∈ Si−1

as follows: For all b ∈ {0, 1}, we generate a state sb where sb.v = s.v+ b× vi, and

sb.α = s.αb. After that sb is added to the set of states Sj where j = ℓ(sb.α) − 1.

Note that, it is not necessary to maintain the capacity, because all the transitions

on Z generate a feasible solution.

In this process, many states will not become any pareto-optimal solution. Thus

we conduct a pruning of them as much as possible for obtaining Sn which corre-

sponds to P.

3.2 Pruning Condition

Because of the property that X (ρ) = X , the set of all the combinations of items

which can be added to a state s without violation is represented by X (s.α). Let us
define the set of valued vectors E(s) = {s.v + v(X) | X ∈ X (s.α)}. It corresponds
to the set of all the feasible solutions extended from s.

The pruning process uses d relations ∆1, . . . ,∆d which is similar to the domi-

nance relation. Each relation ∆k (k = 1, . . . , d) must have the following property:

∀s, s′ ∈ Si (i = 1, . . . , n), s∆ks
′ ⇒ ∀e ∈ E(s), ∃e′ ∈ E(s′), e < e′. (4)

s∆ks
′ means that all the feasible solutions extended from s is dominated by another

solution extended from s′. We call such relations as future dominance relation.

According to the d future dominance relations, we can conduct a pruning as follows:

For a state s ∈ Si, if there is a state s′ ∈ Si and an integer k ∈ {1, . . . , d} where
s∆ks

′, we delete s from Si.

When at least one relation ∆k satisfies

∀s, s′ ∈ Sn, s∆ks
′ ⇐⇒ s.v < s′.v, (5)
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Sn becomes the set of valued vectors of P. In the next section, we define two future

dominance relations used in our algorithm.

4 Future Dominance Relations Using ZDDs

4.1 Relation Based on Implicit Capacities

The first future dominance relation is based on the following observation. For two

states s, s′ ∈ Si (i = 1, . . . , n), we suppose that s.v < s′.v and X (s.α) ⊆ X (s′.α).
For all X ∈ X (s.α), e = s.v+v(X) ∈ E(s). Also, e′ = s′.v+v(X) ∈ E(s′), because
X ∈ X (s′.α). Then e < e′. This situation matches the condition (4). Thus we

define the future dominance relation ∆c on Si (i = 1, . . . , n) by:

∀s, s′ ∈ Si, s∆cs
′ ⇐⇒ s.v < s′.v, and X (s.α) ⊆ X (s′.α). (6)

∆c also satisfies (5), because X (s.α) = X (s′.α) = X (⊤) = ϕ for i = n.

We can check X (s.α) ⊆ X (s′.α) easily as follows: For a node α, let us define

the maximum weight on X (α) as c(α) = max{w(X) | X ∈ X (α)}. Then c(s.α)

denotes the remaining capacity of a state s implicitly. Therefore c(s.α) ≤ c(s′.α)

and X (s.α) ⊆ X (s′.α) are equivalent. For calculating c(α), we can use the recursion

formula defined by:

c(⊤) = 0, c(α) = max{c(α0), c(α1) + wℓ(α)}. (7)

Indeed, c(⊤) must be 0 obviously. When c(α0) equals the maximum weight in all

the combinations which leaves the item ℓ(α), and c(α1) is the opposite, c(α) must

be the maximum of c(α0) and c(α1) + wℓ(α).

4.2 Relation Based on Upper Bound

The second future dominance relation is based on the comparison between an upper

bound of a state and a greedy extension of another state.

Let us define a process for generating a greedy extension of a state s as follows:

We start at the node β = s.α. While β ̸= ⊤, we trace 1-arc and update β = β1.

According to this process, we trace 1-arcs as much as possible, i.e. we try to take

items while the capacity is enough. Let g(α) be the valued vector obtained by the

above process starting at a node α. It can be represented by the recursion formula

defined by:

g(⊤) = 0, g(α) = g(α1) + vℓ(α). (8)

The valued vector of a greedy extension of a state s is s.v + g(s.α) ∈ E(s).
For a node α, let us define an upper bound on X (α) as follows: a valued vector

u is an upper bound on X (α) iff max{vi(X) | X ∈ X (α)} ≤ ui (i = 1, . . . ,m).
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Let u(α) be the valued vector which is the tight upper bound on X (α). We can

calculate u(α) by the recursion formula defined by:

u(⊤) = 0, ui(α) = max{ui(α0), ui(α1) + v
ℓ(α)
i } (i = 1, . . . ,m). (9)

Indeed, 0 is the tight upper bound on X (⊤) = ϕ obviously. When u(αb) is the

tight upper bound on X (αb) (b ∈ {0, 1}), ui(α) should be the maximum of ui(α0)

and ui(α1) + v
ℓ(α)
i for each i = 1, . . . ,m. The valued vector of an upper bound

calculated from a state s is s.v + u(s.α).

Using greedy extensions and upper bounds, we can construct a future dominance

relation as follows: For two states s, s′ ∈ Si (i = 1, . . . , n), if s.v + u(s.α) <

s′.v + g(s′.α), then e < s′.v + g(s′.α) for all e ∈ E(s), because ei ≤ s.vi + ui(s.α)

for each i = 1, . . . ,m. This situation matches the condition (4). Thus we define

the future dominance relation ∆u on Si (i = 1, . . . , n) by:

∀s, s′ ∈ Si, si∆us
′
i ⇐⇒ s.v + u(s.α) < s′.v + g(s′.α). (10)

5 Algorithm

5.1 Preprocess

For evaluating the future dominance relations ∆c and ∆u, we can calculate c(α),

g(α), and u(α) for all nodes α ∈ N beforehand. We conduct the bottom-up DP

with recursion formula (7), (8), and (9). Initially, we set c(⊤)← 0, g(⊤)← 0, and

u(⊤)← 0. After that we process the nodes in reverse topological order (i.e. ⊤ to

ρ). The pseudo code of preprocess is represented in Algorithm 1.

Algorithm 1 Preprocess for calculating c(α), g(α), and u(α)

1: c(⊤)← 0, g(⊤)← 0, u(⊤)← 0
2: for α ∈ N in the reverse topological order do
3: j ← ℓ(α)
4: c(α)← max{c(α0), c(α1) + wj}
5: g(α)← g(α1) + vj

6: ui(α)← max{ui(α0), ui(α1) + vji } for i = 1, . . . ,m
7: end for

5.2 Generating ZDD for P

For generating a ZDD for P, we should store the copy of all the states and the

transitions in the DP. We start at a ZDD with only a root node. After that, every

time a transition from a state is occured in the DP, we create a new arc and a

new child node which corresponds to the transition. We show the details of this

process in the following.
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Let N ′ be a set of new generated nodes, and A′ be a set of new generated arcs.

Let N ′(s) be a node which corresponds to a state s. For the initial state sϕ, we

create a root node ρ′ and set N ′(sϕ)← ρ′. When we create a state sb (b ∈ {0, 1})
by the transition from a state s, if sb is not already created in the DP, we also

create a new node β where ℓ(β) = ℓ(sb.α), and set N ′(sb) ← β. At that time, β

becomes a b-child of N ′(s). Then we create a b-arc which points N ′(s) to β, and

add it to A′.

In the pruning phase, if a state s is pruned, we update N ′(s) ← ⊥. As a

special case, when we conduct a transition from a state s where s.α0 = s.α1,

we generate only s1 and prune s0 immediately, because c(s0.α) = c(s1.α) and

s0.v < s1.v = s0.v + vℓ(s.α) (i.e. s0∆cs1). At the end of the phase n we update

N ′(s) = ⊤ for all s ∈ Sn. This process can store all the states and the transition

of the DP as a ZDD form. Then we get a ZDD Z ′ = (N ′,A′) where X (ρ′) = P.
However, Z ′ is not irreducible in allmost all cases, thus we should reduce it.

The pseudo code of the above process is represented in Algorithm 2. For the

pruning phase, we design the function pruneDominatedStates in the following.

Algorithm 2 Enumeration of all the pareto-optimal solutions

1: Create ZDD Z = (N ,A) for X with a root node ρ, and use Algorithm 1
2: Set N ′ ← ϕ and A′ ← ϕ
3: sϕ.v ← 0, sϕ.α← ρ, S0 ← {sϕ}, N ′(sϕ)← ρ′

4: for i = 1, . . . , n do
5: for s ∈ Si−1 do
6: for b ∈ {0, 1} do
7: if b = 0 and s.α0 = s.α1 then
8: β ← N ′(s), βb ← ⊥
9: else

10: Create sb, and set sb.v ← s.v + b× vi, sb.α← s.αb

11: j ← ℓ(sb.α)− 1
12: if sb ∈ Sj then
13: Create a b-arc which ponits N ′(s) to N ′(sb) and add it to A′

14: else
15: Create a new node β where ℓ(β) = ℓ(sb.α)
16: N ′(sb)← β, Sj ← Sj ∪ {sb}
17: Create a b-arc which points N ′(s) to β, and add it to A′

18: end if
19: end if
20: end for
21: end for
22: pruneDominatedStates(Si, N ′)
23: end for
24: N ′(s)← ⊤ for all s ∈ Sn

25: Create Z ′ = (N ′,A′) and apply the reduction rules to Z ′

26: return Z ′
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5.3 Pruning Dominated States

Here we discuss about how to apply the future dominance relations ∆c and ∆u. It

is important that we make the pruning process faster as much as possible. Indeed,

pruning is the process to take computation time most. For a simple way, we will

compare all pairs of states in O(m|Si|2) time at each phase i = 1, . . . , n. We present

some techniques for accelerating the simple process in the following.

Let ≥lex be the reverse lexicographical relation defined on valued vectors as

follows (suppose that a and b are a m-dimensional valued vector respectively):

a ≥lex b ⇐⇒

{
∃i ∈ {1, . . . ,m}, aj = bj (j < i) and ai > bi, or

∀i ∈ {1, . . . ,m}, ai = bi.
(11)

Let ≥c be the order relation defined on Si (i = 1, . . . , n) by:

∀s, s′ ∈ Si, s ≥c s
′ ⇐⇒

{
c(s.α) > c(s′.α), or

c(s.α) = c(s′.α) and s.v ≥lex s′.v.
(12)

If s ≥c s′, then s is not dominated by s′ on ∆c, because c(s.α) > c(s′.α) or

s′.v < s.v is satisfied (note that s.v ≥lex s′.v ⇒ s′.v < s.v). Thus, at the pruning

phase for Si, we sort all the states in Si by the decreasing order on ≥c. After that

we examine whether s ∈ Si is dominated on ∆c or not in the sorted order. At that

time, we focus on dominant valued vectors as follows.

Let D be the list of dominant valued vectors with respect to s.v where s ∈ Si.

Initially, we set D = ϕ. After that we update D, and perform a pruning by ∆c as

follows: For each state s ∈ Si, we compare s.v and each valued vector d ∈ D. If

s.v < d, then s is dominated by another state whose valued vector is d, and we

delete s from Si. Otherwise, when d ̸= s.v, we add s.v to D and delete d ∈ D

where d < s.v. This process is performed in O(m|D|) time. Note that |D| ≤ |Si|.

Moreover, to finish the comparison as soon as possible, we sort the list D by

the decreasing order on ≥lex. We suppose that D = {d1, . . . ,d|D|}, and dj ≥lex dk

(j < k) in the following. We compare s.v and dj in order of j = 1, . . . , |D|. When

s.v ≥lex dj , we can stop the comparison, because dj is the last element with

possibility to dominate s. After that, when dj ̸= s.v, we insert s.v to the j-th

position of D, and delete dk (j ≤ k) where dk < s.v. Note that D is still sorted

by the decreasing order on ≥lex after the insertion and the deletion.

The algorithm to apply ∆c is represented in the first 6 lines of Algorithm 3.

The function updateDominator represented in Algorithm 4 is used to update D

and examine whether a state is dominated or not.

For applying ∆u, we can use the similar techniques of applying ∆c. Let G be the

list of valued vectors with respect to s.v+g(s.α) where s ∈ Si. We can generate G

by applying updateDominator(G, s.v+g(s.α)) for all s ∈ Si. Then G is sorted by

the decreasing order on ≥lex and have no unnecessary valued vector. We suppose
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that G = {g1, . . . , g|G|}, and gj ≥lex gk (j < k) in the following. Then we perform

a pruning by ∆u as follows: For a state s ∈ Si, let u = s.v+u(s.α). We compare u

and gj in order of j = 1, . . . , |G|. If u ≥lex gj , we stop the comparison. Otherwise,

when u < gj , we delete s from Si. The algorithm to apply ∆u is represented in

the remaining lines of Algorithm 3.

Especially, at n-th pruning phase, Sn corresponds to P after applying ∆c ac-

cording to the property (5). Thus we do not apply ∆u at n-th pruning phase.

Algorithm 3 pruneDominatedStates(Si, N ′)

1: Create the empty list D
2: for s ∈ Si in the decreasing order on ≥c do
3: if updateDominator(D, s.v) = ”dominated” then
4: N ′(s) = ⊥, Si ← Si \ {s}
5: end if
6: end for
7: if i = n then
8: return
9: end if

10: Create the empty list G
11: updateDominator(G, s.v + g(s.α)) for all s ∈ Si

12: for s ∈ Si do
13: j ← 1 /* G = {g1, . . . , g|G|} where gj ≥lex gk (j < k) */
14: while j ≤ |G| and gj ≥lex s.v + u(s.α) do
15: if s.v + u(s.α) < gj then
16: N ′(s) = ⊥, Si ← Si \ {s}
17: break
18: end if
19: j ← j + 1
20: end while
21: end for

5.4 Reordering Heuristics

The order of items is an important issue for single-objective knapsack problems.

It is well-known that the decreasing order with respect to vi1/wi, i.e. value per

unit weight, is better to obtain a good solution. For the multi-objective version,

Bazgan et al. proposed the order Omax, which refers to the ranking of items with

respect to each objective. For the details, please refer to [1].

Here we propose a new order which is a natural expansion of single-objective

cases as follows: Let pi be the potential vector defined by {vi1/wi, . . . , v
i
m/wi} for

each i ∈ I. We define the Opot as the decreasing order of the potential vectors on

≥lex. Moreover, we define the Op̃ot as the reverse order of Opot.
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Algorithm 4 updateDominator(DOM , v)

1: j ← 1 /* DOM = {d1, . . . ,d|DOM |} where dj ≥lex dk (j < k) */
2: while j <= |DOM | and dj ≥lex v do
3: if v < dj then
4: return ”dominated”
5: else if v = dj then
6: return ”non dominated”
7: end if
8: j ← j + 1
9: end while

10: Insert v at the j-th position in DOM
11: Erase dk from DOM where dk < v (j < k)
12: return ”non dominated”

6 Computational experiments and results

All code was implemented in C++ (g++5.4.0 with the -O3 option). We used 64-bit

Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz CPU and 64 GB RAM.

All instances satisfy 10 ≤ vij , wi ≤ 100 (i = 1, . . . , n, j = 1, . . . ,m) and C = 10n.

The following types of instances were considered.

• Type 1: All values and weights are decided uniformly at random.

• Type 2: All valued vectors satisfy 50m − 10 ≤
∑m

j=1 v
i
j ≤ 50m + 10 (i =

1, . . . , n). This causes negative correlation between the objectives. All weights

are decided uniformly at random.

• Type 3: All values are decided uniformly at random. All weights satisfy
1
m

∑m
j=1 v

i
j − 10 ≤ wi ≤ 1

m

∑m
j=1 v

i
j + 10. This causes positive correlation

between values and the weights.

6.1 Algorithmic Efficiency

We conducted comparison between our algorithm and Bazgan’s algorithm. Baz-

gan’s algorithm is also based on a DP with pruning. It does not use any supporting

data structures, and does not generate any index of P.

6.1.1 Order of Items

First we compared the three orders presented in section 5.4 (Omax, Opot, and Op̃ot)

and random order on 100 instances of each type. Table 1 clearly shows that Opot

accelerates our algorithm. However, Bazgan’s algorithm have nothing worthy of

special mention. Thus, in the following, we use Opot for reordering of items.
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Table 1: Average computation time (sec) on each reordering

Bazgan’s Proposal

Type n m random Omax Opot Op̃ot random Omax Opot Op̃ot

200 2 5.31 3.05 4.32 9.79 10.78 5.81 4.35 12.96
1 100 3 18.42 19.64 19.17 59.57 15.98 11.85 7.59 28.92

70 4 19.20 29.03 21.89 81.88 9.84 7.34 5.59 30.77

150 2 7.16 6.15 6.02 8.42 11.86 10.37 6.63 9.99
2 60 3 10.81 16.06 12.94 20.47 5.84 7.78 3.69 10.12

50 4 70.17 105.25 70.17 126.93 17.12 25.08 9.71 40.93

120 2 18.37 9.24 11.60 9.89 35.31 19.55 18.82 18.22
3 50 3 52.91 40.81 41.47 36.29 31.30 23.38 20.95 22.83

35 4 33.39 29.91 29.26 26.27 7.50 6.43 5.96 6.71

6.1.2 Computation Times

Next we investigated the number of generated states to evaluate an effect of the

pruning. According to the table 2, our algorithm generates less states than Baz-

gan’s algorithm for each case. There are up to 4 times differences. These results

show that our pruning methods using ZDDs are quite effective. This impact is

connected directly with computation times.

Table 2: Average number of states generated by each algorithm

m = 2 m = 3 m = 4
Type n Bazgan’s Proposal n Bazgan’s Proposal n Bazgan’s Proposal

1 200 5632649 2689570 100 3101540 1184175 70 1531573 465897
2 150 5468682 3052779 60 1097170 349233 50 1120602 282585
3 120 7519692 5432447 50 2035120 831832 35 669268 165721

Fig. 2 shows the computation times of our algorithm and Bazgan’s algorithm for

each instance. In many bi-objective instances, the overhead of constructing ZDDs

in our algorithm has appeared greater than the effect of the pruning, because

all the bi-objective cases are relatively easy to be solved. On the other hand, our

algorithm is clearly faster than Bazgan’s algorithm in the three-objective and four-

objective cases. There are 2 to 5 times differences in almost all instances. These

results show that our algorithm is efficient for harder problems to be solved.

6.2 Efficiency of Indexing

At last we show the number of the pareto-optimal solutions and the size of out-

put ZDDs for each case. Table 3 suggests that pareto-optimal solutions suddenly
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Figure 2: Computation times (sec) for each instance

increase as objectives increase. Each pareto-optimal solution has approximately n
5

items under the influence of how to generate instances. Thus, the size of the out-

put ZDDs is small enough for the total number of items in all the pareto-optimal

solutions.

Table 3: Average number of pareto-optimal solutions and output ZDD nodes

m = 2 m = 3 m = 4
Type n #pareto #nodes n #pareto #node n #pareto #node

1 200 182 1993 100 978 2933 70 1674 2904
2 150 310 2485 60 1494 2386 50 4201 3607
3 120 511 3272 50 3026 4377 35 5227 4319

7 Conclusion

In this study, we have proposed an algorithm to enumerate pareto-optimal solu-

tions of 0-1 multi-objective knapsack problems. The proposed algorithm is based

on the DP with supporting ZDD, and construct a ZDD indexing all pareto-optimal

solutions. The results showed that the proposed algorithm is faster than a conven-

tional DP in several harder three-objective and four-objective instances. Moreover,

the efficiency of indexing pareto-optimal solutions is better for the total size of all

the pareto-optimal solutions.
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All the main ideas in this study will be applied to multi-objective combinatorial

optimization problems with linear objective functions. Thus, an important future

work is to construct a generalized method for enumerating pareto-optimal solu-

tions. Also, it is important to make use of ZDDs indexing pareto-optimal solutions

in real world problems.
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