On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference

by

Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Division of Computer Science
Report Series A
November 4, 2017

Hokkaido University
Graduate School of Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684
Fax: +81-011-706-7684
On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference

ZIYUAN GAO
Department of Mathematics
National University of Singapore
Singapore 119076
Republic of Singapore
matgaoz@nus.edu.sg

SANJAY JAIN
School of Computing
National University of Singapore
Singapore 117417
Republic of Singapore
sanjay@comp.nus.edu.sg

FRANK STEPHAN
Department of Mathematics
National University of Singapore
Singapore 119076
Republic of Singapore
fstephan@comp.nus.edu.sg

THOMAS ZEUGMANN
Division of Computer Science
Hokkaido University
N-14, W-9, Sapporo 060-0814
Japan
thomas@ist.hokudai.ac.jp

Abstract. The present paper deals with the inductive inference of recursively enumerable languages from positive data (also called text). It introduces the learning models of verifiability and comparability. The input to a verifier is an index e and a text of the target language L, and the learner has to verify whether or not the index e input is correct for the target language L. A comparator receives two indices of languages from the target class L as input and has to decide in the limit whether or not these indices generate the same language. Furthermore, standardisability is studied, where a standardiser receives an index j of some target language L from the class L, and for every $L \in L$ there must be an index e such that e generates L and the standardiser has to map j to e. Additionally, the common learning models of explanatory learning, conservative explanatory learning, and behaviourally correct learning are considered. For almost all learning models mentioned above it is also appropriate to consider the number of times a learner changes its mind. In particular, if no mind change occurs then we obtain the finite variant of the models considered. Occasionally, also learning with the help of an oracle is taken into consideration.

The main goal of the present paper is to figure out to what extent verifiability, comparability, and standardisability are helpful for the inductive inference of classes of recursively enumerable languages. Here we also distinguish between indexed families, one-one enumerable classes, and recursively enumerable classes. Our results are manyfold, and an almost complete picture is obtained. In particular, for indexed families and recursively enumerable classes finite comparability, finite standardisability, and finite verifiability always imply finite learnability. If at least one mind change is allowed, then there are differences, i.e., comparability or verifiability imply conservative explanatory learning, but standardisability does not; still explanatory learning can be achieved.
1. Introduction

The process of hypothesising a general rule from “eventually” complete positive data is called inductive inference. Philosophy of science has studied inductive inference during the last centuries. Some of the principles developed are very much alive in algorithmic learning theory. Computer scientists widely use their insight into the theory of computability to obtain a better and deeper understanding of processes performing inductive generalisations.

The present paper mainly deals with formal language learning, a field in which many interesting and sometimes surprising results have been elaborated within the last decades (see Jain, Osherson, Royer, and Sharma [16]; Zeugmann and Zilles [24]) and the references therein. Inductive inference of formal languages may be characterised as the study of systems that map evidence on a language into hypotheses about it. Of special interest is the investigation of scenarios in which the sequence of hypotheses stabilises to an accurate and finite description (a grammar) of the target language. If stabilisation is formalised syntactically then we obtain explanatory learning (see Case and Smith [9]), which is also called learning in the limit (see Gold [15]). Replacing syntactically by semantically results in behaviourally correct learning (see Feldman [10], Barzdin [4, 5], Case and Smith [9] and Case [7]). A further special case is finite learning, where the learner outputs essentially just one hypothesis which has to be a correct one. In the learning models described so far, evidence is provided by successively growing initial segments of any infinite sequence of strings that eventually contains all strings of the target language \(L \) and none of the strings outside of \(L \) (such a sequence is called a text for \(L \) or a sequence of positive data for \(L \)).

The hypotheses output by the learner are natural numbers (also called indices). The set of all admissible hypotheses is called the hypothesis space. In the present paper the hypothesis space is any fixed universal numbering \(W_0, W_1, W_2, \ldots \) of all recursively enumerable languages, which are identified with the recursively enumerable subsets of the natural numbers, and any index is interpreted as a grammar. We are then in general interested in the learnability of classes \(L \) of languages; i.e., we ask whether or not there is one learner that can learn every language \(L \in L \).

Furthermore, in the present paper we consider learning scenarios in which evidence may also be provided in the form of indices. We introduce the model of verifiability, where the evidence is any index \(e \) and a text of the target language \(L \), and the learner has to verify whether or not the index input is correct for the target language; i.e., whether or not \(W_e = L \). Second, we also define comparability, where the learner receives two indices of languages from the target class \(L \) as input and has to decide in the limit whether or not these indices generate the same language. Third, we study standardisability in the sense that evidence is provided by any index \(j \) of a target language \(L \) from the class \(L \). Then for every \(L \in L \) there has to exist an index \(e \) such that \(W_e = L \) and the standardiser has to map \(j \) to \(e \). This mapping may be performed in the limit or just by outputting a single guess which then must be \(e \) (called finite standardisability). Standardisability has been considered previously in the literature (see, e.g., Kinber [18], Freivald and Wiehagen [12], Freivalds, Kinber, and Wiehagen [13], and Jain and Sharma [17]).
For almost all the learning models described above it is also meaningful to take a closer look at the number of times a learner changes its mind. For the technical details we refer the reader to Definition 3.

The main problem studied in the present paper is the question to what extent verifiability, comparability, and standardisability are useful for the inductive inference of classes of recursively enumerable languages. For example, we are interested in learning whether or not a verifiable class is also explanatorily learnable, and if it is, whether or not the number of mind changes is preserved. Table 1 provides a summary of the results obtained, where the last three columns give the best obtained results for learning an Indexed, One–One R.E. or R.E. class which is \(n \)-shot comparable/standardisable/verifiable as provided in the first two columns. In the table, \(\text{Ex}[A] \) denotes Ex-learning using oracle \(A \), and a ? beside a criterion denotes open problem at this point.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Shots</th>
<th>Indexed</th>
<th>One-One R.E.</th>
<th>R.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparator</td>
<td>1</td>
<td>Fin (Thm 1)</td>
<td>Fin (Thm 1)</td>
<td>Fin (Thm 1)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ConsvEx (Thm 7)</td>
<td>Ex (Thm 5), ConsvEx?</td>
<td>Not Ex(Thm 2), ConsvEx[(K)] (Thm 8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ex (Thm 9), Not ConsvEx (Thm 11)</td>
<td>ConsvEx[(K)] (Thm 10), Not Ex (Thm 3), BC?</td>
<td>None (Exmp 4)</td>
</tr>
<tr>
<td></td>
<td>4 and More</td>
<td>None (Thm 13)</td>
<td>None (Thm 13)</td>
<td>None (Thm 13)</td>
</tr>
<tr>
<td>Standardiser</td>
<td>1</td>
<td>Fin (Cor 1)</td>
<td>Fin (Cor 1)</td>
<td>Fin (Cor 1)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ex (Thm 4), Not ConsvEx (Thm 12)</td>
<td>Ex (Thm 4), Not ConsvEx (Thm 12)</td>
<td>None (Exmp 4)</td>
</tr>
<tr>
<td></td>
<td>3 and More</td>
<td>None (Thm 13)</td>
<td>None (Thm 13)</td>
<td>None (Thm 13)</td>
</tr>
<tr>
<td>Verifier</td>
<td>1</td>
<td>Fin (Prop 2)</td>
<td>Fin (Prop 2)</td>
<td>Fin (Prop 2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ConsvEx (Thm 6)</td>
<td>ConsvEx (Thm 6)</td>
<td>ConsvEx (Thm 6)</td>
</tr>
<tr>
<td></td>
<td>3 and More</td>
<td>Ex (Prop 3), Not ConsvEx (Thm 11)</td>
<td>Ex (Prop 3), Not ConsvEx (Thm 11)</td>
<td>Ex (Prop 3), Not ConsvEx (Thm 11)</td>
</tr>
</tbody>
</table>

Table 1: Summary of main results

The paper is structured as follows: Section 2 introduces the necessary notations, and in Section 3 the learning models studied in the present paper are defined. All results are presented in Section 4. Finally, a summary is given and open problems are discussed.
2. Preliminaries

The notation and terminology from recursion theory adopted in this paper follows Rogers [21]. For background on inductive inference we refer the reader to Jain et al. [16] and Zeugmann and Zilles [24].

We use \(\mathbb{N} = \{0, 1, 2, \ldots\} \) to denote the set of all natural numbers. The set of all partial recursive functions and of all recursive functions from \(\mathbb{N} \) into \(\mathbb{N} \) is denoted by \(\mathcal{P} \) and \(\mathcal{R} \), respectively. We write \(\mathcal{R}_{\{0,1\}} \) to denote the set of all \(\{0,1\} \)-valued recursive functions. Let \(\varphi_0, \varphi_1, \varphi_2, \ldots \) denote a fixed acceptable programming system (also called Gödel numbering) of all partial recursive functions (see Rogers[21]). Let \(W_0, W_1, W_2, \ldots \) be a universal numbering of all recursively enumerable sets (abbr. r.e. sets) of natural numbers, where \(W_e \) is the domain of \(\varphi_e \) for all \(e \in \mathbb{N} \).

Let \(e, x \in \mathbb{N} \); if \(\varphi_e(x) \) is defined then we write \(\varphi_e(x) \downarrow \) and also say that \(\varphi_e(x) \) converges. Otherwise, \(\varphi_e(x) \) is said to diverge (abbr. \(\varphi_e(x) \uparrow \)). Furthermore, if the computation of \(\varphi_e(x) \) halts within \(s \) steps of computation then we write \(\varphi_{e,s}(x) \downarrow = \varphi_e(x) \); otherwise \(\varphi_{e,s}(x) \uparrow \). For all \(e, s \in \mathbb{N} \) the set \(W_{e,s} \) is defined as the domain of \(\varphi_{e,s} \).

Given any set \(S \), we use \(\overline{S} \) to denote the complement of \(S \), and \(S^* \) to denote the set of all finite sequences of elements from \(S \). By \(D_0, D_1, D_2, \ldots \) we denote any fixed canonical indexing of all finite sets of natural numbers. We recall that Cantor’s pairing function \(\langle \cdot, \cdot \rangle : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) is given by \(\langle x, y \rangle = \frac{1}{2}(x + y)(x + y + 1) + y \) for all \(x, y \in \mathbb{N} \).

The symbol \(K \) denotes the diagonal halting problem, i.e., \(K = \{ e : e \in \mathbb{N}, \varphi_e(e) \downarrow \} \). Furthermore, we use \(C(x) \) to denote the plain Kolmogorov complexity of \(x \) (see Li and Vitányi [19, chap. 2]).

For any two sets \(A \) and \(B \), we define \(A \oplus B := \{2x : x \in A\} \cup \{y + 1 : y \in B\} \). Analogously, one defines \(A \oplus B \oplus C = \{3x : x \in A\} \cup \{3y + 1 : y \in B\} \cup \{3z + 2 : z \in C\} \).

We continue with some technical notations needed for our definitions of variants of learnability. In the following we always assume that \(\# \notin \mathbb{N} \). For any \(\sigma, \tau \in (\mathbb{N} \cup \{\#\})^* \), we write \(\sigma \preceq \tau \) if \(\sigma = \tau \) or \(\tau \) is an extension of \(\sigma \), and \(\sigma \prec \tau \) if and only if \(\sigma \preceq \tau \) and \(\sigma \neq \tau \). Furthermore, for \(\sigma \in (\mathbb{N} \cup \{\#\})^* \) and \(n \in \mathbb{N} \) we write \(\sigma(n) \) to denote the element in the \(n \)th position of \(\sigma \). Additionally, \(\sigma[n] \) denotes the sequence \(\sigma(0), \sigma(1), \ldots, \sigma(n - 1) \). Given a number \(a \in \mathbb{N} \) and some fixed \(n \in \mathbb{N}, n \geq 1 \), we denote by \(a^n \) the finite sequence \(a, \ldots, a \), where \(a \) occurs exactly \(n \) times. Moreover, we identify \(a^0 \) with the empty string \(\lambda \). For any finite sequence \(\sigma \) we use \(|\sigma| \) to denote the length of \(\sigma \). The concatenation of two sequences \(\sigma \) and \(\tau \) is denoted by \(\sigma \circ \tau \); for convenience, and whenever there is no possibility of confusion, this is occasionally denoted by \(\sigma \tau \).

3. Learnability

Let \(L \) be a class of r.e. languages. Throughout this paper, the mode of data presentation is that of a text. A text is any infinite sequence of natural numbers and the \# symbol, where the symbol \# indicates a pause in the data presentation. More formally, a text \(T_L \) for a language
Let $L \in \mathcal{L}$ be any total mapping $T_L : \mathbb{N} \to \mathbb{N} \cup \{\#\}$ such that $L = \text{range}(T_L) \setminus \{\#\}$. We use $\text{content}(T)$ to denote the set $\text{range}(T) \setminus \{\#\}$, i.e., the content of a text T contains only the natural numbers appearing in T. Furthermore, for every $n \in \mathbb{N}$ we use $T[n]$ to denote the finite sequence $T(0), \ldots, T(n-1)$, i.e., the initial segment of length n of T. Analogously, for a finite sequence $\sigma \in (\mathbb{N} \cup \{\#\})^*$ we use $\text{content}(\sigma)$ to denote the set of all numbers in the range of σ.

The main learning criteria studied in this paper are explanatory learning (also called learning in the limit) introduced by [15] and behaviourally correct learning, which goes back to Feldman [10], who called it matching in the limit. The name behaviourally correct learning was coined by Case and Smith [9]. It was also studied by Barzdin [4, 5] and Case [8]. Furthermore, we shall also consider finite learning (see Gold [15]). In the following definitions, an inductive inference machine (abbr. IIM) M is a recursive function mapping $(\mathbb{N} \cup \{\#\})^*$ into $\mathbb{N} \cup \{?\}$; the $?$ symbol permits M to abstain from conjecturing at any stage.

Definition 1. Let \mathcal{L} be any class of r.e. languages.

1. An IIM M explanatorily (Ex) learns \mathcal{L} if, for every L in \mathcal{L} and each text T_L for L, there is a number n for which $L = W_{M(T_L[n])}$ and, for every $j \geq n$, $M(T_L[j]) = M(T_L[n])$.

2. An IIM M behaviourally correctly (BC) learns \mathcal{L} if, for every L in \mathcal{L} and each text T_L for L, there is a number n for which $L = W_{M(T_L[n])}$ whenever $j \geq n$.

3. An IIM M finitely (FinEx) learns \mathcal{L} if, for every L in \mathcal{L} and each text T_L for L, there is a number n for which $L = W_{M(T_L[n])}$ and for every $m < n$, $M(T_L[m]) = ?$ and for every $j \geq n$, $M(T_L[j]) = M(T_L[n])$.

4. An IIM M $(n+1)$-shot learns \mathcal{L} if it Ex learns \mathcal{L} and for every text T for an $L \in \mathcal{L}$ there are at most n distinct values k for which $M(T[k]) \neq ?$ and $M(T[k]) \neq M(T[k+1])$.

Note that for finite learning the IIM itself indicates that it has successfully finished its learning task, since the first hypothesis output, which is different from $?$, is correct.

For every learning criterion I considered in the present paper, there exists a recursive enumeration M_0, M_1, \ldots of the learning machines such that if a class is I-learnable, then some M_i I-learns the class. We fix one such enumeration of learning machines.

Angluin [1] considered an important condition for learnability of classes based on tell-tale sets as defined below.

Definition 2. Assume \mathcal{L} is a class of languages. A set S is said to be a tell-tale with respect to \mathcal{L} for a language $L \in \mathcal{L}$ if $S \subseteq L$, the set S is finite and for all $L' \in \mathcal{L}$, $S \subseteq L' \subseteq L$ implies $L = L'$.

The class \mathcal{L} satisfies the tell-tale property if every $L \in \mathcal{L}$ has a tell-tale with respect to \mathcal{L}.
It was shown by Angluin [1] and Baliga et al. [3] that every behaviourally correctly learnable class of languages satisfies the tell-tale property.

In this paper, we consider a learning scenario in which the learner may not be required to output a correct index for the target language (in the limit), but only has to verify whether or not a given index is correct, or (i) to decide whether or not any two given r.e. indices of sets in the target class are indices for the same set. We shall also study classes of r.e. languages that can be \textit{finitely standardised} in the sense that for a target class L, there exists a partial-recursive function f such that for any given language L in L, there is an e with $W_e = L$ for which f outputs e when fed with any r.e. index for L. Replacing the function f by a limiting recursive function yields \textit{mutatis mutandis} standardisation (in the limit) of languages (see (ii) below). Finite standardisation was introduced by Freivald and Wiehagen [12], while standardisation goes back to Kinber [18]. Their motivation was to study whether a given index of the object to be learnt is more useful than the graph of a target function or a text of the target language. It was further investigated in Freivalds et al. [13] for function learning, and in Jain and Sharma [17] for the inductive inference of r.e. languages.

\textbf{Definition 3.} Let L be any class of r.e. languages.

(i) The class L is said to be $(n+1)$-shot comparable if there is a partial-recursive function $F: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \{\text{yes, no, ?}\}$ (called an $(n+1)$-shot comparator for L) such that for all $i, j \in \mathbb{N}$ with $W_i, W_j \in L$,

1. $G(i, j) := \lim_{k \to \infty} F(i, j, k)$ exists and $G(i, j) \in \{\text{yes, no}\}$;
2. $G(i, j) = \text{yes}$ if $W_i = W_j$ and $G(i, j) = \text{no}$ if $W_i \neq W_j$;
3. there are at most n distinct values of k for which $F(i, j, k) \in \{\text{yes, no}\}$, and $F(i, j, k) \neq F(i, j, k + 1)$.

Intuitively, this means that F “changes its value” at most n times.\footnote{In order to minimise notation, we will often omit the third argument in the definition of F and simply write “F changes its value at most n times”, where F is a given $(n+1)$-shot comparator for a class; the meaning of this statement will be clear from the context.}

A 1-shot comparable class will also be called \textit{finitely comparable}.

(ii) The class L is said to be $(n+1)$-shot standardisable if there is a partial-recursive function $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \cup \{?\}$ (called an $(n+1)$-shot standardiser for L) such that

1. for all i with $W_i \in L$, $G(i) := \lim_{k \to \infty} F(i, k)$ exists, $G(i) \in \mathbb{N}$ and $W_{G(i)} = W_i$;
2. for all $i, j \in \mathbb{N}$ with $W_i, W_j \in L$, $G(i) = G(j)$ iff $W_i = W_j$;
3. there are at most n distinct values of k for which $F(i, k) \in \mathbb{N}$ and $F(i, k) \neq F(i, k + 1)$.

A 1-shot standardisable class will also be called \textit{finitely standardisable}.

The class

We start this section with two examples that compare the power of verifiers with finite

S

to be 1–1 r.e., if the r.e. set

f

family if there exists a recursive function

K

for

f

finitely learnable but not finitely verifiable. A finite verification algorithm on an index

e
would, combined with the enumeration procedure of

K

In order to show that

K

is finitely learnable we recall that every non-empty r.e. set

S

⊆ N such that

L = \{W_i : i \in S\}. A class is said to be 1–1 r.e., if the r.e. set

S

as above additionally satisfies the condition that for

i, j \in S, W_i = W_j iff

i = j. An r.e. class as above said to be uniformly recursive or an indexed

Moreover, it is useful to have the following notions: A class

L

is said to be uniformly r.e. (or just r.e.) if there is an r.e. set

S \subseteq N

such that

L = \{W_i : i \in S\}. A class is said to be 1–1 r.e., if the r.e. set

S

as above additionally satisfies the condition that for

i, j \in S, W_i = W_j iff

i = j. An r.e. class as above said to be uniformly recursive or an indexed

family if there exists a recursive function

f \in \mathcal{R}_{\{0,1\}}

such that for all

i \in S

and

x \in N,

f(i, x) = 1

iff

x \in W_i.

Example 1. The class

K

consisting of

K

and all singleton languages

\{x\}

with

x \notin K

is finitely learnable but not finitely verifiable. A finite verification algorithm on an index

for

K

and a text

x, x, x, x, \ldots

would have to eventually output “no” iff

x \notin K

and that

would, combined with the enumeration procedure of

K,

lead to a decision procedure of

K.

In order to show that

K

is finitely learnable we recall that every non-empty r.e. set

is the range of a function

f \in \mathcal{R}. We define a numbering

\psi: N \times N \rightarrow N

as follows:

\psi(x, y) := x

if

\varphi_{x,y}(x) \uparrow. If

\varphi_{x,y}(x) \downarrow

then

x \in K

and then we set

\psi(x, y) := e_k

if

e_k

is least such that

0 \leq e_k \leq y,

\varphi_{e_k,y}(e_k) \downarrow

and

\psi(x, y) \neq e_k

for all

y \in K.

If there is no such

e_k,

then

\psi(x, y) := \psi(x, y - 1).

Hence the range of

\psi(x, \cdot)

is

K

iff

x \in K

and

range(\psi(x, \cdot)) = \{x\},

otherwise. Now, the finite learner outputs the canonical index of

\psi(x, \cdot)

in the universal numbering

W_0, W_1, W_2, \ldots

on input text

T,

if the first non-# symbol in the text

T

is

x

(that is, for some

i, T(i) = x, and

T(i') = # for all

i' < i).

Note that the second part of the proof in Example 1 also shows that

K

is a uniformly r.e. class.

\footnote{As in the definition of an

(n + 1)-shot comparator, we will often omit the second argument in the definition

of

F

and simply write “

F

changes its value at most

n

times” for any given

(n + 1)-shot standardiser

F

for a class.}
Example 2. Consider a class L of languages which contains for every $e \in \mathbb{N}$ exactly one language $L_e \subseteq \{\langle e, 0 \rangle, \langle e, 1 \rangle, \ldots \}$ which is not empty and not behaviourally correctly learnt by the learner M_e. The class L is then verifiable by an algorithm which on input an index d and a text T enumerates the set W_d and tracks the text until a member (i, s) is enumerated into W_d and a non-pause datum (j, t) is found in the text. Then the index d is for the language of T iff $i = j$, as the verifier needs only to work on members of the class. However, by choice, L is not behaviourally learnable.

Assume that a class L has an n-shot standardiser. Then the class is $(2^n - 1)$-shot comparable. This can be seen as follows: Let d and e be two indices such that both W_d and W_e are in L. Then the algorithm runs two instances of the standardiser in parallel on the two inputs d and e, respectively, and waits until each of them has produced an output. If the two outputs are equal, then the algorithm outputs “yes”, and if the two outputs are different, then it outputs “no”. Note that the two instances must produce an output, since both W_d and W_e are in L. Once this is done, every mind change of the comparator requires that at least one of the standardisers makes another shot and so one can bound the number of shots of the comparator by $1 + 2 \cdot (n - 1) = 2n - 1$. Hence, we have the following proposition:

Proposition 1. Every n-shot standardisable class is $(2^n - 1)$-shot comparable.

Proposition 2. Let L be a uniformly r.e. class. Then we have the following: If L is finitely verifiable, then L is also finitely learnable.

Proof. If a class L has a recursively enumerable list of indices, a finite verifier can be turned into a finite learner by dovetailing the enumeration of the indices e_0, e_1, \ldots and by simulating the verifier on e_0 versus T, e_1 versus T, \ldots until one of them outputs “yes”. The finite learner then conjectures the first index e_k, where the simulation gives the answer “yes”. $lacksquare$

The following result is due to the learning algorithm, which for a recursive list of indices e_0, e_1, \ldots of a class converges to the first index e_k where the verifier is, on the text T, converging to “yes” while the verifier converges, for all previous indices $e_0, e_1, \ldots, e_{k-1}$, to “no”.

Proposition 3. If an r.e. class is verifiable in the limit then it is also explanatorily learnable.

In order to show further results we need the following: A class L of languages is said to be inclusion-free if there are no two languages A and B in the class L such that $A \subset B$.

Proposition 4. Any class which is 2-shot comparable must be inclusion-free. Thus, any class which is finitely standardisable must be inclusion-free.

Proof. If the class contains two sets A and B with $A \subset B$, and has a 2-shot comparator F, then using the double recursion theorem (see Smullyan [22]), one can construct two grammars i and j such that $W_i = W_j = A$, if the comparator never outputs “yes” on input (i, j). If the comparator outputs “yes” on input (i, j) at some point, and then never outputs “no” after that, then $W_i = A$ and $W_j = B$. Otherwise, $W_i = W_j = B$. So it follows that the comparator is wrong on input (i, j). $lacksquare$
Theorem 1. Every uniformly r.e. and finitely comparable class \mathcal{L} is finitely learnable.

Proof. Suppose \mathcal{L} is a finitely comparable class as witnessed by comparator F. First, by Proposition 4, the class \mathcal{L} must be inclusion-free.

Second one shows that if \mathcal{L} is a uniformly r.e. class with an r.e. list e_0, e_1, e_2, \ldots of indices covering the class and if \mathcal{L} is inclusion-free and finitely comparable then one constructs for each k a set $W_{h(k)}$ which is related to e_k as outlined below.

For each e_k, there is an index $h(k)$ such that $W_{h(k)}$ starts enumerating the elements enumerated into W_{e_k} until $F(e_k, h(k))$ terminates and outputs “yes”. When this has happened, let $D_{h'(k)}$ denote the set, given by canonical index $h'(k)$, of elements enumerated so far. Now the algorithm searches for an index e_ℓ such that $D_{h'(k)} \subseteq W_{e_\ell}$ and $F(e_k, e_\ell)$ has the value “no”. If this search terminates then $W_{h(k)} = W_{e_\ell}$ else $W_{h(k)} = D_{h'(k)}$.

Third, this information can now be used to make the following finite learner M: M reads elements of the text T until a k is found such that all members of $D_{h'(k)}$ have been enumerated into T and then M conjectures e_k for this k.

Fourth, for the verification of correctness, note that for each index e_k, the function $F(e_k, h(k))$ must output “yes” as otherwise $W_{e_k} = W_{h(k)}$ and both $e_k, h(k)$ are indices for the same set in the class without F indicating this. Thus also $h'(k)$ is defined for all k. Now, for each e_k, $D_{h'(k)} \subseteq W_{e_k}$ and W_{e_k} is the only superset of $D_{h'(k)}$ in the r.e. class. The reason is that in the search for W_{e_k} after the definition of $D_{h'(k)}$, the search cannot terminate for any k as otherwise either $F(e_k, h(k))$ or $F(e_k, e_\ell)$ for the e_ℓ found in the search are wrong; when $F(e_k, h(k))$ is right then $W_{e_k} = W_{e_\ell}$ and $F(e_k, e_\ell)$ had wrongly said that they are different. So W_{e_k} is the only superset in the class of $W_{h'(k)}$, although there might be several indices for W_{e_k} in the r.e. enumeration e_0, e_1, \ldots of the indices. From the above it is easy to see that the learning algorithm is correct.

The next corollary follows from Proposition 1 and Theorem 1.

Corollary 1. Every uniformly r.e. and finitely standardisable class \mathcal{L} is finitely learnable.

Remark. Note that a slight modification of the above proof gives that whenever a uniformly r.e. class \mathcal{L} is finitely comparable then \mathcal{L} is also finitely standardisable and finitely verifiable: The verifier just checks whether on input a text T and an index e the above constructed learner M outputs on the text T an index d with $F(d,e)$ having the value “yes”; the standardiser outputs for an index d the first index e_k in the given recursive enumeration, where $F(d,e_k)$ has the value “yes”.

Example 3. For each $n \in \mathbb{N}$, $n \geq 1$, let FINS_n be the class of all sets of cardinality at most n. Then FINS_n is $(2n+1)$-shot comparable but not $2n$-shot comparable.

A $(2n+1)$-shot comparator F works as follows: on input (i,j), F outputs “yes” at the sth computational step if $W_{i,s} = W_{j,s}$ and “no” otherwise. Therefore, if $|W_i| \leq n$ and $|W_j| \leq n$, F changes its value at most $2n$ times and its last value is correct, i.e., F is a $(2n+1)$-shot comparator.
To see that FINS_n is not $2n$-shot comparable, by way of a contradiction let us assume that such a $2n$-shot comparator G does exist. In particular, the comparator G on any input (i, j) such that $|W_i| \leq n$ and $|W_j| \leq n$ changes its value at most $2n - 1$ times. By the recursion theorem (see Rogers [21, chap. 11]), there are r.e. sets W_i and W_j for which either (1) $W_i = W_j = \emptyset$ and G never outputs “yes” on input (i, j), or (2) there exists a least $m \leq n$ such that $W_i = \{x : 0 \leq x \leq m - 1\}$ and $W_j = W_i \setminus \{m - 1\}$, and G on input (i, j) does not output “no” in the limit, or (3) there is a least $m' \leq n$ such that $W_i = W_j = \{x : 0 \leq x \leq m' - 1\}$ and G on input (i, j) does not output “yes” in the limit. This contradicts the fact that G is a $2n$-shot comparator for FINS_n.

Example 4. The r.e. class \mathcal{L} consisting of \mathbb{N} and all sets $\mathbb{N} \setminus \{x\}$ with $C(x) \geq \log(x)$, where $C(x)$ denotes the plain Kolmogorov complexity of x (see Li and Vitányi [19, chap. 2]), has the following properties:

(i) The class is not behaviourally correctly learnable;

(ii) the class is 2-shot standardisable but not finitely standardisable;

(iii) the class is 3-shot comparable but not 2-shot comparable;

(iv) the class is not verifiable.

Proof. The non-learnability follows from the fact that the set \mathbb{N} does not have any tell-tale set with respect to this class (see Angluin [1] and Baliga et al. [3]). This also implies that the class is not verifiable. The positive results are obtained by the following fact: From an index e of $\mathbb{N} \setminus \{x\}$ and an upper bound on x, one can compute x by enumerating the set W_e until all elements below the upper bound but x have shown up, as the upper bounds can have very small Kolmogorov complexity compared to x, this means that all sufficiently large x satisfy that either $W_e \neq \mathbb{N} \setminus \{x\}$ or $C(x) < \log(x)$. Hence there exists a recursive function f such that whenever W_e is of the form $\mathbb{N} \setminus \{x\}$ with $C(x) \geq \log(x)$ then we have $x < f(e)$. Thus a 2-shot standardiser would first enumerate the elements of W_e below $f(e)$ until all but one x have shown up. Then the learner outputs an index $g(x)$ computed from x from the set $\mathbb{N} \setminus \{x\}$. Once this element x is also enumerated into W_e, the standardiser revises the hypothesis and outputs a fixed index for \mathbb{N}.

However, the class is not finitely standardisable, as it is not inclusion-free; for the same reason it can also not be 2-shot comparable. The 3-shot comparability follows from the general implication that every 2-shot standardisable class is 3-shot comparable.

We continue with further properties of the r.e. class \mathcal{K} defined in Example 1. Recall that \mathcal{K} is finitely learnable.

Example 5. The uniformly r.e. class \mathcal{K} is neither finitely comparable nor finitely standardisable.

The proof is in both cases indirect. Suppose the converse, and let $k \in \mathbb{N}$ be any fixed index of \mathcal{K}, i.e., $W_k = \mathcal{K}$. Then one can design an algorithm deciding \mathcal{K}. This algorithm
uses the numbering \(\psi \) constructed in the second part of the proof of Example 1. Using standard techniques, one obtains from \(\psi \) a numbering \(\chi \) such that the range of \(\psi_i \) is equal to the domain of \(\chi_i \) for every \(i \in \mathbb{N} \). Since the numbering of the sets \(W_0, W_1, W_2, \ldots \) is universal, there is a recursive function \(c \in R \) such that \(\chi_x = \varphi_{c(x)} \) for all \(x \in \mathbb{N} \). Hence the set \(W_{c(x)} \) is equal to \(K \) iff \(x \in K \) and equal to \(\{x\} \) iff \(x \notin K \).

Consequently, for every \(x \in \mathbb{N} \) one runs the finite comparator on input \(c(x) \) and \(k \). Note that by construction, \(W_k, W_{c(x)} \in K \) for all \(x \in \mathbb{N} \), and thus the finite comparator must be defined on all these inputs. Also, it must return “yes” iff \(W_{c(x)} = K \) and “no” otherwise; a contradiction to the undecidability of the set \(K \).

For the finite standardiser the algorithm works mutatis mutandis. First, we run it on input \(k \) to find out to which index \(k \) is finitely standardised, say to \(s \). In order to decide \(K \) one executes the finite standardiser on input \(c(x) \) for any given \(x \in \mathbb{N} \). If it returns \(s \), then \(x \in K \) and otherwise \(x \notin K \).

Remark. Example 5 shows in particular that finite learnability does not imply finite standardisability if learning of r.e. languages is considered. This contrasts the corresponding result for learning classes of recursive functions, where every finitely learnable function class is also finitely standardisable (see Freivald and Wiehagen [12]). However, 2-shot comparable classes do not need to be learnable in the limit (cf. Theorem 2).

Theorem 2. There is an r.e. 2-shot comparable class which is not explanatorily learnable.

Proof. The class consists of languages \(L_{e,x} \) which are defined as follows:

(i) \(2e \) is the unique even element of \(L_{e,x} \);

(ii) for each \(e \) there is an “event-horizon” \(t_{e,s} \) which moves up in stages (that is, \(t_{e,s} \) is monotonically non-decreasing in \(s \)) and converges to a limit value \(t_e \in \mathbb{N} \cup \{\infty\} \);

(iii) if \(x < t_e \) or \(C(x) < \log(x) \) then \(L_{e,x} \) contains besides \(2e \) all odd numbers below \(t_e \) and all odd numbers \(2y + 1 \) with \(C(y) < \log(y) \); and

(iv) if \(x > t_e \) and \(C(x) \geq \log(x) \) then \(L_{e,x} \) contains \(2e, 2x + 1 \) and all odd numbers below \(t_e \).

For the ease of notation, let \(z \) be a fixed element with \(C(z) < \log(z) \). In the case that \(t_e = \infty \), for all \(x \), \(L_{e,x} = \{e\} \oplus \mathbb{N} \).

Now one defines the movements of the \(t_e \) through a diagonalisation of the explanatory learner \(M_e \) on a text constructed as the limit of sequences \(\sigma_0, \sigma_1, \ldots \); at the beginning, \(\sigma_0 \) is just the single entry \(2e \) and \(t_{e,0} = 0 \). At stage \(s > 0 \), one assumes that only numbers below \(s \) are enumerated into sets \(L_{e,x} \). Now one searches for an \(x \) with \(t_{e,s} \leq x < (s^2 - 1)/2 \), such that \(M_e \) makes a mind change somewhere on the way from \(M_e(\sigma_s) \) towards \(M_e(\sigma_s(2x + 1)^*) \). If this \(x \) is found then one sets \(t_{e,s+1} = s^2 \) and \(\sigma_{s+1} \) to be the extension of \(\sigma_s(2x + 1)^* \).
which contains all the data \(\{2x + 1 : 2x + 1 < s^2\} \cup \{2e\} \); else one defines \(t_{e,s} = t_{e,s-1} \) and \(\sigma_s = \sigma_{s-1} \).

If \(t_e = \infty \) then this construction produces a text for \(L_{e,z} \) on which \(M_e \) does not converge and \(M_e \) does not learn \(L_{e,z} \). If \(t_e < \infty \) then \(M_e \) learns at most one of the \(L_{e,x} \) with \(x > t_e \) and \(C(x) \geq \log(x) \), as on each of the texts \(\sigma_{t_e}(2x + 1)\infty \) for these \(L_{e,x} \) the learner converges to the same index \(M_\infty(\sigma_{t_e}) \). Thus the class does not have any learner which learns it in the limit. The class is also r.e., since one can take a canonical enumeration of the \(L_{e,x} \) with \(e, x \in \mathbb{N} \).

Note that if \(W_{e'} = L_{e,x} \neq L_{e,z} \), then, \(C(x) \leq 2 \log(e') + 2 \log(e) + \log(s + \text{const}) \), where \(s \) is maximal such that \(t_{e,s} \neq t_{e,s+1} \). Since \(x > t_e \geq s^2 \), we have

\[
\log(t_e) \leq C(x) \leq 2 \log(e') + 2 \log(e) + 0.5 \log(t_e) + \text{const}, \quad \text{or}
\]

\[
0.5 \log(t_e) \leq 2 \log(e') + 2 \log(e) + \text{const}.
\]

Thus, one can compute for each index \(e' \) with \(W_{e'} \) containing a number \(2e \), an upper bound \(f(e, e') \) such that whenever \(t_e > f(e, e') \) then either \(W_{e'} = L_{e,z} \) or \(W_{e'} \) is not in the class.

To see that the class is \(2 \)-shot comparable, consider any indices \(e', e'' \) of languages in the class; if the languages are not in the class, then the comparator can do whatever it wants, including remaining undefined. On \(e', e'' \), the comparator waits until each of them enumerates an even number; if \(e', e'' \) are indices for languages in the class, then these must show up and be unique. If these even numbers are different, the comparator just guesses “no” and does not change the mind. If they are the same number \(2e \) then the comparator simulates \(W_{e'} \) and \(W_{e''} \) until a stage \(s > f(e, e') + f(e, e'') \) is reached such either \(t_{e,s} > f(e, e') + f(e, e'') \) or \(x, x'' \) have been found such that \(t_{e,s} < (2x'+1), t_{e,s} < (2x''+1), 2x'+1 \in W_{e'} \) and \(2x''+1 \in W_{e''} \). In the case that \(t_{e,s} > f(e, e') + f(e, e'') \), the comparator conjectures “yes”, as both sets are equal to \(L_{e,z} \). In the case that \(x', x'' \) are found, the comparator checks whether \(x' = x'' \). Now if \(x' = x'' \) then the comparator conjectures “yes”, else the comparator conjectures “no”; furthermore, the comparator makes in the latter case a mind change from “no” to “yes” iff either \(t_{e,\infty} > f(e, e') + f(e, e'') \) or both \(C(x') < \log(x') \) and \(C(x'') < \log(x'') \). These conditions imply that both sets are equal to \(L_{e,z} \); for the verification also note that \(t_e \) is either \(t_{e,s} \) or larger than \(f(e, e') + f(e, e'') \), so that whenever \(t_{e,s} \) becomes updated to a larger number, this is immediately above \(f(e, e') + f(e, e'') \).

The next lemma states that any uniformly r.e. class of infinite sets that is \(n \)-shot comparable can be expanded to a \(1 \)-\(1 \) r.e. class that is \((n + 1) \)-shot comparable. This will allow us to extend Theorem 2 (albeit in a weaker form) to \(1 \)-\(1 \) r.e. families.

Lemma 1. Assume \(\mathcal{L} = \{W_{f(i)} : i \in \mathbb{N}\} \) is an r.e. class of infinite languages, each of which is contained in \(\{(1,x) : x \in \mathbb{N}\} \), where \(f \in \mathcal{R} \). Suppose that \(\mathcal{L} \) is \(n \)-shot comparable. Then there is a \(1 \)-\(1 \) r.e. class \(\mathcal{L}' \) of infinite languages such that \(\mathcal{L} \subseteq \mathcal{L}' \) and \(\mathcal{L}' \) is \((n + 1) \)-shot comparable.

Proof. Let \(\mathcal{L} \) be the class as given in the lemma. Let \(h(i, t) \) be a recursive function such that \(\lim_{t \to \infty} h(i, t) = 1 \) iff for all \(j < i \), \(W_{f(j)} \neq W_{f(i)} \). Note that such a recursive \(h \) can be
easily constructed. Also note that in case \(W_{f(j)} = W_{f(i)} \) for some \(j < i \), then \(\lim_{t \to \infty} h(i, t) \) may not exist. Let \(U_{i,t} = W_{f(i)} \) if \(t \) is minimal such that \(h(i, t') = 1 \) for all \(t' \geq t \). Otherwise, let \(U_{i,t} = \{(1, x) : x < \langle i, t, z \rangle\} \cup \{(0, \langle i, t, z \rangle)\} \cup \{\langle 2, x \rangle : x \in \mathbb{N}\} \), where \(z \) is the least number \(t' \geq t \) such that \(h(i, t') = 0 \) (the element \(\langle 0, \langle i, t, z \rangle \rangle \) ensures that \(U_{i,t} \neq U_{j,s} \) whenever \(\langle i, t \rangle \neq \langle j, s \rangle \)). Clearly, \(\mathcal{L}' = \{U_{i,t} : i, t \in \mathbb{N}\} \) is a 1–1 r.e. class which is \((n + 1)\)-shot comparable. The comparator essentially uses the comparator for \(\{W_{f(i)} : i \in \mathbb{N}\} \) until it finds that one of the languages contains \(\{0, y\} \) for some \(y \). Then it waits for either \(\langle 0, y' \rangle \) or some element \(\langle 1, z \rangle \) with \(z > y \), to appear in the other language, and then outputs the correct comparison as “yes” iff \(\langle 0, y' \rangle \) appears in the other language with \(y' = y \).

We now deduce the following theorem from Lemma 1 and Theorem 2:

Theorem 3. There is a 1–1 r.e. 3-shot comparable class which is not explanatorily learnable.

Proof. One can cylindrif the 2-shot comparable and uniformly r.e. class \(\{L_{e,x} : e, x \in \mathbb{N}\} \) constructed in the proof of Theorem 2; i.e. we define \(U_{e,x} = \{(1, \langle y, z \rangle) : y \in L_{e,x} \land z \in \mathbb{N}\} \) for all \(e, x \in \mathbb{N} \), to obtain a uniformly r.e. class \(\mathcal{L} \) of infinite languages which is contained in \(\{\langle 1, z \rangle : z \in \mathbb{N}\} \). Note that \(\mathcal{L} \), like the uniformly r.e. class in the proof of Theorem 2, is not explanatorily learnable. Lemma 1 then gives a 1–1 r.e. class \(\mathcal{L}' \) such that \(\mathcal{L}' \supseteq \mathcal{L} \), \(\mathcal{L}' \) is 3-shot comparable and \(\mathcal{L}' \) is not explanatorily learnable.

Example 6. Assume that each language in \(\mathcal{L} \) contains exactly one even element and that no two languages in \(\mathcal{L} \) contain the same even element. Then \(\mathcal{L} \) is finitely verifiable and finitely comparable. However, one can choose the sets in \(\mathcal{L} \) such that the \(e \)-th behaviourally correct learner does not converge to the right index on the text for the language in \(\mathcal{L} \) with the even element \(2e \) and similarly one can also fool the standardiser and thus this class \(\mathcal{L} \) can be chosen such that it is neither behaviourally correctly learnable nor standardisable in the limit.

Proposition 5. If a class is \(n \)-shot learnable then it has a \(2n \)-shot comparator.

Proof. Assume that \(\mathcal{L} \) has an \(n \)-shot learner \(M \). Without loss generality assume that \(M \) does not use more than \(n \)-shots on any text, even for texts for languages outside \(\mathcal{L} \). On input \((d, e) \), a \(2n \)-shot comparator \(F \) for \(\mathcal{L} \) builds \(\sigma_1, \sigma_2, \ldots, \sigma_n \) as follows (some of these \(\sigma_i \) may not be defined): Initially, it searches for \(\sigma_1 \) with \(\text{content}(\sigma_1) \subseteq W_d \cup W_e \) such that \(M(\sigma_1) \neq ? \). Then, inductively, after defining \(\sigma_i \), it searches for a \(\sigma_{i+1} \) such that \(\sigma_{i+1} \) is an extension of \(\sigma_i \), \(\text{content}(\sigma_{i+1}) \subseteq W_d \cup W_e \) and \(M(\sigma_i) \neq M(\sigma_{i+1}) \neq ? \). The comparator \(F \) outputs ? until \(\sigma_1 \) gets defined. After that, at any stage \(s \), it considers the last \(\sigma_s \) that is defined, and outputs “yes” iff \(\sigma_s \subseteq W_{d,s} \cup W_{e,s} \), otherwise, it outputs “no”. As the learner \(M \) is a \(n \)-shot learner, the comparator is a \(2n \)-shot comparator, as it possibly starts with “no” output and then perhaps changes to “yes” output for each \(\sigma_i \). Now assume both \(W_d \), \(W_e \) are in \(\mathcal{L} \). If \(W_d = W_e \), then clearly all \(\sigma_i \) will satisfy that \(\text{content}(\sigma_i) \subseteq W_d \cap W_e \) and thus the comparator will converge to “yes”. If \(W_d \neq W_e \), then for the last \(\sigma_i \) that gets defined, \(\text{content}(\sigma_i) \not\subseteq W_d \cap W_e \), as otherwise, the learner converges on texts for \(W_d \) or \(W_e \) which extend \(\sigma_i \), to the same conjecture, contradicting that \(M \) explanatorily learns both. ■
Theorem 4. If a class has a 2-shot standardiser and has a one-one r.e. numbering, then it is explanatorily learnable.

Proof. Assume that F is a 2-shot standardiser for $L = \{W_{h(0)}, W_{h(1)}, \ldots\}$, where h is a recursive function with $W_{h(i)} \neq W_{h(j)}$ for $i \neq j$.

Below, we will have that grammars $h(j)$ would be either in group 1 or group 2. They are in group 1, if $F(h(j))$ outputs at most one grammar, and in group 2, if $F(h(j))$ outputs two grammars. Let $F^1(h(j))$ denote the first and $F^2(h(j))$ denote the second grammar output by F on $h(j)$.

Algorithm 1: Construction of $W_{g_1(i,j)}$ and $W_{g_2(i,j)}$, for $i \neq j$

(i) $W_{g_1(i,j)}$ starts simulating $W_{h(i)}$ until it observes that current values of $F(g_1(i, j))$ and $F(h(i))$ are same and not in $\{F^1(h(j)), \ ?\}$. Then, suppose that $W_{g_1(i,j)}$ enumerated up to now is $S_{1,i,j}$. For g_2 usage, correspondingly, we use $F^2(h(j))$ and $S_{2,i,j}$.

(ii) Wait until $W_{h(j)}$ contains $S_{1,i,j}$.

(iii) Simulate $W_{h(j)}$ until $F(g_1(i, j))$ becomes equal to $F^1(h(j))$. Note that this means $F(g_1(i, j))$ must have output second value.

Let $R_{1,i,j}$ denote the $W_{g_1(i,j)}$ enumerated up to now. Note that if the algorithm reaches this step, the above must eventually succeed.

Go to Step (iv)

For g_2 usage, correspondingly, we use $F^2(h(j))$ and $R_{2,i,j}$.

(iv) Now, $W_{g_1(i,j)}$ searches for a $k \neq j$ such that $W_{h(k)}$ contains $R_{1,i,j}$, and then switches to simulating $W_{h(k)}$.

Similarly, $W_{g_2(i,j)}$ searches for a $k \neq j$ such that $W_{h(k)}$ contains $R_{2,i,j}$, and then switches to simulating $W_{h(k)}$.

Note that above should never happen (except when g_1’s assumption about $F(h(j))$ outputting only one grammar is wrong).

Thus, $R_{1,i,j}$ (or $R_{2,i,j}$) would be a characteristic sample for $W_{h(j)}$.

Let $g_1(i, j)$ (similarly $g_2(i, j)$), $i \neq j$, be defined such that $W_{g_1(i,j)}$ and $W_{g_2(i,j)}$ are as in Algorithm 1. Note that $g_1(i, j)$ and $g_2(i, j)$ (for $i \neq j$) are similar, except that they work on grammars $h(j)$ from group 1 or 2 respectively, thus in Algorithm 1, $g_2(i, j)$ would correspondingly start only after $F(h(j))$ has output the second grammar.

A grammar $h(j)$ starts in group 1 and then later may move to group 2. Within each group, it starts in active list, moves to cancelled list, and then to “correct grammar” list when the characteristic sample as in Algorithm 1 is observed. Note that a grammar which is in
cancelled list/correct grammar for group 1 may move to group 2 at some point (where it starts as active grammar).

A grammar \(h(j) \) in active list in group 1 (group 2) gets cancelled if there exists \(i \neq j \) such that \(S_{1,i,j} \) (respectively, \(S_{2,i,j} \)) gets defined and is contained in the input.

A grammar \(h(j) \) in group 1 (group 2) becomes “correct grammar” when the input contains \(R_{1,i,j} \) (respectively \(R_{2,i,j} \)) for some \(i \neq j \).

The learner outputs the least grammar which is not in cancelled list (irrespective of which group it belongs to).

Note that if \(h(j) \) is the correct grammar for input, then eventually for all \(i < j \), \(S_{1,j,i} \) (or \(S_{2,j,i} \), in case \(F(h(i)) \) outputs two grammars) would get defined, and thus \(h(i) \) would go to cancelled list of that group. It will not move to “correct grammar” list of the eventual group \(h(i) \) is in, as otherwise, \(g_1(j,i) \) or \(g_2(j,i) \) would then be able to follow \(h(j) \), forcing \(F \) to make three outputs on \(g_1(j,i) \) or \(g_2(j,i) \) based on which group \(h(i) \) belongs to.

If \(h(j) \) gets into cancelled list of group 1 (or group 2) due to some \(h(i), i \neq j \), (that is \(S_{1,i,j} \) or \(S_{2,i,j} \) getting defined), then eventually it moves to the correct grammar list in the corresponding group as \(g_1(i,j) \) (or \(g_2(i,j) \) respectively) would eventually have Step (ii) and (iii) succeed as \(S_{1,i,j} \) was in the input text and thus in \(W_{h(j)} \).

Thus, eventually \(h(j) \) is the grammar which is output by the learner.

Example 7. The graphs of the functions with only finitely many non-zero values, is 2-shot comparable and 2-shot verifiable and has a one-one enumeration. However, this class cannot be learnt by any confident learner even if it uses an oracle. Thus there is no upper bound on the number of shots of the learner.

Here a confident learner (see Osherson et al. [20]) is a learner which converges to some hypothesis on all texts, even for texts for languages not in the class being learnt.

An analogue of Algorithm 1 (see the proof of Theorem 4) shows that any 2-shot comparable r.e. class with a one-one numbering is explanatorily learnable.

Theorem 5. If a class \(L \) has a 2-shot comparator and a one-one r.e. numbering, then \(L \) is explanatorily learnable.

Proof. We adopt the notation of the proof of Theorem 4. Let \(\{W_{h(0)}, W_{h(1)}, \ldots\} \) be a one-one r.e. numbering of a class \(L \) and let \(F \) be a 2-shot comparator for \(L \). Given any \(i, j \in \mathbb{N} \) with \(i \neq j \), define a recursive function \(g \) so that \(W_{g(i,j)} \) is as in Algorithm 2.

An Ex learner \(M \) for \(L \) runs Algorithm 2 and does the following: Each index may be assigned one of two possible states, “cancelled” or “correct”. An index \(j \) is assigned the state “cancelled” if there is an \(i \neq j \) such that \(S_{i,j} \) is contained in the range of the input text but \(j \) is not in state “correct”; it is assigned the state “correct” if, for some \(i \neq j \), \(R_{i,j} \) is contained in the range of the input text. Furthermore, the state of an index may change at any stage (or it may not be assigned any state at all). At each stage, \(M \) outputs the least index \(j \) such
that \(j \) is not in a “cancelled” state (note that in particular, \(j \) may not have been assigned any state up to the current stage).

Algorithm 2: Construction of \(W_{g(i,j)} \), for \(i \neq j \)

(i) Enumerate \(W_{h(i)} \) into \(W_{g(i,j)} \) until \(F(g(i,j), h(j)) = \text{no} \). Let \(S_{i,j} \) be the set of elements enumerated into \(W_{g(i,j)} \) up to the point where \(F(g(i,j), h(j)) \) outputs “no”.

(ii) Wait until \(W_{h(j)} \) contains \(S_{i,j} \) (if \(S_{i,j} \not\subset W_{h(j)} \), then this step does not terminate).

(iii) Enumerate \(W_{h(j)} \) into \(W_{g(i,j)} \) until \(F(g(i,j), h(j)) \) outputs “yes” (after the above “no”). Let \(R_{i,j} \) be the set of elements enumerated into \(W_{g(i,j)} \) up to this point.

(iv) Wait until \(W_{h(k)} \) contains \(R_{i,j} \) for some \(k \neq j \); \(W_{h(k)} \) is then enumerated into \(W_{g(i,j)} \).

(Note that this step should never succeed, because otherwise \(g(i,j) \) would be an r.e. index for \(W_{h(k)} \) such that \(F(g(i,j), h(j)) \) changes its value at least twice, from “no” to “yes” and then to “no” again.)

Suppose that \(M \) is fed a text \(T \) for \(W_{h(j)} \). As argued in the proof of Theorem 4, if the index \(j \) is assigned the state “cancelled” at any stage, then it will eventually be assigned the state “correct” and its state will henceforth never change. On the other hand, for every \(i < j \), the index \(i \) will eventually be assigned the state “cancelled”, since \(S_{j,i} \) is contained in the range of the text \(T \). Also, it will never be assigned the state “correct” after being in the state “cancelled”, since otherwise there would be some \(j' \neq i \) such that Algorithm 2 on input \((j',i)\) goes through Step (iv), resulting in \(g(j',i) \) becoming an index for \(W_{h(k)} \) with \(k \neq i \), and \(F(g(j',i), h(i)) \) changing its value at least twice, a contradiction. □

Next, we turn our attention to conservative learning of uniformly r.e. classes of languages. A learner \(M \) is said to be conservative if the following condition is satisfied: If \(M \) on input \(T[n] \) makes the guess \(j_n \) and then makes the guess \(j_{n+k} \) at some subsequent step on input \(T[n+k] \), where \(k \geq 1 \), and \(j_n \neq j_{n+k} \) then content(\(T[n+k] \)) \(\not\subset W_{j_n} \). Intuitively speaking, a conservative learner performs exclusively justified mind changes. In particular, a conservative learner can never overgeneralise; i.e., it can never guess a proper superset of the target language (see, e.g., Angluin [1], Zeugmann, Lange and Kapur [23], and Jain et al. [16]). We use ConsvEx to express that a class has a conservative explanatory learner.

Theorem 6. If a uniformly r.e. class \(\mathcal{L} \) is 2-shot verifiable, then \(\mathcal{L} \) is ConsvEx learnable.

Proof. Let \(\mathcal{L} = \{ W_{f(0)}, W_{f(1)}, W_{f(2)}, \ldots \} \) be a uniformly r.e. class that has a 2-shot verifier \(h \), where \(f \) is a given recursive function. By Gao et al. [14, Observation 35], it suffices to show that \(\mathcal{L} \) has an Ex learner \(N \) such that for every \(L \in \mathcal{L} \), \(N \) does not conjecture a superset of \(L \) on any segment of any given text for \(L \).
Let T be any given text, define a learner M as follows: on input $T[n]$, M outputs $f(i)$ for the least $i \leq n$ such that h outputs “yes” on $(f(i), T[n])$; if no such i exists, then M just outputs its prior conjecture (or an r.e. index for the empty set if $n = 0$). Suppose T is a text for some $W_{f(e)} \in L$. Let ℓ be the least index such that $W_{f(\ell)} = W_{f(e)}$. Then for all sufficiently large m, h will output “no” on pairs $(f(\ell'), T[m])$ for each $\ell' < \ell$, while h will output “yes” on $(f(\ell), T[m])$. As a 2-shot verifiable class is inclusion-free, M will never output a proper superset on input languages from the class.

As any class which is 2-shot comparable is inclusion-free, it is easy to show the following result:

Theorem 7. Every indexed family which is 2-shot comparable is \textit{ConsvEx} learnable.

Furthermore, as the membership problem for indices of r.e. sets can be solved using K as an oracle, we obtain the following theorem:

Theorem 8. Every uniformly r.e. class \mathcal{L} which is 2-shot comparable is \textit{ConsvEx}[K]-learnable.

Proof. By Proposition 4 we know that any class which is 2-shot comparable must be inclusion-free. Let e_0, e_1, \ldots be any fixed enumeration of the class \mathcal{L}. Consequently, the algorithm, which has access to the K-oracle always takes the enumeration e_0, e_1, \ldots of the indices of the class \mathcal{L} and conjectures the first e_n such that either n is the number of data items seen so far or W_{e_n} contains all the data observed. The first case is only included to avoid partialness of the K-recursive learner.

In order to see that the learner is conservative we use that \mathcal{L} is inclusion-free. Hence, on each wrong hypothesis e_n the learner will eventually see a counterexample, that is, an element outside W_{e_n} and drop it eventually.

We have seen that for indexed families, 1-shot comparability implies finite learnability (Theorem 1) while 2-shot comparability implies conservative explanatory learnability (Theorem 7). The next theorem completes this fairly neat hierarchy of learnability notions implied by n-shot comparability for indexed families: 3-shot comparability, while insufficient for guaranteeing conservative learnability (see Theorem 11), still implies explanatory learnability. We first show that 3-shot comparable 1-1 r.e. classes have uniformly r.e. families of finite tell-tale sets.

Proposition 6. Assume $\mathcal{L} = \{U_0, U_1, \ldots\}$ is a 1-1 r.e. class with $U_i \neq U_j$ for $i \neq j$. Suppose \mathcal{L} is 3-shot comparable. Then one can effectively (in i) enumerate tell-tale sets for U_i with respect to \mathcal{L}.

Proof. Assume that F is a 3-shot comparator for $\mathcal{L} = \{U_0, U_1, \ldots\}$.

Let g, h be recursive functions, obtained via the operator recursion theorem (see Case [6]), such that $W_{g(e,d)}$ and $W_{h(e,d)}$ are defined as follows for $e \neq d$:
1. $W_{g(e,d)}$ and $W_{h(e,d)}$ follow U_d, until it is observed that $F(g(e, d), h(e, d)) = \text{"yes"}$. Assume that $W_{h(e,d)}$, enumerated until now, is $S_{e,d}$.

2. $W_{g(e,d)}$ continues to follow U_d. $W_{h(e,d)}$ waits until it is observed that $S_{e,d} \subseteq U_e$. Then, $W_{h(e,d)}$ starts following U_e until it is observed that $F(g(e, d), h(e, d)) = \text{"no"}$ (after the above observed “yes”). Assume that $W_{g(e,d)}$ enumerated until now is $R_{e,d}$.

3. $W_{h(e,d)}$ continues to follow U_e and $W_{g(e,d)}$ waits until it is observed that $R_{e,d} \subseteq U_e$. Then, $W_{g(e,d)}$ starts following U_e until it is observed that $F(g(e, d), h(e, d)) = \text{"yes"}$ (after the above observed “no”). Assume that $W_{g(e,d)}$ enumerated until now is $X_{e,d}$.

4. $W_{h(e,d)}$ continues to follow U_e and $W_{g(e,d)}$ waits until it is observed that $X_{e,d} \subseteq U_k$, for some $k \neq e$. Then, $W_{g(e,d)}$ starts following U_k. Note that the above search should never succeed, as otherwise, $F(h(e, d), g(e, d))$ needs to output “no” in the limit, but it has no more mind changes available.

Thus, $X_{e,d}$ (if defined) is a subset of U_e but not contained in any U_k, where $k \neq e$.

Note also that if $U_d \subseteq U_e$, then the above process must reach Step 4, though it would not succeed in finding k. This happens as $S_{e,d}$ is always defined due to the comparator $F(g(e, d), h(e, d))$ needing to eventually output “yes” when both $g(e, d)$ and $h(e, d)$ are following U_d. Since we have $S_{e,d} \subseteq U_d \subseteq U_e$, Step 2 will eventually succeed in finding this, and thus $W_{h(e,d)}$ would start following U_e. Hence eventually $F(g(e, d), h(e, d))$ needs to output “no” and the procedure will reach Step 3. Here again $R_{e,d} \subseteq U_d \subseteq U_e$, and therefore $W_{g(e,d)}$ would also start following U_e and thus eventually $F(g(e, d), h(e, d))$ will output “yes”, and the process will reach Step 4.

Thus, we have the following:

(a) if U_e has no proper subset in L, then \emptyset is a tell-tale set for U_e;

(b) if U_e has a proper subset in L, then there exists a d such that $X_{e,d}$ as above gets defined;

(c) for any e, d, if $X_{e,d}$ get defined then $X_{e,d}$ is a tell-tale set for U_e with respect to L.

It thus follows that one can enumerate tell-tale sets for members of L: on input e, the tell-tale set enumerator initially just enumerates \emptyset, and searches for a d such that $X_{e,d}$ is defined by the above process. It then enumerates $X_{e,d}$.

The following theorem now follows from the characterisation of explanatory learnability using tell-tale sets by Angluin [1] (and the fact that every indexed family containing infinitely many distinct sets has a 1–1 r.e. numbering).

Theorem 9. Any 3-shot comparable indexed family is explanatorily learnable.
When given an oracle for K, a 1–1 r.e. family behaves like an indexed family for the purposes of the earlier proof of Proposition 6. Furthermore, using an oracle for K and an analogue of the construction of $W_{g(e,d),W_{i(e,d)}}$ in Proposition 6, one can determine for each member L of a 1–1 r.e. family $L = \{U_0, U_1, U_2, \ldots\}$ a finite tell-tale set for L w.r.t. L as follows: First, test whether or not there exists a j' for which $X_{i,j'}$ (as constructed in the proof of Proposition 6) is nonempty; if no such j' exists, then the empty set is a tell-tale; otherwise, search for the first j such that $X_{i,j}$, a tell-tale for L w.r.t. L, is defined. Thus, on any input σ, a learner equipped with an oracle for K may test whether or not a potential hypothesis U_i contains $\text{content}(\sigma)$ as well as whether a tell-tale for U_i found earlier is contained in $\text{content}(\sigma)$, thereby ensuring that it is conservative.

Consequently, we have the following result:

Theorem 10. Any 3-shot comparable 1–1 r.e. family is ConsvEx$[K]$ learnable.

Next we show that Theorem 6 and Theorem 7 do not generalise to 3-shot verifiable classes and 3-shot comparable classes.

Theorem 11. For indexed families 3-shot comparability or 3-shot verifiability do not imply conservative learnability.

Proof. This can be seen as follows: For all $e, s \in \mathbb{N}$, we define $L_{e,0} := \{e\} \oplus \mathbb{N}$, and for $s > 0$ we set

$$L_{e,s} := \begin{cases} \{e\} \oplus D, & \text{if there is a first step } t \leq s \text{ at which some } \sigma \in \mathbb{N}^* \text{ is found} \\
\text{such that there is a } D \subset \mathbb{N} \text{ with } \text{content}(\sigma) = \{e\} \oplus D \\
\text{and } W_{M_{e,i}(\sigma)} \supset \text{content}(\sigma);
\end{cases}$$

$$\{e\} \oplus \mathbb{N}, \quad \text{otherwise.}$$

Here, we assume without loss of generality that at any step, at most one σ is found in the first clause above. We set $L := \{L_{e,s} : e, s \in \mathbb{N}\}$ and note that L has a uniformly recursive numbering. Furthermore, if M_e were a behaviourally correct learner of L, then, since M_e must learn $\{e\} \oplus \mathbb{N} \in L$, there must exist some $\sigma \in \mathbb{N}^*$ and $D \subset \mathbb{N}$ with $\text{content}(\sigma) = \{e\} \oplus D$ such that M_e overgeneralises on input σ. Hence L does not have a conservative behaviourally correct learner.

On the other hand, the class L is 3-shot comparable. Given indices i and j, a 3-shot comparator F simulates W_i and W_j, and it outputs ? until W_i and W_j each enumerates an even element. If the first even element enumerated by W_i is different to that enumerated by W_j, then F outputs “no”. Suppose the first even element enumerated by both W_i and W_j is $2e$. Then the comparator F outputs “yes” until it finds an s such that for some finite set $D \subset \mathbb{N}$, $L_{e,s} = \{e\} \oplus D$ and exactly one of the sets W_i, W_j enumerates some $2y + 1 \notin \{2x + 1 : x \in D\};$ it will then output “no” until W_i and W_j each enumerates some odd number not belonging to $\{2x + 1 : x \in D\}; F(i, j)$ will now output “yes”. Note that if $W_i, W_j \in L$, then $F(i, j)$ will change its value at most twice; moreover, $F(i, j)$ will converge to the correct value.

A similar proof as above also shows that L is 3-shot verifiable. □
Theorem 12. There exists a 2-shot standardisable indexed family which is not conservatively learnable.

Proof. For each \(e \), let \(y_e \) be the first \(y > 3 \) found, if any, in some standard search, such that for some \(\sigma \) with \(\text{content}(\sigma) = \{ e \} \oplus \{ x : x \leq y \} \oplus \emptyset \), \(W_{M_e(\sigma)} \supset \{ e \} \oplus \{ x : x \leq 4^y \} \oplus \emptyset \).

Consider the class \(L \) consisting of

i. \(L_e = \{ e \} \oplus \mathbb{N} \oplus \emptyset \);

ii. if \(y_e \) is defined then, for \(y_e < z < 4^y_e \), the sets

- \(X_{e,z} \), if \(C(z) \geq y_e \)
- \(Y_{e,z} \), if \(C(z) < y_e \)

where

\[
X_{e,z} = \{ e \} \oplus \{ x : x \leq y_e \} \cup \{ z \} \oplus \emptyset, \quad \text{and} \quad \\
Y_{e,z} = \{ e \} \oplus \{ x : x \leq y_e \} \cup \{ z \} \oplus \{ 2^{(2t + 1)} \},
\]

where \(t \) is the time needed to find \(y_e \) and that \(C(z) < y_e \).

Note that \(L \) is an indexed family. Moreover, it is not conservatively learnable as if a learner \(M_e \) conservatively learns \(L_e \), then using a locking sequence argument, \(y_e \) is defined. Furthermore, for some \(z, y_e < z < 4^y_e \), \(C(z) \geq y_e \). Now, the learner cannot conservatively learn \(X_{e,z} \).

Next it is shown that \(L \) is 2-standardisable. Note that if \(W_{e'} \) is an index for \(X_{e,z} \), where \(y_e \) is defined, then \(y_e \leq C(z) \leq \log(e') + \text{constant} \). Thus, for standardising it can be assumed, without loss of generality, that \(y_e \leq e' \), as standardising for the \(e' \) where \(e' - \log(e') \) is smaller than the constant above can be done by patching.

Now, the standardiser on input \(e' \) first searches for an \(e \) such that \(W_{e'} \) contains \(3e \). Then,

- if \(W_{e'} \) contains \(3(4^e + 3 + 1) \), the standardiser outputs the canonical index for \(L_e \) and never changes its mind after that;
- if \(W_{e'} \) contains \(3(2^z(2t + 1)) + 2 \), for some \(z, t \), then it outputs the canonical index for \(Y_{e,z} \) and never changes its mind after that;
- if \(y_e \) is defined and \(W_{e'} = X_{e,z} \) for some \(z \), then it outputs the canonical index for \(X_{e,z} \).

It is easy to see that the above standardiser is a 2-shot standardiser and standardises \(L \).

At this point it is only natural to ask what holds for 4-shot comparators. The answer is provided by the following theorem, where \(U \) denotes a fixed universal Turing machine used to define the Kolmogorov complexity.
Theorem 13. There is an indexed family \(L \) which is 4-shot comparable and 3-shot standardisable but not behaviourally correct learnable.

Proof. Let \(L = \{ L_0, L_1, L_2, \ldots \} \) be a class of r.e. sets such that \(L_0 = \{ 2y : y \in \mathbb{N} \} \); and for all \(x \in \mathbb{N}, \)

\[
L_{x+1} = \begin{cases}
(\{2y : y \in \mathbb{N} \land y \leq t\} \setminus \{2x\}) \cup \{2t + 1\}, & \text{if } t \text{ is the first step at which some } p < \log(x) \text{ is found such that } U(p, \varepsilon) = x; \\
\{2y : y \in \mathbb{N} \land y \neq x\}, & \text{if no such } p \text{ is found}.
\end{cases}
\]

Note that \(L \) has a uniformly recursive numbering. Furthermore, one can define a 4-shot comparator \(F \) for \(L \) as follows: First, as in Example 4, let \(f \) be a recursive function such that whenever \(W_e = \{2y : y \in \mathbb{N} \land y \neq x\} \) for some \(x \) with \(C(x) \geq \log(x) \), \(x < f(e) \). Given \(d, e \in \mathbb{N}, \) simulate \(W_d \) and \(W_e \). At every step, \(F \) performs the instructions in the case (among the four cases below) with the highest priority that applies; Case \(i \) has higher priority than Case \(j \) iff \(i < j \).

Case 1: One of the sets, say \(W_d \), enumerates an odd number \(2y + 1 \). Simulate \(W_d \) until all even numbers but one (say \(2x \)) below \(2y + 1 \) appear in \(W_d \). Simulate \(W_e \) until the first of the following cases applies:

Case 1.1: Either \(2x \) or some even number larger than \(2y \) appears in \(W_e \), or an odd number different from \(2y + 1 \) occurs in \(W_e \). Output “no”.

Case 1.2: The set \(W_e \) enumerates all elements of \(\{2z : 0 \leq z \leq y \land z \neq x\} \cup \{2y + 1\} \). Output “yes”.

Case 2: All the even numbers below \(f(d) + f(e) \) have been enumerated into both \(W_d \) and \(W_e \). Output “yes”.

Case 3: All the even numbers below \(f(d) + f(e) \) have been enumerated into exactly one of \(W_d \) and \(W_e \). Output “no”.

Case 4: There is exactly one even number \(x_1 < f(d) + f(e) \) that has not been enumerated into \(W_d \), and there is exactly one even number \(x_2 < f(d) + f(e) \) that has not been enumerated into \(W_e \). If \(x_1 = x_2 \), output “yes”. If \(x_1 \neq x_2 \), output “no”.

Now it is verified that \(F \) is indeed a 4-shot comparator for \(L \). Suppose \(W_d, W_e \in L \). Consider the following case distinction:

Case 1: At least one of \(W_d, W_e \) contains an odd number. Then Case 1 will almost always apply, and either (a) both \(W_d \) and \(W_e \) are equal to \(\{2z : 0 \leq z \leq y \land z \neq x\} \cup \{2y + 1\} \) for some \(y, x \in \mathbb{N} \), so that \(F \) will output “yes” in the limit, or (ii) one of \(W_d, W_e \) is equal to \(\{2z : 0 \leq z \leq y \land z \neq x\} \cup \{2y + 1\} \) for some \(y, x \in \mathbb{N} \) while the other contains \(2x \) or some odd number different from \(2y + 1 \) or an even number larger than \(2y \), so that \(F \) will output “no” in the limit.
Case ii: \(W_d = \{2z : z \in \mathbb{N}\} \setminus \{2x_1\} \) and \(W_e = \{2z : z \in \mathbb{N}\} \setminus \{2x_2\} \) for some \(x_1, x_2 \in \mathbb{N} \). Then Case 4 will almost always apply, and if \(x_1 = x_2 \), then \(F \) will output “yes” in the limit; if \(x_1 \neq x_2 \), then \(F \) will output “no” in the limit.

Case iii: Both sets \(W_d \) and \(W_e \) contain only even numbers, and at least one of \(W_d, W_e \) is equal to \(\{2z : z \in \mathbb{N}\} \). If both \(W_d \) and \(W_e \) are equal to \(\{2z : z \in \mathbb{N}\} \), then Case 2 will almost always apply, so that \(F \) will output “yes” in the limit. If exactly one of \(W_d \) and \(W_e \) is equal to \(\{2z : z \in \mathbb{N}\} \), then Case 3 will almost always apply, so that \(F \) will output “no” in the limit.

Furthermore, note that \(F(d, e) \) changes its value between Steps \(t_1 \) and \(t_2 \) (where \(t_2 > t_1 \)) only if there are distinct \(i, j \) with \(j < i \) such that \(F \) performs the instructions in Case \(i \) at Step \(t'_1 \) and then performs the instructions in Case \(j \) at Step \(t'_2 \) for some \(t'_1, t'_2 \) with \(t_1 \leq t'_1 < t'_2 \leq t_2 \); in particular, if Case 1 applies at some step, then \(F(d, e) \) will not change its value at any subsequent step. Thus \(F \) changes its value at most thrice on input \((d, e) \), and it is therefore a 4-shot comparator for \(\mathcal{L} \).

A 3-shot standardiser \(G \) for \(\mathcal{L} \) can be defined similarly. Given any index \(e \), \(G \) outputs ? until the first of the following cases applies:

Case a: The set \(W_e \) enumerates all even numbers but one (say \(2x_1 \)) below \(f(e) \). Then \(G \) keeps outputting a canonical index for \(\{2z : z \in \mathbb{N} \land z \neq x_1\} \). If \(W_e \) enumerates \(2x_1 \) at any later step, then \(G \) switches to outputting a canonical index for \(\{2z : z \in \mathbb{N}\} \). If \(W_e \) enumerates an odd number at any step, then \(G \) follows the instructions in Case b.

Case b: The set \(W_e \) enumerates an odd number \(2y + 1 \). Then \(G \) waits until \(W_e \) enumerates all even numbers but one (say \(2x_2 \)) below \(2y + 1 \); it will then output a canonical index for \(\{2z : z \leq y \land z \neq x_2\} \cup \{2y + 1\} \) in the limit.

That \(G \) is indeed a 3-shot standardiser for \(\mathcal{L} \) can be verified using ideas very similar to those in the earlier proof that \(F \) is a 4-shot comparator for \(\mathcal{L} \).

Moreover, \(\mathcal{L} \) is not behaviourally correctly learnable because \(L_0 \) does not have a finite tell-tale (see Baliga et al. [3, Corollary 3]): for every set \(D \) of even numbers, there is some \(x > \max(D) \) with \(C(x) \geq \log(x) \), so that \(D \subset L_{x+1} \subset L_0 \).

We continue with further results concerning finite standardisation, finite verifiability, finite learning, and explanatory learning, when the classes considered may not be recursively enumerable. We formulate the following example in terms of function learning. Note that function learning is just a special case of language learning, since learning functions is in general equivalent to learning their graphs as sets from text.

Example 8. We define \(f_0(x) := 0 \) for all \(x \in \mathbb{N} \), and for \(n \geq 1 \) we set \(f_n(x) := 0 \) for all \(x \in \mathbb{N} \setminus \{n\} \) and \(f_n(n) := 1 \). Furthermore, we use \(\min_f \phi \) to denote the least index \(i \) such that \(\phi_i = f \). Next, consider the class \(\mathcal{F} := \{ f_n \mid n \in \mathbb{N}, \ n \leq \min_f f_n \} \). Then \(\mathcal{F} \) is finitely standardisable but neither finitely learnable nor finitely verifiable. Note that \(\mathcal{F} \) is not an r.e. class.
Finite standardisability of \(\mathcal{F} \) as well as that \(\mathcal{F} \) is not finitely learnable has been shown in Freivald and Wiehagen [12].

In order to see that \(\mathcal{F} \) is not finitely verifiable let \(e \in \mathbb{N} \) be an index for \(f_0 \), and let \(T \) be a text for \(f_0 \) such that \(T = ((0, f_0(0)), (1, f_0(1)), (2, f_0(2)) \ldots) \). Then, on input \(e \) and \(T \), a finite verifier would have to eventually output “yes”, since otherwise it could not verify that \(T \) is a text for the function \(f_0 \). Let this happen when the verifier has seen \(T[m] \). Consequently, for every \(n > m \) and a text \(T' \) in the same order \((0, f_n(0)), (1, f_n(1)), (2, f_n(2)) \ldots \) for \(f_n \) it must, on input \(e \) and \(T' \), also output “yes”, a contradiction to the fact that \(T' \) is not a text for \(f_0 \).

Note that Examples 1, 2 and 8 show both that the collection of finitely learnable classes is incomparable to the collections of finitely standardisable classes and to the collection of finitely verifiable classes.

Next, we ask whether or not finite standardisability is of any help for explanatory learning. This question deserves attention, since it deals with the problem of information presentation versus the mode of convergence. The affirmative answer is given below.

In the following, for all \(e, s \in \mathbb{N} \), let \(W_{e,s} \) denote the subset of \(W_e \) enumerated in \(s \) steps.

Theorem 14. If a class \(\mathcal{L} \) is finitely-standardisable then \(\mathcal{L} \) is explanatorily learnable.

Proof. Assume that \(F \) is a finitely standardising function for \(\mathcal{L} \). Furthermore, we define the following set: \(S := \{ e : e \in \mathbb{N}, F(e) = e \} \).

Using the operator recursion theorem (see Case [6]), let \(g \) be a recursive function such that

\[
W_{g(e',e)} = \begin{cases}
W_{e'}, & \text{if } F(g(e', e)) \text{ is undefined or not equal to } e' ; \\
W_{e', t(e',e)}, & \text{if } F(g(e', e)) = e' \text{ in exactly } t(e', e) \text{ steps} \\
W_{e}, & \text{but } W_{e', t(e',e)} \not\subseteq W_e ; \\
\end{cases}
\]

As in the definition of \(W_{g(e',e)} \), above let \(t(e', e) \) denote the time needed for \(F(g(e', e)) \) to converge. Note that if \(e, e' \in S, e \neq e' \text{ and } F(g(e', e)) = e' \), then either the set \(W_e \) does not contain \(W_{e', t(e',e)} \) or \(W_e \) is not in \(\mathcal{L} \) (as \(F \) outputs two different values on the indices \(e \) and \(g(e', e) \) for it).

Assume that \(T \) is the input text for a language in \(\mathcal{L} \). Let \(e_0, e_1, \ldots \) be a 1–1 enumeration of \(S \). On input \(T[n] \), the learner outputs \(e_i \) for the least \(i \leq n \) such that \(e_i \) is not eliminated. Here \(e_i \) is eliminated if there exists a \(j \neq i, j \leq n \) such that \(F(g(e_j, e_i)) = e_j \) within \(n \) steps and \(W_{e_j, t(e_j, e_i)} \subseteq \text{content}(T[n]) \) — note that in this case \(e_i \) is not the index for input language as either \(W_{e_j, t(e_j, e_i)} \) and thus \(\text{content}(T[n]) \) is not contained in \(W_{e_i} \), or \(F(e_i) \neq F(g(e_j, e_i)) \) but \(W_{g(e_j,e_i)} = W_{e_i} \); if no such \(i \) exists, then the output of the learner does not matter and can be anything.

Assume \(W_{e_r} \in \mathcal{L} \), and \(T \) is a text for it. Then, eventually, all \(e_i, i < r \) will be eliminated (that is not output by the learner above, on input \(T[n] \) for large enough \(n \)) as (i)
\[F(g(e_r, e_i)) = e_r \text{ (otherwise, } W_{g(e_r, e_i)} = W_{e_r}, \text{ but } F(g(e_r, e_i)) \neq F(e_r), \text{ contradicting the finite-standardisability of } L \text{ by } F), \] and (ii) \[W_{e_r, t(e_r, e_i)} \subseteq W_{e_r} = \text{content}(T). \] Furthermore, \(e_r \) is never eliminated as for all \(e_i, t \neq r, F(g(e_i, e_r)) \neq e_i \) or \(W_{e_i, t(e_i, e_r)} \not\subseteq W_{e_r} \) (as otherwise \(W_{g(e_i, e_r)} = W_{e_r} \), and therefore, \(F(g(e_i, e_r)) = e_r \neq e_i \) by standardisability).

We conclude that the above learner on \(T \) converges to \(e_r \). Thus, the above learner Ex learns \(L \).

\textbf{Theorem 15.} There is a class of recursive functions that is finitely \((2, 3)\)-standardisable but not finitely learnable.

\textbf{Proof.} First note that a finitely \((2, 3)\)-standardisable class via \(F_1, F_2, F_3 \) has to be inclusion-free; if \(A, B \) are two r.e. sets in the class and \(A \subset B \) then one can define a uniformly recursive sequence \(e_0, e_1, \ldots \) of indices such that \(W_{f(e_k)} = A \) in the case that \(k \notin K \) and \(W_{f(e_k)} = B \) in the case that \(k \in K \); thus the halting problem \(K \) becomes reduced onto the standardising task and \(k \notin K \) iff at least two of the outputs of \(F_1(f(e_k)), F_2(f(e_k)), F_3(f(e_k)) \) are in a given finite set of indices of \(A \) (as given by the standardisers); this finite set depends on the standardisers. So the complement of \(K \) would be recursively enumerable which is not the case.

Furthermore, one can show that such a class can be properly \((2, 3)\)-learnable (that is, some learner outputs at most 3 indices on the input text, at least two of which are correct) without being finitely learnable. For this, consider the following class of all \(A_k, B_k \) where \(A_k = B_k = \{3k\} \) in the case that \(k \notin K \) and \(A_k = \{3k, 3k + 1\} \) and \(B_k = \{3k, 3k + 2\} \) in the case that \(k \in K \). This is a well-known example for a \((2, 3)\)-learnable class: The learner conjectures first two indices, one for \(A_k \) and one for \(B_k \) while it abstains from outputting the third index. In the case that it happens that two elements are observed, the sets \(A_k \) and \(B_k \) must be different and the learner can see from the data which of these two sets applies. Similarly for finite \((2, 3)\)-standardisation: Given an index \(e \), the standardiser first searches for an \(k \) such that \(3k \in W_e \); when this is found, \(F_1(e) \) outputs a fixed index of \(A_k \) and \(F_2(e) \) outputs a fixed index of \(B_k \). After that, \(F_3(e) \) simulates \(W_e \) until either \(3k + 1 \) or \(3k + 2 \) appears in \(W_e \); depending on the corresponding case, \(F_3(e) \) is either \(F_1(e) \) or \(F_2(e) \).

\section*{5. Conclusions and Open Problems}

We introduced learning models, where at least one input is an index, and the second input is a text or another index, resulting in verifiability and comparability, respectively. Hence these learning models are modifications of standardisability, a learning model which has been around for quite some time. And we studied variations of these three models by restricting the number of shots these models are allowed to make. Furthermore, we studied the learning capabilities of these learning models and explanatory inference in dependence on the classes to be learnt; i.e., we distinguished between arbitrary classes of r.e. languages, uniformly r.e. classes of r.e. languages, 1–1 r.e. classes of r.e. languages, and indexed families.
Table 1 at the end of the Introduction summarises many of the results obtained except the ones for arbitrary classes of r.e. languages. As we see, comparators, standardisers, and verifiers are different with respect to their help for the inductive inference of the respective classes. That is, verifiability always implies explanatory learning, but conservative learning is out of reach in general. Only 2-shot verifiers can always be used to achieve conservative learning.

Furthermore, 2-shot standardisability also implies explanatory learning but not conservative learning provided the target classes are indexed families or 1–1 r.e. classes. On the other hand, for indexed families any 2-shot comparator and any 2-shot verifier can be exploited to obtain a conservative learner, but, in general, a 2-shot standardiser cannot.

In this context, it may be worth to look at a modification which was proposed by Freivald [11] and called limit standardisability with a recursive estimate. In this modification the number of shots is also bounded, but the bound depends on the index \(i \) received as input; i.e., there is a recursive function \(b \in \mathcal{R} \) such that, on input \(i \), the standardiser is only allowed to perform \(b(i) \) many shots. The usefulness of this modification was established by Freivald [11], who used it to characterise the explanatory identification of minimal Gödel numbers in the setting of function learning. Hence, generalising this approach to verifiers and comparators may lead to some interesting results.

The investigations performed in the present paper also revealed some topological constraints for 2-comparability and finite standardisability, i.e., the respective classes must be inclusion-free (cf. Proposition 4). This property was also used in Theorem 15 (among other places). Also, in Example 8 another topological property was exploited. The class \(\mathcal{F} \) considered there contains an accumulation point, i.e., \(f_0 \). This suggests to perform a deeper study of topological properties that preserve comparability, verifiability, or standardisability (with a certain number of allowed shots). It may be a good starting point to look at Apsitis [2], who used topological properties to obtain separations of explanatory learning with bounded mind changes, where the bounds are given by constructive ordinals.

Acknowledgments

Sanjay Jain was supported in part by NUS grant C252-000-087-001. Furthermore, Ziyuan Gao, Sanjay Jain and Frank Stephan have been supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112.

This research was performed partially while the fourth author was visiting the Institute of Mathematical Sciences at the National University of Singapore in September 2017. His visit was partially supported by the Institute. Thomas Zeugmann was also supported in part by the Japan Society for the Promotion of Science, and the Grand-in-Aid for Challenging Exploratory Research No. 15K12022.
References

