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Abstract

The main purpose of this course is an introductory study of the formal relationships

between machines, languages and grammars. The course covers regular languages,

context-free languages and touches context-sensitive languages as well as recursive

and recursively enumerable languages. Relations to and applications in UNIX are

discussed, too.

Moreover, we provide a framework to study the most general models of computa-

tion. These models comprise Turing machines and partial recursive functions. This

allows us to reason precisely about computation and to prove mathematical theo-

rems about its capabilities and limitations. In particular, we present the universal

Turing machine which enables us to think about the capabilities of computers in a

technology-independent manner.

There will be a midterm problem set and a final report problem set each worth

100 points. So your grade will be based on these 200 points.

Note that the course is demanding. But this is just in line with William S. Clark’s

encouragement

Boys, be ambitious !

Of course, nowadays, we would reformulate this encouragement as

Girls and Boys, be ambitious !
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Lecture 1: Introducing Formal Languages

1.1. Introduction

This course is about the study of a fascinating and important subject: the theory

of computation. It comprises the fundamental mathematical properties of computer

hardware, software, and certain applications thereof. We are going to determine what

can and cannot be computed. If it can, we also seek to figure out on which type of

computational model, how quickly, and with how much memory.

Theory of computation has many connections with engineering practice, and, as a

true science, it also comprises philosophical aspects.

Since formal languages are of fundamental importance to computer science, we

shall start our course by having a closer look at them.

First, we clarify the subject of formal language theory. Generally speaking, formal

language theory concerns itself with sets of strings called languages and different

mechanisms for generating and recognizing them. Mechanisms for generating sets of

strings are usually referred to as grammars and mechanisms for recognizing sets

of strings are called acceptors or automata. If we compare formal languages with

natural languages, then mechanisms for generating sets of strings are needed to model

the speaker and mechanisms for recognizing or accepting strings model the listener.

Clearly, the speaker is supposed to generate exclusively sentences belonging to the

language on hand. On the other hand, the listener has first to check if the sentence

she is listening to does really belong to the language on hand before she can start to

further reflect about its semantics. Recent research in neuro-biology has shown that

humans indeed first parse sentences they are listening to before they start thinking

about them. As a matter of fact, though the parsing process in the brain is not yet

understood, it could be shown that parsing is usually done quite fast.

The same objective is sought for formal languages. That is, we wish to develop

a theory such that generators and acceptors do coincide with respect to the set of

strings generated and accepted, respectively.

A mathematical theory for generating and accepting languages has been emerged

in the later 1950’s and has been extensively developed since then. Nowadays there are

elaborated theories for both computer languages and natural languages. Clearly, a

couple of lectures are just too few to cover even a bit of the most beautiful parts. We

therefore have to restrict ourselves to the most fundamental parts of formal language

theory, i.e., to the regular languages, the context-free languages, and the recursively

enumerable languages. Nevertheless, this will suffice to obtain a basic understanding

of what formal language theory is all about and what are the fundamental proof

techniques. In order to have a common ground, we shortly recall the mathematical

background needed.

c©Thomas Zeugmann, Hokkaido University, 2007
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1.2. Basic Definitions and Notation

By N = {0, 1, 2, . . .} we denote the set of all natural numbers and we set N+ =

N \ {0}. Let X, Y be any two sets; then we use X ∪ Y, X ∩ Y and X \ Y to denote

the union, intersection and difference of X and Y, respectively. If we have countably

many sets X0, X1, X2, . . ., then we write
⋃
i>0 Xi to denote the union of all sets Xi,

i ∈ N, i.e., ⋃
i>0

Xi = X0 ∪ X1 ∪ · · · ∪ Xn ∪ · · ·

Analogously, we use
⋂
i>0 Xi to denote the intersection of all Xi, i ∈ N, i.e.,⋂

i>0

Xi = X0 ∩ X1 ∩ · · · ∩ Xn ∩ · · ·

Furthermore, we denote the empty set by ∅.

Next, we recall the definition of binary relation. Let X, Y be any non-empty

sets. We set X × Y = {(x,y) x ∈ X and y ∈ Y}. Every subset ρ ⊆ X × Y is said to

be a binary relation. Note that we sometimes use the notation xρy instead of writing

(x,y) ∈ ρ.

Definition 1. Let ρ ⊆ X×Y and τ ⊆ Y×Z be binary relations. The composition

of ρ and τ is the binary relation ζ ⊆ X× Z defined as follows:

ζ = ρτ = {(x, z) there exists a y ∈ Y such that (x,y) ∈ ρ and (y, z) ∈ τ} .

Now, let X be any non-empty set; there is a special binary relation ρ0 called

equality, and defined as ρ0 = {(x, x) x ∈ X}. Moreover, let ρ ⊆ X×X be any binary

relation. Then we define for each i > 0 inductively ρi+1 = ρiρ.

Definition 2. Let X be any non-empty set, and let ρ be any binary relation over X.

The reflexive–transitive closure of ρ is the binary relation ρ∗ =
⋃
i>0 ρ

i.

Let us illustrate the latter definition by using the following example. We define

ρ = {(x, x+ 1) x ∈ N} .

Then, ρ0 = {(x, x) x ∈ N}, and ρ1 = ρ. Next we compute

ρ2 = ρρ = {(x, z) x, z ∈ N such that there is a y ∈ N with (x,y) ∈ ρ and (y, z) ∈ ρ}

By the definition of ρ, (x,y) ∈ ρ implies y = x+1, and (x+1, z) ∈ ρ implies z = x+2.

Hence,

ρ2 = {(x, x+ 2) x ∈ N} .

We proceed inductively. Taking into account that we have just proved the induction

base, we can assume the following induction hypothesis

ρi = {(x, x+ i) x ∈ N} .
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Claim. ρi+1 = {(x, x+ i+ 1) x ∈ N}.

By definition, ρi+1 = ρiρ, and thus, by the definition of composition and the

induction hypothesis we get:

ρiρ = {(x, z) x, z ∈ N and there exists a y such that (x,y) ∈ ρi and (y, z) ∈ ρ}
= {(x, x+ i+ 1) x ∈ N} ,

since (x,y) ∈ ρi implies y = x+ i. This proves the claim.

Finally, ρ∗ =
⋃
i>0 ρ

i, and therefore ρ∗ is just the well known binary relation “6”

over N, i.e., (x,y) ∈ ρ∗ if and only if x 6 y.

Exercise 1. Prove or disprove: For every binary relation ρ over a set X we have

ρ∗ = (ρ∗)∗, i.e., the reflexive–transitive closure of the reflexive–transitive closure is

the reflexive–transitive closure itself.

A formalism is required to deal with strings and sets of strings, and we therefore

introduce it here. By Σ we denote a finite non-empty set called alphabet. The

elements of Σ are assumed to be indivisible symbols and referred to as letters or

symbols. For example, Σ = {0, 1} is an alphabet containing the letters 0 and 1, and

Σ = {a, b, c} is an alphabet containing the letters a, b, and c. In certain applications,

e.g., in compiling, we may also have alphabets containing for example begin and end.

But the begin and end are also assumed to be indivisible.

Definition 3. A string over an alphabet Σ is a finite length sequence of letters

from Σ. A typical string is written as s = a1a2 · · ·ak, where ai ∈ Σ for i = 1, . . . , k.

Note that we also allow k = 0 resulting in the empty string which we denote by

λ. We call k the length of s and denote it by |s|, so |λ| = 0. By Σ∗ we denote the

set of all strings over Σ, and we set Σ+ = Σ∗ \ {λ}. Now, let s, w ∈ Σ∗; we define a

binary operation called concatenation (or word product). The concatenation of s

and w is the string sw. For example, let Σ = {0, 1}, s = 000111 and w = 0011; then

sw = 0001110011.

The following proposition summarizes the basic properties of concatenation.∗

Proposition 1.1. Let Σ be any alphabet.

(1) Concatenation is associative, i.e., for all x, y, z ∈ Σ∗, x(yz) = (xy)z

(2) The empty string λ is a two-sided identity for Σ∗, i.e., for all x ∈ Σ∗,

xλ = λx = x

(3) Σ∗ is free of nontrivial identities, i.e., for all x, y, z ∈ Σ∗,
i) zx = zy implies x = y and,
ii) xz = yz implies x = y.

(4) For all x, y ∈ Σ∗, |xy| = |x| + |y|

∗Because of these properties, Σ∗ is also referred to as free monoid in the literature.

c©Thomas Zeugmann, Hokkaido University, 2007
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Next, we extend our operations on strings to sets of strings. Let X, Y be sets of

strings. Then the product of X and Y is defined as

XY = {xy x ∈ X and y ∈ Y}.

Let X ⊆ Σ∗; define X0 = {λ} and for all i > 0 set Xi+1 = XiX. The Kleene closure

of X is defined as X∗ =
⋃
i>0 X

i, and the semigroup closure of X is X+ =
⋃
i>1 X

i.

Finally, we define the transpose of a string and of sets of strings.

Definition 4. Let Σ be any alphabet. The transpose operator is defined on

strings in Σ∗ as follows:

λT = λ, and

(xa)T = a(xT ) for all x ∈ Σ∗ and a ∈ Σ .

We extend it to sets X of strings by setting XT = {xT x ∈ X}. For example,

let s = aabbcc, then sT = ccbbaa. Furthermore, let X = {aibj i, j > 1}, then

XT = {bjai i, j > 1}. Here, ai denotes the string a · · ·a︸ ︷︷ ︸
i times

.

We continue by defining languages.

Definition 5. Let Σ be any alphabet. Every subset L ⊆ Σ∗ is called language.

Note that the empty set as well as L = {λ} are also languages. Next, we ask how

many languages there are. Letm be the cardinality of Σ. There is precisely one string

of length 0, i.e., λ, there are m strings of length 1, i.e., a for all a ∈ Σ, there are

m2 many strings of length 2, and in general there are mn many strings of length n.

Thus, the cardinality of Σ∗ is countably infinite. Therefore, by a famous theorem by

G. Cantor we can conclude that there are uncountably many languages (as much as

there are real numbers). Since the generation and recognition of languages should be

done algorithmically, we immediately see that only countably many languages can be

generated and recognized by an algorithm.

Finally, let us look at something interesting from natural languages and let us see

how we can put this into the framework developed so far.

That is, we want to look at palindromes. A palindrome is a string that reads

the same from left to right and from right to left. For having some examples from

different languages, please look at the following strings.

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

AKASAKA, or removing space and punctuation symbols, the famous self-introduction

of Adam to Eve: madamimadam (Madam, I’m Adam).

Now we ask how can we describe the language of all palindromes over the alphabet

{a,b} (just to keep it simple).
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So far, you may have seen inductive definitions mainly in arithmetic, e.g., of the

faculty function defined over N and denoted n!. It can be inductively defined as 0! = 1

and (n+ 1)! = (n+ 1)n!.

One of the nice properties of free monoids is that we can adopt the concepts of

“inductive definition” and “proof by induction.” Please think about this. It may be

helpful if you try even the more general problem in which mathematical structures

inductive definitions and proof by induction is possible.

So let us try it. Of course λ, a, and b are palindromes. Since every palindrome

must begin and end with the same letter, and if we remove the first and last letter of

a palindrome, we still get a palindrome. This observation suggests the following basis

and induction for defining Lpal .

Basis: λ, a, and b are palindromes.

Induction: If w ∈ {a,b}∗ is a palindrome, then awa and bwb are also palin-

dromes. Furthermore, no string w ∈ {a,b}∗ is a palindrome, unless it follows from

this basis and induction rule.

But stop, we could have also used the transpose operator T to define the language

of all palindromes, i.e.,

L̃pal = {w ∈ {a,b}∗ w = wT } .

Note that we used a different notation in the latter definition, since we still do not

know whether or not Lpal = L̃pal . For establishing this equality, we need a proof.

Theorem 1.1. Lpal = L̃pal

Proof. Equality of sets is usually proved by showing the two inclusions. So, let us

first show that Lpal ⊆ L̃pal .

We start with the strings defined by the basis, i.e., λ, a, and b. By the definition

of the transpose operator, we have λT = λ. Thus, λ ∈ L̃pal . Next, we deal with a.

In order to apply the definition of the transpose operator, we use Property (2) of

Proposition 1.1, i.e., a = λa. Then, we have

aT = (λa)T = aλT = aλ = a .

The proof for b is analogous and thus omitted.

Now, we have the induction hypothesis that for all strings w with |w| 6 n we have

w ∈ Lpal implies w ∈ L̃pal . In accordance with our definition of Lpal , the induction

step is from n to n + 2. So, let w{a,b}∗ be any string with |w| = n + 2. Thus,

w = ava where v ∈ {a,b}∗ such that |v| = n. Then v is a palindrome in the sense of

the definition of Lpal , and by the induction hypothesis, we know that v = vT . Now,

we have to establish the following claims providing a special property of the transpose

operator.

Claim 1. Let Σ be any alphabet, n ∈ N+, and w = w1 . . .wn ∈ Σ∗, where wi ∈ Σ
for all i ∈ {1, . . . ,n}. Then wT = wn . . .w1.

c©Thomas Zeugmann, Hokkaido University, 2007



8 Lecture 1: Introducing Formal Languages

The proof is by induction. The induction basis is for w1 ∈ Σ and done as above.

Now, we have the induction hypothesis that (w1 . . .wn)T = wn . . .w1. The induction

step is from n to n+ 1 and done as follows.

(w1 . . .wnwn+1)
T = wn+1(w1 . . .wn)T = wn+1wn . . .w1 .

Note that the first equality above is by the definition of the transpose operator and

the second one by the induction hypothesis. Thus, Claim 1 is proved.

Claim 2. For all n ∈ N, if p = p1xpn+2 then pT = pn+2x
Tp1 for all p1, pn+2 ∈

{a,b} and x ∈ {a,b}∗, where |x| = n.

Let p = p1xpn+2 and x = x1 . . . xn, where xi ∈ Σ. Then, p = p1x1 . . . xnpn+2

and by Claim 1, we have pT = pn+2xn . . . x1p1 as well as xT = xn . . . x1. Hence,

pn+2x
Tp1 = pT (see Proposition 1.1) and Claim 2 is shown.

Consequently, by using Claim 2 just established

wT = (ava)T = avTa =︸︷︷︸
by IH

ava = w .

Again, the case w = bvb can be handled analogously and is thus omitted.

For completing the proof, we have to show L̃pal ⊆ Lpal . For the induction basis, we

know that λ = λT , i.e., λ ∈ L̃pal and by the “basis” part of the definition of Lpal , we

also know that λ ∈ Lpal .

Thus, we have the induction hypothesis that for all stringsw of length n: ifw = wT

then w ∈ Lpal .

The induction step is from n to n + 1. That is, we have to show: if |w| = n + 1

and w = wT then w ∈ Lpal .

Since the case n = 1 directly results in a and b and since a, b ∈ Lpal , we assume

n > 1 in the following. So, let w ∈ {a,b} be any string with |w| = n+1 and w = wT ,

say w = a1 . . .an+1, where ai ∈ Σ. Thus, by assumption we have

a1 . . .an+1 = an+1 . . .a1 .

Now, applying Property (3) of Proposition 1.1 directly yields a1 = an+1. We have

to distinguish the cases a1 = a and a1 = b. Since both cases can be handled

analogously, we consider only the case a1 = a here. Thus, we can conclude w = ava,

where v ∈ {a,b}∗ and |v| = n − 1. Next, applying the property of the transpose

operator established above, we obtain v = vT , i.e., v ∈ Lpal . Finally, the “induction”

part of the definition of Lpal directly implies w ∈ Lpal .

Since we shall see the language of palindromes throughout this course occasionally,

please ensure that you have understood what we have done above.
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Lecture 2: Introducing Formal Grammars

We start this lecture by formalizing what is meant by generating a language. If

we look at natural languages, then we have the following situation. Σ consists of all

words in the language. Although large, Σ is finite. What is usually done in speaking

or writing natural languages is forming sentences. A typical sentence starts with a

noun phrase followed by a verb phrase. Thus, we may describe this generation by

< sentence >→ < noun phrase >< verb phrase >

Clearly, more complicated sentences are generated by more complicated rules. If you

look in a usual grammar book, e.g., for the German language, then you see that there

are, however, only finitely many rules for generating sentences.

This suggest the following general definition of a grammar.

Definition 6. G = [T ,N,σ,P] is said to be a grammar if

(1) T and N are alphabets with T ∩N = ∅.

(2) σ ∈ N

(3) P ⊆ ((T ∪N)+ \ T∗)× (T ∪N)∗ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the start

symbol and P the set of productions (or rules). Usually, productions are written

in the form α → β, where α ∈ (T ∪N)+ \ T∗ and β ∈ (T ∪N)∗.

Next, we have to explain how to generate a language using a grammar. This is

done by the following definition.

Definition 7. Let G = [T ,N,σ,P] be a grammar. Let α ′, β ′ ∈ (T ∪N)∗. α ′ is said

to directly generate β ′, written α ′ ⇒ β ′, if there exist α1, α2, α, β ∈ (T ∪ N)∗

such that α ′ = α1αα2, β
′ = α1βα2 and α → β is in P. We write

∗⇒ for the

reflexive transitive closure of ⇒ .

Finally, we can define the language generated by a grammar.

Definition 8. Let G = [T ,N,σ,P] be a grammar. The language L(G) generated

by G is defined as L(G) = {s s ∈ T∗ and σ
∗⇒ s} .

Exercise 2. Let T = {a,b, c} and N = {σ, h1, h2} and let G = [T ,N,σ,P], where

P is the set of the following productions:

1. σ → abc

2. σ → ah1bc

3. h1b → bh1

4. h1c → h2bcc

c©Thomas Zeugmann, Hokkaido University, 2007



10 Lecture 2: Introducing Formal Grammars

5. bh2 → h2b

6. ah2 → aah1

7. ah2 → aa

Determine L(G).

Next, we are going to study special subclasses of grammars and the languages they

generate. We start with the easiest subclass, the so-called regular languages.

2.1. Regular Languages

Definition 9. A grammar G = [T ,N,σ,P] is said to be regular provided for all

α → β in P we have α ∈ N and β ∈ T∗ ∪ T∗N.

Definition 10. A language L is said to be regular if there exists a regular gram-

mar G such that L = L(G). By REG we denote the set of all regular languages.

Example 1. Let G = [{a,b}, {σ},σ,P] with P = {σ → ab, σ → aσ}. G is

regular and L(G) = {anb n > 1}.

Example 2. Let G = [{a,b}, {σ},σ,P] with P = {σ → λ, σ → aσ, σ → bσ}.

Again, G is regular and L(G) = Σ∗. Consequently, Σ∗ is a regular language.

Example 3. Let Σ be any alphabet, and let X ⊆ Σ∗ be any finite set. Then, for

G = [Σ, {σ},σ,P] with P = {σ → s s ∈ X}, we have L(G) = X. Consequently, every

finite language is regular.

Now, we have already seen several examples for regular languages. As curious as

we are, we are going to ask which languages are regular. For answering this question,

we first deal with closure properties.

Theorem 2.1. The regular languages are closed under union, product and Kleene

closure.

Proof. Let L1 and L2 be any regular languages. Since L1 and L2 are regular, there are

regular grammars G1 = [T1,N1,σ1,P1] and G2 = [T2,N2,σ2,P2] such that Li = L(Gi)

for i = 1, 2. Without loss of generality, we may assume that N1∩N2 = ∅ for otherwise

we simply rename the nonterminals appropriately.

We start with the union. We have to show that L = L1 ∪ L2 is regular. Now, let

G = [T1 ∪ T2,N1 ∪N2 ∪ {σ},σ,P1 ∪ P2 ∪ {σ → σ1, σ → σ2}].

By construction, G is regular.

Claim 1. L = L(G).

We have to start every generation of strings with σ. Thus, there are two possi-

bilities, i.e., σ → σ1 and σ → σ2. In the first case, we can continue with all
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generations that start with σ1 yielding all strings in L1. In the second case, we can

continue with σ2, thus getting all strings in L2. Consequently, L1 ∪ L2 ⊆ L.

On the other hand, L ⊆ L1 ∪ L2 by construction. Hence, L = L1 ∪ L2.

We continue with the closure under product. We have to show that L1L2 is regular.

A first idea might be to use a construction analogous to the one above, i.e., to take as

a new starting production σ → σ1σ2. Unfortunately, this production is not regular.

We have to be a bit more careful. But the underlying idea is fine, we just have to

replace it by a sequential construction. The idea for doing that is easily described.

Let s1 ∈ L1 and s2 ∈ L2. We want to generate s1s2. Then, starting with σ1 there is a

generation σ1 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ s1. But instead of finishing the generation

at that point, we want to have the possibility to continue to generate s2. Thus, all

we need is a production having a right hand side resulting in s1σ2. This idea can be

formalized as follows: Let

G = [T1 ∪ T2,N1 ∪N2,σ1,P],

where

P = P1 \ {h → s s ∈ T∗1 and h ∈ N1}

∪ {h → sσ2 h → s ∈ P1 and s ∈ T∗1 } ∪ {P2} .

By construction, G is regular.

Claim 2. L(G) = L1L2.

By construction we have L1L2 ⊆ L(G). For showing L(G) ⊆ L1L2, let s ∈ L1L2.

Consequently, there are strings s1 ∈ L1 and s2 ∈ L2 such that s = s1s2. Since s1 ∈ L1,

there is a generation σ1 ⇒ w1 ⇒ · · · ⇒ wn ⇒ s1 in G1. Note that wn must

contain precisely one nonterminal, say h, and it must be of the form wn = wh by

Definition 9. Now, since wn ⇒ s1 and s1 ∈ T∗1 , we must have applied a production

h → s with s ∈ T∗1 such that wh ⇒ ws = s1. But in G all these productions

have been replaced by h → sσ2. Therefore, the last generation wn ⇒ s1 is now

replaced by wh ⇒ wsσ2. All what is left, is now applying the productions from P2

to generate s2 which is possible, since s2 ∈ L2. This proves the claim.

Finally, we have to deal with the Kleene closure. Let L be a regular language, and

let G = [T ,N,σ,P] be a regular grammar such that L = L(G). We have to show that

L∗ is regular. By definition L∗ =
⋃
i>0 L

i. Since L0 = {λ}, we have to make sure that λ

can be generated. This is obvious if λ ∈ L. Otherwise, we simply add the production

σ → λ. The rest is done analogously as in the product case, i.e., we set

G∗ = [T ,N ∪ {σ∗},σ∗,P∗], where

P∗ = P ∪ {h → sσ h → s ∈ P and s ∈ T∗} ∪ {σ∗ → σ, σ∗ → λ} .

We leave it as an exercise to prove L(G∗) = L∗.

c©Thomas Zeugmann, Hokkaido University, 2007
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We finish this lecture by defining the equivalence of grammars.

Definition 11. Let G and Ĝ be any grammars. G and Ĝ are said to be equivalent

if L(G) = L(Ĝ). indexequivalence par In order to have an example for equivalent

grammars, we consider

G = [{a}, {σ}, σ, {σ → aσa, σ → aa, σ → a}].

and the following grammar

Ĝ = [{a}, {σ}, σ, {σ → a, σ → aσ}].

Now, it is easy to see that L(G) = {a}+ = L(Ĝ), and hence G and Ĝ are equivalent.

Note however that Ĝ is regular while G is not.

For further reading we recommend the following.
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Lecture 3 – Finite State Automata

In the previous lecture we learned how to formalize the generation of languages.

This part looked at formal languages from the perspective of a speaker. Now, we turn

our attention to accepting languages, i.e., we are going to formalize the perspective

of a listener. In this lecture we deal with regular languages, and the machine model

accepting them. The overall goal can be described as follows. Let Σ be again an

alphabet, and let L ⊆ Σ∗ be any regular language. Now, for every string s ∈ Σ∗ we

want to have a possibility to decide whether or not s ∈ L. Looking at the definition

of a regular grammar, the following methods may be easily discovered. We start

generating strings until one of the following two conditions happens. First, the string s

is generated. Clearly, then s ∈ L. Second, the length of our string s is exceeded. Now,

taking into account that all further generable strings must be longer, we may conclude

that s /∈ L. There is only one problem with this method, i.e., its efficiency. It may

take time that is exponential in the length of the input string s to terminate. Besides

that, this approach hardly reflects what humans are doing when accepting sentences

of natural languages. We therefore favor a different approach which we define next†.

Definition 12. A 5-tuple A = [Σ,Q, δ,q0, F] is said to be a nondeterministic

finite automaton if

(1) Σ is an alphabet (the so-called input alphabet),

(2) Q is a finite nonempty set (the set of states),

(3) δ:Q× Σ 7→ ℘(Q), the transition relation,

(4) q0 ∈ Q, the initial state, and

(5) F ⊆ Q, the set of final states.

In the definition above, ℘(Q) denotes the power set of Q, i.e., the set of all subsets

of Q. There is also a deterministic counterpart of a nondeterministic finite automaton

which we define next.

Definition 13. A 5-tuple A = [Σ,Q, δ,q0, F] is said to be a deterministic finite

automaton if

(1) Σ is an alphabet (the so-called input alphabet),

(2) Q is a finite nonempty set (the set of states),

(3) δ:Q×Σ 7→ Q, the transition function, which must be defined for every input.

†Please note that M.O. Rabin and D.S. Scott received the Turing Award in 1976 for their paper
Finite Automata and Their Decision Problems, IBM Journal of Research and Development 3:114-
125, (1959), which introduced the idea of nondeterministic machines – a concept which has proved
to be enormously valuable.

c©Thomas Zeugmann, Hokkaido University, 2007



14 Lecture 3 – Finite State Automata

(4) q0 ∈ Q, the initial state, and

(5) F ⊆ Q, the set of final states.

When we do not want to specify whether an automaton is deterministic or nonde-

terministic, we simply refer to it as to a finite automaton.

So far, we have explained what a finite automaton is but not what it does. In order

to explain how to compute with an automaton, we need some more definitions. For the

deterministic case, we can easily define the language accepted by a finite automaton.

First, we extend the definition of δ to strings. That is, formally we inductively define

a function

δ∗:Q× Σ∗ 7→ Q ,

by setting

δ∗(q, λ) = q for all q ∈ Q ,

δ∗(q, sa) = δ(δ∗(q, s),a) for all strings s ∈ Σ∗, all a ∈ Σ, and all q ∈ Q .

The proof of the following lemma is left as an exercise.

Lemma 3.1. Let A = [Σ,Q, δ,q0, F] be a deterministic finite automaton. Then

for all strings v, w ∈ Σ∗ and all q ∈ Q we have δ∗(q, vw) = δ∗(δ∗(q, v),w).

Definition 14. Let A = [Σ,Q, δ,q0, F] be a deterministic finite automaton. The

language L(A) accepted by A is

L(A) = {s s ∈ Σ∗, δ∗(q0, s) ∈ F} .

If we have s ∈ L(A) for a string s ∈ Σ∗ then we say that there is an accepting

computation for s. We adopt this notion also to nondeterministic automata. Note

that λ ∈ L(A) if q0 ∈ F.

In order to keep notation simple, in the following we shall identify δ∗ with δ. It

should be clear from context what is meant.

Well, this seems very abstract, and so some explanation is in order. Conceptually,

a finite automaton possesses an input tape that is divided into cells. Each cell can

store a symbol from Σ or it may be empty. Additionally, a finite automaton has a

head to read what is stored in the cells. Initially, a string s = s1s2 · · · sk is written

on the tape and the head is positioned on the leftmost symbol of the input, i.e., on s1
(cf. Figure 1).

Moreover, the automaton is put into its initial state q0. Now, the automaton

reads s1. Then, it changes its state to one of the possible states in δ(q0, s1), say q,

and the head moves right to the next cell. Note that in the deterministic case, the

state δ(q0, s1) is uniquely defined. Next, s2 is read, and the automaton changes

its state to one of the possible states in δ(q, s2). This process is iterated until the
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finite state
control

head moves in this direction, one 
cell at a time

s2s1 sk sk+1

Figure 1. A finite automaton

31 2

b a,ba

b a

Figure 2. A finite automaton accepting L = {aibj i > 0, j > 0}.

automaton reaches the first cell which is empty. Finally, after having read the whole

string, the automaton is in some state, say r. If r ∈ F, then the computation has been

an accepting one, otherwise, the string s is rejected.

Now, we see what the problem is in defining the language accepted by a nondeter-

ministic finite automaton. On input a string s, there are many possible computations.

Some of these computations may finish in an accepting state and some may not. We

therefore define the language accepted by a nondeterministic finite automaton as fol-

lows.

Definition 15. Let A = [Σ,Q, δ,q0, F] be a nondeterministic finite automaton.

The language L(A) accepted by A is the set of all strings s ∈ Σ∗ such that there

exists an accepting computation for s.

Finally, finite automata may be conveniently represented by their state diagram.

The state diagram is a directed graph whose nodes are labeled by the states of the

automaton. The edges are labeled by symbols from Σ. Let p and q be nodes. Then,

there is a directed edge from p to q if and only if there exists an a ∈ Σ such that q =

δ(p,a) (deterministic case) or q ∈ δ(p,a) (nondeterministic case). Figure 2 shows the

state diagram of a finite automaton accepting the language L = {aibj i > 0, j > 0}.

Note that, by convention, a0b0 = λ.

The automaton displayed in Figure 2 has 3 states, i.e., Q = {1, 2, 3}. The input

alphabet is Σ = {a,b}, and the set F of final states is {1, 2}. As usual, we have marked

c©Thomas Zeugmann, Hokkaido University, 2007
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the final states by drawing an extra circle in then. The initial state is marked by an

unlabeled arrow, that is, 1 is the initial state.

Now that we know what finite automata are, we can answer the question you

probably have already in mind, i.e.,

What have finite automata to do with regular languages?

We answer this question by the following theorem.

Theorem 3.2. Let L ⊆ Σ∗ be any language. Then, the following three assertions

are equivalent.

(1) There exists a deterministic finite automaton A such that L = L(A).

(2) There exists a nondeterministic finite automaton A such that L = L(A).

(3) L is regular.

Proof. We show the equivalence by proving (1) implies (2), (2) implies (3), and (3)

implies (1).

Claim 1. (1) implies (2).

This is obvious by definition, since a deterministic finite automaton is a special

case of a nondeterministic one.

Claim 2. (2) implies (3).

A = [Σ,Q, δ,q0, F] be a nondeterministic finite automaton such that L = L(A).

We have to construct a grammar G generating L. Let G = [Σ, Q∪ {σ}, σ, P], where P

is the following set of productions:

P = {σ → q0} ∪ {p → aq a ∈ Σ, p,q ∈ Q, q ∈ δ(p,a)} ∪ {p → λ p ∈ F}.

Obviously, G is regular. We have to show L(G) = L(A). First we prove L(A) ⊆ L(G).

Let s = a1 · · ·ak ∈ L. Then, there exists an accepting computation of A for s.

Let q0,p1, . . . ,pk be the sequence of states through which A goes while performing

this accepting computation. Therefore, p1 ∈ δ(q0,a1), p2 ∈ δ(p1,a2), . . ., pk ∈
δ(pk−1,ak), and pk ∈ F. Thus, σ ⇒ q0 ⇒ a1p1 ⇒ · · · ⇒ a1 · · ·ak−1pk−1 ⇒
a1 · · ·akpk ⇒ a1 · · ·ak. Hence, s ∈ L(G). The direction L(G) ⊆ L(A) can be proved

analogously, and is therefore left as an exercise.

Claim 3. (3) implies (1).

In principle, we want to use an idea similar to the one used to prove Claim 2. But

productions may have strings on their right hand side, while the transition function

has to be defined over states and letters. Therefore, we first have to show a normal

form lemma for regular grammars.

Lemma. For every regular grammar G = [T ,N,σ,P] there exists a grammar G ′

such that L(G) = L(G ′) and all productions of G ′ have the form h → ah ′ or h → λ,

where h,h ′ ∈ N and a ∈ T .
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First, each production of the form h → a1 · · ·akh ′, k > 0, is equivalently replaced

by the following productions:

h → a1ha2···akh ′ , ha2···akh ′ → a2ha3···akh ′ , . . . , hakh ′ → akh
′.

Next, each production of the form h → a1 · · ·ak, k > 0, is equivalently replaced

by the following productions:

h → a1ha2···ak , ha2···ak → a2ha3···ak , . . . , hak → akhλ and hλ → λ.

Finally, we have to deal with productions of the form h → h ′ where h, h ′ ∈ N.

Let Ĝ = [T , N̂,σ, P̂] be the grammar constructed so far. Furthermore, let U(h) =df
{h ′ h ′ ∈ N̂ and h

∗⇒ h ′}. Clearly, U(h) is computable. Now, we delete all produc-

tions of the form h → h ′ and add the following productions to P̂. If h ′ → λ ∈ P̂
and h ′ ∈ U(h), then we add h → λ. Moreover, we add all h → xh ′′ for all

productions in P̂ such that there is a h ′ ∈ U(h) with h ′ → xh ′′ ∈ P̂.

Let G ′ be the resulting grammar. Clearly, now all productions have the desired

form. One easily verifies that L(G) = L(G ′). This proves the lemma.

Now, assume that we are given a grammar G = [T , N, σ, P] that is already in the

normal form described in the lemma above. We define a deterministic finite automaton

A = [T , Q, δ, q0, F] as follows. Let Q = ℘(N) and q0 = {σ}. The transition function

δ is defined as

δ(p,a) = {h ′ ∃h[h ∈ p and h → ah ′ ∈ P]}.

Finally, we set

F = {p ∃h[h ∈ p and h → λ ∈ P]}.

We leave it as an exercise to prove L(A) = L(G).

Next, we illustrate the transformation of a grammar into a deterministic finite

automaton by an example. Let G = [{a,b}, {σ,h},σ,P] be the grammar given, where

P = {σ → abσ, σ → h, h → aah, h → λ}. First, we have to transform G into

an equivalent grammar in normal form. Thus, we obtain

P̂ = {σ → ahbσ, hbσ → bσ, σ → h, h → ahah, hah → ah, h → λ}.

Now, U(σ) = {h}, and U(h) = ∅. Thus, we delete the production σ → h and

replace it by σ → ahah and σ → λ. Summarizing this construction, we now have

the following set P ′ of productions

P ′ = {σ → ahbσ, hbσ → bσ, σ → ahah, σ → λ, h → ahah,

hah → ah, h → λ}

as well as the following set N ′ of nonterminals

N ′ = {σ, hah, hbσ, h} .

Thus, our automaton has 16 states, i.e.,

c©Thomas Zeugmann, Hokkaido University, 2007
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{∅, {σ}, {hah}, {hbσ}, {h}, {σ,hah}, {σ,hbσ}, {σ,h}, {hah,hbσ}, {hah,h}, {h,hbσ},

{σ, hah, hbσ}, {σ, hah, h}, {σ, hbσ, h}, {hah, hbσ, h}, {σ, hah, hbσ, h}}

The set of final states is

F = {{σ}, {h}}

∪ {{σ,hah}, {σ,hbσ}, {σ,h}, {hah,h}, {h,hbσ}, {σ, hah, hbσ}, {σ, hah, h},

{σ, hbσ, h}, {hah, hbσ, h}, {σ, hah, hbσ, h}} .

Finally, we have to compute δ. We illustrate this part here only for two states, the

rest is left as an exercise. For computing δ({σ},a), we have to consider the set of

all productions having σ on the left hand side and a on the right hand side. There

are two such productions, i.e., σ → ahbσ and σ → ahah; thus δ({σ},a) =

{hbσ, hah}. Since there is no production having σ on the left hand side and b on

the right hand side, we obtain δ({σ},b) = ∅. Analogously, we get δ({hbσ, hah},a) =

{h}, and δ({hbσ, hah},b) = {σ}, δ({h},a) = {hah}, δ({h},b) = ∅, δ({hah},a) = {h},

δ({hah},b) = ∅ as well as δ(∅,a) = δ(∅,b) = ∅.

Looking at the transitions computed so far, we see that none of the other states

appeared, and thus they can be ignored.

Exercise 3. Complete the calculation of the automaton above and draw its state

diagram.

Finally, we show how to use finite automata to prove that particular languages are

not regular. Consider the following grammar

G = [{a,b}, {σ},σ, {σ → aσb, σ → λ}]

Then, L(G) = {aibi i > 0}. Clearly, G is not regular, but this does not prove that

there is no regular grammar at all that can generate this language.

Theorem 3.3. The language L = {aibi i > 0} is not regular.

Proof. Suppose the converse. Then, by Theorem 3.2 there must be a determin-

istic finite automaton A = [Σ,Q, δ,q0, F] such that L(A) = L. Clearly, {a,b} ⊆ Σ,

and thus δ(q0,a
i) must be defined for all i. However, there are only finitely many

states, but infinitely many i, and hence there must exist i, j such that i 6= j but

δ(q0,a
i) = δ(q0,a

j). Since the automaton is deterministic, δ(q0,a
i) = δ(q0,a

j) im-

plies δ(q0,a
ibi) = δ(q0,a

jbi). Let q = δ(q0,a
ibi); then, if q ∈ F we directly obtain

ajbi ∈ L, a contradiction, since i 6= j. But if q /∈ F, then aibi is rejected. This is

again a contradiction, since aibi ∈ L. Thus, L is not regular.

There are numerous books on formal languages and automata theory. This lecturer

would like to finish this lecture by recommending further reading in any of the books

mentioned in the recommended literature.

Last but not least, we need some more advanced problems to see if we have under-

stood so far everything correctly, and here they come.
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Example 4. Let Σ = {a,b}, and let the formal languages L1 and L2 be defined as

L1 = {w ∈ Σ+ |w| is divisible by 4} and L2 = {w ∈ Σ∗ w = wT }. Prove or disprove

L1 and L2, respectively, to be regular.
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Lecture 4: Characterizations of REG

We start this lecture by proving an algebraic characterization for REG. For this

purpose, first we recall the definition of an equivalence relation.

Definition 16. Let M 6= ∅ be any set. ρ ⊆M×M is said to be an equivalence

relation (over M) if

(1) ρ is reflexive, i.e., (x, x) ∈ ρ for all x ∈M.

(2) ρ is symmetric, i.e., if (x,y) ∈ ρ then (y, x) ∈ ρ for all x,y ∈M.

(3) ρ is transitive, i.e., if (x,y) ∈ ρ and (y, z) ∈ ρ then (x, z) ∈ ρ for all x,y, z ∈M.

Furthermore, for any x ∈M, we write [x] to denote the equivalence class generated

by x, i.e.,

[x] = {y y ∈M and (x,y) ∈ ρ} .

Recall that the set of all equivalence classes forms a partition of the underlying setM.

We useM/ρ to denote the set of all equivalence classes ofM with respect to ρ. Finally,

as usual we also write sometimes xρy instead of (x,y) ∈ ρ.

Additionally, we need the following definitions.

Definition 17. LetM 6= ∅ be any set and let ρ be any equivalence relation overM.

The relation ρ is said to be of finite rank if M/ρ is finite.

Now, let Σ be any alphabet, let L ⊆ Σ∗ be any language and let v,w ∈ Σ∗. We

define

v ∼L w iff ∀u ∈ Σ∗[vu ∈ L⇔ wu ∈ L] .

Exercise 4. Show that ∼L is an equivalence relation.

Note that ∼L is also called Nerode relation. Furthermore, let ∼ be any equiva-

lence relation over Σ∗. We call ∼ right invariant if

∀u, v,w ∈ Σ∗[u ∼ v implies uw ∼ vw] .

Exercise 5. Show ∼L to be right invariant.

Now, we are ready to prove our first characterization.

Theorem 4.1 (Nerode Theorem) Let Σ be any alphabet and let L ⊆ Σ∗ be any

language. Then we have

L ∈ REG if and only if ∼L is of finite rank.

Proof. Necessity: Let L ∈ REG. Then there is a deterministic finite automaton

A = [Σ,Q, δ,q0, F] such that L(A) = L. We define the following relation ∼ over Σ∗:

for all v,w ∈ Σ∗
v ∼ w iff δ(q0, v) = δ(q0,w) .
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Claim 1. ∼ is an equivalence relation.

Since = is an equivalence relation, we can directly conclude that ∼ is an equivalence

relation.

Claim 2. ∼ is of finite rank.

This is also clear, since card(Σ∗/∼) 6 card(Q) and card(Q) is finite by definition.

Claim 3. v ∼ w implies v ∼L w for all v,w ∈ Σ∗.

This can be seen as follows. Let u, v,w ∈ Σ∗ such that v ∼ w. We have to show that

vu ∈ L⇔ wu ∈ L. Since L = L(A), it suffices to prove that vu ∈ L(A) ⇔ wu ∈ L(A).

By Definition 14 we know that vu ∈ L(A) iff δ(q0, vu) ∈ F. Because of v ∼ w we also

have δ(q0, v) = δ(q0,w). Consequently, by Lemma 3.1 we have

δ(q0, vu) = δ(δ(q0, v),u) = δ(δ(q0,w),u) = δ(q0,wu) .

Thus, δ(q0, vu) ∈ F iff δ(q0,wu) ∈ F and therefore vu ∈ L ⇔ wu ∈ L. This proves

Claim 3.

Claim 1 through 3 directly imply that ∼L is of finite rank.

Sufficiency: Let L ⊆ Σ∗ be such that ∼L is of finite rank. We have to show that

L ∈ REG. By Theorem 3.2 it suffices to construct a deterministic finite automaton

A = [Σ,Q, δ,q0, F] such that L = L(A). This is done as follows. We set

• Q = Σ∗/∼L ,

• q0 = [λ],

• δ([w], x) = [wx] for all [w] ∈ Q and all x ∈ Σ,

• F = {[w] w ∈ L}.

Exercise 6. Show that the definition of δ does not depend on the representative

of the equivalence class [w].

Claim 4. δ([λ],w) = [w] for all w ∈ Σ∗.

The claim is proved inductively. For the induction base we have

δ([λ], x) = [λx] = [x] ,

since λx = x for all x ∈ Σ.

Now, suppose as induction hypothesis δ([λ],w) = [w] and let x ∈ Σ. We have to

show δ([λ],wx) = [wx]. So, we calculate

δ([λ],wx) = δ(δ([λ],w), x) = δ([w], x) = [wx] ,

where the first equality is by the extension of the definition of δ to strings, the second

one by the induction hypothesis and the last one by the definition of δ. This proves

Claim 4.
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By construction and Claim 4, we directly obtain

w ∈ L(A) ⇔ δ([λ],w) ∈ F
⇔ [w] ∈ F
⇔ w ∈ L .

This shows the sufficiency and thus the theorem is shown.

It should be helpful for you to prove the following exercise.

Exercise 7. Let Σ be any alphabet and let L ⊆ Σ∗ be any language. Then we have

L ∈ REG if and only if there is a right invariant equivalence relation ≈ such that

≈ is of finite rank and L is the union of some equivalence classes with respect to ≈.

Next, we want to construct a language such that each string of it can be regarded

as a generator of a regular language.

4.1. Regular Expressions

Let Σ be any fixed alphabet. We define

Σ = {x x ∈ Σ} ∪ {�,Λ, ∨, ·, 〈, 〉, (, )} ,

that is, for every x ∈ Σ we introduce a new symbol called x and, additionally, we

introduce the symbols �, Λ, ∨, ·, 〈, 〉, (, ). Note that the comma is a meta symbol.

Next we set Greg =df [Σ, {σ},σ,P], where P is defined as follows

P = {σ → x x ∈ Σ}∪ {σ → �, σ → Λ, σ → (σ∨ σ), σ → (σ · σ), σ → 〈σ〉} .

We call L(Greg) the language of regular expressions over Σ. Thus, we have

defined the syntax of regular expressions. Next, we define the interpretation of regular

expressions. Let T , T1, T2 ∈ L(Greg), we define inductively L(T) as follows.

IB: L(x) = {x} for all x ∈ Σ, L(�) = ∅ and L(Λ) = {λ}.

IS: L(T1 ∨ T2) = L(T1) ∪ L(T2)

L(T1 · T2) = L(T1)L(T2)

L(〈T〉) = L(T)∗.

Theorem 4.2. Let Σ be any fixed alphabet and let Greg be defined as above. Then

we have: A language L ⊆ Σ∗ is regular if and only if there exists a regular expression

T such that L = L(T).

Proof. Sufficiency. Let T ∈ L(Greg) be any regular expression. We have to show

that L(T) is regular. This is done inductively over T .

For the induction base everything is clear, since all singleton languages, the empty

language ∅ and the language {λ} are obviously regular.
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The induction step is also clear, since by Theorem 2.1 we already know that the

regular languages are closed under union, product and Kleene closure. This proves

the sufficiency.

Next, we define what is meant by prefix, suffix and substring, respectively. Let

w, y ∈ Σ∗. We write w v y if there exists a string v ∈ Σ∗ such that wv = y. If

w v y, then we call w a prefix of y. Furthermore, if v 6= λ, then w is said to be a

proper prefix of y. In this case we write w @ y. Analogously, we call w a suffix of

y if there exists a string v ∈ Σ∗ such that vw = y and if v 6= λ, then w is said to be

a proper suffix of y. Finally, w is said to be a substring of y if there exist strings

u, v ∈ Σ∗ such that uwv = y.

For showing the necessity, let L ∈ REG be arbitrarily fixed. We have to construct

a regular expression T such that L = L(T).

Since L ∈ REG, there exists a deterministic finite automaton A = [Σ,Q, δ,q1, F]

such that L = L(A). Let Q = {q1, . . . ,qm} and let F ⊆ Q. We distinguish the

following cases.

Case 1. F = ∅.

In this case we can directly conclude L = L(A) = ∅. Thus, clearly there exists

T ∈ L(Greg) such that L = L(T) = ∅, i.e., T = � will do it.

Case 2. F 6= ∅.

By Definition 14 we can write

L(A) =
⋃
q∈F

{s s ∈ Σ∗ and δ(q1, s) = q} .

Now, we can decompose A into automata Aq = [Σ,Q, δ,q1, {q}], where q ∈ F and F

is the set of accepting states from automaton A. Thus, we obtain

L(A) =
⋃
q∈F

L(Aq) .

Therefore, it suffices to construct for each automaton Aq a regular expression Tq such

that L(Tq) = L(Aq), since then L(A) = L

(∨
q∈F

Tq

)
.

Let i, j, k 6 m and define

Lki,j = {s s ∈ Σ∗ and δ(qi, s) = qj and

∀t∀r[λ 6= r @ s and δ(qi, r) = qt implies t 6 k]}

We are now going to show that for each Lki,j there exists a regular expression Tki,j
such that Lki,j = L(Tki,j). This will complete the proof, since L(Aq) = Lm1,n, provided

q = qn, n 6 m.
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The proof is done by induction on k. For the induction basis, let k = 0. Then

L0
i,j = {s s ∈ Σ∗ and δ(qi, s) = qj and

∀t∀r[λ 6= r @ s and δ(qi, r) = qt implies t 6 0}

= {x x ∈ Σ and δ(qi, x) = qj} .

That means, either we have L0
i,j = ∅ or L0

i,j is a finite set of strings of length 1, i.e.,

card(L0
i,j) 6 card(Σ). If L0

i,j = ∅ we set T 0
i,j = � and we are done. If L0

i,j 6= ∅, say

L0
i,j = {x(1), . . . , x(z)}, where z 6 card(Σ), we set

T 0
i,j = x(1) ∨ · · ·∨ x(z) ,

and, by the inductive definition of L(T), we directly get L0
i,j = L(T 0

i,j). This proves

the induction basis.

Now, assume the induction hypothesis that Lki,j is regular and there is a regular

expression Tki,j such that Lki,j = L(Tki,j) for all i, j 6 m and k < m.

For the induction step, it suffices to construct a regular expression Tk+1
i,j such that

Lk+1
i,j = L(Tk+1

i,j ).

This is done via the following lemma.

Lemma 4.3. Lk+1
i,j = Lki,j ∪ Lki,k+1

(
Lkk+1,k+1

)∗
Lkk+1,j

The “⊇” direction is obvious. For showing

Lk+1
i,j ⊆ Lki,j ∪ Lki,k+1

(
Lkk+1,k+1

)∗
Lkk+1,j

let s ∈ Lk+1
i,j , say s = x1x2 · · · x`. We consider the sequence of states reached when suc-

cessively processing s, i.e., qi,q
(1),q(2), . . . ,q(`−1),qj. We distinguish the following

cases.

Case α. qi,q
(1),q(2), . . . ,q(`−1),qj does not contain qk+1.

Then, clearly s ∈ Lki,j and we are done.

Case β. qi,q
(1),q(2), . . . ,q(`−1),qj contains qk+1.

Now, we may depict the situation as follows.

qi
u−→ qk+1

s1−→ qk+1
s2−→ qk+1 · · · qk+1

sµ−→ qk+1
v−→ qj

More formally, let u be the shortest non-empty prefix of s such that δ(qi,u) = qk+1

and let s1, . . . , sµ and v be all strings such that

s = us1s2 · · · sµv and

δ(qi,u) = δ(qi,us1) = δ(qi,us1s2) = · · · = δ(qi,us1s2 · · · sµ) = qk+1

Hence, u ∈ Lki,k+1 and s1, . . . , sµ ∈ Lkk+1,k+1 as well as v ∈ Lkk+1,j. Consequently, we

arrive at

s ∈ Lki,j ∪ Lki,k+1

(
Lkk+1,k+1

)∗
Lkk+1,j .

Therefore, we set

Tk+1
i,j = Tki,j ∨ T

k
i,k+1 · 〈Tkk+1,k+1〉 · Tkk+1,j ,

and the induction step is shown. This completes the proof of Theorem 4.2.
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So, we succeeded to characterize the regular languages in purely algebraic terms.

Besides their mathematical beauty, regular expressions are also of fundamental prac-

tical importance. We shall come back to this point in the next lecture.

For now, we shall continue with another important property of regular languages

which is often stated as Pumping Lemma.

Lemma 4.4. For every infinite regular language L there is a number k ∈ N such

that for all w ∈ L with |w| > k there are strings s, r,u such that w = sru, r 6= λ and

sriu ∈ L for all i ∈ N+.

Proof. Let L be any infinite regular language. Then there exists a deterministic

finite automaton A = [Σ,Q, δ,q0, F] such that L = L(A).

Let n = card(Q). We show that k = n+ 1 satisfies the conditions of the lemma.

Let w ∈ L such that |w| > k. Then there must be strings s, r,u ∈ Σ∗ such that

r 6= λ, w = sru and q∗ =df δ(q0, s) = δ(q0, sr). Consequently, q∗ = δ(q0, sr
i) for all

i ∈ N+. Because of δ(q0, sru) ∈ F we conclude δ(q0, sr
iu) ∈ F and thus the Pumping

Lemma is shown.

Exercise 8. Prove the Pumping Lemma directly by using regular grammars instead

of finite automata.

As an example for the application of the pumping lemma, we consider again the

language L = {aibi n ∈ N+}. We claim that L /∈ REG. Suppose the converse. Then,

by the Pumping Lemma, there must be a number k such that for all w ∈ L with

|w| > k there strings s, r,u such that w = sru, r 6= λ and sriu ∈ L for all i ∈ N+.

So, let w = akbk = qru. We distinguish the following cases.

Case 1. r = aibj for some i, j ∈ N+.

Then, we directly get srru = ak−iaibjaibjbk−j, i.e., srru /∈ L, a contradiction.

Case 2. r = ai for some i ∈ N+.

Then, we directly get srru = ak−iaiaibk = ak+ibk. Again, srru /∈ L, a contra-

diction.

Case 3. r = bi for some i ∈ N+.

This case can be handled analogously to Case 2. Thus, we conclude L /∈ REG.

Now, you should try it yourself.

Exercise 9. Prove or disprove: the language of regular expressions is not regular,

i.e., L(Greg) /∈ REG.

Note that the pumping lemma provides a necessary condition for a language to be

regular. The condition is not sufficient.

Exercise 10. Show that there is a language L /∈ REG such that L satisfies the

conditions of the Pumping Lemma.

Additionally, using the ideas developed so far, we can show another important

property.
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Theorem 4.5. There is an algorithm which on input any regular grammar G

decides whether or not L(G) is infinite.

Proof. Let G be a regular grammar. The algorithm first constructs a deterministic

finite automaton A = [Σ,Q, δ,q0, F] such that L(G) = L(A). Let card(Q) = n.

Then, the algorithm checks whether or not there is a string s such that n + 1 6
|s| 6 2n+ 2 with s ∈ L(A).

If not, then output “L(G) is finite.”

Otherwise output “L(G) is infinite.”

It remains to show that the algorithm always terminates and works correctly.

Since the construction of a deterministic finite automaton from a given grammar

is constructive, this step will always terminate. Furthermore, the number of strings s

satisfying n+ 1 6 |s| 6 2n+ 2 is finite. Thus, the test will terminate, too.

If there is such a string s with n + 1 6 |s| 6 2n + 2 and s ∈ L(A), then by the

proof of the Pumping Lemma we can directly conclude that L(G) is infinite.

Finally, suppose there is no such string s but L(G) is infinite. Then, there must

be at least one string w ∈ L(G) with |w| > 2n + 2. Since card(Q) = n, it is obvious

that A, when processing w must reach some states more than once. Now, we can cut

off sufficiently many substrings of w that transfer one of the states into itself. The

resulting string w ′ must then have a length between n+1 and 2n+2, a contradiction.

So, we can conclude that w ∈ L(G) implies |w| 6 n, and thus L(G) is finite.

Now, apply the knowledge gained so far to solve the following exercises.

Exercise 11. Prove or disprove: there is algorithm which on input any regular

grammar G decides whether or not L(G) is finite.

Exercise 12. Prove or disprove: there is algorithm which on input any regular

grammar G decides whether or not L(G) = ∅.

Exercise 13. Prove or disprove: for all L1,L2 ∈ REG we have L1 ∩ L2 ∈ REG.

Exercise 14. Prove or disprove: there is algorithm which on input any regular

grammars G1, G2 decides whether or not L(G1) ∩ L(G2) = ∅.

Exercise 15. Prove or disprove: For all L1,L2 ∈ REG we have L1 \ L2 ∈ REG.

Exercise 16. Prove or disprove: there is algorithm which on input any regular

grammars G1, G2 decides whether or not L(G1) ⊆ L(G2).

Exercise 17. Prove or disprove: there is algorithm which on input any regular

grammars G1, G2 decides whether or not L(G1) = L(G2).
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Lecture 5: Regular Expressions in UNIX

Within this lecture we want to deal with applications of the theory developed

so far. In particular, we shall have a look at regular expressions as used in UNIX.

Before we see the applications, we introduce the UNIX notation for extended regular

expressions. Note that the full UNIX extensions allow to express certain non-regular

languages. We shall not consider these extensions here. Also note that the “basic”

UNIX syntax for regular expressions is now defined as obsolete by POSIX, but is still

widely used for the purposes of backwards compatibility. Most UNIX utilities (grep,

sed ...) use it by default. Note that grep stands for “global search for a regular

expression and print out matched lines,” and sed for “stream editor.”

Most real applications deal with the ASCII‡ character set that contains 128 char-

acters. Suppose we have the alphabet {a,b} and want to express “any character.”

Then we could simply write a ∨ b. However, if we have 128 characters, expressing

“any character” in the same way would result in a very long expression, since we have

to list all characters. Thus, UNIX regular expressions allow us to write character

classes to represent large sets of characters succinctly. The rules for character classes

are:

• The symbol . (dot) stands for any single character.

• The sequence [a1a2 · · ·ak] stands for the regular expression

a1 ∨ a2 ∨ · · ·∨ ak

This notation save half the characters we have to write, since we omit the ∨

sign.

• Between the square braces we can put a range of the form a−d to mean all the

characters from a to d in the ASCII sequence. Thus,

[a − z] matches any lowercase letter. So, if we want to express the set of all

letters and digits, we can shortly write [A− Za− z0 − 9].

• Square braces or other characters that have a special meaning in UNIX regular

expressions are represented by preceding them with a backslash \.

• [ˆ] matches a single character that is not contained within the brackets. For

example, [ˆa− z] matches any single character that is not a lowercase letter.

• ˆmatches the start of the line and $ the end of the line, respectively.

• \( \) is used to treat the expression enclosed within the brackets as a single

block.

‡ASCII stands for “American Standard Code for Information Interchange.” It has been introduced
in 1963, became a standard in 1967, and was last updated in 1986. It uses a 7-bit code.
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• ∗ matches the last block zero or more times, i.e., it stands for 〈 〉 in our notation.

For example, we can write \(abc \)∗ to match the empty string λ, or abc,

abcabc, abcabcabc, and so on.

• \{x,y\} matches the last block at least x and at most y times. Consequently,

a\{3, 5\}matches aaa, aaaa or aaaaa.

• There is no representation of the set union operator in this syntax.

The more modern UNIX regular expressions can often be used with modern UNIX

utilities by including the command line flag “-E”.

POSIX’ extended regular expressions are similar in syntax to the traditional UNIX

regular expressions, with some exceptions. The following meta-characters are added:

• | is used instead of the operator ∨ to denote union.

• The operator ? means “zero or one of” the last block, thus ba? matches b or

ba.

• The operator + means “one or more of.” Thus, R+ is a shorthand for R〈R〉 in

our notation.

• Interestingly, backslashes are removed in the more modern UNIX regular ex-

pressions, i.e., \( \) becomes ( ) and \{ \} becomes { }.

• Note that we can also omit the second argument in {x,y} if x = y, thus a{5}

stands for aaaaa.

Also, as you have hopefully recognized, one just uses the usual characters to write

the regular expressions down and not the underlined symbols we had used, i.e., one

simply writes a instead of a. Furthermore, the · is also omitted.

Finally, it should be noted that Perl has a much richer syntax than even the

extended POSIX regular expressions. This syntax has also been used in other utilities

and applications. Although still named ”regular expressions”, the Perl extensions give

an expressive power that far exceeds the regular languages.

Next, we look at some applications.

5.1. Lexical Analysis

One of the oldest applications of regular expressions was in specifying the compo-

nent of a compiler called “lexical analyzer.” This component scans the source program

and recognizes tokens, i.e., those substrings of consecutive characters that belong to-

gether logically. Keywords and identifiers are common examples of tokens but there

are many others.
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The UNIX command lex and its GNU version flex, accept as input a list of

regular expressions, in the UNIX style, each followed by a bracketed section of code

indicating what the lexical analyzer should do when it finds an instance of that token.

Such a facility is called lexical-analyzer generator, because it takes as input a high-

level description of a lexical analyzer and produces from it a function that is working

as lexical analyzer.

Commands like lex and its GNU version flex are very useful, since the regular

expression notation is exactly as powerful as needed to describe tokens. These com-

mands are able to use the regular-expression-to-DFA algorithm to generate an efficient

function that breaks source programs into tokens. The main advantage is the code

writing, since regular expressions are much easier to write than a deterministic finite

automaton. Also, if we need to change something, then changing a regular expres-

sion is often quite simple, while changing the code implementing a deterministic finite

automaton can be a nightmare.

Example. Consider the following regular expression:

(0|1)∗1(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)

You may try to design a deterministic finite automaton that accepts the language

described by this regular expression. But please plan to use the whole week-end for

doing it, since it may have much more states than you may expect. For seeing this,

you should start with much shorter versions of this regular expression, i.e., by looking

at

(0|1)∗1(0|1)

(0|1)∗1(0|1)(0|1)

(0|1)∗1(0|1)(0|1)(0|1)

and so on. Now, try it yourself. Provide a regular expression such that it deterministic

finite automaton has roughly 32,000,000 many states.

Now, let us come back to lexical analyzers. Figure 5.1 provides an example of

partial input to the lex command.

else {return(ELSE); }

[A− Za− z][A− Za− z0 − 9]∗ {code to enter the found identifier

{in the symbol table;
{return(ID);

}

>= {return(GE);}

= {return(EQ);}

· · ·

Figure 5.1: A sample of lex input
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The first line handles the keyword else and the action is to return a symbolic

constant, i.e., ELSE in this example.

The second line contains a regular expression describing identifiers: a letter followed

by zero or more letters and/or digits. The action is to enter the found identifier to

the symbol table if not already there and to return the symbolic constant ID, which

has been chosen in this example to represent identifiers.

The third line is for the sign >=, a two character operator. The last line is for the

sign =, a one character operator. In practice, there would appear expressions describ-

ing each of the keywords, each of the signs and punctuation symbols like commas and

parentheses, and families of constants such as numbers and strings.

5.2. Finding Patterns in Text

You probably often use your text editor (or the UNIX program grep) to find some

text in a file (e.g., the place where you defined your depth first search program). A

closely related problem is to filter or to find suitable web-pages.

How do these tools work?

There are two commonly used algorithms: Knuth-Morris-Pratt (KMP) and Boyer-

Moore (BM). Both use similar ideas. Both take linear time: O(m + n) where m is

the length of the search string, and n is the length of the file. Both only test whether

certain characters are equal or unequal, they do not do any complicated arithmetic

on characters.

Boyer-Moore is a little faster in practice, but more complicated. Knuth-Morris-

Pratt is simpler, so we shortly discuss it here.

Suppose we want to grep the string saso. The idea is to construct a deterministic

finite automaton which stores in its current state the information we need about the

string seen so far. Suppose the string seen so far is “nauvwxy”, then we need to know

two things.

1. Did we already match the string we are looking for (saso)?

2. If not, could we possibly be in the middle of a match?

If we are in the middle of a match, we also need to know how much of the string we

are looking for we have already seen. So we want our states to be partial matches to

the pattern. The possible partial matches to saso are λ, s, sa, sas, or the complete

match saso itself. In other words, we have to take into account all prefixes including

the empty one of our string. If the string has length m, then there are m + 1 such

prefixes. Thus, we need m + 1 states for our automaton to memorize the possible

partial matches. The start and the accept state are obvious, i.e., the empty match

and the full match, respectively.
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In general, the transition from state plus character to state is the longest string

that is simultaneously a prefix of the original pattern and a suffix of the state plus

character we have just seen. For example, if we have already seen sas but the next

character is a, then we only have the partial match sa. Using the ideas outlined

above, we are able to produce the deterministic finite automaton we are looking for.

It is displayed in Figure 5.2.

other

start s a s

s
a

other

s any

o
empty s sa sas saso

Figure 5.2: A finite automaton accepting all strings containing saso

The description given above is sufficient to get a string matching algorithm that

takes time O(m3+n). Here we need time O(m3) to build the the state table described

above, and O(n) to simulate it on the input file. There are two tricky points to the

KMP algorithm. First, it uses an alternate representation of the state table which

takes only O(m) space (the one above could take O(m2)). And second, it uses a

complicated loop to build the whole thing in O(m) time. But these tricks you should

have already seen in earlier courses. If not, please take a look into the reference [1]

given below.

Reference

[1] M. Crochemore and W. Rytter, Jewels of Stringology, Text Algorithms,

World Scientific, New Jersey, London, Singapore Hong Kong, 2003.
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Lecture 6: Context-Free Languages

Context-free languages were originally conceived by Noam Chomsky as a way to

describe natural languages. That promise has not been fulfilled. However, context-free

languages have found numerous applications in computer science, e.g., for designing

programming languages, for constructing parsers for them, and for mark-up languages.

The reason for the wide use of context-free grammars is that they represent the

best compromise between power of expression and ease of implementation. Regular

languages are too weak for many applications, since they cannot describe situations

such as checking that the number of begin and end statements in a text are equal,

since this would be a variant of the language {aibi i ∈ N} (cf. Theorem 3.3).

We therefore continue with a closer look at context-free languages. First, we need

the following definitions.

Definition 18. A grammar G = [T ,N,σ,P] is said to be context-free provided

for all α → β in P we have α ∈ N and β ∈ (N ∪ T)∗.

Definition 19. A language L is said to be context-free if there exists a context-

free grammar G such that L = L(G). By CF we denote the set of all context-free

languages.

Our first theorem shows that the set of all context-free languages is richer than the

set of regular languages.

Theorem 6.1. REG ⊂ CF.

Proof. Clearly, by definition we have that every regular grammar is also a context-

free grammar. Thus, we can conclude REG ⊆ CF.

For seeing CF \ REG 6= ∅ it suffices to consider the language L = {aibi i ∈ N}.

By Theorem 3.3 we already know L /∈ REG. Thus, all we have to do is to provide a

context-free grammar G for L. We define

G = [{a,b}, {σ}, σ, {σ → aσb,σ → λ}] .

We leave it as an exercise to formally prove L = L(G).

Exercise 18. Construct context-free grammars for the following languages:

(1) L = {a3ibi i ∈ N+},

(2) L = {aibj i, j ∈ N+ and i > j},

(3) L = {s s ∈ {a,b}∗ and number of a ′s in s equals the number of b ′s in s}.

(4) Prove or disprove the following language to be context-free

L = {aickdkbi i, k ∈ N+}.
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Next, we study closure properties of context-free languages.

6.1. Closure Properties for Context-Free Languages

A first answer is given by showing a theorem analogous to Theorem 2.1.

Theorem 6.2. The context-free languages are closed under union, product and

Kleene closure.

Proof. Let L1 and L2 be any context-free languages. Since L1 and L2 are context-

free, there are context-free grammars G1 = [T1,N1,σ1,P1] and G2 = [T2,N2,σ2,P2]

such that Li = L(Gi) for i = 1, 2. Without loss of generality, we may assume that

N1 ∩N2 = ∅ for otherwise we simply rename the nonterminals appropriately.

We start with the union. We have to show that L = L1 ∪ L2 is context-free. This

is done in the same way as in the proof of Theorem 2.1.

Next, we deal with the product. We define

Gprod = [T1 ∪ T2,N1 ∪N2 ∪ {σ},σ,P1 ∪ P2 ∪ {σ → σ1σ2}] .

Note that the new production σ → σ1σ2 is context-free. Using the same ideas

mutatis mutandis as in the proof of Theorem 2.1, one easily verifies L(Gprod) = L1L2.

Finally, we have to deal with Kleene closure. Let L be a context-free language, and

let G = [T ,N,σ,P] be a context-free grammar such that L = L(G). We have to show

that L∗ is context-free. Recall that L∗ =
⋃
i>0 L

i. Since L0 = {λ}, we have to make

sure that λ can be generated. This is obvious if λ ∈ L. Otherwise, we simply add the

production σ → λ. Now, it suffices to define

G∗ = [T ,N ∪ {σ∗},σ∗,P ∪ {σ∗ → σσ∗, σ∗ → λ}].

Again, we leave it as an exercise to show that L(G∗) = L∗.

Next, we show that CF is also closed under transposition. For doing it, we introduce

the notation h
m⇒ w to denote a derivation of length m, i.e., we write h

m⇒ w if w

can be derived from h within exactly m steps.

Additionally, we need the following lemma.

Lemma 6.3. Let G = [T ,N,σ,P] be a context-free grammar and let α, β ∈
(N ∪ T)∗. If α

m⇒ β for some m > 0 and if α = α1 · · ·αn for some n > 1, where

αi ∈ (N∪ T)∗ for i = 1, . . . ,n, then there exist ti > 0, βi ∈ (N∪ T)∗ for i = 1, . . . ,n

such that β = β1 · · ·βn and αi
ti⇒ βi and

n∑
i=1

ti = m.

Proof. The proof is done by induction on m. For the induction basis we choose

m = 0 and get α
0⇒ β implies α = β. Thus, we can choose αi = βi as well as ti = 0

for i = 1, . . . ,n and have αi
0⇒ βi for i = 1, . . . ,n and

n∑
i=1

ti = 0. This proves the

induction basis.
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Our induction hypothesis is that if α = α1 · · ·αn
m⇒ β then there exist ti > 0,

βi ∈ (N ∪ T)∗ for i = 1, . . . ,n such that β = β1 · · ·βn and αi
ti⇒ βi and

n∑
i=1

ti = m.

For the induction step consider

α = α1 · · ·αn
m+1=⇒ β .

Then there exists γ ∈ (N ∪ T)∗ such that

α = α1 · · ·αn ⇒ γ
m⇒ β .

Since G is context-free, the production used in α ⇒ γ must have been of the form

h → ζ, where h ∈ N and ζ ∈ (N∪ T)∗. Let αk, 1 6 k 6 m contain the nonterminal

h that was rewritten in using h → ζ to obtain α ⇒ γ. Then αk = α ′hβ ′ for some

α ′,β ′ ∈ (N ∪ T)∗. Furthermore, let

γi =

{
αi , if i 6= k,
α ′ζβ ′, if i = k .

Then, for i 6= k, αi
0⇒ γi and αk ⇒ γk. Thus,

α = α1 · · ·αn ⇒ γ1 · · ·γn
m⇒ β .

By the induction hypothesis there exist ti,βi such that β = β1 · · ·βn and γi
ti⇒ βi

and
n∑
i=1

ti = m. Combining the derivations we find

αi
0⇒ γi

ti⇒ βi for i 6= k ,

and

αk ⇒ γk
tk⇒ βk .

Finally, we set

t ′i =

{
ti , if i 6= k,
tk + 1, if i = k .

Thus, we have t ′i > 0 and βi ∈ (N ∪ T)∗ satisfy

β = β1 · · ·βn
αi

t ′i⇒ βi .

Finally, we compute
n∑
i=1

t ′i = 1 +

n∑
i=1

ti = m+ 1 ,

and the lemma follows.
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Now, we are ready to prove CF to be closed under transposition.

Theorem 6.4. Let Σ be any alphabet, and let L ⊆ Σ∗. Then we have: If L ∈ CF

then LT ∈ CF, too.

Proof. Let L be any context-free language. Hence, there exists a context-free gram-

mar G = [T ,N,σ,P] such that L = L(G). Now, we define a grammar GT as follows.

Let

GT = [T ,N,σ,PT ], where PT = {αT → βT (α → β) ∈ P} .

Taking into account that (α → β) ∈ P implies α ∈ N and β ∈ (N ∪ T)∗ (cf. Defi-

nition 18), and that αT = α as well as βT ∈ (N ∪ T)∗, we can directly conclude that

GT is context-free. Thus, it remains to show that L(GT ) = LT . This is done via the

following claim.

Claim 1. For each h ∈ N we have,

h
m⇒ G w, w ∈ (N ∪ T)∗ if and only if h

m⇒ GT w
T .

The claim is proved by induction on m. We start with the necessity.

For the induction basis, we choose m = 0, and clearly have h
0⇒ G h if and only if

h
0⇒ GT h, since h = hT .

Now, we have the following induction hypothesis.

For all h ∈ N, if h
t⇒ G w, w ∈ (N ∪ T)∗, and t 6 m, then h

t⇒ GT w
T .

For the induction step, we have to show that, if h
m+1=⇒ G s, s ∈ (N ∪ T)∗, then

h
m+1=⇒ GT s

T .

Let h
m+1=⇒ G s, then there exists an α ∈ (N ∪ T)∗ such that h ⇒G α

m⇒ G s. Let

α = u1h1u2h2 · · ·unhnun+1 , where ui ∈ T∗ and hi ∈ N .

Now, since h ⇒G α implies (h → α) ∈ P, we directly get by construction that

(h → αT ) ∈ PT . Hence, we can conclude h ⇒GT α
T , and obtain

h ⇒GT α
T = uTn+1hnu

T
nhn−1 · · ·uT2h1u

T
1 .

Furthermore, we have

u1h1u2h2 · · ·unhnun+1
m⇒ G s ,

and therefore, by Lemma 6.3, there exist γi ∈ (N∪T)∗ and ti > 0 such that hi
ti⇒ G γi,

as well as

s = u1γ1u2γ2 · · ·γnun+1 ,

and
n∑
i=1

ti = m. Consequently, ti 6 m and by the induction hypothesis we obtain

that

hi
ti⇒ G γi implies hi

ti⇒ GTγ
T
i .

Therefore,

h ⇒GT u
T
n+1hnu

T
nhn−1 · · ·uT2h1u

T
1
m⇒ GT u

T
n+1γ

T
nu

T
nγ
T
n−1 · · ·uT2 γT1uT1 = sT .

This completes the induction step, and thus the necessity is shown.

The sufficiency can be shown analogously by replacing G by GT and GT by G. Thus,

we obtain L(GT ) = LT .
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Next, we are going to prove that CF is not closed under intersection.

Theorem 6.5. There are context-free languages L1 and L2 such that L1∩L2 /∈ CF.

Proof. Let

L1 = {anbncm n,m ∈ N} and let

L2 = {ambncn n,m ∈ N} .

Then we directly get

L = L1 ∩ L2 = {anbncn n ∈ N} ,

but L /∈ CF as we shall show a bit later, when we have the pumping lemma for

context-free languages.

The latter theorem allows a nice corollary. For stating it, we introduce the following

notation. Let L ⊆ Σ∗ be any language. Then we write L to denote the complement

of L, i.e., L =df Σ
∗ \ L. Now, we are ready for our corollary.

Corollary 6.6. CF is not closed under complement.

Proof. The proof is done indirectly. Suppose the converse, i.e., for all context-free

languages L1 and L2 we also have L1, L2 ∈ CF. By Theorem 6.2 we can conclude

L1 ∪ L2 ∈ CF (closure under union). But then, by our supposition, we must also

have L1 ∪ L2 ∈ CF. Since L1 ∪ L2 = L1 ∩ L2 by de Morgan’s laws for sets, this would

imply the context-free languages to be closed under intersection, a contradiction to

Theorem 6.5. This proves the corollary.

Exercise 19. Prove or disprove the following: For all L1 ∈ CF and L2 ∈ REG we

have L1 ∩ L2 ∈ CF.

We continue with further properties of context-free languages that are needed later

but that are also of independent interest.

First, we start with the following observation. It can sometimes happen that

grammars contain nonterminals that cannot generate any terminal string. Let us

look at the following example.

Example 5. Let Σ = {a, +, ∗, (, ), −} be the terminal alphabet, and assume the

set of productions given is:

E → E+ E

E → E+ T

E → E+ F

F → F ∗ E
F → F ∗ (T)

F → a

T → E− T
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where F is the start symbol. Now, we see that the only rule containing T on the

left-hand side is T → E − T . Thus it also contains T on the right-hand side.

Consequently, from T no terminal string can be derived. Such a situation is highly

undesirable, since it will only complicate many tasks such as analyzing derivations.

Therefore, we introduce the notion of a reduced grammar.

Definition 20 (Reduced Grammar). A context-free grammar G = [T ,N,σ,P]

is said to be reduced if

(1) for all h ∈ N \ {σ} there are strings p,q ∈ (T ∪N)∗ such that σ
∗⇒ phq, and

(2) there is a string w ∈ T∗ such that h
∗⇒ w.

The following theorem shows the usefulness of Definition 20.

Theorem 6.7. For every context-free grammar G = [T ,N,σ,P] there is a reduced

context-free grammar G ′ = [T ′,N ′,σ ′,P ′] such that L(G) = L(G ′).

Proof. The proof proceeds in two steps. In the first step, we collect all nonterminal

symbols from which a string in T∗ can be derived. Let this set be H̃. In the second

step, we collect all those symbols from H̃ that can be reached from the start symbol σ.

For the first step, we set H0 = T and proceed inductively as follows.

H1 = H0 ∪ {h h ∈ N, (h → p) ∈ P and p ∈ H∗
0}

Hi+1 = Hi ∪ {h h ∈ N, (h → p) ∈ P and p ∈ H∗
i } .

By construction we obviously have

H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ T ∪N .

Taking into account that T ∪ N is finite, there must be an index i0 such that

Hi0 = Hi0+1.

Next, we show the following claim.

Claim 1. If Hi = Hi+1 then Hi = Hi+m for all m ∈ N.

The induction basis for m = 0 is obvious, since Hi+0 = Hi by construction.

Thus, we have the induction hypothesis Hi = Hi+m. For the induction step we

have to show that Hi = Hi+m+1.

Let h ∈ Hi+m+1, then we either have h ∈ Hi+m (and the induction hypothesis

directly applies) or (h → p) ∈ P and p ∈ H∗
i+m. By the induction hypothesis we

know that Hi = Hi+m. Hence, the condition (h → p) ∈ P and p ∈ H∗
i+m can be

rewritten as

(h → p) ∈ P and p ∈ H∗
i .

But the latter condition implies by construction that h ∈ Hi+1. By assumption,

Hi = Hi+1 and therefore we conclude h ∈ Hi. This proves Claim 1.
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Next, we set H̃ =df Hi0 \ T . Then, the following claim holds by construction.

Claim 2. h ∈ H̃ if and only if there is a w ∈ T∗ such that h
∗⇒ w.

Next, we perform the second step. For doing it, we define inductively R0 = {σ},

R1 = R0 ∪ {h h ∈ H̃ and ∃p,q[p,q ∈ (T ∪N)∗ and σ
1⇒ phq]} and for i > 1

Ri+1 = Ri ∪ {h h ∈ H̃ and ∃ri∃p,q[ri ∈ Ri, p,q ∈ (T ∪N)∗ and ri
1⇒ phq]}

In the same manner as above one can easily prove that there is an i0 ∈ N such

that Ri0 = Ri0+m for all m ∈ N.

Finally, we define T ′ = T , N ′ = Ri0 ∩ H̃, σ ′ = σ and

P ′ = ∅ , if σ /∈ N ′

P ′ = P \ {α → β (α → β) ∈ P, α /∈ Ri0 or β /∈ (T ∪N ′)∗} ,

otherwise .

i.e., we get G ′ = [T ,N ′,σ,P ′].

By construction L(G ′) = L(G).

Note that Claim 2 implies Condition (2) of Definition 20 and Condition (1) of

Definition 20 is fulfilled by the definition of the sets Ri.

We illustrate the construction of a reduced grammar by looking at two examples.

Example 6. Let G = [{a,b, c,d}, {σ,α,β,γ, δ},σ,P], where P is defined as follows.

σ → αβ γ → cβ

σ → γα γ → b

α → a δ → aδ

β → γβ δ → d

β → αβ

So, we obtain:

H0 = {a,b, c,d}

H1 = {a,b, c,d,α,γ, δ}

H2 = {a,b, c,d,α,γ, δ,σ}

H3 = {a,b, c,d,α,γ, δ,σ} = H2 ,

and thus we terminate. Consequently, H̃ = {α,γ, δ,σ}.

Next, we compute the sets Ri, i.e., R0 = {σ}, R1 = {σ,α,γ} = R2, and we terminate

again. Thus, N ′ = {σ,α,γ}.

Finally, we delete all productions having in their left hand side a symbol not

in {σ,α,γ}, i.e., β → γβ, β → αβ, δ → aδ, and δ → d. Then we
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delete from the remaining productions those containing a symbol in their right hand

side not in N ′, i.e., σ → αβ and γ → cβ. Thus, we obtain the grammar

G ′ = [{a,b, c,d}, {σ,α,γ},σ, {σ → γα, α → a, γ → b}].

Example 7. Let G = [{a}, {σ,β,γ},σ,P], where

P = {σ → βγ, β → a, γ → γ} .

Then we obtain, H0 = {a}, H1 = {a,β} = H2, and we terminate. Thus H̃ = {β}.

Next, we get R0 = {σ} and R1 = {σ,β} = R2. Thus, we terminate again. This is

the point where we need the intersection in the definition of N ′, since now N ′ = {β}.

Consequently, in the definition of P ′ the first case applies and P ′ = ∅.

We continue with the following definition.

Definition 21. A grammar G = [T ,N,σ,P] is said to be λ-free if P does not

contain any production of the form h → λ.

Theorem 6.8. For every context-free grammar G = [T ,N,σ,P] there exists a

context-free grammar G ′ such that L(G ′) = L(G) \ {λ} and G ′ is λ-free.

Furthermore, if λ ∈ L(G) then there exists an equivalent context-free grammar G ′′

such that σ ′′ → λ is the only production having λ on its right-hand side and σ ′′ does

not occur at any right-hand side.

We leave it as an exercise to prove this theorem.
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Lecture 7: Further Properties of Context-

Free Languages

We shall start this lecture by defining the so-called BNF. Then we take a look at

parse trees. Furthermore, within this lecture we shall define the first normal form for

context-free grammars, i.e., the Chomsky Normal Form. Then we state the pumping

lemma for context-free languages which is often referred to as the Lemma of Bar-Hillel.

Finally, we discuss some consequences.

7.1. Backus-Naur Form

As mentioned in the last lecture, context-free grammars are of fundamental im-

portance for programming languages. However, in the specification of programming

languages usually a form different to the one provided in Definition 18 is used. This

form is the so-called Backus normal form or Backus-Naur Form. It was created by

John Backus to specify the grammar of ALGOL. Later it has been simplified by Pe-

ter Naur to reduce the character set used and Donald Knuth proposed to call the

new form Backus-Naur Form. Fortunately, whether or not one is following Knuth’s

suggestion, the form is commonly abbreviated BNF.

The form uses four meta characters that are not allowed to appear in the working

vocabulary, i.e., in T ∪N in our definition. These meta characters are

< > ::= |

and the idea to use them is as follows. Strings (not containing the meta characters)

are enclosed by < and > denote nonterminals.The symbol ::= serves as a replacement

operator (in the same way as → ) and | is read as “or.”

The following example is from Harrison [1]. Consider an ordinary context-free

grammar for unsigned digits in a programming language. Here, D stands for the class

of digits and U for the class of unsigned integers.

D → 0 D → 5

D → 1 D → 6

D → 2 D → 7

D → 3 D → 8

D → 4 D → 9

U → D U → UD .

Rewriting this example in BNF yields:

< digit > ::= 0|1|2|3|4|5|6|7|8|9

< unsigned integer > ::= < digit > | < unsigned integer >< digit >
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As this example clearly shows the BNF allows a very compact representation of the

grammar. This is of particular importance when defining the syntax of a programming

language, where the set of productions usually contains many elements.

Whenever appropriate, we shall adopt a blend of the notation used in BNFs, i.e.,

occasionally we shall use | as well as < and > but not ::=.

Context-free languages play an important role in many applications. As far as

regular languages are concerned, we have seen that finite automata are very efficient

recognizers. So, what about context-free languages? Again, for every context-free

language a recognizer can be algorithmically constructed. Formally, these recognizers

are pushdown automata. There are many software systems around that perform

the construction of the relevant pushdown automaton for a given language. These

systems are important in that they allow the quick construction of the syntax analysis

part of a compiler for a new language and are therefore highly valued. We shall come

back to this topic later (see Lectures 9 and 10), since it is better to treat another

important tool for syntax analysis first, i.e., parsers.

One of the most widely used of these syntax analyzer generators is called yacc (yet

another compiler-compiler). The generation of a parser, i.e., a function that creates

parse trees from source programs has been institutionalized in the YACC command

that appears in all UNIX systems. The input to YACC is a CFG, in a notation that

differs only in details from the well-known BNF. Associated with each production is

an action, which is a fragment of C code that is performed whenever a node of the

parse tree that (combined with its children) corresponds to this production is created.

So, let us continue with parse trees.

7.2. Parse Trees, Ambiguity

A nice feature of grammars is that they describe the hierarchical syntactic structure

of the sentences of languages they define. These hierarchical structures are described

by parse trees.

Parse trees are a representation for derivations. When used in a compiler, it is

the data structure of choice to represent the source program. In a compiler, the tree

structure of the source program facilitates the translation of the source program into

executable code by allowing natural, recursive functions to perform this translation

process.

Parse trees are trees defined as follows. Let G = [T ,N,σ,P] be a grammar. A

parse tree for G is a tree satisfying the following conditions.

(1) Each interior node and the root are labeled by a variable from N.

(2) Each leaf is either labeled by a non-terminal, a terminal or the empty string.

If the leaf is labeled by the empty string, then it must be the only child of its

parent.
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(3) If an interior node is labeled A and its children are labeled by X1, . . . ,Xk, re-

spectively, from left to right, then A → X1 · · ·Xk is a production from P.

Thus, every subtree of a parse tree describes one instance of an abstraction in the

statement. Next, we define the yield of a parse tree. If we look at the leaves of any

parse tree and concatenate them from left to right, we get a string. This string is

called the yield of the parse tree.

Exercise 20. Prove that the yield is always a string that is derivable from the

start symbol provided the root is labeled by σ.

Clearly, of special importance is the case that the root is labeled by the start symbol

and that the yield is a terminal string, i.e., all leaves are labeled with a symbol from

T or the empty string. Thus, the language of a grammar can also be expressed as the

set of yields of those parse trees having the start symbol at the root and a terminal

string as yield.

We continue with an example. Let us assume that we have the following part of a

grammar on hand that describes how assignment statements are generated.

Example 8.

<assign> → <id> := <expr>

<id> → A | B | C

<expr> → <id> + <expr>

| <id> ∗ <expr>
| (<expr>)

| <id>

Now, let us look at the assignment statement A := B ∗ (A + C)

which can be generated by the following derivation.

<assign> ⇒ <id> := <expr>

⇒ A := <expr>

⇒ A := <id> ∗ <expr>
⇒ A := B ∗ <expr>
⇒ A := B ∗ (<expr>)

⇒ A := B ∗ (<id> + <expr>)

⇒ A := B ∗ (A + <expr>)

⇒ A := B ∗ (A + <id>)

⇒ A := B ∗ (A + C)

The structure of the assignment statement that we have just derived is shown in

the parse tree displayed in Figure 7.3.
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<assign>

<id>

A

:= <expr>

<id>

B

<expr>

( <expr )

+<id> <expr>

A <id>

C

*

Figure 7.3: Parse tree for sentence A := B ∗ (A + C)

Note that syntax analyzers for programming languages, which are often called

parsers, construct parse trees for given programs. Some systems construct parse trees

only implicitly, but they also use the whole information provided by the parse tree

during the parse. There are two major approaches of how to build these parse trees.

One is top-down and the other one is bottom-up. In the top-down approach the parse

tree is built from the root to the leaves while in the bottom-up approach the parse

tree is built from the leaves upward to the root. A major problem one has to handle

when constructing such parsers is ambiguity. We thus direct our attention to this

problem.

7.2.1. Ambiguity

A grammar that generates a sentence for which there are two or more distinct

parse trees is said to be ambiguous. For having an example, let us look at the

following part of a grammar given in Example 9. At first glance this grammar looks

quite similar to the one considered above. The only difference is that the production

for expressions has been altered by replacing <id> by <expr>. However, this small

modification leads to serious problems, because now the grammar provides slightly

less syntactic structure than the grammar considered in Example 8 does.

Example 9.

<assign> → <id> := <expr>

<id> → A | B | C
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<expr> → <expr> + <expr>

| <expr> ∗ <expr>
| (<expr>)

| <id>

For seeing that this grammar is ambiguous, let us look at the following assignment

statement:

A := B + C ∗ A .

We skip the two formal derivations possible for this assignment and look directly at

the two parse trees.

<assign>

<id>

A

:= <expr>

<expr><expr> +

<id>

B

<expr> <expr>

<id> <id>

C

<assign>

A

*

<id> <expr>:=

A <expr> <expr>*

+<expr> <expr>

A

<id>

<id> <id>

CB

Figure 7.4: Two parse trees for the same sentence A := B + C ∗ A

These two distinct parse trees cause problems because compilers base the semantics

of the sentences on their syntactic structure. In particular, compilers decide what code

to generate by examining the parse tree. So, in our example the semantics is not clear.

Let us examine this problem in some more detail.

In the first parse tree (the left one) of Figure 7.4 the multiplication operator is

generated lower in the tree which would indicate that it has precedence over the

addition operator in the expression. The second parse tree in Figure 7.4, however, is

just indicating the opposite. Clearly, in dependence on what decision the compiler

makes, the result of an actual evaluation of the assignment given will be either the

expected one (that is multiplication has precedence over addition) or an erroneous

one.

Although the grammar in Example 8 is not ambiguous, the precedence order of its

operators is not the usual one. Rather, in this grammar, a parse tree of a sentence

with multiple operators has the rightmost operator at the lowest point, with the
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other operators in the tree moving progressively higher as one moves to the left in the

expression.

So, one has to think about a way to overcome this difficulty and to clearly define

the usual operator precedence between multiplication and addition, or more generally

with any desired operator precedence. As a matter of fact, this goal can be achieved

for our example by using separate nonterminals for the operands of the operators

that have different precedence. This not only requires additional nonterminals but

also additional productions.

However, in general, the situation is much more subtle. First, there is no algorithm

deciding whether or not any context-free grammar is ambiguous. Second, there are

context-free languages that have nothing but ambiguous grammars. See Section 5.4.4

in [2] for a detailed treatment of this issue. But in practice the situation is not as

grim as it may seem. Many techniques have been proposed to eliminate ambiguity in

the sorts of constructs that typically appear in programming languages.

So, let us come back to our example and let us show how to eliminate the ambiguity

we have detected. We continue by providing a grammar generating the same language

as the grammars of Examples 8 and 9, but which clearly indicates the usual precedence

order of multiplication and addition.

Example 10.

<assign> → <id> := <expr>

<id> → A | B | C

<expr> → <expr> + <term>

| <term>

<term> → <term> ∗ <factor>
| <factor>

<factor> → (<expr>)

| <id>

Next, let us derive the same statement as above, i.e.,

A := B + C ∗ A

The derivation is unambiguously obtained as follows:

<assign> ⇒ <id> := <expr>

⇒ A := <expr>

⇒ A := <expr> + <term>

⇒ A := <term> + <term>

⇒ A := <factor> + <term>

⇒ A := <id> + <term>



Ambiguity 49

⇒ A := B + <term>

⇒ A := B + <term> ∗ <factor>
⇒ A := B + <factor> ∗ <factor>
⇒ A := B + <id> ∗ <factor>
⇒ A := B + C ∗ <factor>
⇒ A := B + C ∗ <id>
⇒ A := B + C ∗ A

Exercise 21. Construct the parse tree for this sentence in accordance with the

derivation given above.

Furthermore, you should note that we have presented a leftmost derivation

above, i.e., the leftmost nonterminal has always been handled first until it was replaced

by a terminal. Thus, the sentence given above has more than one derivation. If we

had always handled the rightmost nonterminal first, then we would have been arrived

at a rightmost derivation.

Exercise 22. Provide a rightmost derivation of the sentence A := B + C ∗ A
Exercise 23. Construct the parse tree corresponding to the rightmost derivation

and compare it to the parse tree obtained in Exercise 21.

Clearly, one could also choose arbitrarily the nonterminal which allows the applica-

tion of a production. Try it out, and construct the resulting parse trees. Usually, one

is implicitly assuming that derivations are leftmost. Thus, we can more precisely say

that a context-free grammar is ambiguous if there is a sentence in the language it gen-

erates that possesses at least two different leftmost derivations. Otherwise it is called

unambiguous. A language is said to be unambiguous if there is an unambiguous

grammar for it.

Exercise 24. Prove or disprove that every regular language is unambiguous.

Another important problem in describing programming languages is to express that

operators are associative. As you have learned in mathematics, addition and multi-

plication are associative. Is this also true for computer arithmetic? As far as integer

addition and multiplication are concerned, they are associative. But floating point

computer arithmetic is not always associative. So, in general correct associativity is

essential.

For example, look at the expression

A := B + C + A

Then it should not matter whether or not the expression is evaluated in left order

(that is (B + C) + A) or in right order (i.e, B + (C + A)).

Note that some programming languages define in what order expressions are eval-

uated. In particular, in most programming languages that provide it, the exponenti-

ation operator is right associative. The formal tool to describe right (or left) associa-

tivity is right (or left) recursion in the corresponding production rules. If a BNF rule
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has its left hand side also appearing at the beginning of its right hand side, then the

rule is said to be left recursive. Analogously, if a BNF rule has its left hand side

also appearing at the right end of its right hand side, then it is right recursive.

The following grammars exemplifies of how to use right recursiveness to express

right associativity of the exponentiation operator.

<factor> → <exp> ∗ ∗<factor>
| <exp>

<exp> → <expr>

| <id>

Finally, we should have a look at the if-then-else statement that is present in

many programming languages. Is there an unambiguous grammar for it? This is

indeed the case, but we leave it as an exercise.

7.3. Chomsky Normal Form

In a context-free grammar, there is no a priori bound on the size of a right-hand

side of a production. This may complicate many proofs. Fortunately, there is a normal

form for context-free grammars bounding the right-hand side to be of length at most

2. Knowing and applying this considerably simplifies many proofs.

First, we define the notion of a separated grammar.

Definition 22 (Separated Grammar). A grammar G = [T ,N,σ,P] is called

separated if for all (α → β) ∈ P we either have α,β ∈ N∗ or α ∈ N and β ∈ T .

Theorem 7.1. For every context-free grammar G = [T ,N,σ,P] there exists an

equivalent separated context-free grammar G ′ = [T ,N ′,σ,P ′].

Proof. First, we introduce for every t ∈ T a new nonterminal symbol ht, where by

new we mean that ht /∈ N for all t ∈ T . Furthermore, we set N ′ = {ht t ∈ T } ∪N.

Next, for (α → β) ∈ P, we denote the production obtained by replacing every

terminal symbol t in β by ht by (α → β)[t//ht]. The production set P ′ is the

defined as follows.

P ′ = {(α → β)[t//ht] (α → β) ∈ P} ∪ {ht → t t ∈ T } .

By construction, we directly see that G ′ is separated. Moreover, the construction

ensures that G ′ is context-free, too. Thus, it remains to show that L(G) = L(G ′).

Claim 1. L(G) ⊆ L(G ′).

Let s ∈ L(G). Then there exists a derivation

σ
1⇒ w1

1⇒ w2
1⇒ · · · 1⇒ wn

1⇒ s ,
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where w1, . . . ,wn ∈ (N ∪ T)+ \ T∗, and s ∈ T∗. Let Pi be the production used to

generate wi, i = 1, . . . ,n.

Then we can generate s by using productions from P ′ as follows. Let s = s1 · · · sm,

where sj ∈ T for all j = 1, . . . ,m. Instead of applying Pi we use Pi[t//ht] from P ′ and

obtain

σ
1⇒ w ′

1
1⇒ w ′

2
1⇒ · · · 1⇒ w ′

n
1⇒ hs1 · · ·hsm ,

where now w ′
i ∈ (N ′)+ for all i = 1, . . . ,n.

Thus, in order to obtain s it now suffices to apply the productions hsj → sj for

j = 1, . . .m. This proves Claim 1.

Claim 2. L(G ′) ⊆ L(G).

This claim can be proved analogously by inverting the construction used in showing

Claim 1.

Now, we are ready to define the normal form for context-free grammars announced

above.

Definition 23 (Chomsky Normal Form). A grammar G = [T ,N,σ,P] is said

to be in Chomsky normal form if all productions of P have the form h → h1h2,

where h,h1,h2 ∈ N, or h → x, where h ∈ N and x ∈ T .

The latter definition directly allows the following corollary.

Corollary 7.2. Let G = [T ,N,σ,P] be a grammar in Chomsky normal form. Then

we have

(1) G is context-free,

(2) G is λ-free,

(3) G is separated.

Theorem 7.3. For every context-free grammar G = [T ,N,σ,P] such that λ /∈ L(G)

there exists an equivalent grammar G ′ that is in Chomsky normal form.

Proof. Let G = [T ,N,σ,P] be given. Without loss of generality, we may assume

that G is reduced. First, we eliminate all productions of the form h → h ′. This is

done as follows.

We set

W0(h) = {h} for every h ∈ N

and for each i > 0 we define

Wi+1(h) = Wi ∪ {h̃ h̃ ∈ N and (ĥ → h̃) ∈ P for some ĥ ∈Wi(h)} .

Then, the following facts are obvious:

(1) Wi(h) ⊆Wi+1(h) for all i > 0,
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(2) If Wi(h) = Wi+1(h) then Wi(h) = Wi+m(h) for all m ∈ N,

(3) Wn(h) = Wn+1(h) for n = card(N),

(4) Wn(h) = {B B ∈ N and h
∗⇒ B}.

Now, we define

P1 = {h → γ h ∈ N and γ /∈ N and (B → γ) ∈ P for some B ∈Wn(h)} .

Let G1 = [T ,N,σ,P1], then by construction P1 does not contain any production of

the form h → h ′. These productions have been replaced by h → γ. That is,

if we had h
∗⇒ B by using the productions from P and B → γ, then we now have

the production h → γ in P1. Also note that P1 contains all original productions

(h → γ) ∈ P, where γ /∈ N by the definition of W0. We leave it as an exercise to

formally verify that L(G1) = L(G).

Next, from G1 we construct an equivalent separated grammar G2 by using the

algorithm given in the proof of Theorem 7.1. Now, the only productions in P2 that

still need modification are of the form

h → h1h2 · · ·hn , where n > 3 .

We replace any such production by the following productions

h → h1hh2···hn

hh2···hn → h2hh3···hn

·
·
·

hhn−1hn → hn−1hn

Hence, the resulting grammar G ′ is in Chomsky normal form and by construction

equivalent to G. We omit the details.

Exercise 25. Let G = [{a,b, c}, {σ,h},σ,P], where the set P of productions is

P = {σ → hbh, h → hah, h → ca}. Construct a grammar G ′ which is in

Chomsky normal form and which is equivalent to grammar G.

Exercise 26. Extend the notion of Chomsky normal form to context-free languages

containing λ.

We finish this lecture by pointing to an important result which can be proved by

using the Chomsky normal form. This result is usually referred to as Pumping Lemma

for context-free languages or Lemma of Bar-Hillel or qrsuv-Theorem. You should

compare this theorem to the Pumping Lemma for regular languages (see Lemma 4.4).

Please note that Theorem 7.4 provides a necessary condition for a language to be
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context-free. It is not sufficient. So its main importance lies in the fact that one can

often use it to show that a language is not context-free.

Theorem 7.4. For every context-free language L there are numbers k, ` such that

for every w ∈ L with |w| > k there strings q, r, s,u, v such that

(1) w = qrsuv,

(2) |rsu| 6 `,

(3) ru 6= λ, and

(4) qrisuiv ∈ L for all i ∈ N+.

Due to lack of time we do not prove this theorem here but just provide a hint to

understand why it holds. By Theorem 7.3 we can assume that the grammar G for L

is in Chomsky normal form. Then all parse trees are binary trees. Therefore, if we

consider any string w ∈ L such that |w| > 2|N|+2 then any of its parse trees must have

depth at least |N| + 2. Consequently, there must exist a path from the root σ to a

leaf containing some nonterminal h at least twice. Looking then at the corresponding

subtrees it is not too difficult to show the Theorem.

Finally, you should try to solve the following exercises.

Exercise 27. Prove that L = {anbncn n ∈ N} is not context-free.

Exercise 28. Design an algorithm that, on input any context-free grammar G,

decides whether or not L(G) = ∅.
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Lecture 8: CF and Homomorphisms

We continue with further useful properties and characterizations of context-free

languages. First, we look at substitutions.

8.1. Substitutions and Homomorphisms

Since we aim to prove some theorems, some formal definitions and notations are

needed. Recall that we write ℘(X) to denote the power set of X.

Definition 24. Let Σ and ∆ be any two finite alphabets. A mapping τ:Σ −→ ℘(∆∗)

is said to be a substitution. We extend τ to be a mapping τ:Σ∗ −→ ℘(∆∗) (i.e., to

strings) by defining

(1) τ(λ) = λ,

(2) τ(wx) = τ(w)τ(x) for all w ∈ Σ∗ and x ∈ Σ.

The mapping τ is generalized to languages L ⊆ Σ∗ by setting

τ(L) =
⋃
w∈L

τ(w) .

So, a substitution maps every symbol of Σ to a language over ∆. The language a

symbol is mapped to can be finite or infinite.

Example 11. Let Σ = {0, 1} and let ∆ = {a,b}. Then, the mapping τ defined by

τ(λ) = λ, τ(0) = {a} and τ(1) = {b}∗ is a substitution.

Let us calculate τ(010). By definition,

τ(010) = τ(01)τ(0) = τ(0)τ(1)τ(0) = {a}{b}∗{a} = a〈b〉a ,

where the latter equality is by the definition of regular expressions.

Next, we want define what is meant by closure of a language family L under

substitution. Here special care is necessary. At first glance, we may be tempted

to require that for every substitution τ the condition τ(L) ∈ L has to be satisfied.

But this is a too strong demand. For seeing this, consider Σ = {0, 1}, ∆ = {a,b}

and L = REG. Furthermore, suppose that τ(0) = L, where L is any recursively

enumerable but non-recursive language over ∆. Then we obviously have τ({0}) = L,

too. Consequently, τ({0}) /∈ REG. On the other hand, {0} ∈ REG, and thus we would

conclude that REG is not closed under substitution. Also, the same argument would

prove that CF is not closed under substitution.

The point to be made here is that we have to restrict the set of allowed substitution

to those ones that map the elements of Σ to languages belonging to L. Therefore, we

arrive at the following definition.
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Definition 25. Let Σ be any alphabet, and let L be any language family over Σ.

We say that L is closed under substitutions if for every substitution τ:Σ −→ L

and every L ∈ L we have τ(L) ∈ L.

A very interesting special case of substitution is the homomorphism.

Definition 26. Let Σ and ∆ be any two finite alphabets. A mapping ϕ:Σ∗ −→ ∆∗

is said to be a homomorphism if

ϕ(vw) = ϕ(v)ϕ(w) for all v,w ∈ Σ∗ .

Furthermore, ϕ is said to be a λ-free homomorphism, if additionally

h(w) = λ implies w = λ for all w ∈ Σ∗ .

Moreover, if ϕ:Σ∗ −→ ∆∗ is a homomorphism then we define the inverse of the

homomorphism ϕ to be the mapping ϕ−1:∆∗ −→ ℘(Σ∗) by setting for each s ∈ ∆∗

ϕ−1(s) = {w w ∈ Σ∗ and ϕ(w) = s} .

So, a homomorphism is a substitution that maps every symbols of Σ to a singleton

set. Clearly, by the definition of homomorphism, it already suffices to declare the

mapping ϕ for the symbols in Σ. Note that, when dealing with homomorphisms we

usually identify the language containing exactly one string by the string itself, i.e.,

instead of {s} we shortly write s.

Example 12. Let Σ = {0, 1} and let ∆ = {a,b}. Then, the mapping ϕ:Σ∗ −→ ∆∗

defined by ϕ(0) = ab and ϕ(1) = λ is a homomorphisms but not a λ-free homomor-

phism. Applying ϕ to 1100 yields ϕ(1100) = ϕ(1)ϕ(1)ϕ(0)ϕ(0) = λλabab = abab

and to the language 1〈0〉1 gives ϕ(1〈0〉1) = 〈ab〉.

For seeing the importance of the notions just introduced consider the language

L = {anbn n ∈ N}. This language is context-free as we have shown (cf. Theorem 6.1).

Thus, we intuitively know that {0n1n n ∈ N} is also context-free, because we could

go through the grammar and replace all occurrences of a by 0 and all occurrences of b

by 1. This observation would suggest that if we replace all occurrences of a and b by

strings v and w, respectively, we also get a context-free language. However, it is much

less intuitive that we also obtain a context-free language if all occurrences of a and b

are replaced by context-free sets of strings V and W, respectively. Nevertheless, we

just aim to prove this closure property. For the sake of representation, in the following

we always assume two finite alphabets Σ and ∆ as in Definition 24.

Theorem 8.1. CF is closed under substitutions.

Proof. Let L ∈ CF be arbitrarily fixed and let τ be a substitution such that τ(a)

is a context-free language for all a ∈ Σ. We have to show that τ(L) is context-

free. We shall do this by providing a context-free grammar G = [T ,N,σ,P] such that

L(G) = τ(L).
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Since L ∈ CF, there exists a context-free grammar G = [Σ,N,σ,P] in Chomsky

normal form such that L = L(G). Next, let Σ = {a1, . . . ,an} and consider τ(a) for

all a ∈ Σ. By assumption, τ(a) ∈ CF for all a ∈ Σ. Thus, there are context-free

grammars Ga = [Ta,Na,σa,Pa] such that τ(a) = L(Ga) for all a ∈ Σ. Without loss

of generality, we can assume the sets Na1 , . . . ,Nan to be pairwise disjoint.

At this point we need an idea how to proceed. It is not too difficult to get this

idea, if one looks at possible derivations in G. Suppose we have a derivation

σ
∗=⇒
G

x1x2 · · · xm ,

where all xi ∈ Σ for i = 1, . . . ,m. Then, since G is in Chomsky normal form, we can

conclude that there must be productions (hxi → xi) ∈ P, i = 1, . . . ,m, and hence,

we easily achieve the following.

σ
∗=⇒
G

hx1hx2 · · ·hxm
m=⇒
G

x1x2 · · · xm , (8.1)

where all hxi ∈ N. Taking into account that the image τ(x1 · · · xm) is obtained by

calculating

τ(x1)τ(x2) · · · τ(xm) ,

we see that for every string w1w2 · · ·wm in this image there must be a derivation

σxi
∗=⇒

Gxi

wi i = 1, . . . ,m .

This directly yields the idea for constructing G. That is, we aim to cut the derivation

in (8.1) when having obtained hx1hx2 · · ·hxm . Then, instead of deriving x1x2 · · · xm,

all we need is to generate σx1 · · ·σxm , and thus, we have to replace the productions

(hxi → xi) ∈ P by (hxi → σxi) ∈ P, i = 1, . . . ,m.

Formalizing this idea yields the following definition.

T =
⋃
a∈Σ

Ta

N = N ∪

(⋃
a∈Σ

Na

)
σ = σ

P =

(⋃
a∈Σ

Pa

)
∪ P[a//σa] .

We set G = [T ,N,σ,P]. Note that P[a//σa] is the set of all productions from P where

those productions containing a ∈ Σ on the right hand side, i.e., ha → a, are replaced

by ha → σa.
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It remains to show that τ(L) = L(G).

Claim 1. τ(L) ⊆ L(G).

This can be seen as follows. If σ
∗=⇒
G

x1 · · · xm, where xi ∈ Σ for all i = 1 . . . ,m

and if σxi
∗=⇒

Gxi

wi, where wi ∈ Txi , i = 1 . . . ,m, then we can also derive x1 · · · xm in

the following way:

σ
∗=⇒
G

hx1 · · ·hxm
∗=⇒
G

x1 · · · xm ,

where all hxi ∈ N. By construction, we can thus generate

σ
∗=⇒
G

hx1 · · ·hxm
∗=⇒
G

σx1 · · ·σxm
∗=⇒
G

w1 · · ·wm .

Hence, Claim 1 follows.

Claim 2. L(G) ⊆ τ(L).

Now, we start from

σ
∗⇒ w , where w ∈ T∗ .

If w = λ, then also σ → λ in P, and we are done. Otherwise, the construction of G

ensures that the derivation of w must look as follows.

σ
∗=⇒
G

σx1 · · ·σxm
∗=⇒
G

w .

Furthermore, by our construction we then know that σ
∗=⇒
G

x1 · · · xm as we have

shown in (8.1).

Additionally, there are strings w1, . . . ,wm ∈ T∗ such that

w = w1 · · ·wm

and σxi
∗=⇒

Gxi

wi for all i = 1, . . . ,m. Consequently, wi ∈ τ(xi). Therefore, w ∈ τ(L)

and we are done.

Putting it all together, we see that τ(L) = L(G).

Please note that we have skipped some formal parts within the above proof to make

it easier to read and to understand. However, you should be aware of this omission.

Since we shall also omit such tedious formal parts in future proofs, this is a good place
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to tell you what you should do at home when reading these course notes until you

have made your skills perfect.

The omitted part is formally verified as follows. First, we define a mapping

ζ: (Σ ∪N) −→ N ∪

(⋃
a∈Σ

{σa}

)

by setting

ζ(a) =

{
a , if a ∈ N,
σa, if a ∈ Σ .

We extend ζ to strings by defining

ζ(λ) = λ , and

ζ(x) = ζ(x1)ζ(x2) · · · ζ(xm) for all x ∈ (Σ ∪N)∗ , x = x1 · · · xm .

Furthermore, we define a grammar G ′ = [T ′,N ′,σ,P ′], where

T ′ =
⋃
a∈Σ

{σa}

N ′ = N

P ′ = {A → ζ(α) (A → α) ∈ P} .

Then we can prove the following.

Claim: For all A ∈ N we have A
∗=⇒
G

α iff A
∗=⇒
G ′

ζ(α).

Claim 1 is intuitively obvious, since ζ corresponds to a simple renaming of Σ.

The formal proof is done by induction on the length of the derivation and left as an

exercise.

In particular, we have

σ
∗=⇒
G

x1 · · · xm ∈ L(G) if and only if σ
∗=⇒
G ′

σx1 · · ·σxm ,

where xi ∈ Σ for all i = 1, . . . ,m. This completes the formal verification.

Theorem 8.1 allows the following nice corollary.

Corollary 8.2. CF is closed under homomorphisms.

Proof. Since homomorphisms are a special type of substitution, it suffices to argue

that every singleton subset is context-free. But this is obvious, because we have

already shown that every finite language belongs to REG and that REG ⊆ CF. Thus,

the corollary follows.
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Now, try it yourself.

Exercise 29. Prove or disprove: REG is closed under substitutions.

Exercise 30. Prove or disprove: REG is closed under homomorphisms.

Exercise 31. Prove or disprove: REG is closed under inverse homomorphisms.

The family of all languages generated by a grammar in the sense of Definition 6 is

denoted by L0.

Exercise 32. Figure out why the proof of Theorem 8.1 does not work for showing

that L0 is closed under substitutions. Then provide the necessary modifications to

show closure under substitution for the family L0.

8.2. Homomorphic Characterization of CF

When we started to study context-free languages, we emphasized that many pro-

gramming languages use balanced brackets of different kinds. Therefore, we continue

with a closer look at bracket languages. Such languages are called Dyck languages§.

In order to define Dyck languages, we need the following notations. Let n ∈ N+

and let

Xn = {a1, a1, a2, a2, . . . , an, an} .

We consider the set Xn as a set of different bracket symbols, where ai is an opening

bracket and ai is the corresponding closing bracket. Thus, it is justified to speak of

Xn as a set of n different bracket symbols.

Definition 27. A language L is said to be a Dyck language with n bracket

symbols if L is isomorphic to the language Dn generated by the following grammar

Gn = [Xn, {σ},σ,Pn], where Pn is given by

Pn = {σ → λ, σ → σσ, σ → a1σa1, . . . , σ → anσan} .

The importance of Dyck languages will become immediately transparent, since we

are going to prove a beautiful characterization theorem for context-free languages by

using them.

8.2.1. The Chomsky-Schützenberger Theorem

Theorem 8.3 (Chomsky-Schützenberger Theorem). For every context-free

language L there are n ∈ N+, a homomorphism h and a regular language RL such that

L = h(Dn ∩ RL) .

§Walter von Dyck (1856-1934) was a mathematician. He was a founder of combinatorial group
theory.
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Proof. Consider any arbitrarily fixed context-free language L. Without loss of

generality we can assume that λ /∈ L. Furthermore, let G = [T ,N,σ,P] be a context-

free grammar in Chomsky normal form such that L = L(G). Let T = {x1, . . . , xm} and

consider all productions in P. Since G is in Chomsky normal form, all productions have

the form hi → h ′
ih

′′
i or hj → x. Let t be the number of all nonterminal productions,

i.e., of all productions hi → h ′
ih

′′
i . Note that for any two such productions it is well

possible that some but not all nonterminal symbols coincide.

In all we have m terminal symbols and t nonterminal productions. Thus, we try

the Dyck language Dm+t over

Xm+t = {x1, . . . , xm, xm+1, . . . , xm+t, xm+1, . . . , xm+t, x1, . . . , xm} .

Next, we consider the mapping χm+t:Xm+t −→ T∗ defined as follows.

χm+t(xj) =

{
xj, if 1 6 j 6 m,

λ , if m+ 1 6 j 6 m+ t .

and χm+t(xj) = λ for all j = 1, . . . ,m + t. We leave it as an exercise to show that

χm+t is a homomorphism.

Now we are ready to define the following grammar GL = [Xm+t,N,σ,PL], where

PL = {h → xixi 1 6 i 6 m and (h → xi) ∈ P}

∪ {h → xixixm+jh
′′
j 1 6 i 6 m, (h → xi) ∈ P, 1 6 j 6 t}

∪ {hj → xm+jh
′
j 1 6 j 6 t}

Clearly, GL is a regular grammar. We set RL = L(GL), and aim to prove that

L = χm+t(Dm+t ∩ RL) .

This is done via the following claims and lemmata.

Claim 1. L ⊆ χm+t(Dm+t ∩ RL).

The proof of Claim 1 is mainly based on the following lemma.

Lemma 8.4. Let G be the grammar for L fixed above, let GL be the grammar for

RL and let h ∈ N. If

h
1=⇒
G

w1
1=⇒
G

w2
1=⇒
G

· · · 1=⇒
G

wn−1
1=⇒
G

wn ∈ T∗

then there exists a q ∈ Dm+t such that h
∗=⇒

GL
q and χm+t(q) = wn.

c©Thomas Zeugmann, Hokkaido University, 2007



62 Lecture 8: CF and Homomorphisms

Proof. The lemma is shown by induction on the length n of the derivation. For

the induction basis let n = 1. Thus, our assumption is that

h
1=⇒
G

w1 ∈ T∗ .

Since G is in Chomsky normal form, we can conclude that (h → w1) ∈ P. So, by

the definition of Chomsky normal form, we must have w1 = x for some x ∈ T .

We have to show that there is a q ∈ Dm+t such that h
∗=⇒

GL
q and χm+t(q) = x.

By construction, the production h → xx belongs to PL (cf. the first set of the

definition of PL). Thus, we can simply set q = xx. Now, the induction basis follows,

since the definition of χm+t directly yields

χm+t(q) = χm+t(xx) = χm+t(x)χm+t(x) = xλ = x .

Assuming the induction hypothesis for n > 1, we are going to perform the induction

step to n+ 1. So, let

h
1=⇒
G

w1
1=⇒
G

· · · 1=⇒
G

wn
1=⇒
G

wn+1 ∈ T∗

be a derivation of length n+ 1. Because of n > 1, and since the derivation has length

at least 2, we can conclude that the production used to derive w1 must be of the form

h → h ′h ′′, where h,h ′,h ′′ ∈ N. Therefore, there must be a j such that 1 6 j 6 t

and h = hj as well as w1 = h ′
jh

′′
j .

The latter observation implies that there must be v1, v2 such that wn+1 = v1v2

and

h ′
j

∗=⇒
G

v1 and h ′′
j

∗=⇒
G

v2 .

Since the length of the complete derivation is n+ 1, both the generation of v1 and of

v2 must have a length smaller than or equal to n.

Hence, we can apply the induction hypothesis. That is, there are strings q1 and q2

such that q1, q2 ∈ Dm+t and χm+t(q1) = v1 as well as χm+t(q2) = v2. Furthermore,

by the induction hypothesis we additionally know that

h ′
j

∗=⇒
GL

q1 and h ′′
j

∗=⇒
GL

q2 .

Taking into account that (hj → h ′
jh

′′
j ) ∈ P we know by construction that

hj → xm+jh
′
j is a production in PL. Thus,

h = hj
1=⇒

GL
xm+jh

′
j

∗=⇒
GL

xm+jq1
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is a regular derivation. Moreover, the last step of this derivation must look as follows:

xm+jq
′
1hk

1=⇒
GL

xm+jq
′
1xx .

where hk → xx is the rule applied and where x is determined by the condition

q1 = q ′
1xx.

Now, we replace this step by using the production hk → xxxm+jh
′′
j which also

belongs to PL. Thus, we obtain

h = hj
1=⇒

GL
xm+jh

′
j

∗=⇒
GL

xm+jq1xm+jh
′′
j

∗=⇒
GL

xm+jq1xm+jq2 =: q ∈ Dm+t .

The containment in Dm+t is due to the correct usage of the brackets xm+j and xm+j

around q1 and the fact that q2 ∈ Dm+t as well as by the definition of the Dyck

language. Finally, the definition of χm+t ensures that χm+t(xm+jq1xm+jq2) = v1v2.

This proves Lemma 8.4.

Now, Claim 1 immediately follows for h = σ.

Claim 2. L ⊇ χm+t(Dm+t ∩ RL).

Again, the proof of the claim is mainly based on a lemma which we state next.

Lemma 8.5. Let G be the grammar for L fixed above, let GL be the grammar for

RL and let h ∈ N. If

h
1=⇒

GL
w1

1=⇒
GL

· · · 1=⇒
GL

wn ∈ Dm+t

then h
∗=⇒
G

χm+t(wn).

Proof. Again, the lemma is shown by induction on the length of the derivation. We

perform the induction basis for n = 1. Consider

h
1=⇒

GL
w1 ∈ Dm+t .

Hence, we must conclude that (h → w1) ∈ PL. So, there must exist xixi such that

w1 = xixi, 1 6 i 6 m and (h → xixi) ∈ PL. By the definition of PL we conclude

that (h → xi) ∈ P. Hence

h
1=⇒
G

xi = χm+t(xixi) = χm+t(w1) .

This proves the induction basis.
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Next, assume the induction hypothesis for all derivation of length less than or equal

to n. We perform the induction step from n to n+ 1. Consider

h
1=⇒

GL
w1

1=⇒
GL

· · · 1=⇒
GL

wn
1=⇒

GL
wn+1 ∈ Dm+t .

The derivation h
1=⇒

GL
w1 must have been done by using a production (h → w1) ∈

PL, where

w1 ∈ {xxxm+jh
′′
j , xm+jh

′
j} .

But w1 6= xxxm+jh
′′
j , since xxxm+j cannot be removed by any further derivation step.

This would imply wn+1 = xxxm+jr /∈ Dm+t. So, this case cannot happen.

Thus, the only remaining case is that w1 = xm+jh
′
j. Therefore is a j with 1 6 j 6 t

such that h = hj and w1 = xm+jh
′
j. This implies that there must be a derivation

h ′
j

1=⇒
GL

w ′
1

1=⇒
GL

w ′
2

1=⇒
GL

· · · 1=⇒
GL

w ′
n+1 ,

where wn+1 = xm+jw
′
n+1 ∈ Dm+t. Therefore there are w ′ and w ′′ such that

wn+1 = xm+jw
′xm+jw

′′ and w ′, w ′′ ∈ Dm+t .

Hence, there exists a k with 2 6 k 6 m such that w ′
k = w ′xm+jh

′′
j . This means

nothing else than having used in the kth derivation step a production of the form

h → xxxm+jh
′′
j . Consequently, (h → x) ∈ P and (h → xx) ∈ PL.

We thus replace the application of h → xxxm+jh
′′
j by an application of h → xx

and obtain

hj
∗=⇒

GL
w ′ and h ′

j

∗=⇒
GL

w ′′ ,

where both derivations have a length less than or equal to n.

Applying the induction hypothesis yields

h ′
j

∗=⇒
G

χm+t(w
′)

h ′′
j

∗=⇒
G

χm+t(w
′′)

and thus

h
1=⇒
G

h ′
jh

′′
j

∗=⇒
G

χm+t(w
′w ′′) = χm+t(xm+jw

′xm+jw
′′)

= χm+t(wn+1) .
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This proves Lemma 8.5. Finally, Claim 2 is a direct consequence of Lemma 8.5 for

h = σ.

Claim 1 and Claim 2 together imply the theorem.

Note that the Chomsky-Schützenberger Theorem has a nice counterpart which can

be stated in terms of languages accepted by pushdown automata.
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Lecture 9: Pushdown Automata

As already mentioned, the context-free languages also have a type of automa-

ton that characterizes them. This automaton, called pushdown automaton, is an

extension of the nondeterministic finite automaton with λ-transitions. Here, by λ-

transition we mean that the automaton is allowed to read the empty word λ on its

input tape and to change its state accordingly. A pushdown automaton is essentially

a nondeterministic finite automaton with λ-transitions with the addition of a stack.

The stack can be read, pushed, and popped only at the top, just like the stack data

structure you are already familiar with (cf. Figure 9.1).

Stack

 or is readfinite state
control

head moves in this direction, one 
cell at a time

sk+1

λ

s1 s2 sk

Figure 9.1: A pushdown automaton

Thus, informally the device shown in Figure 9.1 works as follows. A finite state

control reads inputs, one symbol at a time or it reads λ instead of an input symbol.

Additionally, it is allowed to observe the symbol at the top of the stack and to base

its state transition on its current state, the input symbol (or λ), and the symbol

at the top of its stack. If λ is read instead of the input symbol, then we also say

that the pushdown automaton makes a spontaneous transition. In one transition, the

pushdown automaton:

(1) Consumes from the input the symbol it reads. If λ is read then no input symbol

is consumed.

(2) Goes to a new state which may or may not be the same state as its current

state.
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(3) Replaces the symbol at the top of the stack by any string. The string could

be λ, which corresponds to a pop of the stack. It could be the same symbol

that appeared at the top of the stack previously, i.e., no change is made to the

stack. It could also replace the symbol on top of the stack by one other symbol.

In this case, the pushdown automaton changes the top of the stack but does

neither push or pop it.

Finally, the top stack symbol could be replaced by two or more symbols which

has the effect of (possibly) changing the the top of stack symbol and then pushing

one or more new symbols onto the stack.

Before presenting an example you should solve the following exercise.

Exercise 33. Prove the language L = {wwT w ∈ {0, 1}∗} to be context-free.

Example: We informally show L = {wwT w ∈ {0, 1}∗} to be acceptable by a

pushdown automaton. Let x ∈ {0, 1}∗ be given as input.

(1) Start in a state q0 representing a “guess” that we have not yet seen the middle

of x. While in state q0, we read one symbol at a time and store the symbol read

in the stack by pushing a copy of each input symbol onto the stack.

(2) At any time, we may guess that we have seen the middle (i.e., the end of w

if x = wwT is an input string from L). At this time, w will be on the stack

with the rightmost symbol of w at the top and the leftmost symbol of w at the

bottom. We signify this choice by spontaneously changing the state to q1 (i.e.,

we read λ instead of the next input symbol).

(3) Once in state q1, we compare the input symbols with the symbols at the top of

the stack. If the symbol read from input is equal to symbol at the top of the

stack, we proceed in state q1 and pop the stack. If they are different, we finish

without accepting the input. That is, this branch of computation dies.

(4) If we reach the end of x and the stack is empty, then we accept x.

Clearly, if x ∈ L, then by guessing the middle of x rightly, we arrive at an accepting

computation path. If x /∈ L, then independently of what we are guessing, no compu-

tation path will lead to acceptance. Thus, the pushdown automaton described above

is a nondeterministic acceptor for L.

Note that a pushdown automaton is allowed to change the stack as described above

while performing a spontaneous transition. Before presenting the formal definition of

pushdown automaton, this is a good place to think of ways to define the language

accepted by a pushdown automaton. Looking at the example above, we see that the

automaton has finished its computation with empty stack. Thus, it would be natural

to define the language accepted by a pushdown automaton to be the set of all strings

on which the pushdown automaton has a computation that ends with empty stack.
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Second, we can adopt the method we have used for finite automata. That is, we

choose a subset of the set of all states and declare each state in this subset to be an

accepting state. If taking this approach, it would be natural to define the language

accepted by a pushdown automaton to be the set of all strings for which there is a

computation ending in an accepting state.

As we shall show below, both method are equivalent. Therefore, we have to define

both modes of acceptance here.

We continue with a formal definition of a pushdown automaton.

Definition 28. K = [Q,Σ, Γ , δ,q0,k0, F] is said to be a pushdown automaton

provided

(1) Q is a finite nonempty set (the set of states),

(2) Σ is an alphabet (the so-called input alphabet),

(3) Γ is an alphabet (the so-called stack alphabet),

(4) δ:Q× (Σ ∪ {λ})× Γ 7→ ℘fin(Q× Γ∗), the transition relation¶,

(5) q0 ∈ Q is the initial state,

(6) k0 is the so called stack symbol, i.e., k0 ∈ Γ and initially the stack contains

exactly one k0 and nothing else.

(7) F ⊆ Q, the set of final states.

In the following, unless otherwise stated, we use small letters from the beginning of

the alphabet to denote input symbols, and small letters from the end of the alphabet

to denote strings of input symbols. Furthermore, we use capital letters to denote stack

symbols from Γ and small Greek letters to denote strings of stack symbols.

Next, consider

δ(q,a,Z) = {(q1,γ1), (q2,γ2), . . . , (qm,γm)} ,

where q,qi ∈ Q for i = 1, . . . ,m, a ∈ Σ, Z ∈ Γ and γi ∈ Γ∗ for i = 1, . . . ,m.

The interpretation is that the pushdown automaton K is in state q, reads a on

its input tape and Z on the top of its stack. Then it can nondeterministically choose

exactly one (qi,γi), i ∈ {1, . . . ,m} for the transition to be made. That is, it changes

its internal state to qi, moves the head on the input tape one position to the right

provided a 6= λ and replaces Z by γi. We make the convention that the rightmost

symbol of γi is pushed first in the stack, then the second symbol (if any) from the

right, and so on. Hence, the leftmost symbol of γi is the new symbol is then on the

top of the stack. If γi = λ, then the interpretation is that Z has been removed from

the stack.

¶Here we use ℘fin(Q× Γ∗) to denote the set of all finite subsets of Q× Γ∗.
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If a = λ, the interpretation is the same as above, except that the head on the input

tape is not moved.

In order to formally deal with computations performed by a pushdown automa-

ton we define instantaneous descriptions. An instantaneous description is a triple

(q,w,γ), where q ∈ Q, w ∈ Σ∗ and γ ∈ Γ∗.

Let K = [Q,Σ, Γ , δ,q0,k0, F] be a pushdown automaton. Then we write

(q,aw,Zα)
1−→
K

(p,w,βα)

provided (p,β) ∈ δ(q,a,Z). Again note that a may be a symbol from Σ or a = λ.

By
∗−→
K

we denote the reflexive transitive closure of
1−→
K

.

Now we are ready to define the two modes of acceptance.

Definition 29. Let K = [Q,Σ, Γ , δ,q0,k0, F] be a pushdown automaton. We define

the language accepted by K via final state to be the set

L(K) = {w (q0,w,k0)
∗−→
K

(p, λ,γ) for some p ∈ F and a γ ∈ Γ∗} .

The language accepted by K via empty stack is

N(K) = {w (q0,w,k0)
∗−→
K

(p, λ, λ) for some p ∈ Q} .

Since the sets of final states is irrelevant if acceptance via empty stack is considered,

we always set F = ∅ in this case.

Exercise 34. Provide a formal definition for a pushdown automaton that accepts

the language L = {wwT w ∈ {0, 1}∗}.

At this point it is only natural to ask what is the appropriate definition of deter-

minism for pushdown automata. The answer is given by our next definition.

Definition 30. A pushdown automaton K = [Q,Σ, Γ , δ,q0,k0, F] is said to be

deterministic if

(1) for every q ∈ Q and Z ∈ Γ we have δ(q,a,Z) = ∅ for all a ∈ Σ if δ(q, λ,Z) 6= ∅,
and

(2) for all q ∈ Q, Z ∈ Γ and a ∈ Σ ∪ {λ} we have card(δ(q,a,Z)) 6 1.

In the latter definition, we had to include Condition (1) to avoid a choice between

a normal transition and a spontaneous transition. On the other hand, Condition (2)
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guarantees that there is no choice in any step. So, Condition (2) resembles the con-

dition we had imposed when defining deterministic finite automata. The language

accepted by a deterministic pushdown automaton is defined in the same way as for

nondeterministic pushdown automata. That is, we again distinguish between accep-

tance via final state and empty stack, respectively.

As far as finite automata have been concerned, we could prove that the class of

languages accepted by deterministic finite automata is the same as the class of lan-

guages accepted by nondeterministic finite automata. Note that an analogous result

cannot be obtained for pushdown automata. For example, there is no deterministic

pushdown automaton accepting the language L = {wwT w ∈ {0, 1}∗}. We shall show

this result later.

We continue by comparing the power of the two notions of acceptance. First, we

show the following theorem.

Theorem 9.1. Let L = L(K) for a pushdown automaton K. Then there exists a

pushdown automaton K̃ such that L = N(K̃).

Proof. Clearly, such a theorem is proved by providing a simulation, i.e., we want to

modify K in a way such that the stack is emptied whenever K reaches a final state.

In order to do so, we introduce a new state qλ and a special stack symbol X0 to avoid

acceptance if K has emptied its stack without having reached a final state.

Formally, we proceed as follows. Let K = [Q,Σ, Γ , δ,q0,k0, F] be any given push-

down automaton such that L = L(K). We have to construct a pushdown automaton

K̃ such that L = N(K̃). We set

K̃ = [Q ∪ {qλ, q̃0},Σ, Γ ∪ {X0}, q̃0,X0, δ̃, ∅] ,

where δ̃ is defined as follows.

δ̃(q̃0, λ,X0) = {(q0,k0X0)}

δ̃(q,a,Z) = δ(q,a,Z) for all q ∈ Q \ F, a ∈ Σ ∪ {λ}, and Z ∈ Γ
δ̃(q,a,Z) = δ(q,a,Z) for all q ∈ F, a ∈ Σ and Z ∈ Γ
δ̃(q, λ,Z) = δ(q, λ,Z) ∪ {(qλ, λ)} for all q ∈ F and Z ∈ Γ ∪ {X0}

δ̃(qλ, λ,Z) = {(qλ, λ)} for all Z ∈ Γ ∪ {X0} .

By construction, when starting K̃, it is entering the initial instantaneous description

of K but pushes additionally its own stack symbol X0 into the stack. Then K̃ simulates

K until it reaches a final state. If K reaches a final state, then K̃ can either continue

to simulate K or it can change its state to qλ. If K̃ is in qλ, it can empty the stack

and thus accept the input.

Thus, formally we can continue as follows. Let x ∈ L(K). Then, there is a compu-

tation such that

(q0, x,k0)
∗−→
K

(q, λ,γ) for a q ∈ F .
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Now, we consider K̃ on input x. By its definition, K̃ starts in state q̃0 and with stack

symbol X0. Thus, by using the first spontaneous transition, we get

(q̃0, x,X0)
1−→̃
K

(q0, x,k0X0) .

Next, K̃ can simulate every step of K’s work; hence we also have

(q̃0, x,X0)
1−→̃
K

(q0, x,k0X0)
∗−→̃
K

(q, λ,γX0)

Finally, using the last two transitions in the definition of δ̃ we obtain

(q0, x,k0X0)
∗−→̃
K

(qλ, λ, λ) .

Therefore we can conclude that x ∈ N(K̃).

So, we have shown that, if a language is accepted by a pushdown automaton via

final state then it can also be accepted by a pushdown automaton via empty stack. It

is only natural to ask whether or not the converse is also true. The affirmative answer

is given by our next theorem.

Theorem 9.2. Let L = N(K) for a pushdown automaton K. Then there exists a

pushdown automaton K̃ such that L = L(K̃).

Proof. Again the proof is done by simulation. The pushdown automaton K̃ will

simulate K until it detects that K has emptied its stack. If this happens then K̃ will

enter a final state and stop.

The formal construction is as follows. Let K = [Q,Σ, Γ , δ,q0,k0, ∅] be any given

pushdown automaton such that L = N(K). We have to construct a pushdown au-

tomaton K̃ such that L = L(K̃). We set

K̃ =
[
Q ∪ {q̃0,qf},Σ, Γ ∪ {X0}, δ̃, q̃0,X0, {qf}

]
,

where δ̃ is defined as follows.

δ̃(q̃0, λ,X0) = {(q0,k0X0)}

δ̃(q,a,Z) = δ(q,a,Z) for all q ∈ Q, a ∈ Σ ∪ {λ} and Z ∈ Γ
δ̃(q, λ,X0) = {(qf, λ)} for all q ∈ Q .

The first line in the definition of δ̃ ensures that K̃ can start the simulation of K.

Note, however, that K̃ is putting its own stack symbol below the stack symbol of K.

The second line in the definition of δ̃ allows that K̃ can simulate all steps of K. If K

empties its stack, then K̃ also removes all symbols from its stack except its own stack

symbol X0 while performing the simulation. Finally, the last line in the definition of δ̃

guarantees that K̃ can perform a spontaneous transition into its final state qf. Thus,

K̃ then also accepts the input string. The formal verification of L(K̃) = N(K) is left

as exercise.
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Exercise 35. Complete the proof of Theorem 9.2 by showing that L(K̃) = N(K).

9.1. Pushdown Automata and Context-Free Languages

So far, we have only dealt with pushdown automata and their acceptance behavior.

It remains to clarify what languages are accepted by pushdown automata. This is done

by the following theorems. Recall that a derivation is said to be a leftmost derivation

if at each step in derivation a production is applied to the leftmost nonterminal.

Theorem 9.3. Let K = [Q,Σ, Γ , δ,q0,k0, ∅] be any pushdown automaton and let

L = N(K). Then L is context-free.

Proof. Let K = [Q,Σ, Γ , δ,q0,k0, ∅] be any pushdown automaton. For proving that

L defined as L = N(K) is context-free, we have to construct a context-free grammar

G such that L = L(G). We set G = [Σ,N,σ,P], where N is defined as follows. The

elements of N are denoted by [q,A,p], where p,q ∈ Q and A ∈ Γ . Additionally, N

contains the symbol σ. Next, we have to define the set of productions. P contains the

following rules.

(1) σ → [q0,k0,q] for every q ∈ Q,

(2) [q,A,qm+1] → a[q1,B1,q2][q2,B2,q3] · · · [qm,Bm,qm+1] for q1, . . . ,qm+1 ∈
Q and A,B1, . . . ,Bm ∈ Γ such that (q1,B1B2 · · ·Bm) ∈ δ(q,a,A) provided

m > 0.

If m = 0 then the production is [q,A,q1] → a.

To understand the proof it helps to know that the nonterminals and productions

of G have been defined in a way such that a leftmost derivation in G of a string x is

a simulation of the pushdown automaton K when fed the input x. In particular, the

nonterminals that appear in any step of a leftmost derivation in G correspond to the

symbols on the stack of K at a time when K has seen as much of the input as the

grammar has already generated. In other words, our intention is that [q,A,p] derives

x if and only if x causes K to erase an A from its stack by some sequence of moves

beginning in state q and ending in state p.

For showing that L(G) = N(K) we prove inductively

[q,A,p]
∗=⇒
G

x if and only if (q, x,A)
∗−→
K

(p, λ, λ) . (9.1)

First, we show by induction on i that if

(q, x,A)
i−→
K

(p, λ, λ) then [q,A,p]
∗=⇒
G

x .
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For the induction basis let i = 1. In order to have (q, x,A)
1−→
K

(p, λ, λ) it must hold

that (p, λ) ∈ δ(q, x,A). Consequently, either we have x = λ or x ∈ Σ. In both cases,

by construction of P we know that ([q,A,p] → x) ∈ P. Hence, [q,A,p]
1=⇒
G

x. This

proves the induction basis.

Now suppose i > 0. Let x = ay and

(q,ay,p)
1−→
K

(q1,y,B1B2 · · ·Bn)
i−1−→
K

(p, λ, λ) .

The string y can be written as y = y1y2 · · ·yn, where yj has the effect of popping Bj
from the stack, possibly after a long sequence of moves. That is, let y1 be the prefix

of y at the end of which the stack first becomes as short as n− 1 symbols. Let y2 be

the symbols of y following y1 such that at the end of y2 the stack first becomes as

short as n− 2 symbols, and so on. This arrangement is displayed in Figure 9.2.

y1 y2 yn

State = q2

State = qn

State = p

n

State = q1

Input symbols consumed

height of

the

stack

Figure 9.2: Hight of stack as a function of input symbols consumed

Note that B1 does not need to be the nth stack symbol from the bottom during

the entire time y1 is being read by K, since B1 may be changed if it is at the top

of the stack and is replaced by one or more symbols. However, none of B2B3 · · ·Bn
are ever on top while y1 is being read. Thus, none of B2B3 · · ·Bn can be changed or

influence the computation while y1 is processed. In general, Bj remains on the stack

unchanged while y1 · · ·yj−1 is read.
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There exists states q2,q3, . . . ,qn+1, where qn+1 = p such that

(qj,yj,Bj)
∗−→
K

(qj+1, λ, λ)

by fewer than i moves. Note that qj is the state entered when the stack first becomes

as short as n− j+ 1. Thus, we can apply the induction hypothesis and obtain

[qj,Bj,qj+1]
∗=⇒
G

yj for 1 6 j 6 n .

Recalling the original move

(q,ay,p)
1−→
K

(q1,y,B1B2 · · ·Bn)

we know that

[q,A,p] ⇒ a[q1,B1,q2][q2,B2,q3] · · · [qn,Bn,qn+1] ,

and thus [q,A,p]
∗=⇒
G

ay1y2 · · ·yn = x. This proves the sufficiency of (9.1).

For showing the necessity of (9.1) suppose [a,A,p]
i=⇒
G

x. We prove by induction

on i that (q, x,A)
∗−→
K

(p, λ, λ). For the induction basis we again take i = 1. If

[a,A,p]
1=⇒
G

x, then ([a,A,p] → x) ∈ P and therefore (p, λ) ∈ δ(q, x,A).

Next, for the induction step suppose

[q,A,p] ⇒ a[q1,B1,q2] · · · [qn,Bn,qn+1]
i−1=⇒
G

x ,

where qn+1 = p. Then we may write x as x = ax1 · · · xn, where [qj,Bj,qj+1]
∗=⇒
G

xj

for j = 1, . . . ,n. Moreover, each derivation takes fewer than i steps. Thus, we can

apply the induction hypothesis and obtain

(qj, xj,Bj)
∗−→
K

(qj+1, λ, λ) for j = 1, . . . ,n .
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If we insert Bj+1 · · ·Bn at the bottom of each stack in the above sequence of instan-

taneous descriptions we see that

(qj, xj,BjBj+1 · · ·Bn)
∗−→
K

((qj+1, λ,Bj+1 · · ·Bn) . (9.2)

Furthermore, from the first step in the derivation of x from [q,A,p] we know that

(q, x,A)
1−→
K

(q1, x1x2 · · · xn,B1B2 · · ·Bn)

is a legal move of K. Therefore, from this move and from (9.2) for j = 1, 2, . . . ,n we

directly obtain

(q, x,A)
∗−→
K

(p, λ, λ) .

This proves the necessity of (9.1).

The proof concludes with the observation that (9.1) with q = q0 and A = k0 says

[q0,k0,p]
∗=⇒
G

if and only if (q0, x,k0)
∗−→
K

(p, λ, λ) .

This observation together with rule (1) of the construction of P says that σ
∗=⇒
G

x if

and only if (q0, x,k0)
∗−→
K

(p, λ, λ) for some state p. Therefore, we finally arrive at

x ∈ L(G) if and only if x ∈ N(K).
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Next, we want to show that all context-free languages are accepted by pushdown

automata. For doing this, it is very convenient to use another normal form for context-

free languages, i.e., the so-called Greibach normal form.

10.1. Greibach Normal Form

Definition 31. A context-free grammar G = [T ,N,σ,P] is said to be in Greibach

normal form if every production of G has the form h → aα, where a ∈ T and

α ∈ (N \ {σ})∗.

Clearly, we aim to show that every context-free language does possess a grammar

in Greibach normal form. This is, however, not as easy as it might seem. First,

we need the following lemmata. For providing them, we need the following notion.

For a context-free grammar G we define an h-production to be a production with

nonterminal h on the left.

Lemma 10.1. Let G = [T ,N,σ,P] be any context-free grammar. Furthermore,

let h → α1h
′α2 be any production from P, where h, h ′ ∈ N and let h ′ → β1,

h ′ → β2, . . . , h ′ → βr be all h ′-productions. Let G1 = [T ,N,σ,P1] be the

grammar obtained from G by deleting the production h → α1h
′α2 and by adding the

productions h → α1β1α2, h → α1β2α2,. . . , h → a1βrα2. Then L(G) = L(G1).

Proof. The inclusion L(G1) ⊆ L(G) is obvious, since if h → α1βiα2 is used in a

derivation of G1, then

h
1=⇒
G

α1h
′α2

1=⇒
G

α1βiα2

can be used in G.

For the opposite direction L(G) ⊆ L(G1) one simply notes that h → α1h
′α2 is

the only production which is in G but not in G1. Whenever this production is used in

a derivation by G, the nonterminal h ′ must be rewritten at some late step by using

a production of the form h ′ → βi for some i ∈ {1, . . . , r}. These two steps can be

replaced by the single step

h ′ 1=⇒
G1

α1βiα2 ,

and thus we are done.

Lemma 10.2. G = [T ,N,σ,P] be any context-free grammar. Let h → hα1, . . . ,

h → hαr be all h-productions for which h is the leftmost symbol of the right-hand

side. Furthermore, let h → β1, . . . , h → βs be the remaining h-productions. Let

G1 = [T ,N∪ {B},σ,P1] be the context-free grammar formed by adding the nonterminal

B to N and by replacing all the h-productions by h → βi and h → βiB for
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i = 1, . . . , s and all the remaining h-productions by B → αj and B → αjB,

j = 1, . . . , r. Then L(G) = L(G1).

We leave it as an exercise to show Lemma 10.1.

We continue by providing the following fundamental theorem.

Theorem 10.3. For every language L ∈ CF with λ /∈ L there exists a grammar G̃

such that L = L(G̃) and G̃ is in Greibach normal form.

Proof. Let L be any context-free language with λ /∈ L. Then there exists a grammar

G = [T ,N,σ,P] in Chomsky normal such that L = L(G). Let N = {h1,h2, . . . ,hm}.

The first step in the construction of the Greibach normal form is to modify the pro-

ductions of G in a way such that if hi → hjγ is a production, then j > i. Starting

with h1 and proceeding to hm this is done as follows.

We assume that the productions have been modified so that for 1 6 i < k, hi →
hjγ is a production only if j > i. Now, we modify the hk-productions.

begin

(1) for k := 1 to m do
begin

(2) for j := 1 to k− 1 do

(3) for each production of the form hk → hjα do
begin

(4) for all productions hj → β do

(5) add production hk → βα;

(6) remove production hk → hjα

end;

(7) for each production of the form hk → hkα do
begin

(8) add productions Bk → α and Bk → αBk;

(9) remove production hk → hkα

end;

(10) for each production hk → β, where β does not
begin with hk do

(11) add production hk → βBk
end

end

Figure 10.1: Step 1 in the Greibach normal form algorithm

If hk → hjγ is a production with j < k, then we generate a new set of produc-

tions by substituting for hj the right-hand side of each hj-production according to

Lemma 10.1. By repeating the process at most k− 1 times, we obtain productions of

the form hk → h`γ, where ` > k. The productions with ` = k are then replaced by

applying Lemma 10.2. That means we have to introduce a new nonterminal Bk. The

complete algorithm is provided in Figure 10.1.
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By repeating the above process for each original variable, we have only productions

of the forms:

1) hi → hjγ, j > i,
2) hjaγ, a ∈ T ,
3) Bi → γ, γ ∈ (N ∪ {B1,B2, . . . ,Bj−1})

∗.

Note that the leftmost symbol on the right-hand side of any production for hm must

be a terminal, since hm is the highest-numbered nonterminal. The leftmost symbol

on the right-hand side of any production for hm−1 must be either hm or a terminal

symbol. When it is hm, we can generate new productions by replacing hm by the right-

hand side of the productions for hm according to Lemma 10.1. These productions

must have right-hand sides that start with a terminal symbol. We then proceed to

the productions for hm−2, . . . ,h2,h1 until the right hand-side of each production for

an hi starts with a terminal symbol.

As the last step we examine the productions of the new nonterminals B1, . . . ,Bm.

Since we started with a grammar in Chomsky normal form, it is easy to prove by

induction on the number of applications of Lemmata 10.1 and 10.2 that the right-

hand side of every hi-production, 1 6 i 6 n, begins with a terminal or hjhk for some

j and k. Thus α in Instruction (7) of Figure 10.1 can never be empty or begin with

some Bj. So no Bi production can start with another Bj. Therefore, all Bi productions

have right hand sides beginning with terminals or hi’s, and one more application of

Lemma 10.1 for each Bi-production completes the construction.

Since the construction outlined above is rather complicated, we exemplify it by the

following example.

Example 13. Let G = [{a,b}, {h1,h2,h3},h1,P], where

P = {h1 → h2h3, h2 → h3h1, h2 → b, h3 → h1h2, h3 → a} .

We want to convert G into Greibach normal form.

Step 1. Since the right-hand side of the productions for h1 and h2 start with

terminals or higher numbered nonterminals, we begin with the production h3 → h1h2

and substitute the string h2h3 for h1. Note that h1 → h2h3 is the only production

with h1 on the left.

The resulting set of productions is:

h1 → h2h3

h2 → h3h1

h2 → b

h3 → h2h3h2

h3 → a

Since the right-hand side of the production h3 → h2h3h2 begins with a lower

numbered nonterminal, we substitute for the first occurrence of h2 both h3h1 and b.
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Thus, h3 → h2h3h2 is replaced by h3 → h3h1h3h2 and h3 → bh3h2. The new

set is

h1 → h2h3

h2 → h3h1

h2 → b

h3 → h3h1h3h2

h3 → bh3h2

h3 → a

Now, we apply Lemma 10.2 to the productions h3 → h3h1h3h2, h3 → bh3h2 and

h3 → a.

Symbol B3 is introduced, and the production h3 → h3h1h3h2 is replaced by

h3 → bh3h2B3, h3 → aB3, B3 → h1h3h2B3, and B3 → h1h3h2B3. For

simplifying notation, we adopt the Backus-Naur notation. The resulting set is

h1 → h2h3

h2 → h3h1 | b

h3 → bh3h2B3 | aB3 | bh3h2 | a

B3 → h1h3h2B3 | h1h3h2B3

Step 2. Now all the productions with h3 on the left have right-hand sides that

start with terminals. These are used to replace h3 in the production h2 → h3h1

and then the productions with h2 on the left are used to replace h2 in the production

h1 → h2h3. The result is the following.

h3 → bh3h2B3 h3 → bh3h2

h3 → aB3 h3 → a

h2 → bh3h2B3h1 h2 → bh3h2h1

h2 → aB3h1 h2 → ah1

h2 → b

h1 → bh3h2B3h1h3 h1 → bh3h2h1h3

h1 → aB3h1h3 h1 → ah1h3

h1 → bh3

B3 → h1h3h2 B3 → h1h3h2B3

Step 3. The two B3-productions are converted to proper form, resulting in 10 more

productions. That is, the productions B3 → h1h3h2 and B3 → h1h3h2B3 are

altered by substituting the right side of each of the five productions with h1 on the

left for the first occurrences of h1. Thus, B3 → h1h3h2 becomes

B3 → bh3h2B3h1h3h3h2 B3 → aB3h1h3h3h2

B3 → bh3h3h2 B3 → bh3h2h1h3h3h2

B3 → ah1h3h3h2
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The other production for B3 is replaced similarly. The final set of productions is

thus

h3 → bh3h2B3 h3 → bh3h2

h3 → aB3 h3 → a

h2 → bh3h2B3h1 h2 → bh3h2h1

h2 → aB3h1 h2 → ah1

h2 → b

h1 → bh3h2B3h1h3 h1 → bh3h2h1h3

h1 → aB3h1h3 h1 → ah1h3

h1 → bh3

B3 → bh3h2B3h1h3h3h2B3 B3 → bh3h2B3h1h3h3h2

B3 → aB3h1h3h3h2B3 B3 → aB3h1h3h3h2

B3 → bh3h3h2B3 B3 → bh3h3h2

B3 → bh3h2h1h3h3h2B3 B3 → bh3h2h1h3h3h2

B3 → ah1h3h3h2B3 B3 → ah1h3h3h2

end (Example)

10.2. Main Theorem

Now, we are ready to show the remaining fundamental theorem concerning the

power of pushdown automata.

Theorem 10.4. For every language L ∈ CF there exists a pushdown automaton

K such that L = N(K).

Proof. We assume that λ /∈ L. It is left as an exercise to modify the construction

for the case that λ ∈ L. Let G = [T ,N,σ,P] be a context-free grammar in Greibach

normal form such that L = L(G). Furthermore, let

K = [{q}, T ,N, δ,q,σ, ∅] ,

where (q,γ) ∈ δ(q,a,A) whenever (A → aγ) ∈ P.

The pushdown automaton K simulates leftmost derivations of G. Since G is in

Greibach normal form, each sentential form‖ in a leftmost derivation consists of a

string x of terminals followed by a string of nonterminals α. K stores the suffix α of

the left sentential form on its stack after processing the prefix x. Formally, we show

the following claim.

Claim 1. σ
∗=⇒
G

xα by a leftmost derivation if and only if (q, x,σ)
∗−→
K

(q, λ,α).

‖A string α of terminals and nonterminals is called a sentential form if σ ∗=⇒ α.
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We start with the sufficiency. The prove is done by induction. That is, we assume

(q, x,σ)
i−→
K

(q, λ,α) and show σ
∗=⇒
G

xα.

For the induction basis, let i = 0. That is, we assume (q, x,σ)
0−→
K

(q, λ,α). By

the definition of the reflexive transitive closure
∗−→
K

, this means nothing else than

(q, x,σ) = (q, λ,α). Consequently, x = λ and α = σ. Obviously, by the definition of

the reflexive transitive closure
∗=⇒
G

we can conclude σ
∗=⇒
G

σ, again in zero steps.

This proves the induction basis.

For the induction step, assume i > 1 and let x = ya, where y ∈ T∗. Now, we

consider the next-to-last-step, i.e.,

(q,ya,σ)
i−1−→
K

(q,a,β)
1−→
K

(q, λ,α) . (10.1)

If we remove a from the end of the input string in the first i instantaneous descrip-

tions of the sequence (10.1), we discover that (q,y,σ)
i−1−→
K

(q, λ,β), since a cannot

influence K’s behavior until it is actually consumed from the input. Thus, we can

apply the induction hypothesis and obtain

σ
∗=⇒
G

yβ .

Taking into account that the pushdown automaton K, while consuming a, is making

the move (q,a,β)
1−→
K

(q, λ,α), we directly get by construction that β = Aγ for

some A ∈ N, (A → aη) ∈ P and α = ηγ. Hence, we arrive at

σ
∗=⇒
G

yβ
1=⇒
G

yaηγ = xα .

This completes the sufficiency proof.

For showing the necessity suppose that σ
i=⇒
G

xα by a leftmost derivation. We

prove by induction on i that (q, x,σ)
∗−→
K

(q, λ,α). The induction basis is again done

for i = 0, and can be shown by using similar arguments as above.
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For the induction step let i > 1 and suppose

σ
i−1=⇒
G

yAγ
1=⇒
G

yaηγ ,

where x = ya and α = ηγ. By the induction hypothesis we directly get

(q,y,σ)
∗−→
K

(q, λ,Aγ)

and thus (q,ya,σ)
∗−→
K

(q,a,Aγ). Since (A → aη) ∈ P, we can conclude that

(q,η) ∈ δ(q,a,A). Thus,

(q, x,σ)
∗−→
K

(q,a,Aγ)
1−→
K

(q, λ,α) ,

and the necessity follows. This proves Claim 1.

To conclude the proof of the theorem, we have only to note Claim 1 with α = λ

says

σ
∗=⇒
G

x if and only if (q, x,σ)
∗−→
K

(q, λ, λ) .

That is, x ∈ L(G) if and only if x ∈ N(K).

Theorems 9.3 and 10.4 as well as Theorems 9.1 and 9.2 together directly allow the

following main theorem.

Theorem 10.5. Let L be any language. Then the following three assertions are

equivalent:

(1) L ∈ CF

(2) There exists a pushdown automaton K1 such that L = L(K1).

(3) There exists a pushdown automaton K2 such that L = N(K2).

After so much progress we may want to ask questions like whether or not L(G1) ∩
L(G2) = ∅ for any given context-free grammars G1, G2. Remembering Exercise 28

you may be tempted to think this is not a too difficult task. But as a matter of fact,

nobody succeeded to design an algorithm solving this problem for all context-free

grammars. Maybe, there is a deeper reason behind this situation. Before we can

explore such problems, we have to deal with computability.

On the other hand, so far we have studied regular and context-free languages. But

we have already seen a language which is not context-free, i.e., L = {anbncn n ∈ N}.
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Thus, it is only natural to ask what other language families are around. Due to the

lack of time, we can only sketch these parts of formal language theory.

10.3. Context-Sensitive Languages

First, we provide a formal definition.

Definition 32. A Grammar G = [T ,N,σ,P] is said to be context-sensitive if

all its productions satisfy the following conditions.

(1) (α → β) ∈ P iff there are s1, s2, r, and h such that h ∈ N, s1, s2 ∈ (T ∪N)∗

and r ∈ (T ∪N)+ and α = s1hs2 and β = s1rs2, or

(2) α = h and β = λ and h does not occur at any right-hand side of a production

from P.

Definition 33. A language is said to be context-sensitive if there exists a

context-sensitive grammar G such that L = L(G).

By CS we denote the family of all context-sensitive languages. The name context-

sensitive is quite intuitive, since the replacement or rewriting of a nonterminal is only

possible in a certain context expressed by a prefix s1 and suffix s2. The definition

provided above directly allows the observation that CF ⊆ CS.

Exercise 36. Prove that CF ⊂ CS.

Furthermore, using the same ideas mutatis mutandis as in the proof of Theorem 6.2

one can easily show the following.

Theorem 10.6. The context-sensitive languages are closed under union, product

and Kleene closure.

The proof is left as an exercise.

Also, in the same way as Theorem 6.4 has been shown, one can prove the context-

sensitive languages to be closed under transposition. That is, we directly get the next

theorem.

Theorem 10.7. Let Σ be any alphabet, and let L ⊆ Σ∗. Then we have: If L ∈ CS

then LT ∈ CS, too.

Moreover, in contrast to Theorem 6.5 we have:

Theorem 10.8. The context-sensitive languages are closed under intersection.

For establishing further properties of context-sensitive languages, we need the fol-

lowing definition.

Definition 34. A Grammar G = [T ,N,σ,P] is said to be length-increasing if

for each production (α → β) ∈ P the condition |α| 6 |β| is satisfied. In addition,

P may contain the production σ → λ and in this case σ does not occur on the

right-hand side of any production from P.
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Looking at Definition 32 directly allows the following corollary.

Corollary 10.9. Every context-sensitive grammar is length-increasing.

Nevertheless, one can show the following.

Theorem 10.10. For every length-increasing grammar there exists an equivalent

context-sensitive grammar.

The proof of the latter theorem is also left as an exercise. Putting Corollary 10.9

and Theorem 10.10 together directly yields the following equivalence.

Theorem 10.11. Let L be any language. Then the following statements are

equivalent:

(1) there exists a context-sensitive grammar G such that L = L(G),

(2) there exists a length-increasing grammar G̃ such that L = L(G̃).

Example 14. Let T be any alphabet. We define a grammar G = [T ,N,σ,P] as

follows. Let

N = {σ} ∪ {Xi i ∈ T } ∪ {Ai i ∈ T } ∪ {Bi i ∈ T } .

and the following set of productions

1. σ → iσXi

2. σ → AiBi

3. BiXj → XjBi

4. Bi → i

5. AiXj → AiBj

6. Ai → i

where i, j ∈ T .

Inspecting the productions we see that G is a length-increasing grammar which is

not context-sensitive, since the context in Production 3 is destroyed. Nevertheless,

by Theorem 10.10 we know that the language L(G) is context-sensitive. But what

language is generated by G? The answer is provided by our next exercise.

Exercise 37. Prove that the grammar G given in Example 14 generates

L = {ww w ∈ T+} .

Exercise 38. Provide a context-sensitive grammar for the language

L = {ww w ∈ T+} .
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The notion of length-increasing grammar has another nice implication which we state

next.

Theorem 10.12. There is an algorithm that on input any context-sensitive gram-

mar G = [T ,N,σ,P] and any string s ∈ T∗ decides whether or not s ∈ L(G).

Proof. (Sketch). Since every context-sensitive grammar is also a length-increasing

grammar, it suffices to examine all finite sequences w0,w1, . . . ,wn with |wi| < |wi+1|,

i = 0, . . . ,n − 1 and σ = w0 as well as wn = s, where wi ∈ (T ∪N)+. The number

of all those sequences is finite. Let S be the set of all such sequences.

Now, the only thing one has to check is whether or not

wi
1=⇒
G

wi+1 for all i = 0, . . . ,n− 1 . (10.2)

Thus, one either finds sequence in S fulfilling (10.2). Then one can directly conclude

that s ∈ L(G). If all sequences in S fail to satisfy (10.2) then s /∈ L(G).

Recall that we have proved the regular languages to be closed under complement

and the context-free languages to be not closed under complement. As curious as we

are, we clearly like to know whether or not the context-sensitive languages are closed

under complement. To answer this question is by no means easy. As a matter of fact,

it took more than 20 years to resolve this question. So you have to be a bit patient.

We shall provide an answer in the course on “Complexity and Cryptography.”

Finally, we mention what happens if we pose no restrictions whatsoever on the set

of productions. We shall call the resulting family of languages L0, where 0 should

remind you to zero restrictions. Then, it is quite obvious that all languages L in L0

share the property that we can algorithmically enumerate all and only the elements

contained in L provided we are given are grammar G for L. However, as we shall see

later, Theorem 10.12 cannot be generalized to L0. So, we can directly conclude that

CS ⊂ L0. Putting it all together gives us the famous Chomsky Hierarchy, i.e.,

REG ⊂ CF ⊂ CS ⊂ L0 .
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The history of algorithms goes back, approximately, to the origins of mathematics

at all. For thousands of years, in most cases, the solution of a mathematical problem

had been equivalent to the construction of an algorithm that solved it. The ancient

development of algorithms culminated in Euclid’s famous Elements. For example, in

Book VII of the elements we find the Euclidean algorithm for computing the greatest

common divisor of two integers.

The Elements have been studied for 20 centuries in many languages starting, of

course, in the original Greek, then in Arabic, Latin, and many modern languages.

A larger part of Euclid’s Elements deals with the problem to construct geometrical

figures by using only ruler and compass. Over the centuries, often quite different con-

structions have been proposed for certain problems. Moreover, in classical geometry

there have been also a couple of construction problems that nobody could solve by

using only ruler and compass. Perhaps the most famous of these problems are the tri-

section of an angle, squaring the circle and duplicating the cube. Another important

example is the question which regular n-gons are constructible by using only ruler

and compass. The latter problem was only resolved by Gauss in 1798.

However, even after Lindemann’s proof in 1882 that it is impossible to square the

circle, it took roughly another 50 years before modern computability theory started.

The main step to be still undertaken was to formalize the notion of algorithm. The

famous impossibility results obtained for the classical geometrical problems “only”

proved that there is no particular type of algorithm solving, e.g. the problem to

square the circle. Here the elementary operations are the application of ruler and

compass.

So what else can be said concerning the notion of algorithm? The term algorithm is

derived from the name of Al-Hwarizmi (approx.: 780 - 850) who worked in the house

of wisdom in Bagdad. He combined the scientific strength of Greek mathematics with

the versatility of Indian mathematics to perform calculations.

Another influential source for the development of our thinking was Raimundus

Lullus (1232 - 1316) who published more than 280 papers. His Ars magna (Engl.: the

great art) developed the idea to logically combine termini by using a machine.

Inspired by Lullus’ ideas Leibniz (1646 - 1716) split the Ars magna into an Art

indicanti (decision procedures) and an Art inveniendi (generation or enumeration

procedures). Here by decision procedure a method is meant which, for every object,

can find out within a finite amount of time whether or not it possesses the property

asked for.

An enumeration procedure outputs all and only the objects having the property

asked for. Therefore, in a finite amount of time we can only detect that an object has

the property asked for, if it has this property. For objects not possessing the property
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asked for, in general, within a finite amount of time we cannot detect the absence of

the property.

Also, Leibniz pointed out that both decision procedures and enumeration proce-

dures must be realizable by a machine. He also designed a machine for the four basic

arithmetic operations and presented it in 1673 at the Royal Society in London. Note

that also Schickardt (1624) and Pascal (1641) have built such machines. As a mat-

ter of fact, Leibniz was convinced that one can find for any problem an algorithm

solving it.

But there have been problems around that could not be solved despite enormous

efforts of numerous mathematicians. For example, the design of an algorithm deciding

whether a given Diophantine equation has an integral solution (Hilbert’s 10th prob-

lem) remained unsolved until 1967 when it was shown by Matijasevic that there is no

such algorithm.

So, modern computation theory starts with the question:

Which problems can be solved algorithmically ?

In order to answer it, first of all, the intuitive notion of an algorithm has to be for-

malized mathematically.

Hopefully, you also have an intuitive understanding of what an algorithm is. But

what is meant by “there is no algorithm solving problem Π,” where Π is e.g. Hilbert’s

10th problem or the problem we stated at the end of Lecture 9? Having a particular

algorithm on hand, we may be able to check if it is solving problem Π. However, what

can we say about all the algorithms still to be discovered? How can we know that

none of them will ever solve problem Π?

For a better understanding of the problem we may think of algorithms as of com-

puter programs. There are many computer programs around and many projects under

development. So, while you are sleeping, a new computer program may be written.

In general, we have no idea who is writing what computer program. There are very

talented programmers around. So, how can we be sure that by tomorrow or during

the next year, or even during the next decade there will be no program solving our

problem Π?

This is the point where the beauty and strength of mathematics comes into play.

Let us see how we can get started. Looking at all the algorithms we know, we can

say that an algorithm is a computation method having the following properties.

(1) The instruction is a finite text.

(2) The computation is done step by step, where each step performs an elementary

operation.

(3) In each step of the execution of the computation it is uniquely determined which

elementary operation we have to perform.
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(4) The next computation step depends only on the input and the intermediate

results computed so far.

Now, we can also assume that there is a finite alphabet Σ such that every algorithm

can be represented as a string from Σ∗. Since the number of all strings from Σ∗ is

countably infinite there are at most countably infinite many algorithms. Recalling

Cantor’s famous result that

{f f: N 7→ {0, 1}}

is uncountably infinite, we directly arrive at the following theorem.

Theorem 11.1. There exists a noncomputable function f: N 7→ {0, 1}.

While this result is of fundamental epistemological importance, it is telling nothing

about any particular function. For achieving results in this regard, we have to do much

more. First, we have formalize the notion of algorithm in a mathematically precise

way. Note that our description given above is not a formal one. We start with

Gödel’s [1] approach.

11.1. Partial Recursive Functions

For all n ∈ N+ we write Pn to denote the set of all partial recursive functions

from Nn into N. Here we define N1 = N and Nn+1 = Nn × N, i.e., Nn is the set of

all ordered n-tuples of natural numbers. Gödel’s [1] idea to define the set P of all

partial recursive functions is as follows.

Step (1): Define some basic functions which are intuitively computable.

Step (2): Define some rules that can be used to construct new computable functions

from functions that are already known to be computable.

In order to complete Step (1), we define the following functions Z, S, V : N 7→ N by

setting

Z(n) = 0 for all n ∈ N
S(n) = n+ 1 for all n ∈ N

V(n) =

{
0 , if n = 0

n− 1 , for all n > 1

That is, Z is the constant 0 function, S is the successor function and V is the

predecessor function. Clearly, these functions are intuitively computable. Therefore,

by definition we have Z, S, V ∈ P1. This completes Step (1) of the outline given

above. Next, we define the rules (cf. Step (2)).

(2.1) (Introduction of fictitious variables)

Let n ∈ N+; then we have: if τ ∈ Pn and ψ(x1, . . . , xn, xn+1) =df τ(x1, . . . , xn),

then ψ ∈ Pn+1.
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(2.2) (Identifying variables)

Let n ∈ N+; then we have: if τ ∈ Pn+1 and ψ(x1, . . . , xn) =df τ(x1, . . . , xn, xn),

then ψ ∈ Pn.

(2.3) (Permuting variables)

Let n ∈ N+, n > 2 and let i ∈ {1, . . . ,n}; then we have: if τ ∈ Pn and

ψ(x1, . . . , xi, xi+1, . . . , xn) =df τ(x1, . . . , xi+1, xi, . . . , xn), then ψ ∈ Pn.

(2.4) (Composition)

Let n ∈ N and m ∈ N+. Furthermore, let τ ∈ Pn+1, let ψ ∈ Pm and define

φ(x1, . . . , xn,y1, . . . ,ym) =df τ(x1, . . . , xn,ψ(y1, . . . ,ym)). Then φ ∈ Pn+m.

(2.5) (Primitive recursion)

Let n ∈ N, let τ ∈ Pn and let ψ ∈ Pn+2. Then we have: if

φ(x1, . . . , xn, 0) =df τ(x1, . . . , xn)

φ(x1, . . . , xn,y+ 1) =df ψ(x1, . . . , xn,y,φ(x1, . . . , xn,y)) ,

then φ ∈ Pn+1.

(2.6) (µ-recursion)

Let n ∈ N+; then we have:

if τ ∈ Pn+1 and ψ(x1, . . . , xn) =df µy[τ(x1, . . . , xn,y) = 1]

=df


the smallest y such that
(1) τ(x1, . . . , xn, v) is defined for all v 6 y

(2) τ(x1, . . . , xn, v) 6= 1 for all v 6 y and
(3) τ(x1, . . . , xn,y) = 1 , if such a y exists
not defined , otherwise .

then ψ ∈ Pn.

Note that all operations given above except Operation (2.5) are explicit. Oper-

ation (2.5) itself constitutes an implicit definition, since φ appears on both the left

and right hand side. Thus, before we can continue, we need to verify whether or not

Operation (2.5) does always defines a function. This is by no means obvious. Recall

that every implicit definition needs a justification. Therefore, we have to show the

following theorem.

Theorem 11.2 (Dedekind’s Justification Theorem.) If τ and ψ are functions,

then there is precisely one function φ satisfying the scheme given in Operation (2.5).

Proof. We have to show uniqueness and existence of φ.

Claim 1. There is at most one function φ satisfying the scheme given in Opera-

tion (2.5).
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Suppose there are functions φ1 and φ2 satisfying the scheme given in Operation

(2.5). We show by induction over y that

φ1(x1, . . . , xn,y) = φ2(x1, . . . , xn,y) for all x1, . . . , xn,y ∈ N .

For the induction basis, let y = 0. Then we directly get for all x1, . . . , xn ∈ N

φ1(x1, . . . , xn, 0) = τ(x1, . . . , xn)

= φ2(x1, . . . , xn, 0) .

Now, we assume as induction hypothesis (abbr. IH) that for all x1, . . . , xn ∈ N and

some y ∈ N
φ1(x1, . . . , xn,y) = φ2(x1, . . . , xn,y) .

The induction step is done from y to y+ 1. Using the scheme provided in Operation

(2.5) we obtain

φ1(x1, . . . , xn,y+ 1) = ψ(x1, . . . , xn,y,φ1(x1, . . . , xn,y)) by definition

= ψ(x1, . . . , xn,y,φ2(x1, . . . , xn,y)) by the IH

= φ2(x1, . . . , xn,y+ 1) by definition .

Consequently φ1 = φ2, and Claim 1 is proved.

Claim 2. There is a function φ satisfying the scheme given in Operation (2.5).

For showing the existence of φ we replace the inductive and implicit definition of

φ by an infinite sequence of explicit definitions, i.e., let

φ0(x1, . . . , xn,y) =

{
τ(x1, . . . , xn), if y = 0,
not defined, otherwise .

φ1(x1, . . . , xn,y) =


φ0(x1, . . . , xn,y), if y < 1,
ψ(x1, . . . , xn, 0,φ0(x1, . . . , xn, 0)), if y = 1,
not defined, otherwise .

·
·
·

φi+1(x1, . . . , xn,y) =


φi(x1, . . . , xn,y), if y < i+ 1,
ψ(x1, . . . , xn, i,φi(x1, . . . , xn, i)), if y = i+ 1,
not defined, otherwise .

·
·
·

All definitions of the functions φi are explicit, and thus the functions φi exist by the

set forming axiom. Consequently, for y ∈ N and every x1, . . . , xn ∈ N the function φ

defined by

φ(x1, . . . , xn,y) =df φy(x1, . . . , xn,y)
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does exist. Furthermore, by construction we directly get

φ(x1, . . . , xn, 0) = φ0(x1, . . . , xn, 0)

= τ(x1, . . . , xn) and

φ(x1, . . . , xn,y+ 1) = φy+1(x1, . . . , xn,y+ 1)

= ψ(x1, . . . , xn,y,φy(x1, . . . , xn,y))

= ψ(x1, . . . , xn,y,φ(x1, . . . , xn,y)) ,

and thus, φ is satisfying the scheme given in Operation (2.5).

Now, we are ready to define the class of all partial recursive functions.

Definition 35. We define the class P of all partial recursive functions to be

the smallest function class containing the functions Z, S and V and all functions that

can be obtained from Z, S and V by finitely many applications of the Operations (2.1)

through (2.6).

That is P =
⋃
n∈N+

Pn.

Furthermore, we define the important subclass of primitive recursive functions as

follows.

Definition 36. We define the class Prim of all primitive recursive functions

to be the smallest function class containing the functions Z, S and V and all functions

that can be obtained from Z, S and V by finitely many applications of the Operations

(2.1) through (2.5).

Note that, by definition, we have Prim ⊆ P. We continue with some examples.

Example 15. The identity function I: N 7→ N defined by I(x) = x for all x ∈ N
is primitive recursive.

Proof. We want to apply Operation (2.4). Let n = 0 and m = 1. By our definition

(cf. Step (1)), we know that V , S ∈ P1. So, V serves as the τ (note that n + 1 =

0+ 1 = 1) and S serves as the ψ in Operation (2.4) (note that m = 1). Consequently,

the desired function I is the φ in Operation (2.4) (note that n+m = 0 + 1 = 1) and

we can set

I(x) = V(S(x)) .

Hence, the identity function I is primitive recursive.

Example 16. The binary addition function α: N × N 7→ N given by α(n,m) =

n+m for all n,m ∈ N is is primitive recursive.

Proof. By assumption, S ∈ P. As shown in Example 15, I ∈ Prim. First, we define

some auxiliary functions by using the operations indicated below.

ψ(x1, x2) =df S(x1) by using Operation (2.1),

ψ̃(x1, x2) =df ψ(x2, x1) by using Operation (2.3),

τ(x1, x2, x3) =df ψ̃(x1, x2) by using Operation (2.1),

τ̃(x1, x2, x3) =df τ(x1, x3, x2) by using Operation (2.3) .
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Now, we are ready to apply Operation (2.5) for defining α, i.e., we set

α(n, 0) =df I(n)

α(n,m+ 1) =df τ̃(n,m,α(n,m)) .

Since we only used Operations (2.1) through (2.5), we see that α ∈ Prim.

So, let us compute α(n, 1). Then we get

α(n, 1) = α(n, 0 + 1) = τ̃(n, 0,α(n, 0)) ,

= τ̃(n, 0, I(n)) by using α(n, 0) = I(n)

= τ̃(n, 0,n) by using I(n) = n ,

= τ(n,n, 0) by using the definition of τ̃ ,

= ψ̃(n,n) by using the definition of τ ,

= ψ(n,n) by using the definition of ψ̃ ,

= S(n) = n+ 1 by using the definition of ψ and S .

So, our definition may look more complex than necessary. In order to see, it is not,

we compute α(n, 2).

α(n, 2) = α(n, 1 + 1) = τ̃(n, 0,α(n, 1)) ,

= τ̃(n, 0,n+ 1) by using α(n, 0) = n+ 1 ,

= τ(n,n+ 1, 0)

= ψ̃(n,n+ 1)

= ψ(n+ 1,n)

= S(n+ 1) = n+ 2 .

In the following we shall often omit some of the tedious technical steps. For example,

in order to clarify that binary multiplication is primitive recursive, we simply point

out that is suffices to set

m(x, 0) =df Z(x)

m(x,y+ 1) =df α(x,m(x,y)) .

Also note that the constant 1 function c is primitive recursive, i.e., c(n) = 1 for

all n ∈ N. For seeing this, we set

c(0) = S(0) ,

c(n+ 1) = c(n) .

In the following, instead of c(n) we just write 1.

Now, it is easy to see that the signum function sg is primitive recursive, since we

have

sg(0) = 0 ,

sg(n+ 1) = 1 .
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Since the natural numbers are not closed under subtraction, one conventionally

uses the so-called arithmetic difference defined as n −· m = m − n if m > n and 0

otherwise. The arithmetic difference is primitive recursive, too, since for all n,m ∈ N
we have

m −· 0 = I(m) ,

m −· (n+ 1) = V(m −· m) .

Occasionally, we shall also need sg defined as

sg(n) = 1 −· sg(n) .

As the above definition shows, sg is also primitive recursive.

Moreover, we can easily extend binary addition and multiplication to any fixed

number k of arguments. For example, in order to define ternary the addition function

α3 (k = 3), we apply Operation (2.4) and set

α3(x1, x2, x3) =df α(x1,α(x2, x3)) .

Iterating this idea yields k-ary addition. Of course, we can apply it mutatis mutan-

dis to multiplication. For the sake of notational convenience we shall use the more

common
∑k
i=1 xi and

∏k
i=1 xi to denote k-ary addition and k-ary multiplication, re-

spectively. Also, from now on we shall use again the common + and · to denote

addition and multiplication whenever appropriate.

Example 17. Let g ∈ Pn+1 be any primitive recursive function. Then

f(x1, . . . , xn,k) =

k∑
i=1

g(x1, . . . , xn, i)

is primitive recursive.

Proof. By Example 16 we know that α is primitive recursive. Then the function f

is obtained by applying Operations (2.5) and (2.4), i.e.,

f(x1, . . . , xn, 0) = g(x1, . . . , xn, 0)

f(x1, . . . , xn,k+ 1) = α(f(x1, . . . , xn,k),g(x1, . . . , xn,k+ 1)) .

Hence, f is primitive recursive.

Analogously, one can show that the general multiplication is primitive recursive.

That is, if g is as in Example 17 then f(x1, . . . , xn,k) =
∏k
i=1 g(x1, . . . , xn, i) is

primitive recursive.

Quite often one is defining functions by making case distinctions (cf., e.g., our

definition of the predecessor function V). So, it is only natural to ask under what

circumstances definitions by case distinctions do preserve primitive recursiveness. A
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convenient way to describe properties is the usage of predicates. An n-ary predicate p

over the natural numbers is a subset of Nn. Usually, one writes p(x1, . . . , xn) instead

of (x1, . . . , xn) ∈ p. The characteristic function of n-ary predicate p is the function

χp: Nn 7→ {0, 1} defined by

χp(x1, . . . , xn) =

{
1, if p(x1, . . . , xn)

0, otherwise .

A predicate p is said to be primitive recursive if χp is primitive recursive. Let p,q be

n-ary predicates, then we define p∧ q to be the set p ∩ q, p∨ q to be the set p ∪ q
and ¬p to be the set Nn \ p.

Lemma 11.3. Let p,q be any primitive recursive n-ary predicates. Then p ∧ q,

p∨ q, and ¬p are also primitive recursive.

Proof. Obviously, it holds

χp∧q(x1, . . . , xn) = χp(x1, . . . , xn) · χq(x1, . . . , xn) ,

χp∨q(x1, . . . , xn) = χp(x1, . . . , xn) + χq(x1, . . . , xn) ,

χ¬p(x1, . . . , xn) = 1 −· χp(x1, . . . , xn) .

Since we already know addition, multiplication and the arithmetic difference to be

primitive recursive, the assertion of the lemma follows.

Exercise 39. Show the binary predicates =, <, and 6 defined as usual over N×N
to be primitive recursive.

Now, we can show our theorem concerning function definitions by making case

distinctions.

Theorem 11.4. Let p1, . . . ,pk be pairwise disjoint n-ary primitive recursive pred-

icates, and let ψ1, . . . ,ψk ∈ Pn be primitive recursive functions. Then the function

γ: Nn 7→ N defined by

γ(x1, . . . , xn) =



ψ1(x1, . . . , xn), if p1(x1, . . . , xn)

·
·
·
ψk(x1, . . . , xn), if pk(x1, . . . , xn)

0, otherwise .

is primitive recursive.

Proof. Since we can write γ as

γ(x1, . . . , xn) =

k∑
i=1

χpi(x1, . . . , xn) ·ψi(x1, . . . , xn) ,

the theorem follows from the primitive recursiveness of general addition and multipli-

cation.
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11.2. Pairing Functions

Quite often it would be very useful to have a bijection from N×N to N. So, first we

have to ask whether or not such a bijection does exist. This is indeed the case. Recall

that the elements of N × N are ordered pairs of natural numbers. So, we may easily

represent all elements of N× N in a two dimensional array, where row x contains all

pairs (x,y), i.e., having x in the first component and y = 0, 1, 2, . . . (cf. Figure 11.1).

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) . . .
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) . . .
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) . . .
(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) . . .
(5, 0) . . .
. . . . . .

Figure 11.1: A two dimensional array representing N× N.

Now, the idea is to arrange all these pairs in a sequence starting

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . . (11.1)

In this order, all pairs (x,y) appear before all pairs (x ′,y ′) if and only if x+y < x ′+y ′.

That is, they are arranged in order of incrementally growing component sums. The

pairs with the same component sum are ordered by the first component starting with

the smallest one. That is, pair (x,y) is located in the segment

(0, x+ y), (1, x+ y− 1), . . . , (x,y), . . . , (x+ y, 0) .

Note that there are x+ y+ 1 many pairs having the component sum x+ y. Thus, in

front of pair (0, x+y) we have in the Sequence (11.1) x+y many segments containing

a total of

1 + 2 + 3 + · · ·+ (x+ y)

many pairs. Taking into account that

n∑
i=0

i =
n(n+ 1)

2
=

n∑
i=1

i

we thus can define the desired bijection c: N× N 7→ N by setting

c(x,y) =
(x+ y)(x+ y+ 1)

2
+ x

=
(x+ y)2 + 3x+ y

2
. (11.2)

Note that we start counting with 0 in the Sequence (11.1), since otherwise we would

not obtain a bijection. So, pair (0, 0) is at the 0th position, pair (0, 1) at the 1st,
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. . . . Let us make a quick check by computing c(1, 0) and c(0, 2). We directly obtain

c(1, 0) = ((1 + 0)2 + 3 + 0)/2 = 2 and c(0, 2) = ((0 + 2)2 + 2)/2 = 3.

All the operations involved in computing c have already been shown to be primitive

recursive, thus we can conclude that c is primitive recursive, too. Note that c is usually

referred to as to Cantor’s pairing function.

Exercise 40. Determine the functions d1 and d2 such that for all x,y ∈ N, if

z = c(x,y) then x = d1(z) and y = d2(z).

Exercise 41. Show that for every fixed k ∈ N, n > 2, there is a primitive recursive

bijection ck: Nk 7→ N.

Exercise 42. Let N∗ be the set of all finite sequences of natural numbers. Show

that there is a primitive recursive bijection c∗: N∗ 7→ N.

Furthermore, we can easily extend binary addition (i.e., the function α defined in

Example 16) to finite sums by setting

1∑
i=1

xi = I(x1)

n+1∑
i=1

xi = α

(
xn+1,

n∑
i=1

xi

)
.

Now, try it yourself.

Exercise 43. Prove that

(1) every constant function,

(2) f(n) = 2n, and

(3) d(n) = 22n

(4) |m− n|

(5)
[
n
m

]
(i.e., division with remainder)

are primitive recursive.

11.3. General Recursive Functions

Next, we define the class of general recursive functions.

Definition 37. For all n ∈ N+ we define Rn to be the set of all functions

f ∈ Pn such that f(x1, . . . , xn) is defined for all x1, . . . , xn ∈ N. Furthermore, we set

R =
⋃
n∈N+ Rn.

In other words, R is the set of all functions that are total and partial recursive.

Now, we can show the following theorem.
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Theorem 11.5. Prim ⊂ R ⊂ P.

Proof. Clearly Z, SV ∈ R. Furthermore, after a bit of reflection it should be

obvious that any finite number of applications of Operations (2.1) through (2.5) results

only in total functions. Hence, every primitive recursive function is general recursive,

too. This shows Prim ⊆ R. Also, R ⊆ P is obvious by definition. So, it remains to

show that the two inclusions are proper. This is done by the following claims.

Claim 1. P \ R 6= ∅.

By definition, S ∈ P and using Operation (2.4) it is easy to see that δ(n) =df
S(S(n)) is in P, too. Now, note that δ(n) = n+ 2 > 1 for all n ∈ N.

Using Operation (2.1) we define τ(x,y) = δ(y), and thus τ ∈ P. Consequently,

ψ(x) = µ[τ(x,y) = 1]

is the nowhere defined function and hence ψ /∈ R. On the other hand, by construction

ψ ∈ P. Therefore, we get ψ ∈ P \ R, and Claim 1 is shown.

Claim 2. R \ Prim 6= ∅.

Showing this claim is much more complicated. First, we define a function

a(0,m) = m+ 1

a(n+ 1, 0) = a(n, 1)

a(n+ 1,m+ 1) = a(n, a(n+ 1,m))

which is the so-called Ackermann-Péter function. Hilbert conjectured in 1926 that

every total and computable function is also primitive recursive. This conjecture was

disproved by Ackermann in 1928 and Péter simplified Ackermann’s definition in 1955.

Now, we have to show that function a is not primitive recursive and that function a

is general recursive. Both parts are not easy to prove. So, due to the lack of time, we

must skip some parts. But before we start, let us confine ourselves that function a is

intuitively computable. For doing this, consider the following fragment of pseudo-code

implementing the function a as peter.

function peter(n, m)

if n = 0

return m + 1

else if m = 0

return peter(n - 1, 1)

else

return peter(n - 1, peter(n, m - 1))
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Next, we sketch the proof that a cannot be primitive recursive. First, for every

primitive recursive function φ, one defines a function fφ as follows. Let k be the arity

of φ; then we set

fφ(n) = max

{
φ(x1, . . . , xk)

k∑
i=1

xi 6 n

}
.

Then, by using the inductive construction of the class Prim one can show by structural

induction that for every primitive recursive function φ there is a number nφ ∈ N such

that

fφ(n) < a(nφ,n) for all n > nφ .

Intuitively, the latter statement shows that the Ackermann-Péter function grows faster

than every primitive recursive function.

The rest is then easy. Suppose a ∈ Prim. Then, taking into account that the

identity function I is primitive recursive, one directly sees by application of Operation

(2.4) that

κ(n) = a(I(n), I(n))

is primitive recursive, too. Now, for κ there is a number nκ ∈ N such that

fκ(n) < a(nκ,n) for all n > nκ .

But now,

κ(nκ) 6 fκ(nκ) < a(nκ,nκ) = κ(nκ) ,

a contradiction.

For the second part, one has to prove that a ∈ R which mainly means to provide

a construction to express the function a using the Operations (2.1) through (2.5) and

the µ-operator. We refer the interested reader to Hermes [2].

Exercise 44. Compute a(1,m), a(2,m), a(3,m), and a(4,m) for m = 0, 1, 2.
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Lecture 12: Turing Machines

After having dealt with partial recursive functions, we turn our attention to Turing

machines introduced by Alan Turing [2]. His idea was to formalize the notion of

“intuitively computable” functions by using the four properties of an algorithm which

we have stated at the beginning of Lecture 11. Starting from these properties, he

observed that the primitive operations could be reduced to a level such that a machine

can execute the whole algorithm. For the sake of simplicity, here we consider one-tape

Turing machines.

12.1. One-tape Turing Machines

A one-tape Turing machine consists of an infinite tape which is divided into cells.

Each cell can contain exactly one of the tape-symbols. Initially, we assume that all

cells of the tape contain the symbol ∗ except those in which the actual input has been

written. Moreover, we enumerate the tape cells as shown in Figure 12.1.

0 2 3 4 5125 34 1

**** * * * b1 b2 b3

Figure 12.1: The tape of a Turing machine with input b1b2b3.

Furthermore, the Turing machine possesses a read-write head. This head can

observe one cell at a time. Additionally, the machine has a finite number of states it

can be in and a set of instructions it can execute. Initially, it is always in the start

state zs and the head is observing the leftmost symbol of the input, i.e., the cell 0.

We indicate the position of the head by an arrow pointing to it.

Then, the machine works as follows. When in state z and reading tape symbol b,

it writes tape symbol b ′ into the observed cell, changes its state to z ′ and moves the

head either to the left (denoted by L) or to the right (denoted by R) or does not

move the head (denoted by N) provided (z,b,b ′,m, z ′) is in the instruction set of the

Turing machine, where m ∈ {L,N,R}. The execution of one instruction is called step.

When the machine reaches the distinguished state zf (the final state), it stops. Thus,

formally, we can define a Turing machine as follows.

Definition 38. M = [B,Z,A] is called deterministic one-tape Turing ma-

chine if B, Z, A are non-empty finite sets such that B ∩ Z = ∅ and
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(1) card(B) > 2 ( B = {∗, |, . . .} ) (tape-symbols),

(2) card(Z) > 2 ( Z = {zs, zf, . . .}) (set of states ),

(3) A ⊆ Z\{zf}×B×B×{L,N,R}×Z (instruction set), where for every z ∈ Z\{zf}

and every b ∈ B there is precisely one 5-tuple (z,b, ·, ·, ·).

Often, we represent the instruction set A in a table, e.g.,

∗ | b2 . . . bn
zs b ′Nz3
z1 ·
· ·
· ·
· ·
zn ·

A Turing table

If the instruction set is small, it often convenient to write zb → b ′Hz ′, where

H ∈ {L,N,R} instead of (z,b,b ′,H, z ′). Also, we often refer to the instruction set of

a Turing machine M as to the program of M.

12.2. Turing Computations

Next, we have to explain how a Turing machine is computing a function. Our

primary concern are functions from Nn to N, i.e., f: Nn 7→ N. Therefore, the inputs

are tuples (x1, . . . , xn) ∈ Nn. We shall reserve the special tape symbol # to separate

xi from xi+1. Moreover, for the sake of simplicity, in the following we shall assume

that numbers are unary encoded, e.g., number 0 is represented by ∗, number 1 by |,

number 2 by ||, number 3 by |||, a.s.o. Note that this convention is no restriction as

long as we do not consider the complexity of a Turing computation.

Furthermore, it is convenient to introduce the following notations. Let f: Nn 7→ N
be any function. If the value f(x1, . . . , xn) is not defined for a tuple (x1, . . . , xn) ∈ Nn

then we write f(x1, . . . , xn) ↑. If f(x1, . . . , xn) is defined then we write f(x1, . . . , xn) ↓.

Definition 39. Let M be any Turing machine, let n ∈ N+ and let f: Nn 7→ N be

any function. We say that M computes the function f if for all (x1, . . . , xn) ∈ Nn

the following conditions are satisfied:

(1) If f(x1, . . . , xn) ↓ and if x1# . . . #xn is written on the empty tape of M (begin-

ning in cell 0) and M is started on the leftmost symbol of x1# . . . #xn in state

zs, then M stops after having executed finitely many steps in state zf. More-

over, if f(x1, . . . , xn) = 0, then the symbol observed by M in state zf is ∗. If

f(x1, . . . , xn) 6= 0, then the string beginning in the cell observed by M in state zf
(read from left to right) of consecutive | denotes the results (cf. Figure 12.2).
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0 2 3 4 5125 34 1

**** * * * | | |

zf

Figure 12.2: The tape of a Turing machine with result 3 (written as |||).

(2) If f(x1, . . . , xn) ↑ and if x1# . . . #xn is written on the empty tape of M (begin-

ning in cell 0) and M is started on the leftmost symbol of x1# . . . #xn in state

zs then M does not stop.

By fnM we denote the function from Nn to N computed by Turing machine M.

Definition 40. Let n ∈ N+ and let f: Nn 7→ N be any function. f is said

to be Turing computable if there exists a Turing machine M such that fnM = f.

Furthermore, we set

Tn = set of all n-ary Turing computable functions.

T =
⋃
n>1

Tn = set of all Turing computable functions.

Furthermore, as usual we use dom(f) to denote the domain of function f, and

range(f) to denote the range of function f.

Now, it is only natural to ask which functions are Turing computable. The answer

is provided by the following theorem.

Theorem 12.1. The class of Turing computable functions is equal to the class of

partial recursive functions, i.e., T = P.

Proof. For showing P ⊆ T it suffices to prove the following:

(1) The functions Z, S and V are Turing computable.

(2) The class of Turing computable functions is closed under the Operations (2.1)

through (2.6) defined in Lecture 11.

A Turing machine computing the constant zero function can be easily defined as

follows. Let M = [{∗, |}, {zs, zf},A], where A is the following set of instructions:

zs| → |Lzf

zs∗ → ∗Nzf .

That is, if the input is not zero, then M move its head one position to the left and

stops. By our definition of a Turing machine, thenM observes in cell −1 a ∗, and thus

its output is 0. If the input is zero, then M observes in cell 0 a ∗, leaves it unchanged,

does not move its head and stops. Clearly, f1M(x) = 0 for all n ∈ N.
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The successor function S is computed by the following Turing machine M =

{∗, |}, {zs, zf},A], where A is the following set of instructions:

zs| → |Lzs

zs∗ → |Nzf .

That is, the machine just adds a | to its input and stops. Thus, we have f1M(x) = S(x)

for all n ∈ N.

Furthermore, the predecessor function is computed byM = {∗, |}, {zs, zf},A], where

A is the following set of instructions:

zs| → ∗Rzf
zs∗ → ∗Nzf .

Now, the Turing machine either observes a | in cell 0 which it removes and then the

head goes one cell to the right or it observes a ∗, and stops without moving its head.

Consequently, f1M(x) = V(x) for all n ∈ N. This proves Part (1).

Next, we sketch the proof of Part (2). This is done in a series of claims.

Claim 1. (Introduction of fictitious variables)

Let n ∈ N+; then we have: if τ ∈ Tn and ψ(x1, . . . , xn, xn+1) = τ(x1, . . . , xn), then

ψ ∈ Tn+1.

Intuitively, it is clear that Claim 1 holds. In order to compute ψ, all we have to

do is to remove xn+1 from the input tape, then moving the head back into the initial

position and then we start the Turing program for τ. Consequently, ψ ∈ Tn+1. We

omit the details.

Claim 2. (Identifying variables)

Let n ∈ N+; then we have: if τ ∈ Tn+1 and ψ(x1, . . . , xn) = τ(x1, . . . , xn, xn), then

ψ ∈ Tn.

For proving Claim 2, we only need a Turing program that copies the last variable

(that is, xn). Thus, the initial tape inscription

∗ ∗ x1# . . . #xn ∗ ∗

is transformed into

∗ ∗ x1# . . . #xn#xn ∗ ∗

and the head is moved back into its initial position and M is put into the initial state

of the program computing τ. Now, we start the program for τ. Consequently, ψ ∈ Tn.

Again, we omit the details.

Claim 3. (Permuting variables)

Let n ∈ N+, n > 2 and let i ∈ {1, . . . ,n}; then we have:

if τ ∈ Tn and ψ(x1, . . . , xi, xi+1, . . . , xn) = τ(x1, . . . , xi+1, xi, . . . , xn), then ψ ∈ Tn.
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Claim 3 can be shown mutatis mutandis as Claim 2, and we therefore omit its

proof here.

Claim 4. (Composition)

Let n ∈ N and m ∈ N+. Furthermore, let τ ∈ Tn+1, let ψ ∈ Tm and let

φ(x1, . . . , xn,y1, . . . ,ym) = τ(x1, . . . , xn,ψ(y1, . . . ,ym)). Then φ ∈ Tn+m.

The proof of Claim 4 is a bit more complicated. Clearly, the idea is to move the

head to the right until it observes the first symbol of y1. Then we could start the

Turing program for ψ. If ψ(y1, . . . ,ym) ↑, then the machine for φ also diverges on

input x1, . . . , xn,y1, . . . ,ym. But if ψ(y1, . . . ,ym) ↓, our goal would be to obtain the

new tape inscription

∗ ∗ x1# . . . #xn#ψ(y1, . . . ,ym) ∗ ∗

and then to move the head to the left such that it observes the first symbol of x1.

This would allow us to start then the Turing program for τ. So, the difficulty we have

to overcome is to ensure that the computation of ψ(y1, . . . ,ym) does not overwrite

the xi.

Thus, we need the following lemma.

Lemma M+. For every Turing machine M there exists a Turing machine M+

such that

(1) fnM = fnM+ for all n.

(2) M+ is never moving left to the initial cell observed when starting its computa-

tion.

(3) For all x1, . . . , xn: If fnM+(x1, . . . , xn) ↓, then the computation stops with the

head observing the same cell it has observed when the computation started and

right to the result computed there are only ∗ on the tape.

The idea to show Lemma M+ is as follows. M+ does the following.

• It moves the whole input one cell to the right,

• it marks the initial cell with a special symbol, say L,

• it marks the first cell right to the moved input with a special symbol, say E,

• it works then as M does except the following three exceptions:

– If M+ reaches the cell marked with E, say in state z, then it moves the

marker E one cell to the right, moves the head then one position to the left

and writes a ∗ into this cell (that is into the cell that originally contained

E) and continues to simulate M in state z with the head at this position

(that is, the cell originally containing E and now containing ∗).

c©Thomas Zeugmann, Hokkaido University, 2007



108 Lecture 12: Turing Machines

– If M in state z enters the cell containing L, then the whole tape inscription

between L and E (including E but excluding L) is moved one position to

the right. In the cell rightmost to L a ∗ is written and M + continues to

simulate M observing this cell.

– If M stops, then M+ moves the whole result left such that the first symbol

of the result is now located in the cell originally containing L. Furthermore,

into all cells starting from the first position right to the moved result and

ending in E a ∗ is written and then the head is moved back to the leftmost

cell containing the result. Then M+ also stops.

This proves Lemma M+.

Having Lemma M+, now Claim 4 follows as described above.

The remaining claims for primitive recursion and µ-recursion are left as an exercise.

This shows P ⊆ T.

Finally, we have to show T ⊆ P. Let n ∈ N+, let f ∈ Tn and let M be any Turing

machine computing f. We define the functions t (time) and r (result) as follows.

t(x1, . . . , xn,y) =


1 , if M when started on x1, . . . , xn,

stops after having executed at most y steps
0 , otherwise.

r(x1, . . . , xn,y) =

{
f(x1, . . . , xn) , if t(x1, . . . , xn,y) = 1,

0 , otherwise.

Now, one can show that t, r ∈ Prim. Furthermore, Kleene showed the following

normal form theorem.

Theorem 12.2. For every f ∈ Tn, n ∈ N+ there are functions t, r ∈ Prim such

that

f(x1, . . . , xn) = r(x1, . . . , xn,µy[t(x1, . . . , xn,y) = 1]) (12.1)

for all x1, . . . , xn ∈ Nn. We do not prove this theorem here, since a proof is beyond

the scope of this course.

Assuming Kleene’s normal form theorem, the inclusion T ⊆ P follows from the

primitive-recursiveness of t and r and Equation (12.1), since the latter one shows

that one has to apply the µ-operator exactly ones (Operation (2.6)) and the resulting

function is composed with r by using Operation (2.4). Consequently, f ∈ P and the

theorem follows.

The latter theorem is of fundamental epistemological importance. Though we

started from completely different perspectives, we finally arrived the same set of com-

putable functions. Subsequently, different approaches have been proposed to formalize

the notion of “intuitively computable” functions. These approaches comprise, among
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others, Post algorithms, Markov algorithms, Random-access machines (abbr. RAM),

and Church’ λ-calculus.

As it turned out, all these formalizations define the same set of computable func-

tions, i.e., the resulting class of functions is equal to the Turing computable functions.

This led Church to his famous thesis.

Church’s Thesis. The class of the “intuitively computable” functions is equal to

the class of Turing computable functions.

Note that Church’s Thesis can neither be proved nor disproved in formal way,

since it contains the not defined term “intuitively computable.” Whenever this term

is defined in a mathematical precise way, ones gets a precisely defined class of functions

for which one then could try to prove a theorem as we did above.

Furthermore, it should be noted that the notion of a Turing machine contains some

idealization such as potentially unlimited time and and having access to unlimited

quantities of cells on the Turing tape. On the one hand, this idealization will limit

the usefulness of theorems showing that some function is Turing computable. On the

other hand, if one can prove that a particular function is not Turing computable, then

such a result is very strong.

12.3. The Universal Turing Machine

Within this subsection we are going to show that there is one Turing machine

which can compute all partial recursive functions.

First, using our results concerning pairing functions, it is easy to see that we can

encode any n-tuple of natural numbers into a natural number. Moreover, as we have

seen, this encoding is even primitive recursive. Thus, in the following, we use P to

denote the set of all partial recursive functions from N to N.

Next, let us consider any partial recursive function ψ(i, x), i.e., ψ: N2 7→ N. Thus,

if we fix the first argument i, then we obtain a partial recursive function of one

argument. Usually, one uses the notation from the λ calculus to specify the argument

which is not fixed, i.e., we write λxψ(i, x) to denote the partial recursive function of

the argument x. It is also common to write just ψi instead of λxψ(i, x). Thus, we can

visualize all functions of one argument computed by ψ as follows (cf. Figure 12.3).

For having an example, consider ψ(i, x) = ix; then e.g., ψ7(x) = 7x.

Therefore, it is justified to call every function ψ ∈ P2 a numbering.

Definition 41. A numbering ψ ∈ P2 is said to be universal for P if

{ψi i ∈ N} = P .

Clearly, now the interesting question is whether or not a universal ψ ∈ P2 for P

does exist. If there is a universal ψ for P, then, by Theorem 12.1, we know that ψ is
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ψ0 ψ(0, 0) ψ(0, 1) ψ(0, 2) ψ(0, 3) ψ(0, 4) . . .
ψ1 ψ(1, 0) ψ(1, 1) ψ(1, 2) ψ(1, 3) ψ(1, 4) . . .
ψ2 ψ(2, 0) ψ(2, 1) ψ(2, 2) ψ(2, 3) ψ(2, 4) . . .
ψ3 ψ(3, 0) ψ(3, 1) ψ(3, 2) ψ(3, 3) ψ(3, 4) . . .
ψ4 ψ(4, 0) ψ(4, 1) ψ(4, 2) ψ(4, 3) ψ(4, 4) . . .
ψ5 ψ(5, 0) . . .
·
·
·
ψi . . . . . .
. . .

Figure 12.3: A two dimensional array representing all ψi.

Turing computable, too. Therefore, we could interpret any Turing machine computing

ψ as a universal Turing machine. The following theorem establishes the existence

of a universal ψ.

Theorem 12.3. There exists a universal numbering ψ ∈ P2 for P.

Proof. (Sketch) The idea is easily explained. By Theorem 12.1 we know that for

every τ ∈ P there is Turing machine M such that f1M = τ. Therefore, we aim to

encode every Turing machine into a natural number. Thus, we need an injective

general recursive function cod such that cod(M) ∈ N. Furthermore, in order to make

this idea work we also need a general recursive function decod such that

decod(cod(M)) = Program of M .

If the input i to decod is not a correct encoding of some Turing machine, then we set

decod(i) = 0.

The universal function ψ is then described by a Turing machine U taking two

arguments as input, i.e., i and x. When started as usual, it first computes decod(i).

If decod(i) = 0, then it computes the function Z (constant zero). Otherwise, it should

simulate the program of the machine M returned by decod(i).

For realizing this behavior, the following additional conditions must be met:

(1) U is not allowed to overwrite the program obtained from the computation of

decod(i),

(2) U must be realized by using only finitely many tape symbols and a finite set of

states.

Next, we shortly explain how all our conditions can be realized. For the sake of better

readability, in the following we always denote the tape symbols by bi and the state

sets always starts with zs, zf, . . .. Let

M = [{b1, . . . ,bm}, {zs, zf, z1, . . . , zk},A]
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be given. Then we use the following coding (here we write 0n to denote the string

consisting of exactly n zeros):

cod(L) = 101

cod(R) = 1001

cod(N) = 10001

cod(zs) = 1041

cod(zf) = 1061

cod(z`) = 102(`+3)1 for all ` ∈ {1, . . . , k}

cod(b`) = 102(`+1)+11 for all ` ∈ {1, . . . ,m}

The instruction set is then encoded by concatenating the codings of its parts, that is

cod(zb → b ′Hz ′) = cod(z)cod(b)cod(b ′)cod(H)cod(z ′) .

For example, zsb1 → b2Nz1 is then encoded as

104110511071100011081

Now, we have m tape symbols and k+ 2 states. Thus, there must be m(k+ 1) many

instructions I1, . . . , Im(k+1) (cf. Definition 38) which we assume to be written down in

canonical order. Consequently, we finally encode the program of M by concatenating

the encodings of all these instructions, i.e.,

cod(M) = cod(I1) · · · cod(Im(k+1)) .

This string is interpreted as a natural number written in binary.

Now, it easy to see that cod is injective, i.e., if M 6= M ′ then cod(M) 6= cod(M ′).

Furthermore, if we use the function cod as described above, then decode reduces

to check that an admissible string is given. If it is, the program of M can be directly

read from the string.

Finally, we have to describe how the simulation is done. First, we have to ensure

that U is not destroying the program of M. This is essentially done as outlined in

Lemma M+. Thus, it remains to explain how the Condition (2) is realized. Clearly,

U cannot memorize the actual state of M during simulation in its state set, since this

would potentially require an unlimited number of states. But U can mark the actual

state in which M is on its tape (e.g., by using bold letters).

In order to ensure that U is only using finitely many tape symbols, U is not using

directly b` from M’s tape alphabet but just cod(b`) = 102(`+1)+11. This requires just

two tape symbols for the simulation. We omit the details.

The Turing machine U can thus be expressed as a partial recursive function ψ ∈ P2

via Theorem 12.1
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Summarizing, we have constructed a Turing machine U that can simulate every

Turing machine computing a function of one argument. Since we can encode any tuple

of natural numbers into a natural number, we thus have a universal Turing machine.

Corollary 12.4. There exists a universal Turing machine U for T.

We finish this lecture by shortly explaining how Turing machines can accept formal

languages.

12.4. Accepting Languages

Let Σ denote any finite alphabet. Again, we use Σ∗ to denote the free monoid over

Σ and λ to denote the empty string. Note that λ 6= ∗.

Next, we define what does it mean that a Turing machine is accepting a language L.

Definition 42. A language L ⊆ Σ∗ is accepted by Turing machine M if for every

string w ∈ Σ∗ the following conditions are satisfied.

If w is written on the empty tape ofM (beginning in cell 0) and the Turing machine

M is started on the leftmost symbol of w in state zs thenM stops after having executed

finitely many steps in state zf. Moreover,

(1) if w ∈ L then the cell observed by M in state zf contains a | .

In this case we also write M(w) = |.

(2) If w /∈ L then the cell observed by M in state zf contains a ∗.
In this case we also write M(w) = ∗.

Of course, in order to accept a language L ⊆ Σ∗ by a Turing machineM = [B,Z,A]

we always have to assume that Σ ⊆ B.

Moreover, for every Turing machine M we define

L(M) =df {w | w ∈ Σ∗ ∧ M(w) = |} ,

and we refer to L(M) as to the language accepted by M.

Example 1. Let Σ = {a} and L = Σ+.

We set B = {∗,a, |}, Z = {zs, zf} and define A as follows.

zs∗ −→ |Nzf

zsa −→ |Nzf

zs| −→ |N, zs

where zb −→ b ′mz ′ if and only if (z,b,b ′,m, z ′) ∈ A. Note that we have included

the instruction zs| −→ |N, zs only for the sake of completeness, since this is required

by Definition 38. In the following we shall often omit instructions that cannot be

executed.
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Example 2. Let Σ = {a} and L = ∅.

Again, we set B = {∗,a, |}, Z = {zs, zf}. The desired Turing machine M is defined

as follows.

zs∗ −→ ∗Nzf
zsa −→ ∗Nzf

Let us finish with a more complicated example, i.e., the language of all palindromes

over a two letter alphabet, i.e., let Σ = {a,b} and Lpal = {w | w ∈ Σ∗, w = wT }.

For formally presenting a Turing machineM accepting Lpal we set B = {∗, |, a, b},

Z = {zs, z1, z2, z3, z4, z5, z6, zf} and A as given by the following table.

a b ∗ |

zs ∗Rz1 ∗Rz2 |Nzf |Nzf
z1 aRz1 bRz1 ∗Lz3 |Nzf
z2 aRz2 bRz2 ∗Lz4 |Nzf
z3 ∗Lz5 ∗Nzf |Nzf |Nzf
z4 ∗Nzf ∗Lz5 |Nzf |Nzf
z5 aLz6 bLz6 |Nzf |Nzf
z6 aLz6 bLz6 ∗Rzs |Nzf

Instruction set of a Turing machine accepting Lpal

So, this machine remembers the actual leftmost and rightmost symbol, respectively.

Then it is checking whether or not it is identical to the rightmost and leftmost symbol,

respectively.
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Lecture 13: Algorithmic Unsolvability

In the last lecture we have shown that there is a universal numbering ψ ∈ P2 for P

(cf. Theorem 12.3). Furthermore, we have provided a Turing machine U which is

universal for T (see Corollary 12.4). These results can be used to establish the first

problem which which is not algorithmically solvable.

13.1. The Halting Problem

Next, we explain the problem. Our universal Turing machine U is computing our

numbering ψ ∈ P2. Now, if we wish to know whether or not ψ(i, x) is defined, we

could run U on input i, x. Then, two cases have to be distinguished. First, the

computation of U(i, x) stops. Then we know that ψ(i, x) is defined, i.e., ψ(i, x) ↓.
Second, the computation of U(i, x) does not stop.

However, while everything is clear when the computation of U(i, x) stops, the

situation is different if it has not yet stopped. Just by observing the Turing machine

U on input i, x for a finite amount of time, the only thing we can tell for sure is that

has not yet stopped. Of course, there is still a chance that it will stop later. But it

is also possible that it will never stop. Compare this to the situation when you are

working with a computer. You have started a program and it does not terminate.

What should you do? If you kill the execution of the program, then maybe it would

have terminated its execution within the next hour, and now everything is lost. But

if you let it run, and check the next day, and it still did not stop, again you have no

idea what is better, to wait or to kill the execution.

Thus, it would be very nice if we could construct an algorithm deciding whether or

not the computation of U(i, x) will stop. So, we ask whether or not such an algorithm

does exist. This problem is usually referred to as to the general halting problem.

This equivalent to asking whether or not the following function h̃:N × N 7→ N is

computable, where

h̃(i, x) =

{
1 , if ψ(i, x) ↓
0 , if ψ(i, x) ↑ .

Clearly, h̃ is total. Thus, we have to figure out whether or not h̃ ∈ R2.

For answering this question, we look at a restricted version of it, usually just called

the halting problem, i.e., we consider

h(x) =

{
1 , if ψ(x, x) ↓
0 , if ψ(x, x) ↑ .

Thus, now we have to find out whether or not h ∈ R. The negative answer is provided

by our next theorem. We shall even proof a stronger result which is independent on

the particular choice of ψ.
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Theorem 13.1. Let ψ ∈ P2 be any function which is universal for P. Then for

h(x) =

{
1 , if ψ(x, x) ↓
0 , if ψ(x, x) ↑ ,

we always have h /∈ R.

Proof. The proof is done by diagonalization. Suppose the converse, i.e., h ∈ R.

Now, define a function h: N 7→ N as follows.

h(x) =

{
1 −· ψ(x, x) , if h(x) = 1

0 , if h(x) = 0 .

Since by supposition h ∈ R, we can directly conclude that h ∈ R, too, by using the

same technique as in the proof of Theorem 11.4. Furthermore, h ∈ R directly implies

h ∈ P, since R ⊆ P. Since ψ is universal for P, there must exist an i ∈ N such that

h = ψi. Consequently,

ψi(i) = h(i) .

We distinguish the following cases.

Case 1. ψi(i) ↓.
Then, by the definition of the function h we directly get that h(i) = 1. Therefore,

the definition of the function h directly implies

h(i) = 1 −· ψ(i, i) = 1 −· ψi(i) 6= ψi(i) ,

a contradiction to ψi(i) = h(i). Thus, Case 1 cannot happen.

Case 2. ψi(i) ↑.
Now, the definition of the function h directly implies that h(i) = 0. Therefore, the

definition of the function h yields h(i) = 0. So, we have

0 = h(i) = ψi(i) ,

a contradiction to ψi(i) ↑. Thus, Case 2 can not happen either.

Now, the only resolution is that our supposition h ∈ R must be wrong. Conse-

quently, we get h /∈ R, and the theorem is proved.

So, we have seen that the halting problem is algorithmically unsolvable. This

directly allows the corollary that the general halting problem is algorithmically un-

solvable, too.

Corollary 13.2. Let ψ ∈ P2 be any function which is universal for P. Then for

h̃(i, x) =

{
1 , if ψ(i, x) ↓
0 , if ψ(i, x) ↑ .

we always have h̃ /∈ R2.

Proof. Suppose the converse, i.e., h̃ ∈ R2. Then, we directly see that h(x) = h̃(x, x)

and thus, h ∈ R, too. But this is a contradiction to Theorem 13.1. Thus, the corollary

follows.
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Next, we aim to attack some of the problems from formal language theory. But

this is easier said than done. Therefore, we have to study another problem which

turns out to be very helpful, i.e., Post’s correspondence problem.

13.2. Post’s Correspondence Problem

While we have provided a direct proof for the undecidability of the halting problem,

in the following we shall use a different approach. Within this subsection we begin to

reduce undecidable problems concerning Turing machines to “real” problems.

Let us first explain what is meant by reduction. Let A and B be any subsets

of N. Furthermore, let us assume that the characteristic function χA of A is general

recursive. So, for every x ∈ N we can compute χA(x). Thus, if χA(x) = 1, then we

know that x ∈ A and if χA(x) = 0, then x /∈ A. But now we get the new problem to

decide for every x ∈ N whether or not x ∈ B. Instead of starting from scratch, we also

have the possibility to search for a function red having the following two properties:

(1) red ∈ R,

(2) x ∈ B if and only if red(x) ∈ A.

Property (1) ensures that red is computable and total. Now, given any x ∈ N, we

compute red(x) and then we run the algorithm computing χA on input red(x). By

Property (2) we know that x ∈ B if and only if χA(red(x)) = 1 (cf. Figure 13.1). If B

is reducible to A via red then we also write B 6red A.

y

N N

red(x)B

A
red(y)

x

Figure 13.1: Reducing B to A.

Reductions are also very important as a proof technique. Let ψ ∈ P2 be any

numbering universal for P. As shown above, then the set K = {i i ∈ N, ψi(i) ↓} is

undecidable, i.e., χK /∈ R. We refer to K as to the halting set. Now, let a set P ⊆ N
be given. If we can find a reduction function red ∈ R such that K 6red P, then P must

be undecidable, too. For seeing this, suppose the converse, i.e., χP ∈ R. Given any

x ∈ N, we can compute χP(red(x)). By Property (2) of a reduction function we then

have x ∈ K if and only if χP(red(x)) = 1. Thus, K would be decidable, a contradiction.
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We continue with Post’s correspondence problem. Though Post’s correspondence

problem may seem rather abstract to you, it has the advantage to be defined over

strings. In the following we shall abbreviate Post’s correspondence problem by PCP.

Next, we formally define what a PCP is.

Definition 43. A quadruple [Σ,n, P, Q] is called PCP if

(1) Σ 6= ∅ is a finite alphabet,

(2) n ∈ N+

(3) P, Q ∈ (Σ+)n, i.e.,

P = [p1, . . . ,pn]

Q = [q1, . . . ,qn] , where pi,qi ∈ Σ+ .

Definition 44. Let [Σ,n, P, Q] be any PCP. [Σ,n, P, Q] is said to be solvable if

there is a finite sequence i1, i2 . . . , ik of natural numbers such that

(1) ij 6 n for all 1 6 j 6 k,

(2) pi1pi2 · · ·pik = qi1qi2 · · ·qik.

[Σ,n, P, Q] is said to be unsolvable if it is not solvable.

Next, we provide an example for a solvable and an unsolvable PCP, respectively.

Example 18. Consider the PCP [{a,b}, 3, [a2,b2,ab2], [a2b,ba,b]]. This PCP

is solvable, since

p1p2p1p3 = a2b2a2ab2 = a2bbaa2bb = q1q2q1q3 .

Example 19. Consider the PCP [{a}, 2, [a3,a4], [a2,a3]]. This PCP is unsolvable.

Furthermore, it is necessary to have the following definition.

Definition 45. Let [Σ,n, P, Q] be any PCP. [Σ,n, P, Q] is said to be 1-solvable

if it is solvable and

p1pi2 · · ·pik = q1qi2 · · ·qik ,

that is, if i1 = 1.

Now we are ready to state the main theorem of this subsection, i.e., the property

of a PCP to be solvable is undecidable.

Theorem 13.3. There does not exist any Turing machine M such that

M(p1#p2# · · ·#pn#q1#q2# · · ·#qn) =

{
1 , if [Σ,n, P, Q] is solvable,
0 , if [Σ,n, P, Q] is unsolvable,

for every PCP [Σ,n, P, Q].
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Proof. The proof idea is as follows. We shall show that deciding the solvability of

any PCP is at least as hard as deciding the halting problem.

This goal is achieved in two steps, i.e., we show:

Step 1. If we could decide the solvability of any PCP, then we can also decide the

1-solvability of any PCP.

Step 2. If we could decide the 1-solvability of any PCP, then we can also decide

the halting problem.

For proving Step 1, we show that for every PCP [Σ,n, P, Q] we can effectively

construct a PCP [Σ ∪ {A,E},n+ 2, P ′, Q ′] such that

[Σ,n, P, Q] is 1-solvable iff [Σ ∪ {A,E},n+ 2, P ′, Q ′] is solvable . (13.1)

Here, by effective we mean that there is an algorithm (a Turing machine) which on

input any PCP [Σ,n, P, Q] outputs [Σ ∪ {A,E},n+ 2, P ′, Q ′].

We define the following two homomorphisms hR and hL. Let A, E be any fixed

symbols such that A, E /∈ Σ. Then we set for all x ∈ Σ

hR(x) = xA ,

hL(x) = Ax .

Next, let [Σ,n, P, Q] be given as input, where P = [p1, . . . ,pn] and Q = [q1, . . . ,qn].

Then we compute

p ′
1 = AhR(p1)

p ′
i+1 = hR(pi)

p ′
n+2 = E

1 6 i 6 n

q ′
1 = hL(q1)

q ′
i+1 = hL(qi)

q ′
n+2 = AE

For the sake of illustration, let us exemplify the construction. Let the PCP

[{a,b}, 2, [a2,b], [a,ab]] be given. It is obviously 1-solvable, since p1p2 = q1q2.

Now, we compute

p ′
1 = AaAaA q ′

1 = Aa

p ′
2 = aAaA q ′

2 = Aa

p ′
3 = bA q ′

3 = AaAb

p ′
4 = E q ′

4 = AE

Now, it is easy to see that [{a,b,A,E}, 4, P ′, Q ′] is solvable, since

p ′
1p

′
3p

′
4 = AaAaAbAE

= q ′
1q

′
3q

′
4 .

For the general case, we show the following claim stating that if [Σ,n, P, Q] is

1-solvable then [Σ ∪ {A,E},n+ 2, P ′, Q ′] is solvable.
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Claim 1. Let [Σ,n, P, Q] be any PCP and let [Σ ∪ {A,E},n + 2, P ′, Q ′] be the

PCP constructed as described above. If there is a finite sequence 1, i1, . . . , ir such that

p1pi1 · · ·pir = q1qi1 · · ·qir then p ′
1p

′
i1+1 · · ·p ′

ir+1p
′
n+2 = q ′

1q
′
i1+1 · · ·q ′

ir+1q
′
n+2.

The claim is proved by calculating the strings involved. For seeing how the proof

works, let us start with the simplest case, i.e., p1 = q1.

Let p1 = x1 · · · xk. By construction we get

p ′
1 = Ax1Ax2A · · ·AxkA q ′

1 = Ax1Ax2A · · ·Axk
p ′

2 = x1Ax2A · · ·AxkA q ′
2 = Ax1Ax2A · · ·Axk

p ′
n+2 = E q ′

n+2 = AE

So, we see that p ′
2 and q ′

2 are almost equal, that is they are equal except the missing

leading A in p ′
2 and the A at the end of q2. Therefore, we replace p ′

2 and q ′
2 by p ′

1 and

q ′
1, respectively. This solves the problem of the missing leading A. Now, q ′

n+2 gives

the missing A on the rightmost part of q ′
1 plus an E and this E is obtained from p ′

n+2

which concatenated to p ′
2. Hence, p ′

1p
′
n+2 = q ′

1q
′
n+2. Thus the assertion follows.

Now, for the general case the same idea works. Assume that

p1pi1 · · ·pir = q1qi1 · · ·qir . (13.2)

We have to show that

p ′
1p

′
i1+1 · · ·p ′

ir+1p
′
n+2 = q ′

1q
′
i1+1 · · ·q ′

ir+1q
′
n+2

Since hR and hL are homomorphisms, by construction we get

hR(p1pi1 · · ·pir) = hR(p1)hR(pi1) · · ·hR(pir)
= p ′

2p
′
i1+1 · · ·p ′

ir+1 , and

hL(q1qi1 · · ·qir) = hL(q1)hL(qi1) · · ·hL(qir)
= q ′

2q
′
i1+1 · · ·q ′

ir+1 .

Thus by (13.2), applying hR to p1pi1 · · ·pir and hL to q1qi1 · · ·qir gives again al-

most the same strings, except the same problems mentioned above. So we again

replace p ′
2 and q ′

2 by p ′
1 and q ′

1, respectively, solving the problem of the leading A in

hR(p1pi1 · · ·pir). Appending p ′
n+2 and q ′

n+2 to p ′
1p

′
i1+1 · · ·p ′

ir+1 and q ′
1q

′
i1+1 · · ·q ′

ir+1,

respectively, gives on the left hand side an E at the end of the string and an AE on

the right hand side at the end of the string. Hence,

p ′
1p

′
i1+1 · · ·p ′

ir+1p
′
n+2 = q ′

1q
′
i1+1 · · ·q ′

ir+1q
′
n+2 .

This proves the claim.

Thus, we have shown the necessity of (13.1). For proving the sufficiency of (13.1),

assume that [Σ ∪ {A,E},n + 2, P ′, Q ′] is solvable. We have to show that [Σ,n, P, Q]

is 1-solvable.
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By assumption, there is a finite sequence i1, . . . , ir such that

p ′
i1
· · ·p ′

ir
= q ′

i1
· · ·q ′

ir
.

Now, all strings q ′
i start with an A. Since p ′

1 is the only string among all p ′
i which

start with A, we directly see that i1 = 1.

Furthermore, since all p ′
i end with an A and none of the q ′

i does end with A, we

can directly conclude that ir = n + 2. Thus, by deleting all A and E we directly get

the desired solution, i.e.,

p1pi2−1 · · ·pir−1 = q1qi2−1 · · ·qir−1 .

Note that deleting all A and E corresponds to applying the erasing homomorphism

he defined as he(x) = x for all x ∈ Σ and he(A) = he(E) = λ. Therefore, we have

provided a 1-solution of [Σ,n, P, Q]. This completes the proof of Step 1.

We continue with Step 2. The idea is to transform the instruction set of any Turing

machine M and its actual input x into a PCP such that the PCP is 1-solvable if and

only if M stops its computation on input x.

For realizing this idea, it is technically advantageous to assume a normalization of

Turing machines such as we did when proving Lemma M+ in Lecture 12. Therefore,

we need the following Lemma M∗.

Lemma M∗. For every Turing machine M there exists a Turing machine M∗

such that

(1) fM = fM∗, i.e., M and M∗ compute the same function. for all n.

(2) M∗ is never moving left to the initial cell observed when starting its computation.

(3) In each step of the computation of M∗ the head is either moving one cell to the

left or one cell to the right.

(4) M∗ is not allowed to write the symbol ∗ on its tape (but of course, it is allowed

to read it).

Proof. Property (2) of Lemma M∗ can be shown in the same way as we proved it

in the demonstration of Lemma M+. But instead of L, we know use another symbol,

e.g., L.

For showing Property (3), we have to deal with all instructions of the form zb →
b ′Nz ′ of M’s instruction set. So, if the instruction zb → b ′Nz ′ belongs to M’s

instruction set, then we introduce a new state zz ′ to the state set of M∗ and replace

zb → b ′Nz ′ by

zb → b ′Lzz ′

zz ′b → bRz ′ for all tape symbols b ∈ B .
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That is, now the head first moves left and M∗ changes its state to zz ′ . And then it

moves the head just right and switches it state back to z ′. Thus, it behaves exactly

as M does except the two additional moves of the head.

Finally, we have to realize Property (4). Without loss of generality we can assume

that ? /∈ B. Then instead of writing ∗ on its tape, M∗ writes the new symbol ? on

its tape. That is, we replace all instructions zb → ∗Hz ′, where H ∈ {L,R}, of the

so far transformed instruction set by zb → ?Hz ′, where H ∈ {L,R}. Additionally, we

have to duplicate all instructions of the form z∗ → . . . by z? → . . .. That is, when

reading a ?, M∗ works as M would do when reading a ∗.

Now, it is easy to see that Property (1) is also satisfied. We omit details. This

proves Lemma M∗.

Introducing the ? in Lemma M∗ has the advantage that M∗, when reading a ∗
knows that it is visiting a cell it has not visited before.

In the same way as we did in Lecture 12, one can show that there is a universal

Turing machine U∗ which can simulate all Turing machines M∗. Since the machines

M∗ have special properties, it is conceivable that the halting problem for U∗ is de-

cidable. However, using the same technique as we did above, one can show that the

general halting problem and the halting problem for U∗ are undecidable, too.

This is a good point to recall that we have introduced instantaneous descriptions

for pushdown automata in order to describe their computations. For describing com-

putations of Turing machines we use configurations defined as follows. Let M∗ be a

Turing machine.

A string b1b2 · · ·bi−1zbi · · ·bn is said to be a configuration of M∗ if

1. z is the actual state of M∗,

2. the head is observing cell i,

3. b1b2 · · ·bn is the portion of the tape between the leftmost and rightmost ∗.

So, the initial configuration is zsx, where x represents the input. If we use an unary

representation for the inputs, then, in case x = 0, we omit the ∗. We write ci ` ci+1

provided configuration ci+1 is reached from configuration ci in one step of computation

performed by M∗.

Example 20. Let M∗ = [{∗, |}, {zs, zf, z1},A], where A is defined as follows.

zs| → |Rz1

z1| → |Rz1

zs∗ → |Rzf

z1∗ → |Lzf
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Then, on input | we get the following sequence of configurations.

zs | ` | z1 ` zf | | (13.3)

Now, we are ready to perform the final step of our proof, i.e., reducing the halting

problem to PCP. Given any Turing machine M∗ = [B,Z,A] and input x represented

in unary notation, we construct a PCP as follows. Note that, by Lemma M∗ we have

that if zb → z ′Hb ′ ∈ A, where H ∈ {L,R}, then b ′ ∈ B \ {∗}. In the table below, we

always assume that b, b ′, b ′′ ∈ B \ {∗}. Also, we assume that # /∈ B. That is, here

we use # as a separator (of configurations). Thus, we assume that # /∈ B.

P Q if
p1 # q1 #zs| · · · |# x = | · · · |

zb b ′z zb → b ′Rz ′ ∈ A
bzb ′ z ′bb ′′ zb ′ → b ′′Lz ′ ∈ A, b ∈ B \ {∗}
z# bz ′# z∗ → bRz ′ ∈ A

pi bz# qi zbb ′# z∗ → b ′Lz ′ ∈ A, b ∈ B \ {∗}
b b b ∈ B \ {∗}
# # always
zfb zf b ∈ B \ {∗}
bzf zf b ∈ B \ {∗}
zf## # always

Figure 13.2: The PCP corresponding to M∗ on input x.

Before continuing the proof, let us return to Example 20. It is easy to see that

fM∗(0) = 0 and fM∗(n) = 2 for all n ∈ N+. Thus, this machine M∗ stops on every

input.

Then for any x ∈ N, we get the following PCP, where again x is the input to M∗.

P Q if
p1 # q1 #zs| · · · |# x = | · · · |
p2 zs| q2 |z1 zs| → |Rz1 ∈ A
p3 z1| q3 |z1 z1| → |Rz1 ∈ A
p4 zs# q4 |zf# zs ∗ |Rzf ∈ A
p5 |z# q5 zf||# z1∗ → |Lzf ∈ A
p6 | q6 | | ∈ B \ {∗}
p7 # q7 # always
p8 zf| q8 zf | ∈ B \ {∗}
p9 |zf q9 zf | ∈ B \ {∗}
p10 zf## q10 # always

Looking at the table above, we see that |pi| 6 |qi for all i ∈ {1, . . . , 7}. In order to

find a 1-solution of the PCP we concatenate p’s and q’s, respectively, that correspond

to the computation of M∗ when started in zs on input x. Thus, initially, the con-

catenation of the p’s will result in a string that is shorter than string obtained when
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concatenating the corresponding q’s. This length difference can be resolved if and

only if the computation terminates. Then, one can use the strings one the last group

in the table to resolve the length difference.

In order to see how it works, we consider input |. Thus, p1 = # and q1 = #zs|#.

Therefore, in order to have any chance to find a 1-solution of the PCP, we must use

p2 next. Consequently, we have to use q2, too, and this gives

#︸︷︷︸
p1

zs |︸︷︷︸
p2

#zs |#︸ ︷︷ ︸
q1

| z1︸︷︷︸
q2

Next, in the sequence of the p’s, we need a #. We could use p1 or p7. So, we try p7,

and hence, we have to use q7, too. Then we must use p5 and q5. Thus, we have

#︸︷︷︸
p1

zs |︸︷︷︸
p2

#︸︷︷︸
p7

| z1#︸︷︷︸
p5

#zs |#︸ ︷︷ ︸
q1

| z1︸︷︷︸
q2

#︸︷︷︸
q7

zf| | #︸ ︷︷ ︸
q5

The idea of our construction should be clear by now. Before reaching the final state,

the sequence of q’s describes successive configurations of the computation of M∗

started on input x. That is, if we have #αi#αi+1 then αi and αi+1 are configurations

ofM∗ and αi ` αi+1 holds (see (13.3)). Also, we see that the sequence of q ′s is always

one configuration ahead to the sequence generated by the p’s as long as M∗ did not

reach its final state.

Looking at the sequences generated so far, we see that after zf has been reached

the strings p8, p9 and p10 can be used, too. So, we get the following 1-solution by

appending p8p6p7p8p7p10 to the already used sequence p1p2p7p5 and q8q6q7q8q7q10

to q1q2q7q5 resulting in

p1p2p7p5p8p6p7p8p7p10 = #zs |#| z1#zf | |#zf |#zf##

q1q2q7q5q8q6q7q8q7q10 = #zs |#| z1#zf | |#zf |#zf##

Exercise 45. Provide the 1-solution for the PCP obtained for M∗ when started

on input | |.

Next, we finish the proof by showing the following claim.

Claim 2. The computation of M∗ on input x stops if and only if the corresponding

PCP is 1-solvable.

We start with the sufficiency. If the corresponding PCP is 1-solvable then the

solution must start with p1 and q1. By construction, p1 = # and q1 = #zs| · · · |#.

Looking at Figure 13.2 we see that |pi| 6 |qi| for all strings except the ones in the last
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group. Thus, as long as M∗ does not reach its final state, the concatenation of p’s is

shorter than the concatenation of q’s. Furthermore, zs| · · · | corresponds to the initial

configuration of M∗ on input x. By construction, if the sequence of p’s is s and the

sequence of q’s is sy then s is a sequence of configurations of M∗ representing the

computation of M∗ on input x possibly followed by # and the beginning of the next

configuration. Consequently, if the PCP is 1-solvable, then M∗ has reached its final

state. This proves the sufficiency.

Necessity. If M∗ on input x reaches its final state, then, after having started with

p1 and q1, we can use the pi’s and the corresponding qi’s from the first and second

group to obtain the sequence of configurations as well as the separator #. Having

done this, we finally use the pi’s and the corresponding qi’s from the second and third

group to get the desired solution of the PCP.

Finally, we mention that Theorem 13.3 does not remain true if card(Σ) = 1. That

is, we have the following.

Exercise 46. PCP [Σ,n, P, Q] is decidable for all n provided card(Σ) = 1.

As we mentioned above, PCP can be used to show many interesting results. The

following exercise provides an example which is easy to prove. For stating it, we recall

the notion of subfunction. Let f,g: N 7→ N be any functions. We say that f is a

subfunction of g (written f ⊆ g) if for all x ∈ N we have: If f(x) is defined then

f(x) = g(x).

Exercise 47. There exists a function f ∈ P such that there is no function g ∈ R

with f ⊆ g.
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Lecture 14: Applications of PCP

Our goal is to present some typical undecidability results for problems arising

naturally in formal language theory. Here our main focus is on context-free languages

but we shall also look at regular languages and the family L0.

14.1. Undecidability Results for Context-free Languages

As we have seen in Lecture 6, there are context-free languages L1 and L2 such

that L1 ∩ L2 /∈ CF. So, it would be nice to have an algorithm which, on input any

two context-free grammars G1, G2, returns 1 if L(G1) ∩ L(G2) ∈ CF and 0 otherwise.

Unfortunately, such an algorithm does not exist. Also, some closely related problems

cannot be solved algorithmically as our next theorem states.

Theorem 14.1. The following problems are undecidable for any context-free gram-

mars G1, G2:

(1) L(G1) ∩ L(G2) = ∅,

(2) L(G1) ∩ L(G2) is infinite,

(3) L(G1) ∩ L(G2) ∈ CF,

(4) L(G1) ∩ L(G2) ∈ REG.

Proof. The general proof idea is as follows. We construct a context-free language

LS (here S stands for standard) and for any PCP [{a,b},n, P, Q] a language L(P, Q)

such that LS ∩ L(P, Q) 6= ∅ if and only if [{a,b},n, P, Q] is solvable.

Let Σ = {a,b, c} and define

LS =df {pcqcqTcpT p, q ∈ {a,b}+, c ∈ Σ} . (14.1)

Furthermore, for any p1, . . . ,pn, where pi ∈ {a,b}+, we set

L(p1, . . . ,pn) =df

{baikb · · ·bai1cpi1pi2 · · ·pik k > 1, ∀j[1 6 j 6 k → 1 6 ij 6 n]} .

Here the idea is to encode in aij the index ij. Now, let [{a,b},n, P, Q] be any PCP,

then we define the language L(P, Q) as follows:

L(P, Q) =df L(p1, . . . ,pn){c}LT (q1, . . . ,qn) . (14.2)

Claim 1. LS, L(p1, . . . ,pn) and L(P, Q) are context-free.
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First, we define a grammar GS = [{a,b, c}, {σ,h},σ,P], where the production set P

is defined as follows:

σ → aσa

σ → bσb

σ → chc

h → aha

h → bhb

h → c

Now, it is easy to see that GS is context-free and that

σ
∗⇒ wσwT ⇒ wchcwT

∗⇒ wcvhvTcwT ⇒ wcvcvTcwT ,

where w, v ∈ {a,b}+. Hence L(GS) ⊆ LS. The inclusion LS ⊆ L(GS) is obvious.

Consequently, LS ∈ CF.

Next, let P = [p1, . . . ,pn]. We define a grammar GP = [{a,b, c}, {σ},σ,P], where

P = {σ → baiσpi i = 1, . . . ,n} ∪ {σ → c} .

Clearly, GP is context-free, L(GP) = L(p1, . . . ,pn) and thus L(p1, . . . ,pn) ∈ CF.

By Theorem 6.4 we know that CF is closed under transposition. Therefore, we

can conclude that LT (p1, . . . ,pn) ∈ CF, too. Moreover, CF is closed under product

(cf. Theorem 6.2). Consequently, L(P, Q) is context-free for any PCP. This proves

Claim 1.

Claim 2. For every PCP we have: LS ∩ L(P, Q) 6= ∅ if and only if [{a,b},n, P, Q]

is solvable.

Necessity. Let LS ∩ L(P, Q) 6= ∅ and consider any string r ∈ LS ∩ L(P, Q), i.e.,

r = baikb · · ·bai1︸ ︷︷ ︸
w1

c pi1pi2 · · ·pik︸ ︷︷ ︸
w3

c (qj1 · · ·qjm)T︸ ︷︷ ︸
w4

c (bajmb · · ·baj1)T︸ ︷︷ ︸
w2

.

Since r ∈ LS, we directly see that w1 = wT2 and w3 = wT4 . Consequently, we get

k = m and i` = j` for ` = 1, . . . , k. Thus, the equality w3 = wT4 provides a solution

of [{a,b},n, P, Q].

Sufficiency. Let [{a,b},n, P, Q] be solvable. Then there exist a finite sequence

i1, i2 . . . , ik of natural numbers such that ij 6 n for all 1 6 j 6 k, and pi1pi2 · · ·pik =

qi1qi2 · · ·qik . So, one directly gets a string r ∈ LS ∩ L(P, Q). This proves Claim 2.

Claim 1 and 2 together directly imply Assertion (1) via Theorem 13.3.

For showing Assertion (2), we can use the same ideas plus the following Claim.

Claim 3. LS ∩ L(P, Q) is infinite if and only if LS ∩ L(P, Q) 6= ∅.
The necessity is trivial. For showing the sufficiency, let i1, i2 . . . , ik be a finite

sequence of natural numbers such that ij 6 n for all 1 6 j 6 k, and pi1pi2 · · ·pik =
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qi1qi2 · · ·qik . Therefore, we also have (pi1pi2 · · ·pik)m = (qi1qi2 · · ·qik)m, that is,

(i1, i2 . . . , ik)
m is a solution of [{a,b},n, P, Q] for every m > 1. But this means, if

w1cw3cw4cw2 ∈ LS ∩ L(P, Q) ,

then also

wm1 cw
m
3 cw

m
4 cw

m
2 ∈ LS ∩ L(P, Q)

for every m ∈ N+. This proves Claim 3, and thus Assertion (2) is shown.

It remains to prove Assertions (3) and (4). This done via the following claim.

Claim 4. LS ∩ L(P, Q) does not contain any infinite context-free language.

Assuming Claim 4, Assertions (3) and (4) can be obtained, since the following

assertions are equivalent.

(α) LS ∩ L(P, Q) = ∅,

(β) LS ∩ L(P, Q) ∈ REG,

(γ) LS ∩ L(P, Q) ∈ CF.

Obviously, (α) implies (β) and (β) implies (γ). Thus, we have only to prove that

(γ) implies (α). This is equivalent to showing that the negation of (α) implies the

negation of (γ).

So, let us assume the negation of (α), i.e., LS ∩ L(P, Q) 6= ∅. By Claim 3, we then

know that LS ∩ L(P, Q) is infinite. Now Claim 4 tells us that LS ∩ L(P, Q) /∈ CF.

Thus, we have shown the negation of (γ).

Under the assumption that Claim 4 is true, we have thus established the equivalence

of (α), (β) and (γ). Consequently, by Claim 2 we then know that LS ∩ L(P, Q) ∈ CF

if and only if [{a,b},n, P, Q] is not solvable and also that LS ∩ L(P, Q) ∈ REG if and

only if [{a,b},n, P, Q] is not solvable. This proves Assertions (3) and (4).

So, it remains to show Claim 4. Let [{a,b},n, P, Q] be arbitrarily fixed. Suppose

there is a language L ⊆ LS ∩ L(P, Q) such that L is infinite and context-free. Now

we apply Theorem 7.4. Thus, there exists k ∈ N such that for all w ∈ L with |w| > k

there are strings q, r, s,u, v such that w = qrsuv and ru 6= λ and qrisuiv ∈ L for all

i ∈ N+.

Since by supposition L is infinite there must exist a string w ∈ L with |w| > k.

Furthermore, L ⊆ L(P, Q) and therefore w must have the form

w = w1cw2cw3cw4 , where wi ∈ {a,b}+, i = 1, 2, 3, 4 . (14.3)

That is, w contains exactly three times the letter c. Now, let w = qrsuv. We

distinguish the following cases.

Case 1. c is a substring of ru.
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Then qrisuiv ∈ L for every i ∈ N+ and hence qrisuiv contains at least four c’s.

for every i > 4. So, Case 1 cannot happen.

Case 2. c is not a substring of ru.

Then, neither r nor u could be substrings of bai1b · · ·baik . If r or u start and end

with b, then qr2su2v /∈ L(P, Q). If both r and u do not start and end with b, then

r ∈ {a}+ or u ∈ {a}+ is impossible, since qrn+1sun+1v then violates the condition

that we have at most n consecutive a’s. Otherwise, we get a contradiction to the

definition of L(P, Q), since then we have more blocks of a’s as there are pi’s or qj’s.

Finally, the only remaining possibility is r is a substring of w2 or r is a substring of

w3 (cf. (14.3)). In either case, then qrisuiv /∈ L(P, Q) for i > 2, since the length of

w1 and w2 as well as the length of w3 and w4 are related. This is one of the reasons

we have included the aij into the definition of L(P, Q). This proves Claim 4, and

thus the theorem is shown.

Next, we turn our attention to problems involving the complement of context-free

languages. Recall that cf is not closed under complement (cf. Corollary 6.6). However,

due to lack of time, we have to omit a certain part of the following proof.

Theorem 14.2. The following problems are undecidable for any context-free gram-

mar G:

(1) L(G) = ∅,

(2) L(G) is infinite,

(3) L(G) ∈ CF,

(4) L(G) ∈ REG,

(5) L(G) ∈ REG.

Proof. We use the notions from the demonstration of Theorem 14.1. Consider

L =df LS ∩ L(P, Q). Note that L is always context-free. We do not prove this

assertion here. The interested reader is referred to Ginsburg [1].

For showing (1), suppose the converse. Then, given the fact that L is context-free,

there is a context-free grammar G such that L = L(G). So, we could run the algorithm

on input G. On the other hand, L = LS ∩ L(P, Q). Thus, we could decide whether or

not LS ∩ L(P, Q) = ∅. By Claim 2 in the proof of Theorem 14.1, this implies that we

can decided whether or not a PCP is solvable; a contradiction to Theorem 13.3.

Assertion (2) is shown analogously via (2) of Theorem 14.1.

Assertion (3) and (4) also follow directly from Theorem 14.1 by using its Assertions

(3) and (4), respectively.

Finally, Assertion (5) is a direct consequence of Assertion (4) and the fact that

L ∈ REG if and only if L ∈ REG (cf. Problem 4.2).
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Furthermore, the theorems shown above directly allow the following corollary.

Corollary 14.3. The following problems are undecidable for any context-free

grammars G1, G2:

(1) L(G1) = L(G2),

(2) L(G1) ⊆ L(G2).

Proof. Suppose (1) is decidable. Let G1 be any context-free grammar such that

L(G1) = L = LS ∩ L(P, Q) (see the proof of Theorem 14.2). Furthermore, let G2 be

any context-free grammar such that L(G2) = {a,b, c}∗. Then

L = {a,b, c}∗ ⇐⇒ LS ∩ L(P, Q) = {a,b, c}∗ ⇐⇒ LS ∩ L(P, Q) = ∅
⇐⇒ [{a,b},n, P, Q] is not solvable ,

a contradiction to Theorem 13.3. This proves Assertion (1).

If (2) would be decidable, then (1) would be decidable, too, since

L(G1) = L(G2) ⇐⇒ L(G1) ⊆ L(G2) and L(G2) ⊆ L(G1) , (14.4)

a contradiction. Therefore, we obtain that (2) is not decidable and Assertion (2) is

shown.

14.2. Back to Regular Languages

This is a good place to summarize our knowledge about regular languages and to

compare the result obtained to the undecidability results for context-free languages

shown above.

By Theorem 3.2 we know that L ∈ REG if and only if there exists a deterministic

finite automaton A such that L = L(A). Therefore, we can directly get the following

corollary.

Corollary 14.4. The regular languages are closed under complement.

Proof. Let L ∈ REG be any language. By Theorem 3.2 there exists a deterministic

finite automaton A = [Σ,Q, δ,q0, F] such that L = L(A). Let A = [Σ,Q, δ,q0,Q \ F].

Then, we obviously have L = L(A).

Furthermore, by Theorem 2.1, the regular languages are closed under union, prod-

uct and Kleene closure. So, recalling a bit set theory, we know that L1∩L2 = L1 ∪ L2.

Hence we directly get the following corollary.

Corollary 14.5. The regular languages are closed under intersection.

Moreover, as shown in Lecture 4, there is an algorithm which on input any regular

grammar G decides whether or not L(G) is infinite (cf. Theorem 4.5). Using the

algorithm given in the proof of Theorem 4.5, we can also conclude that there is an
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algorithm which on input any regular grammar G decides whether or not L(G) is finite.

Looking at the proof of Theorem 4.5 we also get the following corollary.

Corollary 14.6. There is an algorithm which on input any regular grammar G

decides whether or not L(G) = ∅.
Proof. Let G be a regular grammar. The algorithm first constructs a deterministic

finite automaton A = [Σ,Q, δ,q0, F] such that L(G) = L(A). Let card(Q) = n. Then,

the algorithm checks whether or not there is a string s such that n+ 1 6 |s| 6 2n+ 2

with s ∈ L(A).

If there is no such string, then by the proof of Theorem 4.5 we already know that

L(G) is finite. Thus, it suffices to check whether or not there is a string s such that

|s| 6 n and s ∈ L(A).

If there is such string, output G 6= ∅. Otherwise, output G = ∅.

Of course, this is not the most efficient algorithm.

Finally, you have shown that REG is closed under set difference (cf. Problem 4.2

of our Exercise sets). Thus, we also have the following corollary.

Corollary 14.7. There is an algorithm which on input any regular grammars G1

and G2 decides whether or not L(G1) ⊆ L(G2).

Proof. Since REG is closed under set difference, we know that L(G1)\L(G2) ∈ REG.

Furthermore, a closer inspection of the proof given shows that we can construct a

grammar G such that L(G) = L(G1) \ L(G2). Again recalling a bit set theory, we have

L(G1) ⊆ L(G2) if and only if L(G) = ∅ .

By Corollary 14.6 it is decidable whether or not L(G) = ∅.

Using the same idea as in the proof of Corollary 14.3 (see (14.4)), we also see that

there is an algorithm which on input any regular grammars G1 and G2 decides whether

or not L(G1) = L(G2).

Thus, we can conclude that all the problems considered in Theorems 14.1 and 14.2

and Corollary 14.3 when stated mutatis mutandis for regular languages are decidable.

14.3. Results concerning L0

We need some more notations which we introduce below.

Let A ⊆ N be any set. We have already defined the characteristic function χA,

i.e., χA(x) = 1 if x ∈ A and χA(x) = 0 if x /∈ A. Next, we introduce the partial

characteristic function πA defined as follows.

πA(x) =

{
1 , if x ∈ A

not defined , otherwise .

Now we can formally define what does it mean that a set is recursive and recursively

enumerable, respectively.

Definition 46. Let A ⊆ N; then A is said to
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(1) be recursive if χA ∈ R,

(2) be recursively enumerable if πA ∈ P.

We continue with some examples.

(1) The set of all prime numbers is recursive.

(2) The set of all odd numbers is recursive.

(3) The set of all even numbers is recursive.

(4) ∅ is recursive.

(5) Every finite set is recursive.

(6) Every recursive set is recursively enumerable.

(7) Let A be any recursive set. Then its complement A is recursive, too.

The following theorem establishes a characterization of recursive sets.

Theorem 14.8. Let A ⊆ N; then we have: A is recursive if and only if A is

recursively enumerable and A is recursively enumerable.

Proof. Necessity. If A is recursive then A is recursively enumerable. Furthermore,

as mentioned above, the complement A of every recursive set A is recursive, too.

Thus, A is also recursively enumerable.

Sufficiency. If both A and A are recursively enumerable, then πA ∈ P and πA ∈ P.

Thus, we can express χA as follows.

χA(x) =

{
1 , if πA(x) = 1
0 , if πA(x) = 1 .

Consequently, χA ∈ R.

The latter theorem can be used to show that there are recursively enumerable sets

which are not recursive.

Corollary 14.9. The halting set K is recursively enumerable but not recursive.

Proof. Recall that K = {i i ∈ N, ψi(i) ↓}, where ψ is universal for P. So, we

consider here the universal numbering ψ that corresponds to the universal Turing

machine U (cf. Theorem 12.3). Hence, we have the following equivalence:

πK(i) = 1 ⇐⇒ ψi(i) ↓ ⇐⇒ U(i, i) stops .

Thus, in order to compute πK(i) it suffices to start the universal Turing machine U

on input (i, i). If the computation terminates, the algorithm for computing πK(i)

outputs 1. Otherwise, the algorithm does not terminate. Consequently, πK ∈ P and

thus K is recursively enumerable.

Suppose K to be recursive. Then, χK ∈ R, a contradiction to Theorem 13.1.
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By Theorem 14.8, we directly arrive at the following corollary.

Corollary 14.10. The complement K of the halting set K is not recursively enu-

merable.

So, it remains to relate the language family L0 to Turing machines. This is done by

the following theorems. In the following, by “any type-0 grammar” we always mean

a grammar as defined in Definition 6 without any restrictions.

Theorem 14.11. Let G be any type-0 grammar. Then there exists a Turing

machine M such that L(G) = L(M).

The opposite is also true.

Theorem 14.12. For every Turing machine M there exists a type-0 grammar G

such that L(M) = L(G).

Theorems 14.11 and 14.12 directly allow the following corollary.

Corollary 14.13. L0 is equal to the family of all recursively enumerable sets.

Now, we are ready to show the theorem already announced at the end of Lecture 10,

i.e., that Theorem 10.12 does not generalize to L0.

Theorem 14.14. There does not exist any algorithm that on input any type-0

grammar G = [T ,N,σ,P] and any string s ∈ T∗ decides whether or not s ∈ L(G).

Proof. By Corollary 14.9 we know that K is recursively enumerable but not recur-

sive. Since πK ∈ P, there exists a Turing machine computing πK. By Theorem 14.12

there is a grammar G such that L(G) = K. Thus, if we could decide s ∈ L(G) for every

s ∈ N, then K would be recursive, a contradiction.

Since K is not recursively enumerable (cf. Corollary 14.10), we also have the fol-

lowing corollary.

Corollary 14.15. L0 is not closed under complement and set difference.

Interestingly, the ideas used in the proof of Theorem 2.1 directly yield the following

theorem.

Theorem 14.16. The language family L0 is closed under union, product and

Kleene closure.

Finally, we show further undecidability results.

Theorem 14.17. There does not exist any algorithm which, on input any type-0

grammar G decides whether or not L(G) = ∅.

Proof. Suppose the converse. Let G = [T ,N,σ,P] be any grammar and let w ∈ T∗
be arbitrarily fixed. We construct a grammar G̃ = [T ,N ∪ {σ̃, #}, σ̃, P̃], where P̃ is as

follows:

P̃ = P ∪ {σ̃ → #σ#, #w# → λ} .
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Note that #w# → λ is the only production which can remove the # symbols. Thus,

we get

L(G̃) =

{
{λ} , if w ∈ L(G)

∅ , otherwise.

Consequently, w /∈ L(G) if and only if L(G̃) = ∅. Thus, we can decide L(G̃) = ∅
if and only if we can decide w /∈ L(G). But the latter problem is undecidable (cf.

Theorem 14.14). Since the construction of G̃ can be done algorithmically, we obtain

a contradiction.

Corollary 14.18. The following problems are undecidable for any type-0 gram-

mars G1, G2:

(1) L(G1) = L(G2),

(2) L(G1) ⊆ L(G2).

Proof. Let G∅ be any type-0 grammar such that L(G∅) = ∅. Then we have for any

type-0 grammar G:

L(G) = ∅ ⇐⇒ L(G) ⊆ L(G∅) ⇐⇒ L(G) = L(G∅) ,

and thus both the inclusion and equivalence problem, respectively, are reduced to the

decidability of the emptiness problem. Since the emptiness problem is undecidable by

Theorem 14.17, the corollary is shown.

As a general “rule of thumb” you should memorize that every non-trivial problem

is undecidable for type-0 grammars. Here by non-trivial we mean that there are

infinitely many grammars satisfying the problem and infinitely many grammars not

satisfying the problem.

Exercise 48. Prove or disprove:

The emptiness problem is undecidable for context-sensitive grammars.

14.4. Summary

Finally, we present a table summarizing many important results. All problems in

this table should be read as follows:

Does there exist an algorithm which on input any grammar G and any string s or

any grammar G or any two grammars G1, G2, respectively, returns 1 if the property

on hand is fulfilled and 0 if it is not fulfilled.

We use + to indicate that the desired algorithm exists and − to indicate that the

desired algorithm does not exist.

c©Thomas Zeugmann, Hokkaido University, 2007



136 Lecture 14: Applications of PCP

REG CF CS Type 0
1) s ∈ L(G) + + + −

2) L(G1) ⊆ L(G2) + − − −

3) L(G1) = L(G2) + − − −

4) L(G) = ∅ + + − −

5) L(G) finite + + − −

6) L(G) infinite + + − −

7) L(G) = ∅ + − − −

8) L(G) infinite + − − −

9) L(G) has the + − + −

same type as L(G)

10) L(G) ∈ REG + − − −

11) L(G) ∈ CF + − − −

12) L(G1) ∩ L(G2) = ∅ + − − −

13) L(G1) ∩ L(G2) finite + − − −

14) L(G1) ∩ L(G2) infinite + − − −

15) L(G) = T∗ + − − −

16) L(G) ∈ REG + − − −
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Lecture 15: Numberings, Complexity

As we have seen, there are numberings that are universal for P (cf. Theorem 12.3).

Within this lecture we study further properties of numberings. Some more notations

are needed.

For every ψ ∈ P2 we set Pψ = {ψi i ∈ N}. Next, we introduce the notion of

reducibility.

Definition 47. Let ψ, ψ ′ ∈ P2 be any numberings. We say that ψ is reducible

to ψ ′ (written ψ 6 ψ ′) if there exists a function c ∈ R such that ψi = ψ ′
c(i) for all

i ∈ N.

Clearly, if ψ 6 ψ ′ then Pψ ⊆ Pψ ′ . If we interpret every i as a program, then the

function c reducing ψ to ψ ′ can be interpreted as a compiler. This is the reason we

called the reduction function c.

Exercise 49. Prove reducibility to be reflexive and transitive.

Furthermore, it should be noted that 6 is not trivial. In particular, Friedberg has

shown the following.

Theorem 15.1. There are numberings ψ, ψ ′ ∈ P2 such that Pψ = Pψ ′ but

neither ψ 6 ψ ′ nor ψ ′ 6 ψ.

We do not prove this theorem here, since we do not need it. However, we mention

that in Theorem 15.1 ψ ψ ′ ∈ Pa2 may be chosen such that Pψ = Pψ ′ = P, i.e., ψ ψ ′

can be universal for P.

So it is only natural to ask whether or not there are numberings that are maximal

with respect to reducibility. The answer is provided in the following subsection.

15.1. Gödel Numberings

Definition 48. Let ϕ ∈ P2; we call ϕ a Gödel numbering if

(1) Pϕ = P, and

(2) ψ 6 ϕ for every numbering ψ ∈ P2.

The following theorem establishes the existence of Gödel numberings.

Theorem 15.2. There exists a Gödel numbering.

Proof. In fact, we have already constructed a Gödel numbering when proving The-

orem 12.3. So, let ϕ be the numering corresponding to the universal Turing machine

U. Thus, we already know Pϕ = P.

Claim 1. For every numbering ψ ∈ P2 there is a function c ∈ R such that ψi(x) =

ϕc(i)(x) for all i, x ∈ N.
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Since ψ ∈ P2, there exists a Turing machine M computing ψ. Now, if we fix the

first argument i then we get a Turing machine Mi computing ψi. Then we set c(i) =

cod(Mi), where cod is the computable function from Theorem 12.3. Consequently,

c(i) is defined for every i ∈ N and cod(Mi) can be computed from the knowledge of

M. Finally, we have

ψi(x) = fM(i, x) = fMi
(x) = fU(cod(Mi), x) = fU(c(i), x) = ϕc(i)(x) ,

and Claim 1 follows.

Now that we know that there is one Gödel numbering, it is only natural to ask if

it is the only one. The negative answer is provided by the next theorem.

Theorem 15.3. There are countably many Gödel numberings for P.

Proof. Let ϕ be the Gödel numbering from Theorem 15.2 and let ψ ∈ P2 be any

function. We can thus define ϕ ′ ∈ P2 by setting ϕ ′
2i = ϕi and ϕ ′

2i+1 = ψi for all

i ∈ N.

Clearly, ϕ ′ is universal for P. Moreover, using c(i) = 2i we get ϕ 6 ϕ ′. Since 6
is transitive, we thus have shown ϕ ′ to be a Gödel numbering.

So, the Gödel numberings are the maximal elements of the lattice [P, 6]. Moreover

all Gödel numberings are equivalent in the following sense.

Theorem 15.4 (Theorem of Rogers). For any two Gödel numberings ϕ and

ψ of P there exists a permutation π ∈ R such that for all i ∈ N we have ϕi = ψπ(i)

and ψi = ϕπ−1(i).

15.2. The Recursion and the Fixed Point Theorem

Theorem 15.5 (Fixed Point Theorem). Let ϕ ∈ P2 be any Gödel numbering.

Then, for every function h ∈ R there exists a number a such that ϕh(a) = ϕa.

Proof. First we define a function τ as follows. For all i, x ∈ N let

τ(i, x) =

{
ϕϕi(i)(x) , if ϕi(i) ↓

not defined , otherwise .

Clearly, τ ∈ P2 and thus τ is a numbering, too. By construction we obtain

τi =

{
ϕϕi(i) , if ϕi(i) ↓

e , otherwise ,

where e denotes the nowhere defined function. By the definition of a Gödel numbering

there exists a function c ∈ R such that

τi = ϕc(i) for all i ∈ N . (15.1)

Next, we consider g(x) = h(c(x)) for all x ∈ N. Since h, c ∈ R, we also know that

g ∈ R. Since ϕ is universal for P, there exists a ν ∈ N such that

g = ϕv . (15.2)
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Consequently, ϕv(ν) ↓ because of g ∈ R. Hence, we obtain

τν = ϕc(ν) by the definition of c , see (15.1)

= ϕϕν(ν) by the definition of τ and because of ϕv(ν) ↓
= ϕg(ν) since g = ϕv , see (15.2)

= ϕh(c(ν)) by the definition of g .

Thus, we have ϕc(ν) = ϕh(c(ν)) and hence setting a = c(ν) proves the theorem.

The proof directly allows the following corollary telling us that fixed points can be

even computed.

Corollary 15.6. For every Gödel numbering ϕ here exists a function fix ∈ R

such that for all z ∈ N we have:

If ϕz ∈ R then ϕϕz(fix(z)) = ϕfix(z).

Note that the fixed point theorem has been discovered by Rogers. The following

theorem is due to Kleene.

Theorem 15.7 (Recursion Theorem). For every numbering ψ ∈ P2 and every

Gödel numbering ϕ ∈ P2 there exists a number a ∈ N such that ϕa(x) = ψ(a, x) for

all x ∈ N.

Proof. Since ψ ∈ P2 and since ϕ ∈ P2 is a Gödel numbering, there exists a function

c ∈ R such that

ψi = ϕc(i) for all i ∈ N .

By the fixed point theorem and the choice of function c, there is a number a ∈ N
such that

ψa = ϕc(a) = ϕa ,

and consequently we have ψ(a, x) = ϕa(x) for all x ∈ N.

Note that the recursion theorem also implies the fixed point theorem. We leave

the proof as an exercise.

There are also important generalizations of the fixed point and recursion theorem.

We mention here only one which has been found by Smullyan. Further generalizations

can be found in Smith [5].

Theorem 15.8 (Smullyan’s Double Fixed Point Theorem). Let ϕ be any

Gödel numbering for P and let h1, h2 ∈ R2. Then there exist i1, i2 ∈ N such that

simultaneously

ϕi1 = ϕh1(i1,i2) and ϕi2 = ϕh2(i1,i2)

are satisfied.

Exercise 50. Let ϕ be any Gödel numbering for P. Prove that there always exists

an i ∈ N such that ϕi = ϕi+1.
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15.2.1. The Theorem of Rice

Next we show that all nontrivial properties of programs are undecidable. For

stating the corresponding theorem, we must define what is commonly called an index

set.

Definition 49. Let ϕ ∈ P2 be any Gödel numbering and let P ′ ⊆ P. Then the set

ΘϕP ′ = {i i ∈ N and ϕi ∈ P ′}

is called index set of P’.

The term “index” in the definition above is synonymous in its use to the term

“program.” However, we follow here the traditional terminology, since program set

could lead to confusion. One may be tempted to interpret program set as set of pro-

grams, i.e., a collection of programs that may or may not be index set. Furthermore,

the technical term “undecidable” is used as a synonym for “not recursive.”

Theorem 15.9 (Theorem of Rice). Let ϕ ∈ P2 be any Gödel numbering. Then

ΘϕP ′ is undecidable for every set P ′ with ∅ ⊂ P ′ ⊂ P.

Proof. Suppose the converse, i.e., there is a set P ′ such that ∅ ⊂ P ′ ⊂ P and ΘϕP ′

is decidable. Thus χΘϕP ′ ∈ R. Since ∅ ⊂ P ′ ⊂ P, there exists a function g ∈ P \ P ′

and a function f ∈ P ′. Let u be any program for g, i.e., ϕu = g and let z be any

program for f, i.e., ϕz = f. Next, we define a function h as follows. For all i ∈ N we

set

h(i) =

{
u , if χΘϕP ′(i) = 1
z , otherwise ,

Since χΘϕP ′ ∈ R, we can directly conclude that h ∈ R, too. Hence, by the fixed point

theorem, there exists an a ∈ N such that ϕh(a) = ϕa. We distinguish the following

cases.

Case 1. ϕa ∈ P ′

Then χΘϕP ′(a) = 1, and thus h(a) = u. Consequently,

ϕa = ϕh(a) = ϕu = g /∈ P ′ ,

a contradiction to χΘϕP ′(a) = 1.

Case 2. ϕa /∈ P ′

Then χΘϕP ′(a) = 0, and therefore h(a) = z. Consequently,

ϕa = ϕh(a) = ϕz = f ∈ P ′ ,

a contradiction to χΘϕP ′(a) = 0.

Hence, our supposition χΘϕP ′ ∈ R must be wrong, and thus the set ΘϕP ′ is

undecidable.
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Example 21. Let P ′ = Prim. As we have seen, many functions are primitive

recursive, and thus Prim 6= ∅. Since every primitive recursive function is total, we

also have Prim ⊂ P. Consequently, ΘϕPrim is undecidable. That is, there does not

exist any algorithm which on input any program i ∈ N can decide whether or not it

computes a primitive recursive function.

The theorem of Rice also directly allows the following corollary.

Corollary 15.10. Let ϕ ∈ P2 be any Gödel numbering. Then for every function

f ∈ P the set {i i ∈ N and ϕi = f} is infinite.

Proof. Setting P ′ = {f}, we directly get ∅ ⊂ P ′ ⊂ P. Thus the assumptions of the

theorem of Rice are fulfilled and therefore ΘϕP ′ is undecidable. On the other hand,

ΘϕP ′ = {i i ∈ N and ϕi = f}. Since every finite set is decidable, we can conclude

that {i i ∈ N and ϕi = f} is infinite.

15.3. Complexity

Next, we turn our attention to complexity. Using the setting of recursive functions,

one can show several results that turn out to be very useful and insightful. So, we shall

define abstract complexity measure and prove some fundamental results. However,

due to the lack of time, more advanced results have been put into the Appendix.

Before defining abstract complexity measures, we make the following conventions.

The quantifiers ‘
∞
∀’ and ‘

∞
∃’ are interpreted as ‘for all but finitely many’ and ‘there

exists infinitely many, respectively. For any set S ⊆ N, by maxS and minS we denote

the maximum and minimum of a set S, respectively, where, by convention, max ∅ = 0

and min ∅ = ∞.

Definition 50 (Blum [1]).

Let ϕ be a Gödel numbering of P and let Φ ∈ P2. [ϕ,Φ] is said to be a complexity

measure if

(1) dom(ϕi) = dom(Φi) for all i ∈ N, and

(2) There exist a recursive predicate M such that

∀i∀n∀y[M(i,n,y) = 1 ⇐⇒ Φi(n) = y]

Note that Condition (1) and (2) are independent from one another. This can be

seen as follows. Let ϕ be any Gödel numbering and define Φi(n) = 0 for all i,n ∈ N.

Then Φ ∈ P2 (in fact Φ ∈ R2) and it obviously satisfies Condition (2). Of course,

Condition (1) is violated.

Next consider

Φi(n) =

{
0, if ϕi(n) is defined,
not defined, otherwise.
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Now, Condition (1) is obviously fulfilled but Condition (2) is not satisfied.

A well-known example of a complexity measures is the number of steps required

by the ith Turing machine (in a standard enumeration of all Turing machines) to

converge on input x, i.e., the standard time measure. Another well-known example

is the space measure, i.e., the number of squares containing non-blank symbols or

visited by the read-write head during a computation by a Turing machine, provided

the latter is considered undefined if the machine loops on a bounded tape segment.

Further complexity measures comprise

(a) reversal, i.e. the number of times during the computation of the ith Turing

machine that the head must change direction.

(b) ink, i.e. the number of times during the computation of the ith Turing machine

that a symbol has to be overwritten by a different symbol.

Exercise 51. Prove or disprove that carbon, i.e., the number of times during

the computation of the ith Turing machine that a symbol has to be overwritten by the

same symbol is a complexity measure.

Next, we establish several basic properties. The following theorem shows that the

function values of all partial recursive functions are uniformly boundable by their

complexities. But before we can state the result formally, we have to explain what

does it mean that ψ(x) = θ(x) for partial functions ψ and θ and x ∈ N. ψ(x) = θ(x)

means that either both values ψ(x) and θ(x) are defined and ψ(x) = θ(x) or else both

values ψ(x) and θ(x) are undefined. ψ(x) 6 θ(x) is then defined analogously.

Theorem 15.11. Let [ϕ,Φ] be a complexity measure. Then there exists a function

h ∈ R2 such that for all i ∈ N and all but finitely many n ∈ N we have ϕi(n) 6
h(n,Φi(n)).

Proof. We define the desired function h as follows. For all i,n ∈ N, let

h(n, t) =df max{ϕi(n) | i 6 n ∧ Φi(n) = t} .

Since the predicate Φi(n) = t is recursive, we directly obtain that h ∈ R2 (here we

need our convention that max ∅ = 0).

It remains to show that h fulfills the desired property. First, suppose that ϕi(n)

is undefined. Then, by Condition (1) of the definition of a complexity measure, we

also know that Φi(n) is undefined. Hence, the value h(n,Φi(n)) is undefined, too,

and thus the inequality ϕi(n) 6 h(n,Φi(n)) is satisfied.

Next, assume ϕi(n) to be defined. By the same argument as above we conclude

that Φi(n) is defined, and thus so is h(n,Φi(n)). Moreover, if i 6 n then, by

construction, we have ϕi(n) 6 h(n,Φi(n)). Since there are only finitely many n < i,

we are done.
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Intuitively speaking, Theorem 15.11 says that rapidly growing functions must be

also “very” complex. This is of course obvious for a measure like space, since it takes

a huge amount of time to write very large numbers down. It is, however, by no means

obvious for complexity measures like reversal. So, maybe there is a deeper reason

for this phenomenon. This is indeed the case, since all complexity measures can be

recursively related to one another as our next theorem shows (cf. Blum [1]).

Theorem 15.12 (Recursive Relatedness of Complexity Measure).

Let [ϕ,Φ] and [ψ,Ψ] be any two complexity measures. Furthermore, let π be a recur-

sive permutation such that ϕi = ψπ(i) for all i ∈ N. Then there exists a function

h ∈ R2 such that

∀i
∞
∀ n [ Φi(n) 6 h(n,Ψπ(i)(n)) and Ψπ(i)(n) 6 h(n,Φi(n)) ] .

Proof. The desired function h is defined as follows. For all n, t ∈ N we set

h(n, t) = max{Φi(n) + Ψπ(i)(n) | i 6 n ∧ (Φi(n) = t ∨ Ψπ(i)(n) = t)} .

It remains to show that h fulfills the properties stated. Since [ϕ,Φ] and [ψ,Ψ] are

complexity measures, the predicates Φi(n) = t and Ψπ(i)(n) = t are both uniformly

recursive in i,n, t. Moreover, by Condition (2) of Definition 50, if Φi(n) = t then, in

particular, ϕi(n) is defined. Because of ϕi = ψπ(i), we can conclude that ψπ(i)(n) is

defined, too. Now another application of Condition (2) of Definition 50 directly yields

that also Ψπ(i)(n) must be defined. Analogously it can be shown that Ψπ(i)(n) = t

implies that Φi(n) is defined. Thus, if Φi(n) = t or Ψπ(i)(n) = t for some i 6 n,

then h(n, t) is defined. If neither Φi(n) = t nor Ψπ(i)(n) = t for all i 6 n, then we

again the maximum of the empty set, i.e., in this case we have h(n, t) = 0. Hence, h

is recursive.

Finally,

∀i
∞
∀ n [ Φi(n) 6 h(n,Ψπ(i)(n)) and Ψπ(i)(n) 6 h(n,Φi(n)) ]

follows directly from our construction. We omit the details.

With the following theorem we shall establish a fundamental basic result, i.e., we

are going to prove that no recursive amount of computational resources is sufficient

to compute all recursive functions. Furthermore, the proof below will use three basic

proof techniques: finite extension, diagonalization and cancellation. The idea of finite

extension is to construct a function by defining a finite piece at a time. Diagonalization

is used to ensure that all functions not fulfilling a certain property must differ from our

target function. And cancellation is a technique to keep track of all those programs

we have already diagonalized against, and which ones we have yet to consider. Once

a program i is diagonalized against, we shall cancel it. Canceled programs are never

considered later for future diagonalization. Now, we are ready for our next theorem

(cf. Blum [1]).
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Theorem 15.13. Let [ϕ,Φ] be any complexity measure. Then for every function

h ∈ R there exists a function f ∈ R0,1 such that for all ϕ-programs i with ϕi = f we

have Φi(n) > h(n) for all but finitely many n ∈ N.

Proof. We shall use ⊕ as a symbol for addition modulo 2. Furthermore, we are

going to define sets Cn in which we keep track of the programs already canceled.

Finally, by µ we denote the well-known µ-operator. The desired function f is defined

as follows.

f(0) =

{
ϕ0(0)⊕ 1, if Φ0(0) 6 h(0), then set C0 = {0}
0, otherwise, then set C0 = ∅ .

Now suppose, f(0), . . . , f(n) are already defined. We set

f(n+1) =


ϕi∗(n+ 1)⊕ 1, if i∗ = µi[i 6 n+ 1, i /∈ Cn, Φi(n+ 1) 6 h(n+ 1)]

exists, then set Cn+1 = Cn ∪ {i∗}

0, otherwise, then set Cn+1 = Cn .

It remains to show that f satisfies the stated properties. Since the predicate

Φi(n) = y is uniformly recursive, so is the predicate Φi(n) 6 y. Now, since h ∈ R,

we can effectively test whether or not Φ0(0) 6 h(0). If it is, by Condition (1) of

Definition 50 we can conclude that ϕ0(0) is defined. Hence, in this case f(0) is de-

fined and takes a value from {0, 1}. Otherwise, f(0) = 0, and thus again f(0) ∈ {0, 1}.

Consequently, our initialization is recursive.

Using the same arguments as above and taking into account that we only have to

check finitely many programs, it is obvious that the induction step is recursive, too.

Moreover, by construction we again obtain f(n+ 1) ∈ {0, 1}. Therefore, f ∈ R0,1, and

the first of f’s properties is shown.

The remaining part is shown indirectly. Suppose there is program i such that

ϕi = f and ∞
∃ n [Φi(n) 6 h(n)] .

We set C =
⋃
n∈NCn. By construction, it is easy to see that i /∈ C, since otherwise

ϕi 6= f should hold.

Next, we consider C(i) =df {j | j < i ∧ j ∈ C}. Then we directly obtain C(i) ⊆ C
and card(C(i)) is finite. Therefore, there must be an m > i such that C(i) ⊆ Cn for

all n > m. Furthermore, since there are infinitely many n ∈ N with Φi(n) 6 h(n)

there exists an n∗ > m such that Φi(n
∗) 6 h(n∗). But now

i = µj[j 6 n∗ ∧ j /∈ Cn∗−1 ∧ Φi(n
∗) 6 h(n∗)] .

Hence, we have to cancel i when constructing f(n∗), and thus i ∈ Cn∗ ⊆ C, a

contradiction. Consequently, for all but finitely many n ∈ N

Φi(n) > h(n)

must hold. Since i was any program for f, we are done.
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Theorem 15.11 showed that we can recursively bound the function values of all

partial recursive functions by their complexities. Thus, it is only natural to ask

whether or not we can do the converse, i.e., bound the complexity values of all partial

recursive functions by their function values. The negative answer is provided next.

Theorem 15.14. Let [ϕ,Φ] be any complexity measure. Then there is no recursive

function h ∈ R2 such that

∀i
∞
∀ n[Φi(n) 6 h(n,ϕi(n))] .

Proof. Suppose the converse, i.e., there is a function h ∈ R2 such that

∀i
∞
∀ n[Φi(n) 6 h(n,ϕi(n))] .

Consider the recursive function h∗ defined as

h∗(n) = h(n, 0) + h(n, 1)

for all n ∈ N. Then, by Theorem 15.13 there exists a function f ∈ R0,1 such that

∀i[ϕi = f −→
∞
∀ n[Φi(n) > h∗(n)]] .

Consequently,

∞
∀ n[Φi(n) > h∗(n) = h(n, 0) + h(n, 1) > h(n,ϕi(n))]

for every program i with ϕi = f, a contradiction to the choice of h.

Next, we ask a slight modification of the question posed before Theorem 15.14,

i.e., are there functions h ∈ R2 such that there are also functions f ∈ P satisfying

∃i[ϕi = f ∧
∞
∀ n[Φi(n) 6 h(n,ϕi(n))]] ?

Before providing the affirmative answer, we make the following definition.

Definition 51. Let [ϕ,Φ] be a complexity measure, let h ∈ R2 and let ψ ∈ P.

Function ψ is said to be h-honest if

∃i[ϕi = ψ ∧
∞
∀ n[Φi(n) 6 h(n,ϕi(n))]]

.

By H(h) we denote the set of all h-honest functions from P. Now, we are ready

to answer the latter question.

Theorem 15.15. Let [ϕ,Φ] be a complexity measure and let Ψ ∈ P2 be any

function such that the predicate Ψi(x) = y is uniformly recursive. Then there exists

a function h ∈ R2 such that Ψi ∈ H(h) for all i ∈ N.
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Proof. Since ϕ is a Gödel numbering of P and Ψ ∈ P2, there exists a function c ∈ R

such that Ψi = ϕc(i) for all i ∈ N. Moreover, by assumption the predicate Ψi(x) = y

is uniformly recursive. Therefore, we can define a recursive function h ∈ R2 as follows:

h(n, t) = max{Φc(i)(n) | i 6 n ∧ Ψi(n) = t} .

Finally, consider any Ψi. Then we have for the ϕ-program c(i) of Ψi the following:

Ψi = ϕc(i) ∧
∞
∀ n[Φc(i)(n) 6 h(n,ϕc(i)(n))]

by construction.

The latter theorem immediately allows the following corollary.

Corollary 15.16. Let [ϕ,Φ] be a complexity measure. Then there exists a function

h ∈ R2 such that {Φi | i ∈ N} ⊆ H(h).

Furthermore, Corollary 15.16 and Theorem 15.14 together directly imply the fol-

lowing set theoretical properties of S = {Φi | i ∈ N}.

Corollary 15.17. Let [ϕ,Φ] be a complexity measure. Then we have

(1) S ⊂ P,

(2) S ∩ (P \ R) ⊂ P \ R, and

(3) S ∩ R ⊂ R.

Finally, it should be noted that it is not meaningful to consider the following

stronger version of h-honest functions ψ

∀i[ϕi = ψ ∧
∞
∀ n[Φi(n) 6 h(n,ϕi(n))]] .

This is due to the fact, well-known to everybody who has already written a couple

of programs, that there are arbitrarily bad ways of computing any function with

respect to any complexity measure. More formally, we have the following theorem (cf.

Blum [1]).

Theorem 15.18. Let [ϕ,Φ] be any complexity measure. Then, for every program i

and every recursive function h ∈ R there exists a program e such that ϕe = ϕi and

Φe(x) > h(x) for all x ∈ dom(ϕi).

Proof. Let g ∈ R be any function such that for all i,n ∈ N

ϕg(i)(n) =

{
ϕi(n), if ¬[Φi(n) 6 h(n)]

ϕi(n) + 1, if Φi(n) 6 h(n) .

By the fixed point theorem, there exists an e such that ϕg(e) = ϕe. It remains to

show that ϕe = ϕi and Φe(x) > h(x) for all x ∈ dom(ϕi).
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Suppose there is an x ∈ dom(ϕi) such that Φe(x) 6 h(x). By Condition (1) of

Definition 50 we conclude that ϕe(x) must be defined. Since ϕg(e) = ϕe and because

of Φe(x) 6 h(x) we then have ϕe(x) = ϕg(e)(x) = ϕe(x)+1. Thus, the case Φe(x) 6
h(x) cannot happen. Consequently, for all x ∈ dom(ϕi) the case Φe(x) > h(x) must

occur, and thus, by construction ϕe(x) = ϕi(x). But if x /∈ dom(ϕi), it also holds

¬[Φe(x) 6 h(x)] and therefore again ϕe(x) = ϕi(x). This implies ϕi = ϕe and

completes the proof.

Appendix

Now, we turn our attention to some more advanced topics. We start with com-

plexity classes.

16.1. Complexity Classes

Probably, you have already heard a bit about some complexity classes such as

the class of all problems decidable in deterministic polynomial time, the class of all

problems decidable in non-deterministic polynomial time, the class of all languages

acceptable in deterministic logarithmic space the class of all languages acceptable

in non-deterministic logarithmic space and the class of all languages acceptable in

polynomial space.

For the time being, we want to take a more abstract view of complexity classes

such as the ones mentioned above and study properties they have or do not have in

common. Therefore, we continue by defining abstract complexity classes (cf. [3]).

Definition 52. Let [ϕ,Φ] be a complexity measure and let t ∈ R. Then we set

R
[ϕ,Φ]
t =df {f | f ∈ R ∧ ∃i[ϕi = f ∧

∞
∀ n Φi(n) 6 t(n)]} .

and call R
[ϕ,Φ]
t the complexity class generated by t.

First, we deal with the structure of the classes R
[ϕ,Φ]
t . For this purpose, let us

recall the common two definitions of enumerability.

Definition 53. Let U ⊆ R be any class of recursive functions. U is said to be

recursively enumerable if there exists a function g ∈ R2 such that U ⊆ {λxg(i, x) | i ∈
N}.

If a class U ⊆ R is recursively enumerable, we also write U ∈ NUM, i.e., we use

NUM to denote the collection of all classes U ⊆ R that are recursively enumerable.

Definition 54. Let U ⊆ R be any class of recursive functions. U is said to

be sharply recursively enumerable if there exists a function g ∈ R2 such that U =

{λxg(i, x) | i ∈ N}.

c©Thomas Zeugmann, Hokkaido University, 2007



148 Appendix

If a class U ⊆ R is sharply recursively enumerable, we also write U ∈ NUM!, i.e.,

we use NUM! to denote the collection of all classes U ⊆ R that are sharply recursively

enumerable.

Exercise 52. Prove the following definitions to be equivalent to Definition 53 and

Definition 54, respectively. Let ϕ be any Gödel numbering; then we have:

(1) U ∈ NUM if and only if there exists a function h ∈ R such that

U ⊆ {ϕh(i) | i ∈ N} ⊆ R .

(2) U ∈ NUM! if and only if there exists a function h ∈ R such that

U = {ϕh(i) | i ∈ N} ⊆ R .

The following theorem shows in particular that every class U ⊆ R can be embedded

into a complexity class.

Theorem 16.1. Let [ϕ,Φ] be a complexity measure and let U ⊆ R be any class

of recursive functions such that U ∈ NUM. Then, we have:

(1) There exists a function b ∈ R such that for all f ∈ U the condition f(n) 6 b(n)

for all but finitely many n ∈ N is satisfied.

(2) There exists a function t ∈ R such that U ⊆ R
[ϕ,Φ]
t .

Proof. Since U ∈ NUM there is a function g ∈ R2 such that U ⊆ {λxg(i, x) | i ∈ N}.

We therefore define the desired function b as follows: For all n ∈ N let

b(n) =df max{g(i,n) | i 6 n} .

Then b obviously satisfies the properties stated in (1).

For showing Condition (2) it suffices to apply Exercise 52, i.e., since U ∈ NUM

there is h ∈ R such that U ⊆ {ϕh(i) | i ∈ N} ⊆ R. Therefore, for all n ∈ N we can

define

t(n) =df max{Φh(i)(n) | i 6 n} .

By the choice of h we know that ϕh(i) ∈ R for all i ∈ N. Using Condition (1) of

the definition of a complexity measure, we can conclude Φh(i) ∈ R for all i ∈ N,

too. Thus, our function t defined above satisfies t ∈ R. Moreover, by construction we

directly obtain

∀i
∞
∀ n[Φh(i)(n) 6 t(n)] ,

and therefore U ⊆ R
[ϕ,Φ]
t .
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16.2. Recursive Enumerability of Complexity Classes

Now, let [ϕ,Φ] be any complexity measure. We are interested in learning for which

t ∈ R the complexity class R
[ϕ,Φ]
t is recursively enumerable. This would be a nice

property, since R
[ϕ,Φ]
t ∈ NUM would give us an effective overview about at least one

program for every function f ∈ R
[ϕ,Φ]
t . We are going to show that R

[ϕ,Φ]
t ∈ NUM for

all functions t ∈ R and every complexity measure [ϕ,Φ]. On the other hand, there

are complexity measures [ϕ,Φ] and functions t ∈ R such that R
[ϕ,Φ]
t /∈ NUM!, as we

shall see.

Theorem 16.2. Let [ϕ,Φ] be any complexity measure. Then, for every function

t ∈ R we have R
[ϕ,Φ]
t ∈ NUM.

Proof. We start our proof by asking under which conditions a function f belongs

to R
[ϕ,Φ]
t . By the definition of a complexity class, this is the case if and only if there

exists a ϕ-program k computing f such that the complexity Φk fulfills the condition

∞
∀ n[Φk(n) 6 t(n)] .

But this condition means nothing else than there exist a τ ∈ N and an n0 such that

Φk(n) 6 τ for all n < n0 and Φk(n) 6 t(n) for all n > n0.

Therefore, we choose an effective enumeration of all triples of natural numbers.

For the sake of presentation, let c1, c2, c3 ∈ R such that

N× N× N = {[c1(i), c2(i), c3(i)] | i ∈ N} .

Now, we are ready to define the wanted function g ∈ R2 as follows. For all i,n ∈ N
let

g(i,n) =


ϕc1(i)(n), if [n < c2(i) ∧ Φc1(i)(n) 6 c3(i)]

∨ [n > c2(i) ∧ Φc1(i)(n) 6 t(n)]

0, otherwise .

It remains to show that R
[ϕ,Φ]
t ⊆ {λng(i,n) | i ∈ N}. Let f ∈ R

[ϕ,Φ]
t ; then there

exists a triple [k,n0, τ] such that

(1) ϕk = f,

(2) ∀n < n0[Φk(n) 6 τ],

(3) ∀n > n0[Φk(n) 6 t(n)].

Hence, there must exist an i ∈ N such that [c1(i), c2(i), c3(i)] = [k,n0, τ].

But now, by construction we can immediately conclude that λng(i,n) = ϕk = f,

and thus, by (1) through (3), the theorem follows.
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The proof above also shows why it may be difficult to prove R
[ϕ,Φ]
t ∈ NUM!, i.e.,

we have defined g(i,n) = 0 in case the stated condition is not satisfied. Since we

have to ensure g ∈ R2, we have to define g(i,n) for all those i,n for which the stated

condition is not fulfilled somehow, thus running into the danger to include functions

into our enumeration that are not members of the complexity class R
[ϕ,Φ]
t . But if we

have a bit prior knowledge about R
[ϕ,Φ]
t , then we can show R

[ϕ,Φ]
t ∈ NUM!.

Therefore, we set

U0 = {f ∈ R | f(n) = 0 for all but finitely n} ,

i.e., U0 is the class of functions of finite support. Moreover, for any f ∈ R we let

Uf = {f̂ ∈ R | f̂(n) = f(n) for all but finitely n} ,

i.e., Uf is the class of all finite variations of function f.

Theorem 16.3. Let [ϕ,Φ] be any complexity measure and let t ∈ R. Then we

have:

(1) If U0 ⊆ R
[ϕ,Φ]
t then R

[ϕ,Φ]
t ∈ NUM!.

(2) If Uf ⊆ R
[ϕ,Φ]
t for some f ∈ R then R

[ϕ,Φ]
t ∈ NUM!.

Proof. Though the proof is conceptually very similar to the proof of Theorem 16.2,

an important modification is necessary, since we have to ensure that g ∈ R2 enu-

merates exclusively functions belonging to R
[ϕ,Φ]
t . First, we show Assertion (1). Let

c1, c2, c3 ∈ R be as in the proof of Theorem 16.2. Now, we define the desired function

g ∈ R2 as follows. For all i,n ∈ N let

g(i,n) =


ϕc1(i)(n), if [∀x[x < c2(i) −→ Φc1(i)(x) 6 c3(i)] ∧

∀x[c2(i) 6 x 6 n −→ Φc1(i)(x) 6 t(x)]]

0, otherwise .

At this point, one easily verifies that for all i ∈ N the condition λng(i,n) = ϕc1(i)

or
∞
∀ ng(i,n) = 0 is satisfied. Consequently, now Assertion (1) follows as in the proof

of Theorem 16.2. We omit the details.

Assertion (2) is proved mutatis mutandis, i.e., we define for all i,n ∈ N

g(i,n) =


ϕc1(i)(n), if [∀x[x < c2(i) −→ Φc1(i)(x) 6 c3(i)] ∧

∀x[c2(i) 6 x 6 n −→ Φc1(i)(x) 6 t(x)]]

f(n), otherwise .
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Next, we can show the following general result.

Theorem 16.4. Let [ϕ,Φ] be any complexity measure. Then there exists a func-

tion t ∈ R such that for all functions t̃ satisfying t̃(n) > t(n) for all but finitely n we

have R
[ϕ,Φ]

t̃
∈ NUM!.

Proof. The proof is done via the following claim.

Claim. Let [ϕ,Φ] be any complexity measure. Then there exists a function t̂ ∈ R

such that U0 ⊆ R
[ϕ,Φ]

t̂
.

First, recall that U0 ∈ NUM, since all finite tuples of natural numbers are re-

cursively enumerable. Thus, we can apply Theorem 16.1. Consequently, there is a

function t̂ ∈ R such that U0 ⊆ R
[ϕ,Φ]

t̂
. This proves the claim.

Now, we set t = t̂. Consequently, we have U0 ⊆ R
[ϕ,Φ]
t . Finally, assume any

function t̃ satisfying t̃(n) > t(n) for all but finitely n. By the definition of complexity

classes, we directly get R
[ϕ,Φ]
t ⊆ R

[ϕ,Φ]

t̃
, and therefore we have U0 ⊆ R

[ϕ,Φ]

t̃
, too.

Thus, by Theorem 16.3 we arrive at R
[ϕ,Φ]

t̃
∈ NUM!.

The latter theorem allows a nice corollary. Consider all 3-tape Turing machines

(with input-tape, work-tape, and output tape) and let ϕ̃ be the canonical Gödel

numbering of all these 3-tape Turing machines. Moreover, we let Φi be the number

of cells used by ϕi on its work-tape. Thus, [ϕ̃, Φ̃] is a complexity measure.

Corollary 16.5. Let [ϕ̃, Φ̃] be the complexity measure defined above. Then

R
[ϕ̃,Φ̃]
t ∈ NUM! for all t ∈ R.

Proof. The corollary immediately follows from Theorem 16.4, since U0 ⊆ R
[ϕ̃,Φ̃]
t

for all t ∈ R, i.e, in particular for t(n) = 0 for all n.

Next we show that the theorems concerning the recursive enumerability which we

have obtained in the last lecture, cannot be improved. That is, we are going to show

that there are complexity measures and functions t ∈ R such that R
[ϕ,Φ]
t /∈ NUM!.

For the sake of presentation, it will be convenient to identify a function with the

sequence of its values. For example, we shall use 0∞ to denote the everywhere zero

function t, i.e., t(n) = 0 for all n ∈ N.

Theorem 16.6. There are a complexity measure and a function t ∈ R such that

R
[ϕ,Φ]
t /∈ NUM!.

Proof. Since the theorem can only hold for small functions t ∈ R, we choose the

smallest possible one, i.e., t(n) = 0 for all n ∈ N. Now, let [ϕ,Φ ′] be any complexity

measure. Furthermore, let h ∈ R be a function such that

ϕh(i)(n) = i for all i ∈ N and all n ∈ N .

That is, ϕh(i) = i∞. Without loss of generality, by the padding lemma, we can assume

h to strictly monotone. Thus, range(h) is decidable.
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Now, the proof idea is easily explained. Let K be the halting set, i.e.,

K = {i | ϕi(i) is defined } .

Recall that K is recursively enumerable but its complement K is not, since otherwise

K would be decidable.

We are going to construct a complexity measure [ϕ,Φ] such that

R
[ϕ,Φ]
0∞ = {i∞ | i ∈ K} .

This is all we need. For seeing this, assume we have already shown Property 15.3 to

hold. Suppose to the contrary that R
[ϕ,Φ]
0∞ ∈ NUM!. Then there must be a function

g ∈ R2 such that

R
[ϕ,Φ]
0∞ = {λxg(j, x) | j ∈ N} .

The latter property directly implies that

{g(j, 0) | j ∈ N} = K ,

i.e., K would be recursively enumerable, a contradiction.

Hence, it indeed suffices to show Property 15.3 which is done next. We set for all

j ∈ N and all n ∈ N

Φj(n) =df


0, if j = h(i) and ¬[Φ ′

i(i) 6 n],
1 +Φ ′

j(n), if j = h(i) and Φ ′
i(i) 6 n,

1 +Φ ′
j(n), if j /∈ range(h) .

Note that in the first and second case j ∈ range(h). Since h is strictly monotone,

there can be at most one such i satisfying j = h(i). In the third case, we assume

Φj(n) to be not defined if and only if Φ ′
j(n) is not defined.

Now, it is easy to see that [ϕ,Φ] is a complexity measure. Since we did not

change the Gödel numbering, our construction directly implies that Condition (1) of

the definition of complexity measure remains valid.

Condition (2) of Definition 50 is also satisfied. In order to decide whether or not

“Φj(n) = y,” we have to check if j ∈ range(h). This is decidable. If it is not and

y = 0 then the answer is “no.” If j /∈ range(h) and y > 0, we output M ′(j,n,y− 1),

where M ′ is the predicate for [ϕ,Φ ′]. Moreover, if j ∈ range(h), then let j = h(i).

We then first check if M ′(i, i,k) = 0 for all k = 0, . . . ,n. If this true and y = 0, we

output 1. If M ′(i, i,k) = 0 for all k = 0, . . . ,n and y > 0, we output 0. Otherwise,

there is a k 6 n such that M ′(i, i,k) = 1. Again, if y = 0, we output 0, and if y > 0

we output M ′(j,n,y− 1).

Finally, it is easy to see that for all j ∈ N our construction directly yieldsΦj(n) > 0

for all but finitely many n or Φj(n) = 0 for all n ∈ N. But the latter case happens if

and only if

∃i[j = h(i) ∧ ϕi(i) not defined ] ,

i.e.,

R
[ϕ,Φ]
0∞ = {i∞ | i ∈ K} .

This proves the theorem.
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16.3. An Undecidability Result

As we have seen, it can happen that R
[ϕ,Φ]
t /∈ NUM!. Thus, it is only natural to

ask if one can decide, for any given complexity measure [ϕ,Φ] and any given function

t ∈ R whether or not R
[ϕ,Φ]
t ∈ NUM!. Our next theorem shows that there is such a

decision procedure if and only if it is not necessary, i.e., if and only if R
[ϕ,Φ]
t ∈ NUM!

for all t ∈ R. Thus, conceptually, the following theorem should remind you to the

Theorem of Rice.

Theorem 16.7. Let [ϕ,Φ] be any complexity measure. Then we have:

∃ψ ∈ P ∀j[ϕj ∈ R −→ ψ(j) defined ∧
(
R[ϕ,Φ]
ϕj

∈ NUM! −→ ψ(j) = 1
)

∧
(
R[ϕ,Φ]
ϕj

/∈ NUM! −→ ψ(j) = 0
)
↔ ∀t ∈ R

[
R

[ϕ,Φ]
t ∈ NUM!

]

Proof. The sufficiency is obvious, since we can set ψ = 1∞.

Necessity. We set

R+ =df {t | t ∈ R ∧ R
[ϕ,Φ]
t ∈ NUM!}

as well as R− =df R \ R+. As we have already seen, R+ 6= ∅ (cf. Theorem 16.4).

Moreover, if R− = ∅, then we are already done. Thus, suppose R− 6= ∅. We continue

by showing that such a desired ψ cannot exist. For this purpose, let t+ ∈ R+ and

t− ∈ R−. Furthermore, for any f ∈ R we again set

Uf =df {f ′ | ϕ ′ ∈ R ∧
∞
∀ nf ′(n) = f(n)} .

Now, suppose to the contrary that there is a ψ ∈ P such that

∀j[ϕj ∈ R −→ ψ(j) defined ∧
(
R[ϕ,Φ]
ϕj

∈ NUM! −→ ψ(j) = 1
)

∧
(
R[ϕ,Φ]
ϕj

/∈ NUM! −→ ψ(j) = 0
)

Then, this function ψ should in particular satisfy the following

∀j[ϕj ∈ Ut+ −→ ψ(j) = 1] ∧ ∀j[ϕj ∈ Ut− −→ ψ(j) = 0] .

Next, let k be arbitrarily fixed such the ϕk = ψ. Furthermore, let f ∈ R be chosen

such that for all j,n ∈ N

ϕf(j)(n) =


t+(n), if Φk(j) 6 n ∧ ψ(j) = 0
t−(n), if Φk(j) 6 n ∧ ψ(j) = 1
0, otherwise .

By the choice of k, if Φk(j) 6 n, then we can compute ϕk(j) = ψ(j). Therefore,

ϕf(j) ∈ R for all j ∈ N. By the fixed point theorem, there is a number a such that
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ϕf(a) = ϕa. Thus, ϕa ∈ R. By assumption, we can conclude that ψ(a) must be

defined. Now, we distinguish the following cases.

Case 1. ψ(a) = 0.

Then, by construction, ϕf(a) ∈ Ut+ . Since ϕf(a) = ϕa, we thus obtain ϕa ∈ Ut+ .

But this implies R
[ϕ,Φ]
ϕa ∈ NUM!, and consequently ψ(a) = 1, a contradiction. Thus,

Case 1 cannot happen.

Case 2. ψ(a) = 1.

Then, by construction, ϕf(a) ∈ Ut− and thus ϕa ∈ Ut− . By the choice of t− we

can conclude R
[ϕ,Φ]
ϕa /∈ NUM!, and consequently ψ(a) = 0, a contradiction. Thus,

this case cannot happen either. Hence, the desired function ψ cannot exist.

Further results concerning recursive properties of abstract complexity classes can

be found in Landweber and Robertson [4] as well as in McCreight and Meyer [3] and

the references therein.

Next, we turn our attention to a different problem. We are going to ask how much

resources must be added to some given resources in order to make more functions

computable than before. That is, given any t ∈ R, we are interested in learning how

to choose t̂ such that

R
[ϕ,Φ]
t ⊂ R

[ϕ,Φ]

t̂
.

Before we are trying to answer this question in more depth, we confine ourselves that

there is always such a function t̂.

Lemma 16.8. Let [ϕ,Φ] be any complexity measure. For every recursive function

t ∈ R there is always another function t̂ such that R
[ϕ,Φ]
t ⊂ R

[ϕ,Φ]

t̂
.

Proof. Let t ∈ R be arbitrarily fixed. By Theorem 15.13, there exists a function

f ∈ R0,1 such that for all ϕ-programs i with ϕi = f we have Φi(n) > t(n) for all but

finitely many n ∈ N. Therefore, we get f /∈ R
[ϕ,Φ]
t .

Let i be any ϕ-program for f. We define for all n ∈ N

t̂(n) = max{t(n), Φi(n)} .

Consequently, f ∈ R
[ϕ,Φ]

t̂
and R

[ϕ,Φ]
t ⊂ R

[ϕ,Φ]

t̂
.

The latter lemma directly implies the following corollary.

Corollary 16.9. Let [ϕ,Φ] be any complexity measure. There is no function

t ∈ R such that R
[ϕ,Φ]
t = R.

So, the more interesting question is whether or not we can choose t̂ in dependence

of t effectively in order to obtain

R
[ϕ,Φ]
t ⊂ R

[ϕ,Φ]

t̂
.

This is done in the next part of our lecture.



The Gap-Theorem 155

16.4. The Gap-Theorem

Let us try the following approach. For the sake of presentation, for any h ∈ R2 we

shall write h ◦ t to denote the function

(h ◦ t)(n) =df h(n, t(n))

for all n ∈ N. Now, we can imagine that h ∈ R2 is a very rapidly growing function.

Thus, it is quite natural to ask whether or not we may expect

R
[ϕ,Φ]
t ⊂ R

[ϕ,Φ]
h◦t .

for all t ∈ R. The surprising answer is no as the following theorem shows. Since this

theorem establishes a “gap” in which nothing more can be computed than before, it

is called Gap-Theorem. The Gap-Theorem has been discovered by Trakhtenbrot [6]

and later independently by Borodin [2]. The proof given below, however, follows

Young [7].

Theorem 16.10 (Gap-Theorem).

Let [ϕ,Φ] be any complexity measure. Then we have

∀h ∈ R2
[
∀n∀y[h(n,y) > y −→ ∃t ∈ R

[
R

[ϕ,Φ]
t = R

[ϕ,Φ]
h◦t

]]
.

Proof. We shall even show a somehow stronger result, i.e., that t can made arbi-

trarily large. Let a ∈ R be any function. We are going to construct t such that

(1) t(n) > a(n) for all but finitely many n.

(2) For all n > j, if Φj(n) > t(n) then Φj(n) > h(n, t(n)).

To define t we set

tn+1 = a(n) and for 0 < i 6 n+ 1, let ti−1 = h(n, ti) + 1 .

Thus, we directly get from h(n,y) > y that

tn+1 < tn < tn−1 < · · · < t1 < t0 .

So, we have n+2 many points. Next, we consider all the n+1 many intervals [ti, ti−1),

i = n + 1, . . . , 1. Moreover, consider the n many points Φj(n) for j = 0, . . . ,n − 1.

Since we have more intervals than points, we can effectively find at least one interval,

say [ti0 , ti0−1) that does not contain any of these points, i.e., for no j < n do we have

ti0 6 Φj(n) 6 h(n, ti0) < ti0−1 .

Therefore, we are setting t(n) = ti0 . Then, by construction t(n) = ti0 > tn+1 = a(n).

Moreover, for n > j and Φj(n) > t(n) = ti0 we obtain from Φj(n) /∈ [ti0 , ti0−1)

directly that

Φj(n) > ti0−1 = h(n, ti0) + 1 > h(n, t(n)) .

Finally, since h(n,y) > y the conditionΦj(n) 6 t(n) also implies Fj(n) 6 h(n, t(n)).

Consequently, R
[ϕ,Φ]
t = R

[ϕ,Φ]
h◦t .
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So, we have just seen that there are indeed gaps in the complexity hierarchy which

do not contain any new function from R. These gaps are described by the functions t

and h ◦ t from the Gap-Theorem.
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Index

µ-recursion, see operation

acceptance

via empty stack, 70

via final state, 70

Ackermann, 100

Al-Hwarizmi, 89

algorithm, 32

Boyer-Moore, 32

for Greibach normal form, 78

intuitive notion, 90

Knuth-Morris-Pratt, 32

alphabet, 5

input, 69

nonterminal, 9

of tape-symbols, 103

stack, 69

terminal, 9

Ars magna, 89

Art inveniendi, 89

automaton, see finite automaton

Backus normal form, see BNF

Backus-Naur Form, see BNF

binary relation, see relation

Blum, Manuel, 141

BNF, 43

Borodin, A., 155

Cantor, 99

characterization

of CF, 83

of CS, 85

of REG, 16

partial recursive, 105

recursive set, 133

Turing computable, 105

Chomsky, 35

Chomsky hierarchy, 86

Chomsky normal form, 51

Church, 109

λ-calculus, 109

Church’s thesis, 109

closure, 55

CF

under homomorphisms, 59

under Kleene closure, 36

under product, 36

under substitution, 55

under transposition, 38

under union, 36

CS

under Kleene closure, 84

under product, 84

under transposition, 84

under union, 84

CS under intersection, 84

REG

under complement, 131

under intersection, 131

under Kleene closure, 10

under product, 10

under union, 10

type-0 languages

under Kleene closure, 134

under product, 134

under union, 134

complexity class, 147

in NUM, 149

in NUM!, 150

complexity measure

definition, 141

ink, 142

recursive relatedness, 143

reversal, 142

space, 142

time, 142

composition, see relation

concatenation, 5

properties of, 6

decidability, 27
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regular languages, 27

L(G) infinite, 27

decision procedure, 89

Dedekind, 92

justification theorem, 92

definition

parse tree, 44

partial recursive function, 94

primitive recursive function, 94

derivation, 9

leftmost, 49

rightmost, 49

Dyck, see Dyck language

enumeration procedure, 89

finite automaton, 13

deterministic, 14

equivalence, 16

det., nondet., 16

initial state, 13

nondeterministic, 13

definition, 13

states, 13

flex, 31

function

h-honest, 145

Ackermann-Péter, 100

arithmetic difference, 96

basic functions, 91

binary addition, 94

binary multiplication, 95

by case distinction, 97

characteristic

of a set, 117

of predicate P, 97

general addition, 96

general multiplication, 96

general recursive, 99

noncomputable, 91

nowhere defined, 100

pairing, 98

partial characteristic, 132

partial recursive, 91, 94

primitive recursive, 94

signum, 95

Gödel, 91

Gödel numbering, see numbering

generation, 9

direct, 9

grammar, 9

λ-free, 42

ambiguous, 46, 49

context-free, 35

Chomsky normal form, 51

context-sensitive, 84

Greibach normal form, 77, 78

length-increasing, 84

nonterminal alphabet, 9

productions, 9

reduced, 40

regular, 10

normal form, 16

separated, 50

start symbol, 9

terminal alphabet, 9
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