
TCS -TR-B-08-04

TCS Technical Report

Course Notes on Complexity and Cryptography

by

Thomas Zeugmann

Division of Computer Science

Report Series B

April 16, 2008

Hokkaido University
Graduate School of

Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684

Fax: +81-011-706-7684

Course Notes on Complexity and Cryptography i

Abstract

The main purpose of this course is an introductory study of computational com-
plexity and cryptography.

The �rst part introduces the concept of computational complexity by looking at
the basic arithmetic operations, i.e., addition, subtraction, multiplication and division.
Then matrix multiplication is touched.

In order to prepare everything we need later for public-key cryptography, we con-
tinue with number theoretic problems and study several algorithms including modular
exponentiation, primality testing and taking discrete roots.

In the following, we introduce well-known complexity classes, look at complete
problems and �nish with probabilistic complexity classes. There is also an appendix
comprising additional material that had to be omitted due to the introductory char-
acter of this course, but may be worth to be known.

The second part is devoted to cryptography. After a short historical sketch we
deal with public-key cryptography in some more detail, look at authentication and
cryptographic protocols, and �nish with a more detailed study of digital signatures.
Again, there is an appendix containing material for further reading.

There will be a midterm problem set and a �nal report problem set each worth
100 points. So your grade will be based on these 200 points.

Note that the course is demanding. But this is just in line with William S. Clark's
encouragement

Boys, be ambitious !

Of course, nowadays, we would reformulate this encouragement as

Girls and Boys, be ambitious !

c©Thomas Zeugmann, Hokkaido University, 2008

Course Notes on Complexity and Cryptography iii

Recommended Literature

The references given below are mandatory.

(1) 8¡à : ���ÖhªüÈÞÈó���Ö� Information & Computing �
106, µ¤¨ó¹>, 2005
ISBN 978-4-7819-1104-5

(2) Ò¤¨�>b�Kj� ûPÅ1�áì¯Áãü·êüºD-8� þã�÷n
ú�p�� ûPÅ1�áf�è

(3) J�ÛÃ×¯íÕÈ�J�¦ëÞó : ªüÈÞÈó���Ö ��Ö I,
Information & Computing � 3, µ¤¨ó¹>, 1984
ISBN 4-7819-0374-6

(4) J�ÛÃ×¯íÕÈ�J�¦ëÞó : ªüÈÞÈó���Ö ��Ö II,
Information & Computing � 3, µ¤¨ó¹>, 1984
ISBN 4-7819-0432-7

There are some additional references to the literature given in some lectures. So please
look there, too.

c©Thomas Zeugmann, Hokkaido University, 2008

Contents

Part 1: Complexity 1

Lecture 1: Introduction 3

1.1 Notations and De�nitions . 5

1.2 Addition . 6

1.3 Multiplication . 8

Lecture 2: Complexity of Division and Matrix Multiplication 15

2.1 Division . 15

2.2 Comparing the Complexity of Division and Multiplication 19

2.3 Complexity of Matrix Multiplication 20

Lecture 3: Complexity of Number Theoretic Problems 25

3.1 Calculating in Zm . 26

3.2 Generating Functions and Fibonacci Numbers 28

3.3 Algorithms for Computing in Zm . 30

Lecture 4: Number Theoretic Algorithms 35

4.1 Solving Linear Congruences . 35

4.2 Modular Exponentiation . 37

4.3 Towards Discrete Roots . 38

4.4 Pseudo Primes . 42

Lecture 5: Testing Primality and Taking Discrete Roots 47

5.1 Solovay and Strassen's Primality Test 48

5.2 Taking Discrete Roots . 51

5.3 Berlekamp's Procedure for Taking Discrete Square Roots 51

v

vi Table of Contens

Lecture 6: Complexity Classes 59

6.1 Deterministic One-tape Turing Machines and Time Complexity 59

6.2 Space and Time Complexity of Deterministic k-tape Turing Machines . 62

6.3 Reducing the Number of Tapes . 64

6.4 Deterministic Complexity Hierarchies 67

6.5 Nondeterministic k-Tape Turing Machines 69

Lecture 7: More about Complexity Classes 71

7.1 More about Tape Reductions . 71

7.2 A Complexity Hierarchy for Nonderterministic Time 73

7.3 The Immerman-Szelepcsényi Theorem 76

7.4 CS and Linear Bounded Automata . 80

7.5 Important Complexity Classes . 81

Lecture 8: More about Important Complexity Classes 83

8.1 Fundamental Inclusions . 83

8.2 Hardness and Completeness . 85

8.3 Properties of the GAP problem . 87

8.4 NP-complete Problems . 88

8.5 Remarks Concerning P versus NP . 94

Lecture 9: Probabilistic Complexity Classes 95

9.1 Probabilistic Turing Machines . 95

9.2 The Probabilistic Complexity Classes PP, RP, ZPP, and BPP 98

Part 2: Cryptography 105

Lecture 10: Classical Two-Way Cryptosystems 107

10.1 Introduction . 107

10.2 The Basic Model . 108

10.3 Polyalphabetic Cryptosystems . 112

10.4 Kasiski's Algorithm . 116

Table of Contens vii

Lecture 11: Public Key Cryptography 121

11.1 The General Scheme of Public Key Cryptography 121

11.2 Merkle and Hellman's Public Key Cryptosystem 123

11.3 The RSA Public Key Cryptosystem 126

11.4 The Di�e-Hellman Public Key Cryptosystem 128

Advanced Exercises . 131

Midterm Problem for Cryptology . 132

Lecture 12: Authentication, Cryptographic Protocols 133

12.1 Authentication . 133

12.2 Cryptographic Protocols . 134

12.3 Playing Poker per Telephone . 138

Lecture 13: More Cryptographic Protocols 141

13.1 Flipping a Coin per Telephone . 141

13.2 Partial Disclosure of Secrets . 143

13.3 Threshold Schemes . 146

Lecture 14: Digital Signatures 153

14.1 Realizing Advanced Digital Signatures 154

14.2 An Undeniable Digital Signature Scheme 156

Appendix for Complexity 163

15.1 A Lower Bound for the Complexity of Accepting Palindromes 163

15.2 Time Complexity Gap for Accepting Non-regular Languages 166

15.3 Space Complexity Gaps for Accepting Non-regular Languages 170

15.4 More Properties of the GAP Problem 176

15.5 More NL-complete Problems . 179

15.6 The Complexity of MGAP and GAP2 180

Appendix for Cryptography 185

16.1 A�ne Cryptosystems . 185

16.2 The PLAYFAIR System . 189

c©Thomas Zeugmann, Hokkaido University, 2008

viii Table of Contens

17. Using Probability Theory 191

17.1 Friedman's Test . 191

17.2 Security . 194

17.3 Making A Priori Assumptions . 201

Variant 1: 1-gram Source . 202

Variant 2: 2-gram Source . 203

Variant 3: Markov Chains . 205

18. The Bayesian Approach to Cryptanalysis 207

18.1 Decision Functions . 207

18.2 An Example . 210

Indices 213

Subject Index . 213

List of Symbols . 221

List of Figures 223

Part 1: Complexity

Lecture 1: Introduction

The history of algorithms goes back, approximately, to the origins of mathematics
at all. For thousands of years, in most cases, the solution of a mathematical problem
had been equivalent to the construction of an algorithm that solved it. The ancient
development of algorithms culminated in Euclid's famous Elements.

Euclid's Elements form one of the most beautiful and in�uential works of science
in the history of humankind. Its beauty lies in its logical development of geometry
and other branches of mathematics. It has in�uenced all branches of science but none
so much as mathematics and the exact sciences. The Elements have been studied 24
centuries in many languages starting, of course, in the original Greek, then in Arabic,
Latin, and many modern languages.

A larger part of Euclid's Elements deals with the problem to construct geometrical
�gures by using only ruler and compass. Over the centuries, often quite di�erent
constructions have been proposed for certain problems. Then, in the 19th century
we already �nd a �rst spirit of complexity theory when mathematicians started to
compare di�erent algorithms solving the same construction problem by counting the
number of applications of ruler and compass.

For having an example, we shall look at the following problem. We wish to con-
struct a triangle 4 ABC from the following information. Given are the length AB of
the side AB, the length of the median going through B, and we also know that the
length of the median going through A is twice as large as the length of the median
going through C, i.e., ma = 2mc. That is all we know about the triangle 4 ABC.

So, please try to prove or to disprove that 4 ABC can be constructed by using
compass and ruler, only. If you �nd a construction for the wanted triangle, please
count the number of applications of compass and ruler.

In classical geometry there have been also a couple of construction problems around
that nobody could solve by using only ruler and compass. The most famous of these
problems are the trisection of an angle, squaring the circle and duplicating the cube.
Another important example is the question which regular n-gons are constructible by
using only ruler and compass. The latter problem was only resolved by Gauss in 1798.

However, even after Lindemann's proof in 1882 of the impossibility to square the
circle, it took roughly another 50 years before modern computability theory started.
The main step still to be undertaken was to formalize the notion of algorithm. The
famous impossibility results obtained for the classical geometrical problems �only�
proved that there is no particular type of algorithm solving them. Here the restriction
is to use ruler and compass, only.

But there have been other problems around that could not be solved despite enor-
mous e�orts of numerous mathematicians. For example, the design of an algorithm de-
ciding whether or not a given Diophantine equation has an integral solution (Hilbert's

4 Lecture 1: Introduction

10th problem) remained unsolved until 1967 when it was shown by Matijasevi�c [7] that
there is no such algorithm. So, modern computation theory starts with the question:

Which problems can be solved algorithmically ?

In order to answer it, �rst of all, the intuitive notion of an algorithm has to be formal-

ized mathematically. Starting from di�erent points of views Turing [12], Church [1],
and Gödel [2] have given their formalizations (i.e., the Turing machine, the λ�calculus,
the recursive functions). However, all these notions are equivalent, i.e., each computa-
tion in formalism-1 can be simulated in formalism-2 and vice versa. Since then, many
other proposals had been made to �x the notion of an algorithm (e.g., by Post [8]
and by Markov [6]). This led to the well-known �Church Thesis,� i.e., �the intuitive

computable functions are exactly the Turing machine computable ones.�

After the theory explaining which problems can and cannot be solved algorithmi-
cally had been well-developed, the attention has turned to the qualitative side, i.e.,
How �good� a problem can be solved? First in�uential papers in this direction were
written by Rabin [9] and [10], as well as by Hartmanis and Stearns [4]; the latter paper
gave the �eld its title: computational complexity. The central topic studied here was
to clarify what does it mean to say that a function f is more di�cult to compute than
a function g. Alternatively, one could also ask what does it mean that a function f is
more di�cult to program than a function g.

Of course, this also involves the problem of how to analyze a given algorithm with
respect to its complexity. For the time being, we shall deal with the time complexity

of algorithms. This can be done in a machine-dependent way, i.e., just putting the
algorithm into code and compiling it. Then, we may measure the amount of CPU
time used in dependence on the input to the algorithm. But this approach has a
serious drawback, that is, it is hard to compare di�erent methods solving the same
problem by di�erent persons that do not have identical computers.

So, it is better to favor a machine-independent approach. Since the basic operation
performed by a computer is a bit operation, we may just count the number of bit
operations needed.

This course mainly deals with sequential computations. That is, within our under-
lying model, one and only one bit operation can be performed in one time step. So,
we identify the time complexity with the number of bit operations to be performed.

For many problems often quite di�erent algorithms are known that solve them.
Thus, one has to compare these algorithms in order to make a quali�ed choice which
algorithm to use. This is, however, easier said than done. In general, we distinguish
between the best-case, worst-case and average-case analysis of algorithms. As these
names suggest, the best-case deals with those inputs on which the algorithm achieves
its fastest running time. The worst-case analysis provides an upper bound which is
never exceeded independently of the inputs the algorithm is run with. So a worst-
case analysis is of particular importance for all applications that are safety critical.

1.1. Notations and Definitions 5

For example, an autopilot must work under all conditions in real-time. On the other
hand, it may well be that those inputs, on which the considered algorithm achieves
its worst-case, occur very seldom in practice. Provided the application is not safety
critical, one should prefer the algorithm achieving the better average-case behavior.

Last but not least, for several applications one also needs guarantees that there is
no algorithm solving a problem quickly on any input. We shall study such applications
in the second part of our course when dealing with cryptography. But even without
going into any detail here, it should be clear that deciphering a password must be as
di�cult on average as in the worst-case.

We aim to express the complexity as a functions of the size of the input. This
assumes that inputs are made by using any reasonable representation for the data on
hand. For doing this, it is advantageous to neglect constant factors. Intuitively, this
means that we are aiming at results saying that the running time of an algorithm is
proportional to some function.

1.1. Notations and De�nitions

For formalizing this approach, we need the following notations and de�nitions. By
N we denote the set of all natural numbers including zero. Furthermore, we set
N+ = N \ {0}. The set of all integers is denoted by Z. We use Q and R for the set of
all rational numbers and real numbers, respectively. The non-negative real numbers
are denoted by R>0. For all real numbers y we de�ne byc, the �oor function, to be
the greatest integer less than or equal to y. Similarly, dye denotes the smallest integer
greater than or equal to y, i.e., the ceiling function.

Next, we de�ne several notions used to express growth rates of functions.

De�nition 1.1. Let g: N → R>0 be any function. We de�ne the following sets

(1) O(g(n)) = {f f: N → R>0, there exist constants c, n0 > 0 such that
0 6 f(n) 6 cg(n) for all n > n0},

(2) Ω(g(n)) = {f f: N → R>0, there exist constants c, n0 > 0 such that
0 6 cg(n) 6 f(n) for all n > n0},

(3) o(g(n)) = {f f: N → R>0, for every constant c > 0 there exists a constant
n0 > 0 such that 0 6 f(n) 6 cg(n) for all n > n0},

(4) Θ(g(n)) = {f f: N → R>0, there exist constants c1, c2, and n0 > 0 such that
0 6 c1g(n) 6 f(n) 6 c2g(n) for all n > n0}.

To indicate that a function f is a member of O(g(n)), we write f(n) = O(g(n)). We
adopt this convention to Ω(g(n)), o(g(n)) and Θ(g(n)). Note that the O-notation
expresses an asymptotic upper bound while the Ω-notation expresses an asymp-

totic lower bound. Looking at the de�nition above, we see that the Θ-notation
establishes an asymptotic tight bound.

c©Thomas Zeugmann, Hokkaido University, 2008

6 Lecture 1: Introduction

The main di�erence between the O-notation and the o-notation is that for f(n) =

O(g(n)) the bound 0 6 f(n) 6 cg(n) holds for some constant, but if f(n) = o(g(n)),
the bound 0 6 f(n) 6 cg(n) holds for all constants c > 0. To understand this
di�erence, as well as the relations between O, Ω and Θ the following exercise helps.

Exercise 1. Let f, g: N → R>0 be any functions. Then we have

(1) f(n) = o(g(n)) if and only if lim
n→∞

f(n)

g(n)
= 0 .

(2) f(n) = O(g(n)) if and only if g(n) = Ω(f(n)),

(3) f(n) = Θ(g(n)) if and only if f(n) = Ω(g(n)) and f(n) = O(g(n)).

Throughout this course, we write log n to denote the logarithm to the base 2, ln n

to denote the logarithm to the base e (where e is the Euler number), and logc n to
denote the logarithm to the base c.

Now, we are ready to study the �rst algorithms. The basic arithmetic operations,
i.e., addition, subtraction, multiplication and division are of fundamental importance.
Therefore, we start with them.

1.2. Addition

For measuring the complexity of addition, we use the length of the numbers to be
added as the basic complexity parameter. Thus, in the following we assume as input
two n-bit numbers a = an−1 · · ·a0 and b = bn−1 · · ·b0, where ai, bi ∈ {0, 1} for all

i = 0, . . . , n − 1. The semantics of these numbers a and b is then a =
n−1∑
i=0

ai2
i and

b =
n−1∑
i=0

bi2
i. We have to compute the sum

s = a + b =

n∑
i=0

si2
i , si ∈ {0, 1} for all i = 0, . . . , n .

Note that s is a number having at most n + 1 bits. We use ∧ and ∨ we denote the
logical AND and OR operation, respectively. By ⊕ we denote the Boolean EX -OR

function, i.e.,

⊕ 0 1
0 0 1
1 1 0

Using essentially the well-known school method for addition, we can express the si

and the carry bits c0 and ci+1, i = 0, . . . , n − 1 as follows:

sn = cn ,

si = ai ⊕ bi ⊕ ci , where

c0 = 0

ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) .

1.2. Addition 7

Since we want to count the number of binary operations to be performed, we have to
make a decision here. Either we can consider ⊕ also as a basic binary operation or we
restrict ourselves to allow exclusively the logical AND , OR and the logical negation
as basic binary operations. In the latter case, we have to express ⊕ as

x⊕ y = (x ∧ ȳ) ∨ (x̄ ∧ y) x, y ∈ {0, 1} ,

i.e., it takes 5 bit basic operations (2 negations, 2 times AND and one time OR)
to express ⊕. So, the choice we make will only a�ect the constant and can thus be
neglected here.

Summarizing our results, we thus obtain the following theorem.

Theorem 1.1. The addition of two numbers a and b each having at most n bits

can be performed in time O(n).

More precisely, if we have to express ⊕ by using negations, AND and OR, then
the time complexity of adding two n bit numbers can be bounded by 15n. If ⊕ itself
is considered to be a basic binary operation, then we get the bound 7n.

Subtraction can be handled within the scope of integer addition. For representing
integers, we need an extra bit for representing the sign. We shall call such represen-
tations AS -numbers, where A stands for �absolute value� and S for �sign.�

De�nition 1.2. The value of an AS-number x = (xn−1, . . . , x0) ∈ {0, 1}n is

de�ned as

VAS(x) = (−1)xn−1(xn−22
n−2 + · · ·+ x12 + x0) .

When dealing with addition of two AS-numbers x, y having at most n bits each,
we distinguish the following cases.

Case 1. xn−1 = yn−1

That means x and y have the same sign. Hence, the sign of the sum is the same
as the common sign of x and y. Moreover, the absolute value of the sum equals the
sum of the absolute values of x and y. Thus, we can directly use addition algorithm
presented above.

Case 2. xn−1 6= yn−1

Now, we have to compare the absolute values of x and y. The sign of the sum
is equal to sign of the number having the bigger absolute value. Without loss of
generality, let x ′ be the bigger absolute value and y ′ the smaller one. Hence, the
absolute value of the sum is x ′ − y ′.

Consequently, we have to deal with two additional problems. First, we have to
show that subtraction of two n bit numbers can be performed in time O(n). Second,
we have to prove that comparison of absolute values of two n bit numbers can be done
in time O(n), too. We leave it as an exercise to show these two results, since you

c©Thomas Zeugmann, Hokkaido University, 2008

8 Lecture 1: Introduction

should have already some familiarity with these subjects (from technical computer
science and/or electrical engineering).

Exercise 2. The subtraction of two AS-numbers a and b each having at most n

bits can be performed in time O(n).

Next, we turn our attention to multiplication. For the sake of presentation, we
deal here only with the multiplication of natural numbers.

1.3. Multiplication

In the following we assume as input two n-bit numbers a = an−1 · · ·a0 and b =

bn−1 · · ·b0, where ai, bi ∈ {0, 1} for all i = 0, . . . , n−1. Again, the semantics of these

numbers a and b is then a =
n−1∑
i=0

ai2
i and b =

n−1∑
i=0

bi2
i.

We have to compute the product ab. Taking into account that a, b < 2n, one
easily estimates ab < 2n · 2n = 2n+n = 22n. So, the product ab has at most 2n bits.

First, we apply the usual school method for multiplication. Multiplication of two
bits can be realized by the AND function. Thus, �rst we need n2 many applications
of AND to form the n summands and n costless shifts. Next, we have to add these
n numbers. Using the same ideas as above, one easily veri�es that this iterated sum
takes another O(n2) many bit operations. Thus we have the following theorem.

Theorem 1.2. The usual school algorithm for multiplying two numbers a and b

each having at most n bits can be performed in time O(n2).

Next, we ask whether or not we can do, at least asymptotically, better. The
a�rmative answer will be provided by our next theorem which goes back to Karatsuba
and Ofman [5]. For establishing it, we shall apply the method of divide et impera

(divide and conquer in English) for sequential computations. The general idea of
the method divide et impera is as follows. The problem of size n is divided into a
certain number of independent subproblems having of the same type but having lower
size. The solution of the original problem is obtained combining the solutions of the
subproblems in an appropriate manner. If this technique is applied recursively to the
subproblems until problems of su�ciently small size arise, then the best e�ect will
result. However, the number of subproblems obtained in each recursive step is also
crucial and requires often tricky constructions.

Theorem 1.3. There is an algorithm for multiplying two numbers a and b each

having at most n bits that can be performed in time O(nlog 3).

Proof. Without loss of generality we let n = 2k. Then there exist numbers a0, a1

and b0, b1 such that

a = a02
n/2 + a1 and b = b02

n/2 + b1 .

Then, it holds:

ab = (a02
n/2 + a1)(b02

n/2 + b1)

= a0b02
n + (a0b1 + a1b0)2

n/2 + a1b1

1.3. Multiplication 9

But a direct application of this reduction to the problem of multiplying two n bit
numbers to four multiplications of numbers having at most n/2 bits and three ad-
ditions as well as two shift operations does not help. Fortunately, Karatsuba and
Ofman [5] have discovered a way to reduce the number of problems having half of the
size of the original problem from four to three by observing that

(a0b1 + a1b0) = (a0 + a1)(b0 + b1) − (a0b0 + a1b1) .

Using the latter equation, it is immediately clear that we only have to compute the
three products a0b0, a1b1, and (a0 + a1)(b0 + b1).

Therefore, we directly arrive at the following algorithm. For each of the steps
displayed below perform the computation sequentially.

Improved Multiplication

(1) s0 = a0 + a1, s1 = b0 + b1

(2) p0 = a0b0, p1 = a1b1, p2 = s0s1

(3) t = p0 + p1

(4) u = p2 − t, û = u2n/2

(5) v = a0b02
n + a1b1

(6) p = v + û

The correctness of the algorithm above is obvious by the arguments provided before
displaying it.

Next, we estimate the complexity of our improved multiplication.

Let A(n) be the time for adding two n bit numbers, and

let M(n) be the time for multiplying two n bit numbers.

Then, we can estimate the time complexity as follows:

(1) 2A(n/2)

(2) 2M(n/2) + M(n/2 + 1)

(3) A(n)

(4) A(n + 2) and a costless shift.

(5) This step is costless, since it is only a concatenation of bits.

(6) A
(

3
2
n
)
, since the n/2 lower bits of û are all 0.

c©Thomas Zeugmann, Hokkaido University, 2008

10 Lecture 1: Introduction

Now, the main idea is to apply our improved multiplication algorithm recursively
to itself. The only disturbing point here is that we have a subproblem (computing
s0s1) which is the multiplication of two numbers having n/2 + 1 bits (and not only
n/2 as desired). We resolve it as follows.

Let s0 = x02 + x1 and s1 = y02 + y1, where x1, y1 ∈ {0, 1} and x0, y0 are n/2 bit
numbers. Then

s0s1 = (x02 + x1)(y02 + y1)

= 4x0y0 + 2(x0y1 + x1y0) + x1y1

Now, the multiplication of x0y0 is a multiplication of n/2 bits numbers, i.e., it has
costs M(n/2). The remaining multiplications, i.e., x0y1, x1y0 and x1y1 can be directly
realized by using n + 1 AND gates, since x1, y1 ∈ {0, 1}. Additionally, we have to
include the costs for addition, i.e., A(n) + A(n/2) + 1. Therefore, we arrive at

M(n/2 + 1) 6 M(n/2) + A(n) + A(n/2) + 1 .

Since addition can be realized by a sequential algorithm taking time O(n), we can
conclude that there is a constant ĉ > 0 such that

M(n/2 + 1) 6 M(n/2) + ĉn .

Consequently, there is a constant c > 0 such that

M(n) =

{
c , if n = 1
3M(n/2) + cn , if n > 1 .

Now, it su�ces to show that M(n) = 3cnlog 3 − 2cn is a solution of the recursive
equation displayed above. This is shown inductively. For the induction base, we
directly get

T(1) = 3c1log 3 − 2c = c .

Assuming the induction hypothesis for m, we perform the induction step from m to
2m as follows. Recall that n = 2k, thus this induction step is justi�ed. We have to
show that M(2m) = 3c(2m)log 3 − 2c(2m).

M(2m) = 3M(m) + 2cm

= 3
(
3cmlog 3 − 2cm

)
+ 2cm

= 9cmlog 3 − 6cm + 2cm

= 9cmlog 3 − 4cm

= 9cmlog 3 − 2c(2m)

= 3c2log 3mlog 3 − 2c(2m)

= 3c(2m)log 3 − 2c(2m) .

Consequently, M(n) = O(nlog 3). This proves the theorem.

1.3. Multiplication 11

Recall that log 3 ≈ 1.59. Thus, the Karatsuba/Ofman [5] algorithm is indeed much
faster than the usual school method. Intuitively, the improvement is due to the fact
that multiplication is more complex than addition. Hence, performing three instead
of four multiplications results in roughly 25% saving of time.

Please think about possible implementations of the Karatsuba/Ofman [5] algorithm
including the problem that n is not a power of 2.

Moreover, it should be noted that one can do even better. In 1971, Schönhage and
Strassen [11] have found a multiplication algorithm that takes time O(n log n log log n)

for computing the product of two n bit numbers. Very roughly speaking, their al-
gorithm works via the fast Fourier transformation. However, their algorithm is only
asymptotically faster, and n must be very large for achieving an improvement in
practice. We therefore omit this algorithm here.

Since the technique of divide et impera is very important for the design of e�cient
algorithms, it is only natural to ask if we can say something about the general solv-
ability of recursive equations arising in the analysis of the algorithms obtained. The
a�rmative answer is provided by the following theorem.

Theorem 1.4. Let a, b and c be positive natural numbers. Then the recursive

equation

T(n) =

{
b , if n = 1

aT
(

n
c

)
+ bn , for all n > 1 ,

where n is a power of c, has the following solution

T(n) =


O(n) , if a < c

O(n log n) , for all a = c

O(nlogc a) , for all a > c .

Proof. Let n be a power of c, i.e., n = ck. First, we show that

T(n) = bn ·
logc n∑
i=0

(a

c

)i

is a solution of the recursive equation given in the theorem.

This is done inductively. For the induction basis let n = 1. Then, logc 1 = 0 and

T(1) = b by de�nition

= b ·
(a

c

)0

multiplying by 1

= b ·
0∑

i=0

(a

c

)0

.

This shows the induction basis.

Next, assume the induction hypothesis (abbr. IH) that

T(m) = bm ·
logc m∑
i=0

(a

c

)i

c©Thomas Zeugmann, Hokkaido University, 2008

12 Lecture 1: Introduction

is a solution of the recursive equation for n = m. The induction step has to be done
from m to cm, i.e., we have to show that

T(cm) = bcm ·
logc(cm)∑

i=0

(a

c

)i

.

This is done as follows.

T(cm) = aT(m) + bcm by de�nition

= abm ·
logc m∑
i=0

(a

c

)i

+ bcm by the IH

= bm ·
logc m∑
i=0

ai+1

ci
+ bcm = bcm ·

logc m∑
i=0

(a

c

)i+1

+ bcm

= bcm ·
(logc m)+1∑

i=0

(a

c

)i

.

Furthermore, 1 = logc c since c1 = c. Thus, (logc m)+1 = logc m+logc c = logc(cm)

(product law for logarithms). Thus, we �nally have

T(cm) = bcm ·
logc(cm)∑

i=0

(a

c

)i

,

and the induction step is shown.

Next, we distinguish the following cases.

Case 1. a < c

Then a/c < 1 and thus
∞∑

i=0

(
a
c

)i
is a convergent series. Consequently, T(n) = O(n).

Case 2. a = c

Then a/c = 1, and thus
logc n∑
i=0

(a

c

)i

= logc n .

Consequently, T(n) = O(n logc n) = O(n log n).

Case 3. a > c

Now, we need the following from calculus. First recall that

m∑
i=0

xi =
xm+1 − 1

x − 1
.

Thus, we obtain

T(n) = bn ·
logc n∑
i=0

(a

c

)i

= bn ·
(

a
c

)1+logc n
− 1

a
c

− 1

1.3. Multiplication 13

6 k̂bn ·
((a

c

)1+logc n

− 1

)
note that k̂ is a constant

6 k̂bn · a1+logc n

c1+logc n

= k̂b
a

c
alogc n recall that n = clogc n

= k ′alogc n where k ′ = k̂ba/c

= k ′elogc n lna

= k ′elnn lna·(1/ lnc) since logc n =
ln n

ln c

= k ′elnn logc a since
ln a

ln c
= logc a

= k ′nlogc a = O(nlogc a) .

This proves the theorem.

Exercise 3. Generalize Theorem 1.4 to the case where the recursive equation is

given as

T(n) =

{
b , if n = 1

aT
(

n
c

)
+ f(n) , for all n > 1 ,

where n is again a power of c, and function f: N → R>0 describes the costs for

combining the results of the subproblems.

Throughout this course, we shall see several applications of the divide et impera

technique, and we shall discuss further issues at the appropriate places.

References

[1] A. Church (1936), An unresolvable problem of elementary number theory, Am.
J. Math. 58, 345 � 365.

[2] K. Gödel (1931), Über formal unentscheidbare Sätze der Principia Mathemat-
ica und Verwandter Systeme, Monatshefte Mathematik Physik 38, 173 � 198.

[3] R.L. Graham, D.E. Knuth and O. Patashnik (1989), Concrete Mathemat-

ics (Addison-Wesley, Reading, Massachusetts).

[4] J. Hartmanis and R.E. Stearns (1965), On the computational complexity
of algorithms, Trans. Am. Math. Soc. 117, 285 � 306.

[5] A. Karatsuba and Yu. Ofman (1962), Multiplication of multidigit numbers
on automata, Doklady Akademii Nauk 145, 293 � 294.

[6] A.A. Markov (1954), Theoria Algorithmov, Akad. Nauk SSSR, Math. Inst.

Trudy 42.

c©Thomas Zeugmann, Hokkaido University, 2008

14 Lecture 1: Introduction

[7] Yu. V. Matijasevi�c (1970), The Diophantineness of enumerable sets. Dokl.
Akad. Nauk SSSR, 191, 279 � 282.

[8] E. Post (1943), Formal Reductions of General Combinatorial Decision Prob-
lems, Am. J. Math. 65, 197 � 215.

[9] M.O. Rabin (1959), Speed of computation and classi�cation of recursive sets,
in Third Convention Sci. Soc., Israel, pp. 1 � 2.

[10] M.O. Rabin (1960), Degrees of di�culty of computing a function and a partial
ordering of recursive sets, in Technical Report No. 1, University of Jerusalem.

[11] A. Schönhage and V. Strassen (1971), Schnelle Multiplikation groÿer
Zahlen, Computing 7, 281 � 292.

[12] A.M. Turing (1936/37), On computable numbers with an application to the
Entscheidungsproblem, Proc. London Math. Soc. 42, 230 � 265.

Lecture 2: Complexity of Division and Matrix Multipli-

cation

In this lecture we study the complexity of division, compare the complexity of
division to the complexity of multiplication and then we shall look at the complexity
of matrix multiplication.

2.1. Division

Next, we shall deal with division. So, let natural numbers a and d be given. Actually,
there are two versions of division, i.e., computing the quotient and computing integers
q, r such that a = qd + r and 0 6 r < d, respectively. While the second version
(division with remainder) nicely �ts into the class of problems studied so far (n bit
numbers given as input are transformed into output numbers having O(nc) bits for a
constant c > 0 independently of n), the �rst version still does not, since the quotient
may have in�nitely many bits. Thus, in this case, it is only meaningful to require the
computation of a su�ciently precise approximation. Therefore, we �rst de�ne what
is meant by approximation.

De�nition 2.1. Let x be any number. We say that x̃ is an approximation of x

with precision 2−c (precise for c bits) provided |x − x̃| 6 2−c.

Then, the division problem is de�ned as follows.

Division

Input: Numbers a, d ∈ N each having at most n bits.

Problem: Compute the quotient a/d with precision 2−n.

When dealing with division, the �rst observation is that we can split the problem
into two subproblems, i.e., computing the inverse d−1 of d with precision 2−2n and
then multiplying this approximation of d−1 and a. In the following, we use d̃−1

to denote the approximation of d−1 with precision 2−2n. The justi�cation for the
observation made is provided by the following lemma.

Lemma 2.1. Let a, d be n bit numbers. Suppose we have computed the in-

verse d−1 of d with precision 2−2n. Then ad̃−1 is an approximation of a/d with

precision 2−n.

Proof. Let d̃−1 be the approximation of d−1 with precision 2−2n. By assumption,
a < 2n, and thus ∣∣∣∣ad − ad̃−1

∣∣∣∣ = |a||d−1 − d̃−1|

6 2n · 2−2n = 2−n .

16 Lecture 2: Complexity of Division and Matrix Multiplication

First, we deal with the computation of d−1. One possible approach would be to
use the fact

1

1 − x
=

∞∑
i=0

xi

provided |x| < 1.

Note that we can assume, without loss of generality, that 1/2 6 d < 1. For seeing

this, let d =
n−1∑
i=0

di2
i and let dk the highest non-zero bit, i.e., dk 6= 0, k 6 n − 1

and dk+1 = · · · = dn−1 = 0 provided k < n − 1. Then, d̂ =df d2−(k+1) satis�es
1/2 6 d̂ < 1. Thus, d̂ can be computed from d by applying a simple shift operation.
However, for determining k one needs O(n) bit operations in the worst case. Now,
since the inverse of 2−(k+1) is 2k+1 knowing the inverse of d̂ with precision 2−2n is all
we need. So, we can set x = 1 − d.

However, it remains to ask how many summands we actually have to compute to
achieve the desired approximation. The answer is provided by the following lemma.

Lemma 2.2. Let d−1 be the exact inverse of d where 1/2 6 d < 1. Furthermore,

let b2n+1 =
2n+1∑
i=0

(1 − d)i. Then, we have |d−1 − b2n+1| 6 2−2n.

Proof. First, since 1/2 6 d < 1 we can conclude that 0 < 1 − d 6 1/2. Thus, the

geometrical series
∞∑

i=0

(1−d)i is absolutely convergent and from calculus we know that

∞∑
i=0

(1 − d)i =
1

1 − (1 − d)
=

1

d
.

Thus,
∞∑

i=0

(1 − d)i is the exact inverse of d. Hence, we get

|d−1 − b2n+1| =

∣∣∣∣∣
∞∑

i=0

(1 − d)i −

2n+1∑
i=0

(1 − d)i

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=2n+2

(1 − d)i

∣∣∣∣∣
6

∞∑
i=2n+2

|(1 − d)i| 6
∞∑

i=2n+2

(
1

2

)i

=
1 − 1 +

(
1
2

)2n+2

1 − 1
2

= 2−(2n+1)

< 2−2n .

2.1. Division 17

However, the resulting algorithm is quite slow compared to multiplication. Can we
do any better?

The a�rmative answer is obtained as follows. We can avoid to compute b2n+1

by evaluating the sum given above if we use the well-known Newton procedure for
computing zeros of functions. Recall that for a given di�erentiable function f and x∗

with f(x∗) = 0, one can compute x∗ with any desired precision by using

xk = xk−1 −
f(xk−1)

f ′(xk−1)
,

provided x0 is appropriately chosen. That is, then we know from calculus that

lim
k→∞ xk = x∗ .

In order to apply this method to our setting of computing the inverse, we cannot use
f(x) = xd − 1. In this case, we would get f ′(x) = d, and thus for computing the
iteration we already should know d−1.

So, we set f(x) = d − 1/x, and obtain thus that the sequence (bk)k∈N de�ned by

bk = (2 − bk−1d)bk−1

converges to d−1 provided b0 is appropriately chosen. Also, we should know that New-
ton's procedure converges quadratically. Thus, O(log n) iterations will su�ce. For
the sake of completeness, and for justifying our choice of b0 we include the following
theorem here.

Theorem 2.3. Let d be such that 1/2 6 d < 1, let b0 = 1 and let bk =

(2 − bk−1d)bk−1 for all k > 1. Then we have

bk =

2k−1∑
i=0

(1 − d)i .

Proof.We prove the theorem by induction. For the induction base k = 1 we directly
obtain

b1 = (2 − b0d)b0 = 1 + (1 − d) =

21−1∑
i=0

(1 − d)i .

The induction step from k to k + 1 is derived as follows.

bk+1 = (2 − bkd)bk = 2bk − bkdbk

= 2bk −

2k−1∑
i=0

(1 − d)i · d ·
2k−1∑
i=0

(1 − d)i by the induction hypothesis

= 2bk +

2k−1∑
i=0

(1 − d)i(−1 + (1 − d))

2k−1∑
i=0

(1 − d)i

c©Thomas Zeugmann, Hokkaido University, 2008

18 Lecture 2: Complexity of Division and Matrix Multiplication

= 2bk −

2k−1∑
i=0

(1 − d)i

2k−1∑
i=0

(1 − d)i +

2k−1∑
i=0

(1 − d)i+1

2k−1∑
i=0

(1 − d)i

= 2bk − bk −

2k−1∑
i=1

(1 − d)i

2k−1∑
i=0

(1 − d)i +

2k−1∑
i=1

(1 − d)i

2k−1∑
i=0

(1 − d)i

+ (1 − d)2k
2k−1∑
i=0

(1 − d)i

= bk +

2k−1∑
i=0

(1 − d)2k+i

=

2k−1∑
i=0

(1 − d)i +

2k+1−1∑
i=2k

(1 − d)i by the induction hypothesis

=

2k+1−1∑
i=0

(1 − d)i .

The latter theorem essentially shows that the number of correct bits is doubled
in each iteration. Summarizing the results obtained so far, now we can prove the
following theorem.

Theorem 2.4. There is an algorithm which, on input two number a and d

having at most n bits, computes the quotient a/d with precision 2−n using time

O(M(n) log n).

Proof. First, using Theorem 2.3 we can compute the inverse d−1 of d with precision
2−2n by using dlog 2ne+ 1 many iterations. In each iteration we have to perform two
multiplications and one addition. The two multiplications require time O(M(n)) and
the addition needs time O(n). Of course, we have to truncate the result of each
iteration to the 2n leading bits.

Furthermore, by Lemma 2.1 it then su�ces to multiply a and the approximate
inverse. This requires another multiplication of two numbers having at most 2n bits.
Thus, the overall time complexity is O(M(n) log n).

Does this mean that division is more complex than multiplication? We may be
tempted to answer this question a�rmatively, but some care has to be taken here. Of
course, we can try to prove a lower bound on the number of bit operations needed to
perform division. Provided we could show this lower bound to be Ω(M(n) log n), we
are done in the sense that we then know no improvement is possible. But this is much
easier said than done. Proving non-trivial lower bounds is a very hard task (and we
still have almost no experience in doing so). Second, we could try to �nd another

2.2. Comparing the Complexity of Division and Multiplication 19

method for division. But again, this is easier said than done. Nevertheless, you are
encouraged to try it.

Finally, it is well possible that we have already collected all good ideas needed, but
failed to put them together in the right way. Maybe, we have been a bit to generous.
The point here is that we always perform multiplications and additions of 2n bit
numbers. So, let us continue the lecture by asking what happens if we ignore the bits
that are anyhow not correct. There is some hope that this would not matter much,
since the Newton procedure is known to be self-correcting. We give it a try. The
following table shows the result of our iteration when performed on 2n bit numbers
(left) and with iterates that use 2, 4, 8 bits and so on (right). In this example, we set
d = 0.66 and assume that we need the �rst 8 digits to be correct. Thus, we have to
compute 1.5151515 (we perform the calculation here in decimal notion).

x1 1.34 1.3
x2 1.494904 1.484
x3 1.5148809 1.5145110
x4 1.5151514 1.5151512
x5 1.5151515 1.5151515

This looks pretty good. Finally, we shall resolve the complexity of division (relative
to multiplication).

2.2. Comparing the Complexity of Division and Multiplication

So far, we have shown that for b0 = 1 the sequence (bk)k∈N de�ned by the iteration

bk+1 = (2 − bkd)bk = 2bk − b2
kd for all k ∈ N (2.1)

converges to the inverse of d. Moreover, we have seen that we have to compute only
the �rst dlog 2ne+1 members of the sequence (bk)k∈N for obtaining d−1 with precision
2−2n. However, if all computations are performed with O(n) bits then we arrive at
complexity O(M(n) log n) for computing the approximative inverse of d.

Let I(n) denote the time needed to compute the inverse of any n bit number with
precision 2−2n. Our goal is to show that there exists a constant c > 0 such that
I(n) 6 M(n) for all n ∈ N. For showing this, we �rst observe that we can make the
following reasonable assumption

a2M(n) > M(an) > aM(n) for all a > 1 . (2.2)

Now, perform the computation of the bk's de�ned by (2.1) as follows. We take the
highest k bits of 2bk right from the dual point and calculate b2

kd up to the 2k bits
right from the dual point (by using only the highest k bits of d right from the dual
point and setting the remaining bits to zero). Finally, we calculate bk+1 up to the
highest 2k bits right from the dual point.

c©Thomas Zeugmann, Hokkaido University, 2008

20 Lecture 2: Complexity of Division and Matrix Multiplication

Of course, now one has to show that the sequence (bk)k∈N computed in the way
described above still converges to the inverse of d and that we still have to compute
only the �rst dlog 2ne + 1 members of it. This is left as an exercise. However,
since the Newton method is self-correcting as we know from numerics, this should be
intuitively clear. Moreover, we leave all further technical details out here, since we are
only interested in the general insight that for sequential computations division and
multiplication have the same complexity up to some constant.

Then we arrive at the following theorem.

Theorem 2.5. There exists a constant c > 0 such that I(n) 6 c ·M(n) for all

n ∈ N.

Proof. Performing the calculation of bk+1 as described above directly yields

I(2k) 6 I(k) +
5

2
M(2k) + c12k

for a suitably chosen constant c1.

Next, we choose c > 0 such that

c > I(1)/M(1) and c > 5 + 2c1 .

Now, the proof is done by induction on k. For the induction base k = 1 everything
is obvious. Next, assuming the induction hypothesis I(k) 6 c ·M(k) we perform the
induction step as follows, where in line three below, (2.2) is used, i.e., M(2k) > 2M(k)

and thus M(k) 6 1
2
M(2k). Moreover, in line four below we use the obvious inequality

2k 6 M(2k).

I(2k) 6 I(k) +
5

2
M(2k) + c12k

6 c ·M(k) +
5

2
M(2k) + c12k

6
c

2
M(2k) +

5

2
M(2k) + c12k

6
c

2
M(2k) +

5

2
M(2k) + c1M(2k)

6

(
c

2
+

5

2
+ c1

)
M(2k)

6
(c

2
+

c

2

)
M(2k) by the choice of c

= c ·M(2k) .

This completes the induction step, and we are done.

2.3. Complexity of Matrix Multiplication

Next, we turn our attention to another fundamental problem, i.e., matrix multipli-
cation. Matrix multiplication is needed in numerous applications involving linear

2.3. Complexity of Matrix Multiplication 21

algebra. Therefore, studying the complexity of matrix multiplication is not only of
theoretical interest but also of fundamental practical importance.

In order to achieve as much generality as possible, we shall consider matrix multi-
plications for any matrices de�ned over a ring.

Let us �rst recall the de�nition of a ring.

De�nition 2.2. Let S be any non-empty set containing at least two distinguished

elements 0 and 1, and let + and · be binary operations over S (that is + : S× S → S

and · : S × S → S). Then R = (S, +, ·, 0, 1) is a ring with identity element provided

that for all a, b, c ∈ S the following properties hold.

(1) (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c)

(i.e., + and · are associative).

(2) (a + b) = (b + a) (+ is commutative).

(3) (a + b) · c = a · c + b · c and a · (b + c) = a · b + a · c (laws of distributivity).

(4) a + 0 = 0 + a = a (0 is the neutral element with respect to +).

(5) a · 1 = 1 · a = a (1 is the identity element with respect to ·).

(6) For each a ∈ S there exist an element −a ∈ S such that a+(−a) = (−a)+a = 0

(−a is called the additive inverse of a).

Since we only consider rings with identity, we refer to a ring with identity as to a
ring for short.

Furthermore, if R is a ring and the operation · is commutative, then we say that the
ring R is commutative. Finally, if R is a commutative ring and if for every a ∈ S\{0}

there exist an element a−1 ∈ S such that a · a−1 = a−1 · a = 1, then R is said to be a
field.

So, let R = (S, +, ·, 0, 1) be a commutative ring with 1. Furthermore, let n ∈ N+.
We consider the set Mn of all n× n matrices over R. Moreover, let

In =


1 0 · · · 0
0 1 · · · 0
· ·
· ·
· ·
0 0 · · 0 1


and

0n =


0 · · · 0
· ·
· ·
· ·
0 · · · 0


c©Thomas Zeugmann, Hokkaido University, 2008

22 Lecture 2: Complexity of Division and Matrix Multiplication

Addition and multiplication of matrices from Mn is de�ned as usual by using the
addition and multiplication from the underlying ring R. We denote the resulting
operations by +n and ×n, respectively. That is, for A = (aij) and B = (bij),
i, j = 1, . . . , n, the sum A +n B is the n×n matrix C and the product A×n B is the
n× n matrix D de�ned by

A +n B =df C, where cij = aij + bij i, j = 1, . . . , n

A×n B =df D, where dij =

n∑
k=1

aik · bkj i, j = 1, . . . , n

The following important property is stated as an exercise.

Exercise 4. Let Mn = (Mn, +n,×n, 0n, In). Then we have: Mn is a ring if and

only if R is ring.

Note that we did not require the ring R to be a commutative one in Exercise 4.
Furthermore, it should be noted that the matrix multiplication ×n as de�ned above,
is not commutative for n > 1, even if the multiplication · in the underlying ring R is
commutative. In the following, we often omit the subscript n in +n and ×n, i.e., we
just write + and ×, when there is no possibility of confusion. Moreover, we often just
write AB instead of A× B to simplify notation.

Next, we continue with a very useful technical result. Let R be a commutative ring
with 1, and let Mn be the ring of all n × n matrices over R. Assume n to be even.
Then, we can divide any n × n matrix A into 4 matrices A11, A12, A21, A22 of size
n/2× n/2, i.e.,

A =



a11 · · · a1,n
2

a1,n
2 +1 · · · a1n

· ·
· ·
· ·

an
2 1 · · · an

2 ,n
2

an
2 ,n

2 +1 · · · an
2 n

an
2 +1,1 · · · an

2 +1,n
2

an
2 +1,n

2 +1 · · · an
2 +1,n

· ·
· ·
· ·

an1 · · · an,n
2

an,n
2 +1 · · · ann


=

(
A11 A12

A21 A22

)

Furthermore, let R2,n/2 be the ring of all 2× 2 matrices with elements from Mn/2.
Then, the multiplication and addition of matrices from Mn is equivalent to the mul-
tiplication and addition of the corresponding 2× 2 matrices from R2,n/2. That is, for
A, B ∈ Mn and A11, A12, A21, A22 B11, B12, B21, B22 ∈ R2,n/2 we have

A + B =

(
A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
(2.3)

A× B =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
(2.4)

2.3. Complexity of Matrix Multiplication 23

The proof of the latter statement is an elementary exercise and therefore here omitted.

Now, we are ready to deal with the complexity of matrix multiplications. What we
are going to count here is the number of the arithmetic ring operations, i.e., additions
and multiplications in the underlying ring R. Our �rst theorem establishes the starting
point by analyzing the obvious matrix multiplication algorithm that is based on the
de�nition of matrix multiplication.

Theorem 2.6. The usual algorithm for multiplying any two n×n matrices requires

2n3 − n2 arithmetic operations.

Proof. Let A = (aij) and let B = (bij), i, j = 1, . . . , n be any two n× n matrices.
Then the product C = (cij) = A× B is given by

cij =

n∑
k=1

aikbkj .

That is, the computation of every element cij requires n ring multiplications and n−1

ring additions. Since there are n2 many elements cij which have to be computed, the
total number of ring multiplications is n3 and the total number of ring additions is
n2(n − 1). Thus the overall number of ring operations is 2n3 − n2.

The obvious question is, of course, whether or not we can do better. Strassen [2]
discovered a method of multiplying two 2×2 matrices with elements from an arbitrary
ring using only seven multiplications. By using this method recursively, he was able
to provide an algorithm for matrix multiplication that works in time O(nlog 7) which
is of order approximately n2.81.

We continue with Strassen's [2] result.

Theorem 2.7. There is an algorithm for multiplying any two n×n matrices that

requires O(nlog 7) ring operations.

Proof. Let T(n) denote the number of ring operations needed for multiplying any
two n× n matrices. Furthermore, let A, B ∈ Mn be any two n× n matrices. First,
we assume n to be a power of 2. Using equation (2.4) we can write

C = A× B =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
=

(
C11 C12

C21 C22

)
But this approach alone does not help, since we have reduced the original problem of
size n into eight subproblems of size n/2. Thus, the resulting recursive equation has
the solution T(n) = O(nlog 8) = O(n3) (cf. Theorem 1.4). At this point Strassen [2]
discovered the following. Let

M1 = (A12 − A22)(B21 + B22)

M2 = (A11 + A22)(B11 + B22)

M3 = (A11 − A21)(B11 + B12)

M4 = (A11 + A12)B22

c©Thomas Zeugmann, Hokkaido University, 2008

24 Lecture 2: Complexity of Division and Matrix Multiplication

M5 = A11(B12 − B22

M6 = A22(B21 − B11)

M7 = (A21 + A22)B11 ,

then an easy calculation shows that

C11 = M1 + M2 − M4 + M6

C12 = M4 + M5

C21 = M6 + M7

C22 = M2 − M3 + M5 − M7 .

Thus, we have reduced the original problem of size n to seven multiplications of
matrices having size n/2×n/2 and 18 additions of n/2×n/2 matrices. Consequently,
for n > 2 we directly get the recursive equation

T(n) = 7 · T
(n

2

)
+ 18

(n

2

)2

,

which has the solution T(n) = 7 · 7log n − 6n2 (cf. Theorem 1.4), and hence T(n) =

O(7log n) = O(nlog 7).

If n is not a power of 2, then we embed each matrix in a matrix whose dimension
is the next-higher power of 2. This at most doubles the dimension and thus increases
the constant by at most a factor of 7. Hence, T(n) = O(nlog 7) for all n ∈ N+.

Note that Theorem 2.7 is only concerned with the functional growth rate of T(n).
But if we really like to know for what values of n Strassen's algorithm outperforms
the usual matrix multiplication algorithm, we have to determine the constant hidden
in the big-O notation more carefully. The simple embedding of A and B in the next-
higher power of 2 will give too large a constant. This is left as an exercise.

Finally, we remark that Strassen's [2] algorithm is also not the best possible. After
his pioneering paper, many researchers worked on even faster matrix multiplication
algorithms. The currently best known algorithm achieves O(n2.376) and is due to
Coppersmith and Winograd [1].

Finally, it should be noted that the improved matrix multiplication algorithms
are not widely used in numerical computations. In such computations, one usually
used �oating point numbers and thus round o� errors are a serious matter of concern.
But the numerical error control for the faster matrix multiplication algorithms is not
su�ciently well understood til now. Of course, this may change in the future.

References

[1] D. Coppersmith and S. Winograd (1990), Matrix multiplication via Arith-
metic Progressions, Journal of Symbolic Computation 9 251 � 280.

[2] V. Strassen (1969), Gaussian Elimination is not Optimal, Numerische Math-

ematik 13, 354 � 356.

Lecture 3: Complexity of Number Theoretic Problems

Now, we want to have a closer look at the complexity of several problems arising
in number theory. A certain part of the material included below should already be
known. It is mainly included for completeness and self-containment of this course.

Clearly, we cannot provide an exhaustive study of all interesting problems. In-
stead, we concentrate ourselves on problems that will be needed when dealing with
cryptography.

First, we formally introduce some notations and de�nitions. Consider m ∈ N+

and a ∈ Z. Then there are uniquely determined numbers q, R such that a = qm+R,
where 0 6 R < m (as we should remember from school). Quite often, one is not
interested in a number a itself but in its remainder when divided by a number m.
Now, in order to deal with the properties that exclusively depend on the remainder
R when a is divided by m, it is very useful to introduce the following notation.

Let m ∈ N+, and let a, b ∈ Z; we write a ≡ b mod m if and only if m divides
a − b (abbr. m|(a − b)). Thus, a ≡ b mod m if and only if a and b have the same
remainder when divided by m.

If a ≡ b mod m then we say that a is congruent b modulo m, and we refer to �≡�
as to the congruence relation.

It is easy to see that �≡� is an equivalence relation, i.e., it is re�exive, symmetric
and transitive. Thus, we may consider the equivalence classes

[a] = {x ∈ Z a ≡ x mod m} .

Consequently, [a] = [b] i� a ≡ b mod m. Therefore, there are precisely the m

equivalence classes [0], [1], . . . , [m − 1]. We set Zm = {[0], [1], . . . , [m − 1]}. Next, we
de�ne addition and multiplication of these equivalence classes by

[a] + [b] = [a + b] and

[a] · [b] = [a · b] .

Exercise 5. Show that the de�nition of + and · over Zm are independent of the

choice of the representation.

Now, it is easy to see that (Zm, +, ·) constitutes a commutative ring. Clearly, the
neutral element for addition is [0] and the identity element with respect to multipli-
cation is [1]. It is left as an exercise to verify these assertions formally.

Moreover, by the de�nition of a ring, it is immediate that (Zm, +) is an Abelian
group. We refer to this group also as to Zm for short.

Note, however, that in general (Zm, +, ·) is not a �eld. For example, let m = 6

and consider [2] · [3] = [6] = [0]. Thus, [2] and [3] are non-trivial divisors of [0] and a
�eld does not have non-trivial divisors of [0].

26 Lecture 3: Complexity of Number Theoretic Problems

In order to see under what circumstances (Zm, +, ·) is a �eld, we have to answer
the question under which conditions the multiplicative inverses do always exist. This
question is answered by Theorem 3.4 below. But before we can present it, we have to
establish some useful rules for performing calculations with congruences. This will be
done in the following subsection of this lecture. We shall also look at the complexity
of some of the more important algorithms provided. For doing this, we measure the
length of the inputs by the number of bits needed to write the input down. Moreover,
whenever dealing with elements from Zm, we assume that they are represented by
their canonical representations, i.e., by 0, . . . , m − 1.

3.1. Calculating in Zm

We start with basic properties of the congruence relation. This is done by the following
theorem.

Theorem 3.1. Let m ∈ N+, let a, b, c, d ∈ Z be any integers and let n ∈ N.
Then we have the following.

(1) If a ≡ b mod m and c ≡ d mod m then a + c ≡ b + d mod m.

(2) If a ≡ b mod m and c ≡ d mod m then a − c ≡ b − d mod m.

(3) If a ≡ b mod m and c ≡ d mod m then ac ≡ bd mod m.

(4) If a ≡ b mod m then an ≡ bn mod m.

The proof of the latter theorem is left as an exercise. The importance of the latter
theorem is easily explained. Having Theorem 3.1, we see that we can calculate with
congruences almost as convenient as with equations. The main di�erence is division.
Division cannot be used. Instead we should use the modular inverses, but as we have
seen, they may not exist. Before we can deal thoroughly with modular inverses, we
have to recall the extended Euclidean algorithm for computing the greatest common
divisor of two numbers. First, we de�ne this problem more formally.

Problem 3.1. Greatest Common Divisor (abbr. gcd)

Input: Numbers a, b ∈ N.

Problem: Compute the greatest number d dividing both a and b.

Since we are also interested in the complexity of the number theoretic problems
we are dealing with, we have to say how we do present numbers. In the following,
we always assume numbers to be represented in binary notation. Thus, we need
n = blog ac + 1 many bits to represent number a, and we refer to n as to the length
of input a.

Theorem 3.2. There exists an algorithm computing the gcd of two numbers a

and b using at most 1.5 log m + O(1) many divisions of numbers less than or equal

to m, where m = max{a, b}.

3.1. Calculating in Zm 27

Proof. We use the extended Euclidean algorithm. Without loss of generality, as-
sume a > b. The following procedure computes d = gcd(a, b) as well as numbers
x, y ∈ Z such that d = ax + by.

Procedure ECL: �Set x0 = 1, x1 = 0, y0 = 0, y1 = 1, and r0 = a, r1 = b.

Compute successively

ri+1 = ri−1 − qiri, where qi = bri−1

ri
c,

xi+1 = xi−1 − qixi, and

yi+1 = yi−1 − qiyi until ri+1 = 0.

Output ri, xi, yi.�

Claim A. Procedure ECL computes d, x, and y correctly.

We prove inductively that r0xi + r1yi = ri for i > 0. For i = 0 and i = 1 we
directly obtain r0x0 + r1y0 = r0 and r0x1 + r1y1 = r1, respectively. Thus, we may
assume the induction hypothesis for i − 1 and i for i > 1. By de�nition:

xi+1 = xi−1 − qixi, and yi+1 = yi−1 − qiyi; thus

r0xi+1 + r1yi+1 = r0xi−1 − r0qixi + r1yi−1 − r1qiyi

= r0xi−1 + r1yi−1︸ ︷︷ ︸
=ri−1 by ind. hyp.

− qi(r0x1 + r1yi)︸ ︷︷ ︸
=ri by ind. hyp.

= ri−1 − qiri = ri+1 .

Furthermore,

ri+1 + ri 6 ri−1 for all i > 1. (3.1)

This can be seen as follows. By construction, ri+1 = ri−1 − qiri; hence ri+1 + ri =

ri−1 +ri(1−qi) 6 ri−1 provided (1−qi) 6 0. The latter inequality obviously holds in
accordance with qi's de�nition. Moreover, all ri are non-negative. Thus, there must
be an n ∈ N such that rn+1 = 0.

It remains to show that rn = gcd(a, b). Let d = gcd(a, b). As shown above,
rn = r0xn + r1yn = axn + byn. Thus d divides rn. On the other hand, every divisor
of rn divides axn + byn. Since rn+1 = 0, we additionally know that rn−1 = qnrn.
Therefore, rn divides rn−1, too. Consequently, rn−2 = rn +qn−1rn−1 implies rn|rn−2.
Iterating this argument directly yields rn divides a and b. Thus, rn = d. This proves
Claim A, i.e., the correctness.

Claim B. Procedure ECL uses at most 1.5 log m+O(1) many divisions of numbers

less than or equal to m, where m = max{a, b}.

By (3.1) we directly see that the number of divisions is maximal i� ri+1 +ri = ri−1

for all i > 1. Hence, the worst-case occurs if a0 = a1 = 1 and a` = a`−1 + a`−2 for

c©Thomas Zeugmann, Hokkaido University, 2008

28 Lecture 3: Complexity of Number Theoretic Problems

all n > ` > 2, where a = an and b = bn−1, i.e., if a equals the nth member and b

equals the (n− 1)th member of the well-known Fibonacci sequence. Therefore, all we
have to do is to estimate the size of the nth member of the Fibonacci sequence.

This leaves us with the problem to express the nth Fibonacci as a function solely
depending on n. Fortunately enough, we have already successfully �nished the course
in calculus. There is a very powerful tool, called generating functions which seems
appropriate to be used here. Therefore, we shortly recall the de�nition of generating
functions and an important theorem from calculus.

3.2. Generating Functions and Fibonacci Numbers

Let (an)n∈N be any sequence of real (or complex) numbers. Then

g(z) =

∞∑
n=0

anzn

is called generating function of (an)n∈N. The following theorem is often applied
to generating functions.

Theorem 3.3. Let (an)n∈N and (bn)n∈N be any sequences such that that their

generating functions have a radius r > 0 of convergence. Then

∞∑
n=0

anzn =

∞∑
n=0

bnzn

if and only if an = bn for all n ∈ N.

Moreover, recall that power series can be di�erentiated by di�erentiating their
summands. Thus, we also know that

g ′(z) =

∞∑
n=0

n · anzn−1 .

For more information about generating functions the interested reader is referred to
Graham, Knuth, and Patashnik [1].

Now, let (an)n∈N be the Fibonacci sequence. Thus, we have the generating function

g(z) =

∞∑
n=0

anzn

which we use as follows.

g(z) =

∞∑
n=0

anzn = 1 + z +

∞∑
n=2

anzn

= 1 + z +

∞∑
n=2

(an−1 + an−2)z
n

3.2. Generating Functions and Fibonacci Numbers 29

= 1 + z +

∞∑
n=2

an−1z
n + +

∞∑
n=2

an−2z
n

= 1 + z + z ·
∞∑

n=2

an−1z
n−1 + z2 ·

∞∑
n=2

an−2z
n−2

(∗changing the summation indices yields∗)

= 1 + z + z

[
·

∞∑
n=0

anzn − 1

]
+ z2 ·

∞∑
n=0

anzn .

Next, we replace
∞∑

n=0

anzn by g(z) and obtain:

g(z) = 1 + z − z + zg(z) + z2g(z) = 1 + zg(z) + z2g(z) .

Hence, we arrive at

g(z) =
1

1 − z − z2
.

Thus, we have found a representation of g as a rational function. All what is left for
applying Theorem 3.3 is to develop this rational function in a power series. For that
purpose, we have to calculate the zeros of the denominator. Solving

0 = z2 + z − 1

directly yields

z0,1 = −
1

2
±
√

1

4
+ 1 .

Next, we set

α =
−1 +

√
5

2

and

α̂ =
−1 −

√
5

2
,

and write
1

1 − z − z2
=

1

(z − α)(α̂ − z)
=

A

z − α
+

B

α̂ − z
.

Now, an easy calculation yields A = B = − 1√
5
, and consequently we have

g(z) = −
1√
5

1

(z − α)
−

1√
5

1

(α̂ − z)
.

Recalling that ∞∑
n=0

zn =
1

1 − z

we can write
1

z − α
= −

1

α
· 1

1 − 1
α
z

= −
1

α

∞∑
n=0

1

αn
zn

c©Thomas Zeugmann, Hokkaido University, 2008

30 Lecture 3: Complexity of Number Theoretic Problems

and
1

α̂ − z
=

1

α̂
· 1

1 − 1
α̂
z

=
1

α̂

∞∑
n=0

1

α̂n
zn .

This yields the desired power series for g, i.e., we get

g(z) =

∞∑
n=0

anzn

=
1√
5 · α

∞∑
n=0

1

αn
zn −

1√
5 · α̂

∞∑
n=0

1

α̂n
zn

=
1√
5

∞∑
n=0

1

αn+1
zn −

1√
5

∞∑
n=0

1

α̂n+1
zn

=

∞∑
n=0

[
1√
5

(
1

αn+1
−

1

α̂n+1

)]
zn .

Thus, by Theorem 3.3 we obtain

an =
1√
5

(
1

αn+1
−

1

α̂n+1

)
Finally, putting it all together, after a short calculation we arrive at

an =
1√
5

((
1 +

√
5

2

)n+1

−

(
1 −

√
5

2

)n+1
)

. (3.2)

Since 1−
√

5
2

≈ 0.619 < 1, we immediately see that limn→∞ 1−
√

5
2

= 0. Thus, an

grows asymptotically as fast as 1+
√

5
2

; and hence n + 1 = log 1+
√

5
2

an. We leave it to
the reader to verify the precise estimate of the constants. This proves Claim B.

Putting Claim A and B together, directly yields Theorem 3.2.

Exercise 6. Use Euclid's Algorithm to �nd gcd(1258, 5151). Also, �nd an integer

solution to 5151x + 1258y = 119.

Exercise 7. Find the last digit of 31996.

3.3. Algorithms for Computing in Zm

The following theorem completely characterizes the existence of modular inverses.

Theorem 3.4. The congruence ax ≡ 1 mod m is solvable i� gcd(a, m) = 1.

Moreover, if ax ≡ 1 mod m is solvable, then the solution is uniquely determined.

Proof. First, assume gcd(a, m) = 1. We have to show that ax ≡ 1 mod m is
solvable. Since gcd(a, m) = 1, there are integers x, y such that 1 = ax + my. Hence,
m divides 1 − ax, i.e., ax ≡ 1 mod m. Thus x mod m is the wanted solution.

3.3. Algorithms for Computing in Zm 31

Next, assume ax ≡ 1 mod m to be solvable. Hence, there exists an x0 such that
ax0 ≡ 1 mod m. Consequently, m divides ax0−1, and therefore, there exists a y such
that my = ax0 − 1. Let d be any natural number dividing both m and a. Dividing
the left side of the latter equation by d leaves the remainder 0. Hence, dividing the
right side must also yield the remainder 0. Since d|a, we may conclude d|1, and thus
d = 1.

Finally, assume ax ≡ 1 mod m to be solvable. Suppose, there are solutions x1, x2.
Thus, we have

ax1 ≡ 1 mod m (3.3)

ax2 ≡ 1 mod m (3.4)

By Theorem 3.1 we can subtract (3.4) from (3.3) and obtain a(x1 − x2) ≡ 0 mod m,
i.e., m divides a(x1 − x2). Since gcd(a, m) = 1, we may conclude that m divides
x1 − x2, i.e., x1 ≡ x2 mod m. Thus, the solution is unique modulo m.

So, what can be said about the complexity of computing modular inverses? The
answer is given by the following theorem.

Theorem 3.5. Modular inverse can be computed in time O(max{log a, log m}3).

Proof. As the proof of Theorem 3.4 shows, all we have to do is to apply Procedure
ECL presented above. Thus, the assertion follows.

By Theorem 3.4 it is appropriate to consider Z∗m = {[a] ∈ Zm gcd(a, m) = 1}.
Note that Theorem 3.4 directly implies that (Z∗m, ·) constitutes a group. Again, we
simplify notation and refer to (Z∗m, ·) as to Z∗m for short. Furthermore, we usually
omit the brackets when referring to members of Zm and Z∗m, respectively. That is,
we write a ∈ Zm and a ∈ Z∗m instead of [a] ∈ Zm and [a] ∈ Z∗m, respectively.

In order to get more familiarity with the congruence relation ≡, let us derive a rule
for deciding whether or not an integer given in decimal notation is divisible by 3. Since

the divisibility by 3 is not a�ected by the sign, it su�ces to consider z =
n∑

i=0

zi10i,

where zi ∈ {0, 1, . . . , 9} for all i = 0, . . . , n. Then, by the re�exivity of �≡� we have

zi ≡ zi mod 3 (3.5)

for all i = 0, . . . , n. Moreover, 10 ≡ 1 mod 3 and thus by Property (4) of Theorem 3.1
we know that

10n ≡ 1n ≡ 1 mod 3 . (3.6)

Next, we apply Property (1) of Theorem 3.1 (n + 1) many times to (3.5) and (3.6)
and obtain

n∑
i=0

zi10i ≡
n∑

i=0

zi mod 3 .

c©Thomas Zeugmann, Hokkaido University, 2008

32 Lecture 3: Complexity of Number Theoretic Problems

Consequently, we directly get the following theorem.

Theorem 3.6. A number given in decimal notation is divisible by 3 if and only if

the sum of its digits is divisible by 3.

The proof given above directly allows a corollary concerning the divisibility by 9.
By re�exivity we also have

zi ≡ zi mod 9 (3.7)

and (3.6) also holds modulo 9, i.e.,

10n ≡ 1n ≡ 1 mod 9 . (3.8)

Thus, putting (3.7) and (3.8) together directly yields the following corollary.

Corollary 3.7. A number given in decimal notation is divisible by 9 if and only

if the sum of its digits is divisible by 9.

In order to see that decimal notation is crucial here, let us consider numbers given

in binary, i.e., z =
n∑

i=0

zi2
i, where zi ∈ {0, 1} for all i = 0, . . . , n. Again, we have

zi ≡ zi mod 3 (3.9)

as before, but (3.6) translates into

2n ≡ (−1)n mod 3 . (3.10)

Thus, now we get
n∑

i=0

zi2
i ≡

n∑
i=0

(−1)nzi mod 3 .

Consequently, a number given in binary notation is divisible by 3 if and only if the

alternating sum of its digits is divisible by 3.

We �nish this lecture by proving an important theorem that will be needed later.
Before we can present it, we need the following de�nition.

De�nition 3.1. Integers a and b are said to be relatively prime if gcd(a, b) = 1.

Integers m1, . . . , mr are said to be pairwise relatively prime if every pair

mi, mj, i 6= j is relatively prime.

Theorem 3.8 (Chinese Remainder Theorem).

Let m1, . . . , mr be pairwise relatively prime numbers, and let M =
r∏

i=1

mi. Fur-

thermore, let a1, . . . , ar be any integers. Then there is a unique y ∈ ZM such that

y ≡ ai mod mi for i = 1, . . . , r. Moreover, y can be computed in time polynomial in

the length of the input.

3.3. Algorithms for Computing in Zm 33

Proof. For each i = 1, . . . , r, we set ni = M/mi. Then for all i = 1, . . . , r, the
number ni satis�es ni ∈ N, and gcd(mi, ni) = 1. Consequently, the modular inverses
n−1

i modulo mi do exist for all i = 1, . . . , r. Now, let

ŷ =

r∑
i=1

ni · n−1
i · ai

and let y be ŷ reduced modulo M. Taking into account that mi|nj for all i = 1, . . . , r,
j = 1, . . . , r provided j 6= i, we conclude

y ≡ ŷ ≡ nin
−1
i ai ≡ ai mod mi .

Thus, we have found a number y simultaneously ful�lling all the wanted congruences.

It remains to show that this y is uniquely determined modulo M. Suppose the
converse, i.e., there exists an x such that x ≡ ai mod mi for i = 1, . . . , r and x 6≡
y mod M. Subtracting y ≡ ai mod mi from x ≡ ai mod mi for all i = 1, . . . , r yields
x−y ≡ 0 mod mi for all i = 1, . . . , r, and thus mi divides x−y. However, all the mi

are pairwise relatively prime. Hence,
r∏

i=1

mi must divide (x−y), too. But this means

x − y ≡ 0 mod M, a contradiction. Thus, y is uniquely determined modulo M.

Finally, by Theorem 3.5 we know that the modular inverses can be each computed
in time polynomial in the input. All other computations, i.e., multiplication, addition
and reduction modulo M are known to be performable in polynomial time, too.

Now, let us try it out. Note that Theorem 3.8 is telling us nothing in case the
moduli are not pairwise relatively prime.

Exercise 8. Use the Chinese Remainder Theorem to �nd a solution (or show one

doesn't exist) for the following sets of equations.

(1) x ≡ 3 mod 7, x ≡ 4 mod 9, x ≡ 2 mod 5

(2) x ≡ 10 mod 21, x ≡ 3 mod 8, x ≡ 8 mod 15

The following exercises establish some nice properties which we need later.

Exercise 9. Let n be an integer greater or equal to 2. Prove the zero-divisor
property for the integers mod n, i.e.,

∀k ∀` . if k` ≡ 0 mod n, then either k ≡ 0 mod n or ` ≡ 0 mod n.

holds if and only if n is prime.

Exercise 10. Let n be an integer greater or equal to 2. Prove the cancellation law
for the integers mod n, i.e.,

∀j ∀k ∀` . if j 6≡ 0 mod n and jk ≡ j` mod n then k ≡ ` mod n.

holds if and only if n is prime.

The following references are recommended for further reading.

c©Thomas Zeugmann, Hokkaido University, 2008

34 Lecture 3: Complexity of Number Theoretic Problems

References

[1] R.L. Graham, D.E. Knuth and O. Patashnik (1989), Concrete Mathemat-

ics (Addison-Wesley, Reading, Massachusetts).

[2] N. Koblitz (1994), A Course in Number Theory and Cryptography (Springer,
Berlin).

Lecture 4: Number Theoretic Algorithms

4.1. Solving Linear Congruences

In order to develop some more familiarity with calculations in the ring Zm we continue
by studying the solvability of the easiest form of congruences involving a variable, i.e.,
of linear congruences ax ≡ c mod b. This is an important practical problem. There
may be zero, one, or more than one solution satisfying ax ≡ c mod b. The following
theorem precisely characterizes the solvability of linear congruences.

Theorem 4.1. Let a, c ∈ Z and let b ∈ N, b > 2. Then the linear congruence

ax ≡ c mod b is solvable if and only if gcd(a, b) divides c. Moreover, if d = gcd(a, b)

and d|c then there are precisely d solutions in Zb for ax ≡ c mod b.

Proof. The proof is quite similar to the demonstration of Theorem 3.4. First,
let d = gcd(a, b) and let us assume that d divides c. Then we consider ã = a/d,
b̃ = b/d, c̃ = c/d, and ãx ≡ c̃ mod b̃. Since gcd(ã, b̃) = 1, we can apply Theorem 3.4
and conclude that there is a number y such that

ãy ≡ 1 mod b̃ . (4.1)

Consequently, multiplying (4.1) with c̃ yields

ãyc̃ ≡ c̃ mod b̃

ãx0 ≡ c̃ mod b̃ , (4.2)

where x0 = yc̃. Hence, there is a k ∈ Z such that

kb̃ = ãx0 − c̃ .

Multiplying both sides by d directly yields

kb̃d = ãdx0 − c̃d

kb = ax0 − c

but this means nothing else than ax0 ≡ c mod b. Consequently, x0 is also a solution
of ax ≡ c mod b.

The remaining (d−1) solutions of ax ≡ c mod b are obtained by setting xj = x0+jb̃

for j = 1, . . . , d − 1. Note that x0 < x0 + b̃ < · · · < x0 + (d − 1)b̃. Therefore,
x0, x0 + b̃, . . . , x0 +(d−1)b̃ are pairwise incongruent modulo b. On the other hand,
since jb̃ ≡ 0 mod b̃ for all j ∈ Z, we also have

ã(x0 + jb̃) ≡ c̃ mod b̃ ,

and thus there are kj, j = 1, . . . , d − 1, such that

kjb̃ = ã(x0 + jb̃) − c̃ .

36 Lecture 4: Number Theoretic Algorithms

Multiplying both sides of the latter equality by d directly yields

kjb = a(x0 + jb̃) − c ,

which again directly implies a(x0+jb̃) ≡ c mod b. Thus, x0, x0+b̃, . . . , x0+(d−1)b̃

are all solutions of ax ≡ c mod b.

It remains to show that there are no other solutions. Suppose the converse, i.e.,
there is a z such that

az ≡ c mod b (4.3)

z 6≡ x0 + jb̃ mod b for all j = 0, . . . , d − 1 . (4.4)

Now, (4.3) implies ãz ≡ c̃ mod b̃ and since gcd(ã, b̃) = 1, by (4.2) we can conclude

z ≡ x0 mod b̃ .

Therefore, z = x0 + `b̃. Finally, since db̃ = b, we can conclude ` ∈ {0, . . . , d − 1},
a contradiction to (4.4). Consequently, there are precisely d di�erent solutions of
ax ≡ c mod b.

Second, let us assume that ax ≡ c mod b is solvable. We have to show that
gcd(a, b) divides c. Let z be a solution of ax ≡ c mod b, i.e., we have az ≡ c mod b.
Thus, there must be a k ∈ Z such that kb = az − c. But this means kb − az = −c

and consequently gcd(a, b) divides c.

Exercise 11. Determine the complexity of computing all solutions of the linear

congruence ax ≡ c mod b in dependence on the length of the input a, c ∈ Z and b ∈ N,
b > 2.

Exercise 12. Calculate all solutions of 111x ≡ 75 mod 321.

Moreover, we directly obtain the following corollary.

Corollary 4.2. Let b ∈ N, b > 2, and let a, c ∈ Z. If gcd(a, b) = 1 then the

linear congruence ax ≡ c mod b has a unique solution modulo b.

Next, we should apply our knowledge about linear congruences to the problem of
computing all integer solutions of linear Diophantine equations, i.e., equations of the
form ax + by = c for a, b, c ∈ Z. This is left as an exercise. As we shall see, a linear
Diophantine equation has either no solution or it has in�nitely many. Thus, if it is
solvable we cannot compute all of its solutions. However, in practice, we are often
given additional constraints that the solutions must satisfy. In many cases, this yields
a �nite set of solutions which we can compute. Here is an example.

Exercise 13. Solve the following problem:

Hiroko has 10 000 Yen and has to buy eggs, chicken pieces, or turkey. An egg cost

25 Yen, a chicken piece 100 Yen and a turkey is 2500 Yen. Hiroko has to by 100

items of at least two di�erent types and she should spend all her money. What is she

buying?

4.2. Modular Exponentiation 37

Next, we look at the problem of computing large powers modulo a number m. Com-
puting large powers quickly leads to very large numbers, and thus already outputting
these numbers requires a lot of time. Moreover, in many applications is not necessary
to compute really large powers but instead it su�ces to compute large powers modulo
a number m. This problem is usually referred to as to modular exponentiation.

4.2. Modular Exponentiation

Modular exponentiation is formally de�ned as follows.

Problem 4.2. Modular Exponentiation

Input: Modulus m ∈ N, m > 2, and a ∈ Z∗m as well as x ∈ N.

Problem: Compute the y ∈ {0, 1, . . . , m − 1} such that y ≡ ax mod m.

Theorem 4.3. Modular exponentiation can be computed in time

O(max{log a, log m, log x}3).

Proof. Let x =
k∑

i=0

xi2
k−i where xi ∈ {0, 1}, i.e., xi are the digits of x in binary

notation. Then, the following procedure computes ax mod m.

Procedure EXP: �Set y0 = 1

For i = 0 to k do

If xi = 0 then yi+1 := y2
i mod m;

If xi = 1 then yi+1 := a · y2
i mod m;

Output yk+1.�

Claim A. Procedure EXP computes y correctly.

We prove Claim A by induction on k. For k = 0 we distinguish the cases x = 0

and x = 1. Obviously, if x = 0, then y1 = 1 ≡ a0 mod m, and thus correct. If x = 1,
then y1 = a ≡ a1 mod m, and hence again correct.

Now, assume the induction hypothesis for k. Let x = x0 . . . xkxk+1. Thus, we may
write x = 2(x0 · · · xk) + xk+1, and obtain

ax = a2(x0···xk)+xk+1 = a2(x0···xk) · axk+1 ≡ (ax0···xk)2 · axk+1 ≡ y2
k+1a

xk+1 mod m .

Note that the latter congruence is due to the induction hypothesis. Consequently,
if xk+1 = 0 then yk+2 ≡ y2

k+1 mod m, and thus correct. Finally, if xk+1 = 1 then
axk+1 = a, and hence yk+2 ≡ a · y2

k+1 mod m which is again correct.

Finally, Procedure EXP computes at most 2dlog xe many products modulo m over
numbers from Zm. Thus, the Procedure EXP takes at most time cubic in the lengths
of a, m, x.

c©Thomas Zeugmann, Hokkaido University, 2008

38 Lecture 4: Number Theoretic Algorithms

The latter theorem shows that we can exponentiate e�ciently modulo m, but what
about the inverse operations? Finding discrete roots of numbers modulo m appears
little less tractable, if m is prime or if the prime factorization of m is known. In the
general case, the problem of taking discrete roots seems su�ciently intractable that is
has been proposed as the basis of the RSA public key cryptosystem (cf. Lecture 11).

4.3. Towards Discrete Roots

We continue to recall basic number theory to the extend needed for designing our
main algorithms. Let m ∈ N; by ϕ(m) = |Z∗m| we denote Euler's totient function. A
natural number p > 2 is said to be prime if it is only divisible by itself and 1. The
following exercise summarizes some well-know facts.

Exercise 14. Prove the following:

(1) ϕ(mn) = ϕ(m)ϕ(n) if gcd(m, n) = 1,

(2) ϕ(pα) = pα−1(p − 1) if p is prime and α > 1,

(3) ϕ(p) = p − 1 if and only if p is prime.

Next, we formally de�ne the problem of taking discrete roots.

Problem 4.3. Discrete Roots

Input: Modulus m ∈ N, a ∈ Z∗m, and r ∈ N.

Problem: Compute the solutions of xr ≡ a mod m provided they exist or output
�there are no solutions.�

For dealing with discrete roots as well as for dealing with primality tests, we need
some more insight into the structure of the multiplicative group Z∗m. In order to avoid
confusion, the following remark is mandatory. It is a well-known result of elementary
group theory that every group of prime order is cyclic. Recall that the order of a
�nite group is the number of its elements. However, the group Z∗p for p prime, we
want to deal with, has the order p − 1 which is not prime. Furthermore, recall that
the order of an element g ∈ Z∗m is de�ned to be the least positive integer d for which
gd ≡ 1 mod m.

Theorem 4.4. If p is prime then Z∗p is a cyclic group of order p − 1.

Proof. Let p prime. By Exercise 14 we already know that ϕ(p) = |Z∗p| = p − 1;
thus Z∗p has order p − 1. For seeing that Z∗p is cyclic, we have to show that is has an
element of order p − 1. This is achieved by counting elements of di�erent order. Let
d be any positive integer such that d|(p − 1). De�ne

Sd = {a ∈ Z∗p a is of order d} (4.5)

These sets Sd partition Z∗p, so we have

4.3. Towards Discrete Roots 39

∑
d|(p−1)

|Sd| = |Z∗p| = p − 1 (4.6)

Fix d such that d|(p − 1). We show that either |Sd| = 0 or |Sd| = ϕ(d). Suppose
Sd 6= ∅, and choose some a ∈ Sd. Then a, a2, . . . , ad are all distinct modulo p and
each one is a solution of xd ≡ 1 mod p. By the Lemma 4.5 below, this equation
has at most d solutions modulo p, so these are all of the solutions. Consequently,
Sd ⊆ {ak 1 6 k 6 d}.

Now, �x k ∈ {1, . . . , d}. If gcd(k, d) = ` > 1, then (ak)d/` = (ak/`)d ≡ 1 mod p,
so ak has order less than d, thus ak /∈ Sd.

If gcd(k, d) = 1, then there exists ` such that k` ≡ 1 mod d (cf. Theorem 3.4).
Hence, ak` ≡ a mod p. Furthermore, for any e ∈ {1, . . . , d − 1} we have

((ak)e)` ≡ ae 6≡ 1 mod p,

so ak is of order d, i.e., ak ∈ Sd.

Thus, we have shown

Sd = {ak 1 6 k 6 d, gcd(k, d) = 1}

and consequently |Sd| = ϕ(d).

Now suppose that for some d such that d|(p − 1), Sd = ∅. Then∑
d|(p−1)

|Sd| <
∑

d|(p−1)

ϕ(d) . (4.7)

By Lemma 4.6 below, ∑
d|(p−1)

ϕ(d) = p − 1 .

Thus, (4.7) would give a contradiction to (4.6). Hence, for each d with d|(p − 1)

we have |Sd| = ϕ(d). This proves the theorem. Additionally, note that in particular,
the number of elements of order p − 1 is ϕ(p − 1).

It remains to provide the lemmata announced during the proof above. The �rst
lemma is left as an exercise (hint: use induction).

Exercise 15. Prove the following lemma:

Lemma 4.5. If p is prime and f(x) = a0x
n + a1x

n−1 + · · · + an is such that

f(b) 6≡ 0 mod p for some b, then f(b) ≡ 0 mod p has at most n distinct solutions

modulo p.

Finally, we prove the remaining lemma announced above.

c©Thomas Zeugmann, Hokkaido University, 2008

40 Lecture 4: Number Theoretic Algorithms

Lemma 4.6. For all positive integers n we have
∑
d|n

ϕ(d) = n

Proof. Let n be some positive integer. For each d such that d divides n de�ne

Rd = {m · i m = n/d and i ∈ Z∗d}

Clearly, Rd ⊂ {1, . . . , n} and |Rd| = ϕ(d). Consider any x ∈ {1, . . . , n}. Let m =

gcd(x, n), d = n/m, and i = x/m. Then, since x = mi and n = md we have
gcd(i, d) = 1; thus x ∈ Rd. If for some e such that e divides n we would have x ∈ Re,
then x = m̂ı̂, where n = m̂e and gcd(e, ı̂) = 1. Hence, m̂ = gcd(x, n) and e = d.
Thus, for each x ∈ {1, . . . , n} the number x belongs to one and only one of the sets Rd.
Consequently,

n =
∑
d|n

|Rd| =
∑
d|n

ϕ(d)

As we have seen, if p is prime then Z∗p is cyclic. Every element g of order p − 1

is called a generator of Z∗p. Hence, for every a ∈ Z∗p there exists exactly one x ∈
{1, 2, . . . , p} such that a = gx. We refer to x as to the discrete logarithm of a with
respect to g, and denote it by x = dlogga.

Not that the condition p being prime is su�cient but not necessary for the cyclicity
of Z∗p, since one can prove the following.

Theorem 4.7. Z∗n is cyclic if and only if n is 1, 2, 4, pk, or 2pk for some odd

prime number p and k ∈ N+.

We omit the proof of this theorem here and refer the reader to Niven and Zucker-
man [2].

So, it is appropriate to generalize the de�nition of discrete logarithms.

De�nition 4.1 (Discrete Logarithm).
Let n ∈ N be such that Z∗n is cyclic. Furthermore, let g be a generator of Z∗n and let

a ∈ Z∗n. Then there exists a unique number z ∈ N such that gz ≡ a mod n. This z is

called the discrete logarithm of a modulo n to the base g and denoted by dlogga.

Now, let p be a prime and let g be any generator for Z∗p. Then we obviously have
gp−1 ≡ 1 mod p. The latter property is, however, not restricted to generators as the
following theorem shows.

Theorem 4.8 (Fermat's Little Theorem). Let p be a prime. Then

ap−1 ≡ 1 mod p for all a ∈ Z∗p.

Proof. Let a ∈ Z∗p be arbitrarily �xed. Since Z∗p is a multiplicative group, the
elements a, 2a, 3a, . . . (p − 1)a form a complete system of residues modulo p, i.e.,

{a, 2a, 3a, . . . (p − 1) a} = {1, 2, 3, . . . , p − 1} . (+)

4.3. Towards Discrete Roots 41

For seeing this, suppose there are b, c ∈ {1, 2, 3, . . . , p−1} such that ba ≡ ca mod

p and b 6= c. By the choice of b, c we may conclude that b 6≡ c mod p, too. On the
other hand, a has a multiplicative inverse a−1 and therefore baa−1 ≡ caa−1 mod p.
Since aa−1 ≡ 1 mod p, we may conclude b ≡ c mod p, a contradiction.

Thus, by (+) we may conclude
p−1∏
i=1

ia ≡
p−1∏
i=1

i mod p. Consequently,

ap−1(p − 1)! ≡ (p − 1)! mod p .

Finally, since p is prime we additionally know gcd(p, (p− 1)!) = 1. Thus, (p− 1)! has
a multiplicative inverse (cf. Theorem 3.4). Hence, multiplying both sides of the latter
congruence by it results in ap−1 ≡ 1 mod p.

Next, we prove the following generalization of Theorem 4.8 usually referred to as
Theorem of Euler.

Theorem 4.9. Let n ∈ N, n > 2; then aϕ(n) ≡ 1 mod n for all a ∈ Z∗n.

Proof. Taking into account that the order of Z∗n is ϕ(n) the Theorem follows by
recalling a little group theory.

For the sake of convenience, we also provide a direct proof of it. First we prove the
Theorem of Euler for the case when m is a prime power, i.e., n = px. This can be easily
done using induction on x. For x = 1, the induction base is precisely the Fermat's
Little Theorem (cf. Theorem 4.8). Now, let x > 2 and assume the induction hypothesis
for px−1. Taking into account that ϕ(px) = px−1(p−1) = px−px−1 = p(px−1−px−2),
we directly obtain:

aϕ(px) ≡ ap(px−1−px−2) ≡ (apx−1−px−2

)p mod px. (4.8)

Now, observing that ϕ(px−1) = px−1 − px−2 we may apply the induction hypothe-
sis, and obtain apx−1−px−2 ≡ 1 mod px−1. Hence apx−1−px−2

= 1 + px−1b for some
integer b. Let y = px−1b; by the binomial theorem we have

(1 + y)p =

p∑
ν=0

(
p

ν

)
1νyp−ν.

Since p divides
(

p
ν

)
for all ν = 1, . . . , p − 1 we obtain (1 + y)p ≡ 1 + yp mod p.

Since (x − 1)p > x, (4.8) delivers

aϕ(px) ≡ 1 + (px−1b)p ≡ 1 + p(x−1)pbp ≡ 1 mod px.

This proves the Theorem of Euler for the case that m is a prime power. Now,
let n be any number with n > 2. Then, let n = px1

1 · · ·pxk
k be the unique prime

factorization of n. Since gcd(pxi
i , p

xj

j) = 1, the theorem directly follows by applying
the following. If a ≡ b mod m1 and a ≡ b mod m2, and gcd(m1, m2) = 1, then
a ≡ b mod m1m2.

c©Thomas Zeugmann, Hokkaido University, 2008

42 Lecture 4: Number Theoretic Algorithms

Testing primality means that one has to decide for any given number taken as
input whether or not it is prime. Though this is a very old problem, no deterministic
algorithm has been known that runs in time polynomial in the length of the input until
2002. Then Agrawal, Kayal and Saxena [1] succeeded to provide an a�rmative answer
to this very long standing open problem. However, Solovay and Strassen [3] provided
an e�cient probabilistic algorithm for testing primality. The Solovay-Strassen [3]
algorithm is also much faster than the newly found deterministic polynomial time
primality test. We therefore present here only the Solovay-Strassen algorithm. The
reader is refered to Agrawal, Kayal and Saxena [1] for the deterministic polynomial
time primality test.

Clearly, one could get a deterministic polynomial time algorithm for testing pri-
mality, if the converse of Theorem 4.8 were true. Unfortunately, it is not. We continue
by �guring out why the converse of Theorem 4.8 is not true.

4.4. Pseudo Primes

De�nition 4.2 (Pseudo Primes). Let n ∈ N be an odd composite number, and

let b ∈ N such that gcd(b, n) = 1. Then n is said to be pseudo-prime to the

base b if bn−1 ≡ 1 mod n.

For example, n = 91 is a pseudo-prime to the base 3, since 91 = 7 · 13 and,
furthermore, 390 ≡ 1 mod 91 (note that 36 = 729 = 8 · 91 + 1 ≡ 1 mod 91).

But 91 is not a pseudo-prime to the base 2, because of 290 ≡ 64 mod 91.

The following theorem summarizes important properties of pseudo-primes.

Theorem 4.10. Let n ∈ N be an odd composite number. Then we have:

(1) n is pseudo-prime to the base b with gcd(b, n) = 1 if and only if the order d of

b in Z∗n divides n − 1.

(2) If n is pseudo-prime to the bases b1 and b2 such that gcd(b1, n) = 1 and

gcd(b2, n) = 1, then n is also pseudo-prime to the bases b1b2, b1b
−1
2 , and

b−1
1 b2.

(3) If there is a b ∈ Z∗n satisfying bn−1 6≡ 1 mod n, then

|{b ∈ Z∗n bn−1 6≡ 1 mod n}| >
ϕ(n)

2
.

Proof. First, we show (1). The necessity can be seen as follows. Let n be pseudo-
prime to the base b with gcd(b, n) = 1. Then, we have bn−1 ≡ 1 mod n. Let d be
the smallest positive number for which bd ≡ 1 mod n. Suppose, n − 1 = kd + r with
0 < r < d. Then we would get

bn−1 ≡ bkd+r ≡ bkdbr ≡
(
bd
)k

br ≡ br 6≡ 1 mod n ,

a contradiction. Hence, d must divide n − 1.

4.4. Pseudo Primes 43

For the su�ciency, assume d divides n − 1. Thus, n − 1 = kd for some k. Hence,
bn−1 ≡ (bd)k ≡ 1k ≡ 1 mod n. Consequently, n is pseudo-prime to the base b.

Assertion (2) is left as an exercise.

Finally, we prove (3). Let b ∈ Z∗n be such that bn−1 6≡ 1 mod n. Let {b1, . . . , bs}

all the bases for which n is pseudo-prime, i.e.,

bn−1
i ≡ 1 mod n for all i = 1, . . . , s . (4.9)

Since

bn−1 ≡ c 6≡ 1 mod n (4.10)

for some c ∈ Z∗n, we obtain, by multiplying (4.9) with (4.10), where i = 1, . . . , s that

c ≡ bn−1
i bn−1 ≡ (bib)n−1 mod n .

Hence, n is not a pseudo-prime to all the bases {b1b, . . . , bsb}. Consequently, there
are at least as many bases for which n is not a pseudo-prime as there are bases for
which n is pseudo-prime.

Now, if we knew that for all odd composite numbers n there should exist at least
one number b ∈ Z∗n such that n is not a pseudo-prime to the base b, we could easily
design a probabilistic polynomial time algorithm for testing primality. But again,
unfortunately, there are odd composite numbers n such that bn−1 ≡ 1 mod n for all
b ∈ Z∗n. These numbers are called Carmichael numbers.

The following theorem establishes fundamental properties of Carmichael numbers.
But before providing it, we need one more exercise.

Exercise 16. Let p be a prime number. Then Z∗p2 is cyclic.

Furthermore, a number n is said to be square-free if there is no square number
dividing it.

Theorem 4.11. Let n ∈ N be an odd composite number. Then we have:

(1) If there is a square number q2 > 1 dividing n then n is not a Carmichael

number.

(2) If n is square-free, then n is Carmichael number if and only if (p − 1) divides

n − 1 for every prime p dividing n.

Proof. Assume any number q2 > 1 dividing n, and let p > 2 be a prime factor
of q. Since q2|n, we also know that p2 is dividing n. Moreover, by Exercise 16 we
know that Z∗p2 is cyclic. Let g be a generator of Z∗p2 . Next, we construct a number
b ∈ Z∗n such that bn−1 6≡ 1 mod n. If we can do that, then n cannot be a Carmichael
number.

c©Thomas Zeugmann, Hokkaido University, 2008

44 Lecture 4: Number Theoretic Algorithms

Let ñ be the product of all primes r 6= p that divide n. Obviously, gcd(p2, ñ) = 1.
By the Chinese Remainder Theorem there is a number b such that

b ≡ g mod p2

b ≡ 1 mod ñ

So b is also a generator of Z∗p2 . But we still do not know whether or not b ∈ Z∗n. For
seeing it is, we show that gcd(n, b) = 1. Suppose the converse, i.e., 1 < d = gcd(n, b).

Case 1. p divides d.

If p divides d, we also know that p|b and since p2|(b − g), we additionally have
p|(b − g). Consequently, p|g, too. But this implies g /∈ Z∗p2 , a contradiction. Thus,
Case 1 cannot happen.

Case 2. p does not divide d.

Consider any prime r dividing n and d simultaneously. Then, r 6= p by assumption.
Hence, r|b, too, and moreover, ñ|(b − 1) because of b ≡ 1 mod ñ. But r 6= p, so r|ñ,
too, and thus r|(b − 1). This implies r = 1, a contradiction.

This proves b ∈ Z∗n. Finally, we have to show that bn−1 6≡ 1 mod n. Suppose the
converse, i.e., bn−1 ≡ 1 mod n. Since p2|n, we conclude bn−1 ≡ 1 mod p2, too. But
b is a generator of Z∗p2 . Thus, by the Theorem of Euler we get ϕ(p2)|(n − 1), i.e.,
p(p − 1)|(n − 1). This means in particular

n − 1 ≡ 0 mod p .

On the other hand, by construction we know that p|n, and hence

n − 1 ≡ −1 mod p ,

a contradiction. Therefore, we have proved bn−1 6≡ 1 mod n and Assertion (1) is
shown.

Next, we prove Assertion (2).

Su�ciency: Let b ∈ Z∗n; we have to show bn−1 ≡ 1 mod n. Since n is square-
free, it su�ces to show p|(bn−1 − 1) provided p|n. Assume p|n and by assumption
also k(p − 1) = n − 1 for some k. By Theorem 4.8 we have bp−1 ≡ 1 mod p, and
consequently

1 ≡ 1k ≡ (bp−1)k ≡ bn−1 mod p .

This holds for all prime divisors p of n, and thus the su�ciency follows.

Necessity: Assume bn−1 ≡ 1 mod n for all b ∈ Z∗n. Now, we have to show that
(p − 1)|(n − 1) for all primes p with p|n. Suppose there is a prime p with p|n

such that (p − 1) does not divide (n − 1). Hence, there are numbers k, r such that
(n − 1) = k(p − 1) + r and 0 < r < p − 1. Now, we again construct a b ∈ Z∗n with

4.4. Pseudo Primes 45

bn−1 6≡ 1 mod n. Let g be a generator of Z∗p and let ñ = n/p. By the Chinese
Remainder Theorem there is a number b such that

b ≡ g mod p

b ≡ 1 mod ñ

Consequently, b is also a generator of Z∗p. On the other hand,

bn−1 ≡ bk(p−1)+r ≡ 1kbr ≡ br 6≡ 1 mod p ,

since b is generator. Thus, p does not divide (bn−1 − 1), and therefore n does not
divide (bn−1 − 1), too.

In order to have an example, it is now easy to see that 561 is a Carmichael number.
We have just to verify that 2, 10, and 16 divide 560.

Exercise 17. Every Carmichael number is the product of at least 3 distinct primes.

References

[1] M. Agrawal, N. Kayal, and N. Saxena (2002), PRIMES in P, Manuscript,

http://www.cse.iitk.ac.in/users/manindra/primality.ps or

http://www.cse.iitk.ac.in/news/primality.pdf

[2] I. Niven and H.S. Zuckerman (1991), An Introduction to the Theory of

Numbers. John Wiley and Sons, New York.

[3] R. Solovay and V. Strassen (1977), A fast Monte-Carlo test for primality,
SIAM Journal on Computing 6, 84 � 85.

c©Thomas Zeugmann, Hokkaido University, 2008

Lecture 5: Testing Primality and Taking Discrete Roots

It advantageous to introduce the following notions.

De�nition 5.1 (Legendre symbol).
Let p be an odd prime, and let a ∈ Z∗p. a is said to be a quadratic residue modulo

p if x2 ≡ a mod p is solvable in Z∗p. We de�ne the Legendre symbol
(

a
p

)
as follows:(

a

p

)
=

{
1 , if a is quadratic residue modulo p

−1 , otherwise.

If a is not a quadratic residue modulo p, then we call a a quadratic nonresidue.

The following theorem is needed below.

Theorem 5.1. Let p be an odd prime and let g ∈ Z∗p be a generator for Z∗p. Then
for all a ∈ Z∗p we have: a is quadratic residue modulo p if and only if dlogga is even.

Proof. Necessity. Let a ≡ g2m mod p for some m > 0. Then, b ≡ gm is obviously
a solution of x2 ≡ a mod p. Thus a is quadratic residue modulo p.

Su�ciency. Let b be a solution of x2 ≡ a mod p, and let m = dloggb, i.e.,
b ≡ gm mod p. Consequently, a ≡ g2m mod p. Thus, by Theorem 4.8 we have
dlogga ≡ 2m mod (p − 1). Since 2|(p − 1), we can conclude 2|dlogga, too.

The latter theorem directly implies the following corollary.

Corollary 5.2. Let p be an odd prime. Then there are precisely (p − 1)/2 many

quadratic residues and (p − 1)/2 many quadratic nonresidues in Z∗p.

The following theorem is needed below.

Theorem 5.3. Let p be an odd prime and let g be a generator of Z∗p. Then we

have g(p−1)/2 ≡ −1 mod p.

Proof. By Theorem 4.8 we have
(
g(p−1)/2

)2 ≡ gp−1 ≡ 1 mod p . Thus, g(p−1)/2 is
a solution of x2 ≡ 1 mod p.

Now, it su�ces to show that x2 ≡ 1 mod p possesses precisely two solutions.
Clearly, there are at least two solutions, i.e., 1 and −1. Suppose there is a third
solution r ∈ {2, . . . , p − 2}. Let ` = dloggr. Then r2 ≡ g2` ≡ 1 mod p. By The-
orem 4.8 we thus know that 2` ≡ 0 mod (p − 1). Furthermore, 0 < ` < p − 1,
since otherwise r ≡ 1 mod p. Therefore, if ` = k(p − 1)/2, then k = 1 and thus
` = (p − 1)/2. Consequently, r ≡ g(p−1)/2 mod p. That is, except 1 there is only the
solution g(p−1)/2 mod p of x2 ≡ 1 mod p. Thus, g(p−1)/2 ≡ −1 mod p must hold.

The next theorem provides one way to compute the Legendre symbol.

Theorem 5.4. Let p be an odd prime and let a ∈ Z∗p, then

a(p−1)/2 ≡
(

a

p

)
mod p .

48 Lecture 5: Testing Primality and Taking Discrete Roots

Proof. We distinguish the following cases.

Case 1.
(

a
p

)
= 1

Consequently, there exists a b ∈ Z∗p such that b2 ≡ a mod p. Thus

a(p−1)/2 ≡ bp−1 ≡ 1 mod p .

Case 2.
(

a
p

)
= −1

Let g be a generator of Z∗p. Then a ≡ g2m+1 mod p for some m ∈ N, since a is
a quadratic residue modulo p if and only if the discrete logarithm of a (with respect
to g) is even (cf. Theorem 5.1). Hence, using Theorem 5.3 we get

a(p−1)/2 ≡ g(2m+1)(p−1)/2 ≡ gm(p−1)g(p−1)/2 ≡ 1 · (−1) = −1 mod p .

Thus, we can calculate the Legendre symbol by using the procedure EXP given in
Lecture 4.

The following de�nition generalizes in some sense the Legendre symbol, but not
with respect to the existence of discrete square roots. But it is still providing enough
information to design an e�cient probabilistic test for primality.

De�nition 5.2 (Jacobi symbol).
Let Q > 1 be an odd number, and let Q = p1 · p2 · . . . · pk, where pi prime for all

i = 1, . . . , k (but not necessarily pi 6= pj for i 6= j). Let a ∈ Z∗Q. The Jacobi symbol(
a
Q

)
is de�ned as follows:(

a

Q

)
=

(
a

p1

)
·
(

a

p2

)
· . . . ·

(
a

pk

)

For having an example,
(

2
9

)
=
(

2
3

)
·
(

2
3

)
= 1 but x2 ≡ 2 mod 9 is not solvable in

Z∗9.

5.1. Solovay and Strassen's Primality Test

Now, we turn our attention to a probabilistic algorithm for testing primality. We
shall arrive at a Monte Carlo algorithm, i.e., a randomized procedure that may
produce incorrect results but with bounded error probability. A formal de�nition of
the relevant complexity class will be provided in Lecture 9. As a matter of fact, our
algorithm will make only one type of error (see below for details).

The following result is due to Solovay and Strassen [3], the proof given here, how-
ever, is not, since I could not completely verify their proof.

Theorem 5.5. Testing primality can be done in one-sided error probabilistic poly-

nomial time.

Proof. Let n ∈ N be any given number. Clearly, if n is even, this can be trivially
recognized. Thus, it su�ces to show how to recognize odd primes. Consider the
following algorithm:

5.1. Solovay and Strassen's Primality Test 49

Algorithm PT

Input: An odd number n ∈ N.

Method: (1) Choose at random a number a ∈ {1, . . . , n − 1}.

(2) Compute d := gcd(a, n). If d > 1 then output composite, and stop.

Otherwise, goto (3)

(3) Compute the following quantities:

δ = a(n−1)/2 mod n

ε =
(

a
n

)
(the Jacobi symbol)

Output: If δ 6≡ ε mod n then output composite, and stop.
If δ ≡ ε mod n then output possibly prime, and stop.

Next, we prove a series of lemmata which will yield the statement of the theorem.

Lemma 1. If n is prime, then PT must output possibly prime.

If n is prime then gcd(a, n) = 1 for all a ∈ {1, . . . , n − 1}, and by Theorem 5.4,

a(n−1)/2 ≡
(a

n

)
mod n .

Thus, the algorithm PT necessarily outputs �possibly prime.�

Lemma 2. If n is composite, then PT outputs composite with probability at

least 1/2.

The main ingredient for proving this lemma is the following claim.

Claim 1. Let n ∈ N be an odd composite number. Then we have for

S =
{

a ∈ Z∗n | a(n−1)/2 ≡
(a

n

)
mod n

}
that |S| 6 |Z∗n|/2 .

It is easy to see that S is a subgroup of Z∗n. Thus, |S| must divide |Z∗n|, and hence
either |S| = |Z∗n| or |S| 6 |Z∗n|/2. So it su�ces to show that |S| 6= |Z∗n|. Suppose that
a(n−1)/2 ≡

(
a
n

)
mod n for all a ∈ Z∗n. Since

(
a
n

)
= ±1, we conclude an−1 ≡ 1 mod n

for all a ∈ Z∗n, thus n must be a Carmichael number. By Theorem 4.11, n must
be square-free and by Exercise 17, n must be the product of at least three di�erent
primes. Therefore, (a

n

)
=

(
a

p1

)
·
(

a

p2

)
· . . . ·

(
a

pk

)
,

where p1, . . . , pk are prime numbers and k > 3. Let g be a generator for Z∗n, and let
ñ = n/p1. By the Chinese Remainder Theorem there exists an a ∈ Z∗n such that

a ≡ g mod p1 (5.1)

a ≡ 1 mod ñ (5.2)

c©Thomas Zeugmann, Hokkaido University, 2008

50 Lecture 5: Testing Primality and Taking Discrete Roots

In particular, we therefore have a ≡ 1 mod pj for all j > 2, and hence a is quadratic

residue modulo pj for all j > 2. Thus,
(

a
pj

)
= 1 for all j > 2. Moreover, by

Theorems 5.3 and 5.4 we have

a(p1−1)/2 ≡ g(p1−1)/2 ≡ −1 ≡
(

a

p1

)
mod p1 .

Consequently,
(

a
n

)
= −1, too, and therefore a(n−1)/2 ≡ −1 mod n. This implies

a(n−1)/2 ≡ −1 mod ñ. By (5.2) we have a ≡ 1 mod ñ, and hence a(n−1)/2 ≡ 1 mod ñ.
This contradiction shows that S = Z∗n is impossible. Thus Claim 1 is shown.

Now, if n is composite, then with probability 1/2 the algorithm PT chooses an
a ∈ {1, . . . , n − 1} such that δ 6≡ ε, and therefore, with probability at least 1/2 the
output is composite.

This proves the correctness of the algorithm PT. It remains to evaluate the running
time of PT. Everything is clear except the calculation of the Jacobi symbol. If the
Jacobi symbol can be computed in polynomial time (as shown below), we are done.

So, it remains to provide an e�ective method for computing the Jacobi symbol.
Note that we cannot reduce the computation of the Jacobi symbol to its de�nition,
since this would require that we know the prime factorization of n. But there is a
very nice method which is based on the following theorem and its supplement.

Theorem 5.6 (Law of Quadratic Reciprocity). For all odd numbers P, Q ∈ N
with gcd(Q, P) = 1 we have(

Q

P

)
= (−1)(P−1)(Q−1)/4

(
P

Q

)
.

Because of the lack of time, we do not prove this theorem here. There are numerous
proofs in print, and we refer the reader to e.g., Niven and Zuckerman [2].

In order to apply Theorem 5.6 successfully, we need the following supplements.

Theorem 5.7. For all a, b ∈ N and all odd Q ∈ N we have

(1) If a ≡ b mod Q, then

(
a

Q

)
=

(
b

Q

)
.

(2)

(
1

Q

)
= 1

(3)

(
−1

Q

)
= (−1)(Q−1)/2

(4)

(
ab

Q

)
=

(
a

Q

)
·
(

b

Q

)

(5)

(
2

Q

)
= (−1)(Q2−1)/8

5.2. Taking Discrete Roots 51

Again, we refer to Niven and Zuckerman [2] for a proof.

So, the complexity of computing the Jacobi symbol is of the same order as the
complexity of the extended Euclidean algorithm (cf. Theorem 3.2).

Next, we provide a method for improving the error probability of the Solovay-
Strassen algorithm exponentially while maintaining its polynomial running time.

Corollary 5.8. If we run the algorithm PT k-times then

Pr{k successive runs output �possibly prime�} 6
1

2k

provided n is composite.

Proof. As we have seen, a composite number may lead to the wrong output pos-

sibly prime with probability 6 1/2. Thus, if we run the algorithm PT k-times we
have k independent Bernoulli trials with failure probability 1/2. Hence, the wanted
probability is

Pr{k successive runs output �possibly prime�} 6
1

2k
,

since it equals the probability of k successive failures.

Exercise 18. Apply Theorem 5.7 to compute
(

119
291

)
.

Exercise 19. Prove the following: Let p ∈ N be a prime and let a ∈ Z∗p.

(1) x2 ≡ −1 mod p is solvable if and only if p ≡ 1 mod 4.

(2) If p ≡ 3 mod 4 then either a or −a is a quadratic residue.

(3) If p ≡ 1 mod 4 then either both a and −a are quadratic residues or both are

quadratic non-residues.

5.2. Taking Discrete Roots

This is a good place to return to the problem of computing discrete roots. The
following theorem refers to Berlekamp's algorithm for computing discrete square roots
modulo a prime number, and may give us a �avor about the techniques used. In
general, however, the problem of �nding discrete square roots must be considered
to be di�cult. As a matter of fact, one can prove that �nding the least solution of
x2 ≡ a mod n in positive integers, where n ∈ N and a ∈ Z∗n, is an NP-hard problem.

5.3. Berlekamp's Procedure for Taking Discrete Square Roots

Before providing the theorem already mentioned, we shortly explain what is meant
by Las Vegas algorithm. A randomized procedure is called Las Vegas algorithm,

c©Thomas Zeugmann, Hokkaido University, 2008

52 Lecture 5: Testing Primality and Taking Discrete Roots

if the procedure always correctly computes the desired result (that is, independently
from the random choices made). The run time of the procedure, however, does depend
on the random choices made. Then, the time complexity of a Las Vegas algorithm
on input X is de�ned to be the expected value with respect to all possible random
choices. Note that the following algorithm is due to Berlekamp [1].

Theorem 5.9. Let p ∈ N be a prime and let a ∈ Z∗p. Then there is a randomized

polynomial time procedure (Las Vegas) to �nd all solutions of x2 ≡ a mod p.

Proof. Consider the following algorithm:

Input: An odd prime p and an integer a ∈ Z such that gcd(a, p) = 1.

Output: no solutions provided a is a quadratic non-residue modulo p;

all solutions of x2 ≡ a mod p, if a is a quadratic residue modulo p.

Method: (1) Compute

(
a

p

)
; if

(
a

p

)
= 1 then goto (2).

Otherwise, output no solutions, and stop.

(2) Choose randomly a γ ∈ Z∗p until a number γ has been found such that(
γ2 − a

p

)
= −1.

Compute
(
x

p−1
2 − 1

)
mod ((x − γ)2 − a), and let δ(x − ρ) be the result of

your computation.

Output (ρ − γ) and −(ρ − γ), and stop.

Before proving the correctness of this procedure, let us consider the following ex-
ample where the input is p = 17 and a = 8. Since(

8

17

)
≡ 88 ≡ 44 ≡ (−1)2 ≡ 1 mod 17 ,

we see that x2 ≡ 8 mod 17 is solvable.

Now, we choose γ = 6 and easily verify(
γ2 − a

p

)
=

(
36 − 8

17

)
=

(
28

17

)
=

(
11

17

)
≡ 118 ≡ 1214 ≡ 24 ≡ −1 mod 17

Next, we have to compute (x8−1) mod ((x−6)2−8). As an easy but somehow tedious
computation shows, the result is 6521856x−20674305 ≡ 10x−10 ≡ 10(x−1) mod 17.
Therefore, δ = 10 and ρ = 1. Consequently, we output −5 and 5.

Note that, in general, one has to do a bit more for getting δ and ρ. To see this, let
us have a look at another computation arising by choosing γ = 8 instead of 6.

5.3. Berlekamp's Procedure for Taking Discrete Square Roots 53

(
γ2 − a

p

)
=

(
64 − 8

17

)
=

(
56

17

)
=

(
5

17

)
≡ 58 ≡ 390625 ≡ −1 mod 17

Now, (x8 − 1) mod ((x − 8)2 − 8) = 33325056x − 171831277 ≡ 7x − 6 mod 17. Thus,
for �nding δ and ρ, �rst we have to compute the modular inverse (this is the new
part) of 7 modulo 17, which is 5. Finally, we get:

7x − 6 ≡ 7x − 6 · 7 · 5︸︷︷︸
≡1 mod 17

≡ 7(x − 6 · 5) ≡ 7(x − 13) mod 17.

Hence, δ = 7 and ρ = 13. We again output ρ − γ = 13 − 8 = 5, and −5.

It can be easily checked that 25 ≡ 8 mod 17.

Proof. First, we prove the correctness of the procedure given above.

Obviously, if a is a quadratic non-residue modulo p than the Legendre symbol
evaluates to −1, and hence the algorithm is correct.

Next, we assume a to be a quadratic residue modulo p. Hence, the Legendre
symbol evaluates to 1, and Instruction (2) is executed. Suppose, we have found a

number γ such that

(
γ2 − a

p

)
= −1. Taking into account that x2 ≡ a mod p is

solvable, we may conclude that

(x − γ)2 − a ≡ 0 mod p (5.3)

is solvable, too. This is obvious, if you look at x−γ as at a new variable. In particular,
this statement does not depend on the choice of γ. The choice of γ, however, is
important for deriving useful information as we shall see in Claim 1 below.

Let ρ and σ be the solution of (x − γ)2 ≡ a mod p, i.e., we have

(ρ − γ)2 − a ≡ 0 mod p

(σ − γ)2 − a ≡ 0 mod p

Next, we prove a very helpful claim.

Claim 1. ρ · σ ≡ γ2 − a mod p

We have the congruence z2 − a ≡ 0 mod p, where z = (x − γ). By (5.3) we know
that this congruence has precisely two solution, say z1, z2. Moreover, taking into
account that z1 ≡ −z2 mod p we may conclude

z1 · z2 ≡ −z1 · z1 ≡ −z2
1 ≡ −a mod p

Thus, z1 ·z2 ≡ −a mod p. In particular, z1 = (ρ−γ) and z2 = (σ−γ). Consequently,

(ρ − γ)(σ − γ) ≡ −a mod p.

c©Thomas Zeugmann, Hokkaido University, 2008

54 Lecture 5: Testing Primality and Taking Discrete Roots

Therefore, we obtain

ρσ − γσ − γρ + γ2 ≡ −a mod p . (5.4)

Furthermore, ρ − γ ≡ −σ + γ mod p, and thus −σ ≡ ρ − 2γ mod p. Consequently,
we obtain from (5.4):

ρσ + γ(ρ − 2γ) − γρ + γ2 ≡ −a mod p

ρσ + γρ − 2γ2 − γρ + γ2 ≡ −a mod p

ρσ ≡ γ2 − a mod p

This proves Claim 1.

Taking into account that

(
ρσ

p

)
=

(
ρ

p

)(
σ

p

)
, and

(
γ2 − a

p

)
= −1, we conclude

that

(
ρ

p

)
= −

(
σ

p

)
. Without loss of generality, let

(
ρ

p

)
= 1. Then, (x − ρ) is

a factor of x(p−1)/2 − 1 modulo p while (x − σ) is not. This follows directly from
the Euler criterion, since ρ(p−1)/2 ≡ 1 mod p, and thus ρ is a root of the polynomial
x(p−1)/2 − 1 over Zp. Consequently,

gcd
(
(x − γ)2 − a, x(p−1)/2 − 1

)
= (x − ρ),

since ρ and σ are the only solutions of (x − γ)2 − a ≡ 0 mod p. Hence,(
x(p−1)/2 − 1

)
mod (x − γ)2 − a

is a polynomial of degree 1 which can be written as δ(x−ρ). Finally, as we have seen,
(ρ−γ) is a discrete root of a modulo p. Since there are precisely two roots, −(ρ−γ)

is the only other solution. This proves the correctness.

Finally, we have to deal with the question of �nding γ such that
(

γ2−a
p

)
= −1.

Note that if p ≡ 3 mod 4 then
(

−a
p

)
= −

(
a
p

)
= −1. Thus, in this case the choice

γ = 0 will always succeed and no randomization is needed.

The remaining case is handled by the following lemma.

Lemma 5.10. Let p ∈ N be prime with p ≡ 1 mod 4 and let a ∈ Z∗p be such that(
a
p

)
= 1. Then at most half of the elements of γ ∈ Z∗p satisfy

(
γ2−a

p

)
= 1.

We need the following claim.

Claim 2. Let p be a prime number such that p ≡ 1 mod 4 and let g be a generator

for Z∗p. Furthermore, for i, j ∈ {0, 1} let

Sij = {(x, y) x, y ∈ Zp−1 and x ≡ i mod 2, y ≡ j mod 2 and gx + 1 ≡ gy mod p} .

Then, |S00| =
p − 1

4
− 1.

5.3. Berlekamp's Procedure for Taking Discrete Square Roots 55

Proof. First, note that the sets S00, S01, S10, S11 are pairwise disjoint. Moreover,
for each x ∈ Zp−1 with x 6= (p − 1)/2 we have gx + 1 6= 0 mod p. Thus, there exists
a unique y ∈ Zp−1 such that gx + 1 ≡ gy mod p. Consequently, we obtain

|S00| + |S01| + |S10| + |S11| = p − 2 . (5.5)

Furthermore, we have

|S11| = |S10| . (5.6)

Condition (5.6) is true, since the mapping

(x, y) 7→ (−x, y − x)

between S11 and S10 is a bijection. For seeing this, note that g2m+1+1 ≡ g2n+1 mod p

implies g2m+1 · g−(2m+1) ≡ 1 mod p. Because of g2m+1 ≡ g2n+1 − 1 mod p, we get

(g2n+1 − 1) · g−(2m+1) ≡ 1 mod p

g2n+1 · g−(2m+1) − g−(2m+1) ≡ 1 mod p

g2(n−m) ≡ g−(2m+1) + 1 mod p .

Hence, the mapping de�ned above is bijective.

Next, we show that

|S10| = |S01| . (5.7)

For seeing this, note that g2m+1 +1 ≡ g2n mod p implies −g2n +1 ≡ −g2m+1 mod p.
The latter congruence in turn implies that

g2n+ p−1
2 + 1 ≡ g2m+1+ p−1

2 .

Therefore, by taking into account that (p − 1)/2 is even, we see that the mapping

(x, y) 7→
(

y +
p − 1

2
, x +

p − 1

2

)
is a bijection between S10 and S01.

Moreover, we can also calculate the following.

|S11| + |S10| =
p − 1

2
. (5.8)

Since S11 ∩ S10 = ∅, we know that |S11| + |S10| = |S11 ∪ S10|. But

S11 ∪ S10 = {(x, y) x, y ∈ Zp−1 and x ≡ 1 mod 2 and gx + 1 ≡ gy mod p} ,

and therefore,

|S11 ∪ S10| =
p − 1

2
.

c©Thomas Zeugmann, Hokkaido University, 2008

56 Lecture 5: Testing Primality and Taking Discrete Roots

Finally, putting (5.6), (5.7) and (5.8) together yields

|S11| = |S10| = |S01| =
p − 1

4
.

Thus, by (5.5) we can conclude |S00| =
p − 1

4
− 1. This proves Claim 2.

Now, we are ready to show the lemma. Let g be any generator for Z∗p and let S00

be de�ned with respect to g as in Claim 2. Furthermore, we de�ne

R =

{
γ ∈ Z∗p

(
γ2 − a

p

)
= 1

}
and

S =

{
b ∈ Z∗p

(
b − a

p

)
= 1 and

(
b

p

)
= 1

}
.

Claim 3. |R| = 2|S|.

Let b ∈ S, then
(

b
p

)
= 1. Hence, b is a quadratic residue modulo p. Consequently,

x2 ≡ b mod p is solvable and there are two di�erent solutions γ1 and γ2, i.e.,

γ2
1 ≡ b mod p and γ2

2 ≡ b mod p .

Therefore, from
(

b−a
p

)
= 1 we can immediately conclude that

(
γ2

i −a

p

)
= 1 for

i = 1, 2. But this means that every element from S gives rise to two elements of R.
Hence, Claim 3 is shown.

Moreover, since
(

a
p

)
= 1 and p ≡ 1 mod 4 by assumption, we know (p − 1)/2 is

even, and we get
(

−a
p

)
= 1, too (cf. the case p ≡ 3 mod 4). By Theorem 5.1 we have

dlogg(−a) is even, say 2m = dlogg(−a). Hence, we arrive at −a ≡ g2m mod p.

Now, for every b ∈ S we obtain mutatis mutandis that there is an n such that
2n = dloggb and an r with 2r = dlogg(b − a). Therefore, it holds

b − a ≡ g2n + g2m ≡ g2r mod p

g2(n−m) + 1 ≡ g2(r−m) mod p

Next, let ν = 2(n−m) mod (p−1) and ω = 2(r−m) mod (p−1). Then we obviously
have ν ≡ 0 mod 2, ω ≡ 0 mod 2 and gν + 1 ≡ gω mod p, thus (ν, ω) ∈ S00.

Clearly, b 7→ (ν, ω) is an injection from S into S00. Hence, |S| 6 |S00| and therefore
by Claim 2, |S| 6 (p − 1)/4 − 1.

Finally, using Claim 3 yields |R| = 2|S| 6 (p − 1)/2 − 2. This proves the lemma.

Thus, in case of p ≡ 1 mod 4 the expected number of random choices required in
(2) is bounded by 2. Obviously, all computations in (1) can be done in time polynomial

in the lengths of p and a and so can the computation of
(

γ2−a
p

)
in (2) until an ap-

propriate γ is found. Finally, the computation of
(
x(p−1)/2 − 1

)
mod

(
(x − γ)

2
− a

)
can be done by successively squaring x and reducing it modulo

(
(x − γ)

2
− a

)
as in

the computation of am mod n outlined in procedure EXP.

5.3. Berlekamp's Procedure for Taking Discrete Square Roots 57

References

[1] E.R. Berlekamp (1970), Factoring polynomials over large �nite �elds, Math-

ematics of Computation 24, 713�745.

[2] I. Niven and H.S. Zuckerman (1991), An Introduction to the Theory of

Numbers. John Wiley and Sons, New York.

[3] R. Solovay and V. Strassen (1977), A fast Monte-Carlo test for primality,
SIAM Journal on Computing 6, 84 � 85.

c©Thomas Zeugmann, Hokkaido University, 2008

Lecture 6: Complexity Classes

Next, we turn our attention to complexity classes. In order to do so, we �rst recall
the de�nition of Turing machines. For the sake of presentation, we start with one-tape
Turing machines and time complexity.

6.1. Deterministic One-tape Turing Machines and Time Complexity

For the sake of presentation, �rst we recall the de�nition of one-tape deterministic
Turing machines.

A one-tape Turing machine consists of an in�nite tape which is divided into cells.
Each cell can contain exactly one of the tape-symbols. Initially, we assume that all
cells of the tape contain the symbol ∗ except those in which the actual input has been
written. Moreover, we enumerate the tape cells as shown in Figure 6.1.

0 2 3 4 5125 34 1

**** * * * b1 b2 b3

Figure 6.1: The tape of a Turing machine with input b1b2b3.

Furthermore, the Turing machine possesses a read-write head. This head can
observe one cell at a time. Additionally, the machine has a �nite number of states it
can be in and a set of instructions it can execute. Initially, it is always in the start
state zs. Then, the machine works as follows. When in state z and reading tape
symbol b it writes tape symbol b ′ into the observed cell, changes its state to z ′ and
moves the head either to the left (denoted by L) or to the right (denoted by R) or
does not move the head (denoted by N) provided (z, b, b ′, m, z ′) is in the instruction
set of the Turing machine, where m ∈ {L, N, R}. The execution of one instruction is
called step. When the machine reaches a distinguished state zf (the �nal state), it
stops. Thus, formally, we can de�ne a Turing machine as follows. In the following,
for any set S, we write |S| to denote its cardinality.

De�nition 6.1. M = [B, Z, A] is called deterministic one-tape Turing ma-

chine if B, Z, A are non-empty �nite sets such that B ∩ Z = ∅ and

(1) |B| > 2 (B = {∗, |, . . .}) (tape-symbols),

(2) |Z| > 2 (Z = {zs, zf, . . .}) (set of states),

(3) A ⊆ Z\{zf}×B×B×{L, N, R}×Z (instruction set), where for every z ∈ Z\{zf}

and every b ∈ B there is precisely one 5-tuple (z, b, ·, ·, ·).

60 Lecture 6: Complexity Classes

∗ | b2 . . . bn

zs b ′Nz3

z1 ·
· ·
· ·
· ·

zn ·

Figure 6.2: A Turing table

Often, we represent the instruction set A in a table (see Figure 6.2). Let Σ denote
any �nite alphabet or synonymously, a set of symbols. Then we use Σ∗ to denote the
free monoid over Σ. In the following we shall use λ to denote the empty string. We
set Σ+ = Σ∗ \ {λ}. Note that λ 6= ∗. Any set L ⊆ Σ∗ is called a language.

Now, we de�ne what does it mean that a Turing machine is accepting a language L.

De�nition 6.2. A language L ⊆ Σ∗ is accepted by Turing machine M if for

every string w ∈ Σ∗ the following conditions are satis�ed.

If w is written on the empty tape of M (beginning in cell 0) and the Turing machine
M is started on the leftmost symbol of w in state zs then M stops after having executed

�nitely many steps in state zf. Moreover,

(1) if w ∈ L then the cell observed by M in state zf contains a | .

In this case we also write M(w) = |.

(2) If w /∈ L then the cell observed by M in state zf contains a ∗.
In this case we also write M(w) = ∗.

Of course, in order to accept a language L ⊆ Σ∗ by a Turing machine M = [B, Z, A]

we always have to assume that Σ ⊆ B.

Moreover, for every Turing machine M we de�ne

L(M) = {w | w ∈ Σ∗ ∧ M(w) = |} ,

and we refer to L(M) as to the language accepted by M.

Example 1. Let Σ = {a} and L = Σ+.

We set B = {∗, a, |}, Z = {zs, zf} and de�ne A as follows.

zs∗ −→ | Nzf

zsa −→ | Nzf

zs| −→ | Nzs

where zb −→ b ′mz ′ if and only if (z, b, b ′, m, z ′) ∈ A. Note that we have included
the instruction zs| −→ | Nzs only for the sake of completeness, since this is required

6.1. Deterministic One-tape Turing Machines and Time Complexity 61

by De�nition 6.1. In the following we shall often omit instructions that cannot be
executed.

Next, we formally de�ne time complexity for Turing machines. In order to do so,
we need the following notations. For any string w, we use |w| to denote the length
of w. Furthermore, for every alphabet Σ and n ∈ N we set

Σn = {w | w ∈ Σ∗ ∧ |w| = n} .

De�nition 6.3. Let M = [B, Z, A] be a any Turing machine, and w ∈ B∗. We set

TM(w) = number of steps performed by M on input w when started on the

leftmost symbol of w in state zs until reaching state zf .

Furthermore, we de�ne TM(n) = max{TM(w) | w ∈ Σn}.

Next, let T : N → N be any function. Then we de�ne the time complexity class

generated by T as follows.

Time(T(n)) = {L | L ⊆ Σ∗ and there is a Turing machine M accepting L such

that TM(n) 6 T(n) for all but �nitely many n} .

This is a good place to recall our deterministic Turing Machine accepting the
language of all palindromes over the two letter alphabet Σ = {a, b} from our course
Theory of Computation. That is, Lpal = {w | w ∈ Σ∗, w = wT } and M = [B, Z, A],
where B = {∗, |, a, b}, Z = {zs, z1, z2, z3, z4, z5, z6, zf} and A is given by the following
table.

a b ∗ |

zs ∗Rz1 ∗Rz2 |Nzf |Nzf

z1 aRz1 bRz1 ∗Lz3 |Nzf

z2 aRz2 bRz2 ∗Lz4 |Nzf

z3 ∗Lz5 ∗Nzf |Nzf |Nzf

z4 ∗Nzf ∗Lz5 |Nzf |Nzf

z5 aLz6 bLz6 |Nzf |Nzf

z6 aLz6 bLz6 ∗Rzs |Nzf

Figure 6.3: Instruction set of a Turing machine accepting Lpal

So, this machine remembers the actual leftmost and rightmost symbol, respectively.
Then it is checking whether or not it is identical to the rightmost and leftmost symbol,
respectively. Thus, one easily sees that the time complexity of this machine is O(n2).

Of course, we could have designed a machine that works mutatis mutandis as the
machine above, but which memorizes two symbols each time, or more generally, k

symbols. Nevertheless, the resulting time complexity is still O(n2). Thus, it is only
natural to ask whether or not we can do any better, i.e., �nding a Turing machine that

c©Thomas Zeugmann, Hokkaido University, 2008

62 Lecture 6: Complexity Classes

accepts Lpal but which has time complexity o(n2). The negative answer is provided
by the following theorem which has been found by J	anis B	arzdi�n�s.

Theorem 6.1. For every deterministic one-tape Turing machine M accepting Lpal

there is a constant cM > 0 such that TM(n) > cMn2 for all but �nitely many n ∈ N.

The proof is given in the appendix (cf. Subsection 15.1).

As we already know, every regular language can be accepted by a �nite automaton.
Thus, for every L ∈ REG there is also a Turing machine M accepting it such that
TM(n) = n for all n ∈ N. Thus, Theorem 6.1 directly implies Lpal /∈ REG.

So, we already know that time n2 is enough to accept non-regular languages by
using deterministic one-tape Turing machines. But what happens if we add less
resources? The following gap-theorem answers this question.

Theorem 6.2. Let M be a deterministic one-tape Turing machine and assume

TM(n) = o(n log n). Then L(M) ∈ REG.

We refer the interested reader to the appendix for a proof (cf. Subsection 15.2).

Note that the bound proved in Theorem 6.2 cannot be improved. For seeing this,
we recommend solving the following exercise.

Exercise 20. Consider the language L = {0n1n n ∈ N} /∈ REG. Prove that there

is a deterministic one-tape Turing machine M accepting L in time n log n.

On the one hand, the Theorems 6.1 and 6.2 are very strong. On the other hand,
they also show that just having one tape is causing a lot of work which could be
avoided if the Turing machine would have more than one tape. The need for more
than one tape is also evident if we wish to study space complexity. If we would
consider again deterministic one-tape Turing machines, then the problem is ill posed,
since we need already n cells to write the input on the tape and thus could not study
sublinear space complexity classes. The idea is to consider Turing machines having
at least an input-tape with a head that is only allowed to read, and a work-tape with
read-write head. But our goal is a bit more far reaching, thus we are going to consider
the more general case of having k tapes, where k > 2.

6.2. Space and Time Complexity of Deterministic k-tape Turing Ma-
chines

De�nition 6.4. A Turing machine M = [B, Z, A] is called deterministic k-

tape Turing machine, k > 2, provided M has an input-tape with read-only head

and k − 1 many work-tapes each of which possesses exactly one read-write head.

M works as the previously de�ned one-taped Turing machine except that now in

every step k heads are moved and k cells (one on each tape) are observed. Thus

formally, now we have

A ⊆ Z \ {zf}× Bk × (B× {L, N, R})k × Z ,

with the restriction that M is not allowed to write on its input-tape.

6.2. Space and Time Complexity of Deterministic k-tape Turing Machines 63

Initially, M is in state zs (the start state) and all heads are observing the �rst cell
located right to position 0. Thus, we also have to modify the de�nition of accepting
a language. This is done as follows.

De�nition 6.5. A language L ⊆ Σ∗ is accepted by a deterministic k-tape Turing

machine M if for every string w ∈ Σ∗ the following conditions are satis�ed.

If w is written on the empty input-tape of M beginning in cell 0 and the Turing

machine M is started such that the read-only head on the input-tape is put on the

leftmost symbol of w and all other heads are put on the �rst cell located right to

position 0 in state zs then M stops after having executed �nitely many steps in state zf.

Moreover,

(1) if w ∈ L, the cell observed by M on its �rst work-tape in state zf contains a | .

In this case we also write M(w) = |.

(2) if w /∈ L, the cell observed by M on its �rst work-tape in state zf contains a ∗.
In this case we also write M(w) = ∗.

Again, we use L(M) to denote the language accepted by Turing machine M. Next,
we de�ne what is meant by space complexity.

De�nition 6.6. Let M be a deterministic k-tape Turing machine, k > 2, let

w ∈ Σ∗ be M's input. Then we de�ne the space complexity of M on input w

to be the number of cells visited by M on its work-tapes when started in its initial

con�guration as described above until it stops.

We denote the space complexity of M on input w by SM(w). Furthermore, for
every n ∈ N we set

SM(n) = max{SM(w) w ∈ Σn} .

The time complexity is de�ned as before. Finally, we de�ne the following com-
plexity classes. Let f: N → N be a function. We shall refer to f as bounding function.
Furthermore, we set

Timek(f(n)) = {L(M) M is det. k-tape Turing machine and TM(n) 6 f(n)}

Spacek(f(n)) = {L(M) M is det. k-tape Turing machine and SM(n) 6 f(n)}

TIME (f(n)) = {L(M) M is det. Turing machine and TM(n) 6 f(n)}

SPACE (f(n)) = {L(M) M is det. Turing machine and SM(n) 6 f(n)}

Next, we prove a linear speed-up theorem.

Theorem 6.3. For every constant c > 0, c ∈ N, and every function f: N → N,
such that c · f(n) > n for all n we have TIME (f(n)) = TIME (c · f(n)).

Proof. We only sketch the proof here. The remaining details are left as an exercise.
Given a Turing machine M = [B, Z, A] one can construct a Turing machine M ′

working c-times faster than M. Turing machine M ′ simulates in each step c steps of
M by using the tape alphabet Bc and the appropriately de�ned state set.

c©Thomas Zeugmann, Hokkaido University, 2008

64 Lecture 6: Complexity Classes

Thus, in the following it is always su�cient to show that TM(n) = O(f(n)) instead
of proving TM(n) 6 f(n).

Next, we de�ne the important notions of (weak) space (abbr. S) and time (abbr. T)
constructibility for functions.

De�nition 6.7. Let a function f: N → N be given.

(1) Function f is said to be weakly S-constructible, if there is a deterministic

Turing machine M such that SM(n) = f(n) and for every n ∈ N there exists a

string w ∈ Σ∗ with |w| = n and SM(w) = f(n).

(2) Function f is said to be S-constructible, if there is a deterministic Turing ma-

chine M such that for all w ∈ Σ∗ the equality SM(w) = f(|w|) is ful�lled. M is

then called a marker for space f(n).

(3) Function f is said to be weakly T-constructible, if there is a deterministic

Turing machine M such that TM(n) = f(n) and for every n ∈ N there exists a

string w ∈ Σ∗ with |w| = n and TM(w) = f(n).

(4) Function f is said to be T-constructible, if there is a deterministic Turing ma-

chine M such that for all w ∈ Σ∗ the equality TM(w) = f(|w|) is ful�lled. M is

then called a clock for time f(n).

We continue with some examples. The proof of the assertions made is left as
exercise. The functions f(n) = n and f(n) = 2n are both S-constructible and T -
constructible.

The sum and product of S-constructible and T -constructible functions are again
S-constructible and T -constructible, respectively. Consequently, all polynomials are
both S-constructible and T -constructible.

However, the function f(n) = n log log n is not T -constructible.

Next, we ask how the number of tapes does in�uence the complexity of Turing
machine computations. As we shall see, the answer depends on both the complexity
measure considered and the type of the Turing machine (deterministic or nondeter-
ministic).

6.3. Reducing the Number of Tapes

Theorem 6.4. Let f: N → R>0 be any bounding function. Then we have

TIME (f(n)) = Time2((f(n))2) .

Proof. Let M be any deterministic k-tape Turing machine, k > 1, such that
TM(n) 6 f(n) for all n ∈ N. For showing the theorem, it su�ces to construct a
deterministic 2-tape Turing machine M ′ satisfying L(M ′) = L(M) and TM ′(n) 6
c(TM(n))2 for some constant c > 0. This is done as follows.

6.3. Reducing the Number of Tapes 65

Let Y be the alphabet used by M on all its k − 1 work tapes and assume without
loss of generality that # /∈ Y. Then M ′ will use the alphabet (Y × {0, 1})k−1 ∪ {#}

on its work tape. The ith component of the form Y × {0, 1} at position z contains the
content of the ith work tape of M at position z, where �1� is used to mark the actual
position of the read-write head of M on this tape. The symbol # is used to mark the
left and right end of what was written on the work tape of M ′. An illustration of this
construction is provided in Figure 6.4.

.

210−1

210−1

210−1

3

3

3

* *

. .

(k − 1)th work tape

1st work tape

input tapea

b0 b1 b2 b3

c4 c5c3c2c1c0

Figure 6.4: Illustration for the use of the new letters

What is inside the red box is becoming the new letter ((b1, 0), . . . , (c1, 0)) which
is then written in the cell between -1 and 0 of the single work tape of M ′.

The simulation of one step of computation performed by M is done by M ′ as
follows. Let w be the input to both M and M ′. On the input tape, both machines
behave identically. On its work tape M ′ behaves as follows.

(1) The read-write head on the work tape of M ′ is reading the whole inscription
between the two end markers # from left to right. While doing this, M ′ mem-
orizes in states the k − 1 tape contents marked with 1, i.e., the actual head
positions on the k − 1 work tapes of M.

(2) By using the Turing table of M the machine M ′ is computing the changes to
be made, and

(3) then actually performing these changes by moving its read-write head on the
work tape from right to left. By doing this, it possibly has also to move its end
markers #.

Consequently, the length of the tape inscription on the work tape of M ′ cannot exceed
2 · TM(w) + 2. Hence, one step of M's computation can be simulated in O(TM(w))

c©Thomas Zeugmann, Hokkaido University, 2008

66 Lecture 6: Complexity Classes

steps by M ′. At all, TM(w) many steps of M's computation have to be simulated.
Thus, M ′ performs at most O ((TM(w))2) many steps. By Theorem 6.3 the assertion
of the theorem follows.

Note that the same construction also works if we wish to simulate a deterministic
k-tape Turing machine by a deterministic one-tape Turing machine. Thus, we even
have the following result.

Corollary 6.5. Let a f: N → R>0 be any bounding function. Then we have

TIME (f(n)) = Time((f(n))2) .

Furthermore, the proof of the latter theorem directly allows the following corollary.

Corollary 6.6. Let a f: N → R>0 be any bounding function. Then we have

SPACE (f(n)) = Space2(f(n)) .

Proof. The proof is identical to the proof of Theorem 6.4, since the simulation given
there is not increasing the amount of space needed, i.e., SM ′(w) 6 SM(w).

Consequently, when studying the amount of space needed to accept non-regular
languages, it su�ces to deal with 2-tape Turing machines. Recalling a bit automata
theory, we directly get the following lemma.

Lemma 6.7. For every regular language L there is a deterministic 2-tape Turing

machine M such that L = L(M) and SM(n) = 0 for all n ∈ N.

Again, it is only natural to ask how much space is needed for accepting non-
regular languages. Answering this question reveals a further surprise. For showing
the theorem below and several other results, we need the following de�nition.

De�nition 6.8. Let M be a Turing machine. A macro state of M is a tuple

containing the following

(1) the head position on the input tape of M,

(2) the actual state of M,

(3) for every work tape of M the inscription of all cells visited so far and the actual

position of the read-write head.

If (1) is omitted, then we refer to the resulting tuple as configuration of M. Note
that the de�nition of con�guration, when applied to one-tape Turing machines means
that we just record the actual state of the machine.

Theorem 6.8. Let M be any deterministic 2-tape Turing machine such that

SM(n) = o(log log n). Then L(M) is regular.

For a proof of the latter theorem, we refer the interested reader to the appendix
(cf. Subsection 15.3).

Next, we turn our attention to complexity hierarchies for deterministic Turing
machines.

6.4. Deterministic Complexity Hierarchies 67

6.4. Deterministic Complexity Hierarchies

Before dealing with complexity hierarchies it is meaningful to ask whether or not we
can improve Theorem 6.4. This is indeed the case as the following theorem shows.

Theorem 6.9. Let f: N → N be any bounding function. Then we have

TIME (f(n)) = Time3 ((f(n)) · log(f(n))) .

We omit the proof of Theorem 6.9 here, since there are several more important
theorems we want to deal with in this course. We have to economize our time, too.

Next, we have to establish the following fundamental theorem.

Theorem 6.10. Assuming an appropriate enumeration of all deterministic Turing

machines the following holds:

(1) There is a universal deterministic Turing machine U for all deterministic Turing

machines (Mi)i∈N such that

L(U) = {bin(i) ∗w w ∈ L(Mi), i ∈ N} ,

and for every i ∈ N there is a constant ci such that for all w ∈ Σ∗ the condition

TU(|bin(i) ∗w|) < ci · TMi
(|w|) · log TMi

(|w|) is ful�lled.

(2) There is a universal deterministic Turing machine U for all deterministic Turing

machines (Mi)i∈N such that

L(U) = {bin(i) ∗w w ∈ L(Mi), i ∈ N} ,

and for every i ∈ N there is a constant ci such that for all w ∈ Σ∗ the condition

SU(|bin(i) ∗w|) < ci · SMi
(|w|) is ful�lled.

Proof. The existence of universal Turing machines is a fundamental result that has
been proved in our course Theory of Computation. Now, for showing the theorem,
the enumeration is chosen in a way such that the code of Mi at the universal machine
is just bin(i). Moreover, the universal deterministic Turing machine U possesses an
input tape and at least two work tapes. Any �xed number k > 2 of work tapes will do.

On input bin(i) ∗ w, the universal machine U simulates the deterministic Truing
machine Mi on input w step by step. Assuming the coding is appropriately chosen,
for doing this, it su�ces that U reads in each simulation step the �programming code�
bin(i), memorizes the actions to be performed and performs the step to be simulated.

Hence, the constant ci is obtained by counting the number of steps the universal
machine needs for simulating one step of Mi. Furthermore, the simulation has to
incorporate the reduction of work tapes to the previously �xed number k. By Theo-
rem 6.9, this reduction requires that in the deterministic case TMi

(w) · log (TMi
(w))

steps have to be simulated. Thus, Part (1) of the theorem follows.

For showing Part (2), the only di�erence is the application of Corollary 6.6 for
the tape reduction in the deterministic case. Note that this corollary also causes the
improvement in Part (2) concerning the space complexity needed by the universal
deterministic acceptor U.

c©Thomas Zeugmann, Hokkaido University, 2008

68 Lecture 6: Complexity Classes

Theorem 6.11. Let f, g: N → N be any bounding functions such that g is T -

constructible and f(n) log f(n) = o(g(n)). Then we have

TIME (f(n)) ⊂ TIME (g(n)) .

Proof. Since the assumption implies f(n) < f(n) log f(n) < g(n) for all but
�nitely n, the inclusion TIME (f(n)) ⊆ TIME (g(n)) is obvious. We have to show that
there is a language Ld ∈ TIME (g(n))\TIME (f(n)). This is done by diagonalization.

We construct the wanted language Ld by using the universal acceptor U from
Theorem 6.10 and by de�ning a deterministic Turing machine M as follows. Then,
Ld contains all strings w, w = 0kbin(i) that are accepted by M and nothing else.

On input w, w = 0kbin(i), the machine M works as U on input bin(i) ∗ w.
Moreover, M uses a clock for g(n) and rejects its input if U does not stop within
g(w) many steps. If U does stop within g(w) many steps, then M rejects the input
if U accepts and accepts if U rejects.

Thus, by construction we already know Ld ∈ TIME (g(n)). Next, suppose there is
deterministic Turing machine Mi such that

Ld = L(Mi) and TMi
(n) 6 f(n) . (6.1)

By Theorem 6.10 we may conclude that for input 0kbin(i) the following holds

TU(bin(i) ∗ 0kbin(i)) 6 ci · TMi
(0kbin(i)) · log

(
TMi

(0kbin(i))
)

6 ci · f(0kbin(i)) · log
(
f(0kbin(i))

)
.

Moreover, if k is su�ciently large, we also have

TU(bin(i) ∗ 0kbin(i)) 6 g(0kbin(i)) .

Hence, Theorem 6.10 and the construction of M imply that

0kbin(i) ∈ L(Mi) i� 0kbin(i) ∈ L(M) (∗ since L(Mi) = Ld = L(M) ∗)
i� bin(i) ∗ 0kbin(i) /∈ L(U) (∗ by construction of M ∗)
i� 0kbin(i) /∈ L(Mi) (∗ by de�nition of L(U) ∗) .

Thus, we have obtained the contradiction 0kbin(i) ∈ L(Mi) i� 0kbin(i) /∈ L(Mi).
This contradiction is caused by our supposition (6.1). Consequently, our supposition is
false. Since there is obviously a deterministic Turing machine Mi with Ld = L(Mi), we
must conclude that every machine Mi with Ld = L(Mi) has to satisfy TMi

(n) > f(n).
Therefore, we directly arrive at Ld /∈ TIME (f(n)).

Applying the same ideas as in the proof of Theorem 6.11 we directly get the
following hierarchy theorem for deterministic space complexity.

6.5. Nondeterministic k-Tape Turing Machines 69

Theorem 6.12. Let g be any S-constructible function and let f(n) be any space

bound such that f(n) = o(g(n)). Then we have

SPACE (f(n)) ⊂ SPACE (g(n)) .

The hierarchy theorems already proved do yield only in�nite deterministic complex-
ity time and space hierarchies provided there are arbitrarily complex T -constructible
and S-constructible functions. Therefore, we should prove the following exercise.

Exercise 21. For every general recursive function f: N → N there exist general

recursive functions g, g ′: N → N such that

(1) f(n) < g(n) and f(n) < g ′(n) for all n ∈ N, and

(2) g is T -constructible, and g ′ is S-constructible.

After having studied deterministic Turing machines in some more detail, it is time
to turn our attention to nondeterministic Turing machines formally de�ned below.

6.5. Nondeterministic k-Tape Turing Machines

De�nition 6.9. A Turing machine M = [B, Z, A] is called nondeterministic

k-tape Turing machine, k > 1, provided B ∪ Z = ∅, and

(1) B = {∗, | , . . .} is a �nite set such that |B| > 2,

(2) Z = {zs, zf, . . .} is a �nite set such that |Z| > 2,

(3) A: Z \ {zf}× Bk → ℘
(
(B× {L, N, R})k × Z

)
\ {∅}

and M has an input-tape with read-only head (read-write head i� k = 1) and k − 1

work-tapes (none i� k = 1) each of which possesses exactly one read-write head.

Again, in every step M moves k heads and observes k cells (one on each tape).

Also, we make the restriction that M is not allowed to write on its input-tape i� k > 1.

Initially, M is in state zs (the start state) and all heads are observing the �rst cell

located right to position 0. What M is writing into the cells it is observing and which

move the heads make is decided nondeterministically by choosing one possibility from

the set of allowed possibilities (cf. Condition (3)).

Looking at De�nitions 6.4 and 6.9, we see that the main di�erence to a deterministic
Turing machine is Condition (3). For a deterministic Turing machine we had

A ⊆ Z \ {zf}× Bk × (B× {L, N, R})k × Z , while now we have

A : Z \ {zf}× Bk → ℘
(
(B× {L, N, R})k × Z

)
\ {∅}

That is, a nondeterministic Turing machine possesses in each step a set of possible
continuations. From this set, one possibility is chosen nondeterministically.

c©Thomas Zeugmann, Hokkaido University, 2008

70 Lecture 6: Complexity Classes

Initially, M is in state zs (the start state) and all heads are observing the �rst
cell located right to position 0. But now, on one and the same input there are many
possible computations that can be performed by M. Thus, we also have to modify
the de�nition of accepting a language. As before, we assume Σ ⊆ B to be the input
alphabet, where in particular ∗ /∈ Σ. This is done as follows.

De�nition 6.10. A language L ⊆ Σ∗ is accepted by a nondeterministic k-tape

Turing machine M if for every string w ∈ Σ∗ the following conditions are satis�ed.

If w is written on the empty input-tape of M (beginning in cell 0) and M is started

such that the read-only head on the input-tape is put on the leftmost symbol of w

and all other heads are put on the �rst cell located right to position 0 in state zs

then, if w ∈ L, there is a possible computation path such that M stops after

having executed �nitely many steps in state zf and the cell observed by M on its �rst

work-tape in state zf contains a | . In this case we also write M(w) = |.

In contrast to a deterministic Turing machine, if w /∈ L then a nondeterministic
Turing machine M is not supposed to deliver any information. We do not even require
M to stop on inputs w /∈ L. By L(M) we denote the language accepted by M.

Next, we de�ne time and space complexity for nondeterministic Turing machines.

De�nition 6.11. Let M be a nondeterministic Turing machine and w ∈ Σ∗. We

de�ne TM(w) to be the minimum number of steps executed by M on input w

among all its accepting computations, if w ∈ L(M), and the minimum number of

steps executed by M among all its computation executed on input w if w 6∈ L(M).

We de�ne SM(w) to be the minimum number of all cells on M's work tapes

visited by the read-write heads of M on input w among all its accepting computations

if w ∈ L(M) and minimum number of all cells on M's work tapes visited by the

read-write heads of M on input w among all its computations if w 6∈ L(M). Both

functions T and S remain unde�ned if there is no computation of M on input w that

stops. Furthermore, we set

TM(n) = max{TM(w) |w| = n}

SM(n) = max{SM(w) |w| = n}

Finally, we de�ne the resulting complexity classes as follows.

NTimek(f(n)) = {L(M) M is nondet. k-tape Turing mach. and TM(n) 6 f(n)}

NSpacek(f(n)) = {L(M) M is nondet. k-tape Turing mach. and SM(n) 6 f(n)}

NTIME (f(n)) = {L(M) M is nondet. Turing machine and TM(n) 6 f(n)}

NSPACE (f(n)) = {L(M) M is nondet. Turing machine and SM(n) 6 f(n)}

Note that for nondeterministic Turing machines with a constructible time or space
bound, one can always require that they stop on every input. For realizing this, one
has simply to combine them with a clock and marker, respectively. Nevertheless, one
usually does not get information concerning both w ∈ L and w 6∈ L, respectively.

Lecture 7: More about Complexity Classes

Within this lecture, we aim to show hierarchy results for nondeterministic com-
plexity classes. This is much more complicated than for the deterministic case. First,
we have to look again at tape reductions.

7.1. More about Tape Reductions

We ask whether or not we can improve Theorem 6.4 or Theorem 6.9 for nondeter-
ministic Turing machines. Surprisingly, allowing two work tapes for nondeterministic
Turing machines is already su�cient to simulate any nondeterministic Turing machine
without increasing the time complexity.

Theorem 7.1. Let f: N → N be any bounding function. Then we have

NTIME (f(n)) = NTime3((f(n))) .

Proof. Let any nondeterministic k-tape Turing machine M = [B, Z, A] be given such
that k > 3. If k 6 3, the theorem is obvious. Now, we construct a nondeterministic
3-tape Turing machine M∗ with L(M∗) = L(M) and TM∗(w) = O(TM(w)) for all w.

On its �rst work tape M∗ is using the tape alphabet B and on its second work
tape the tape alphabet Z× Bk. On input w, the machine M∗ works as follows.

(1) M∗ writes nondeterministically an arbitrary �nite number of symbols on its
second work tape. Note that these symbols are from Z×Bk, i.e., (k+ 1)-tuples.

(2) The ith symbol (zi, b1, . . . , bk) written on the second work tape is interpreted
as the actual situation machine M is in its ith step, i.e., it is assumed to be in
state zi and observing the symbols b1, . . . , bk on its input tape and its k − 1

work tapes.

(3) Using the Turing table of M, the machine M∗ checks deterministically whether
or not the sequence of symbols on its second work tape is an accepting compu-
tation of M on input w. If it is, M∗ accepts the input w, otherwise the input
w is rejected.

The check is done in k − 1 stages. In stage i, 1 6 i 6 k − 1, the ith work tape
of M is completely documented on the �rst work tape of M∗.

Hence, M∗ can �nd an accepting computation path in time k · TM(w) = O(TM(w))

if and only if w ∈ L(M). Finally, the theorem follows by Theorem 6.3.

Dealing with nondeterministic space complexity does not require any new idea.
Looking at the proof of Theorem 6.4, we immediately realize that the construction
performed there can be also applied in the nondeterministic case. Since this tape
reduction does not increase the amount of space needed, we get the following corollary.

72 Lecture 7: More about Complexity Classes

Corollary 7.2. Let f: N → N be any bounding function. Then we have

NSPACE (f(n)) = NSpace2(f(n)) .

Next, we reformulate Theorem 6.10 for nondeterministic Turing machines.

Theorem 7.3. Assuming an appropriate enumeration of all nondeterministic

Turing machines the following holds:

(1) There is a universal nondeterministic Turing machine V for all nondeterministic

Turing machines (Mi)i∈N such that

L(V) = {bin(i) ∗w w ∈ L(Mi), i ∈ N} ,

and for every i ∈ N there is a constant ci such that for all w ∈ Σ∗ the condition

TV(|bin(i) ∗w|) < ci · TMi
(|w|) is ful�lled.

(2) There is a universal nondeterministic Turing machine V for all nondeterministic

Turing machines (Mi)i∈N such that

L(V) = {bin(i) ∗w w ∈ L(Mi), i ∈ N} ,

and for every i ∈ N there is a constant ci such that for all w ∈ Σ∗ the condition

SV(|bin(i) ∗w|) < ci · SMi
(|w|) is ful�lled.

Proof. The proof is done analogously to the demonstartion of Theorem 6.10. The
only di�erence is the reduction of tapes. By Theorem 7.1, now the reduction does not
require additional steps, and hence Part (1) follows.

Part (2) is shown analogously. The only di�erence is the application of Corollary 7.2
instead of Theorem 7.1.

The proof methods developed so far are not directly applicable to the nondetermin-
istic case. Looking at the proof of Theorem 6.11, we see that we have taken advantage
of the fact that deterministic complexity classes are closed under complement. More
precisely, if C is a complexity class, then we set

co-C = {L L ⊆ Σ∗, Σ∗ \ L ∈ C} .

We say that a complexity class is closed under complement if co-C ⊆ C.

While it was fairly easy to complement deterministic complexity classes by just
returning `no' for all accepting computations, and `yes' to all rejecting computations,
this method does not work for nondeterministic complexity classes. The fact that a
particular computation did not succeed, is not guarantee that others do not, so the
strategy above could put some strings both in the language and in its complement.
Thus, additional work is needed here. For space complexity there is the famous
Immerman-Szelepcsényi Theorem stating that NSPACE (f(n)) = co-NSPACE (f(n))

for all bounding functions f satisfying f(n) > log n for all n ∈ N (see below).

7.2. A Complexity Hierarchy for Nonderterministic Time 73

But for nondeterministic time complexity classes no such theorem is known. The
best one has is the almost trivial result given by the following exercise.

Exercise 22. Let f: N −→ N be any bounding function. Then we have

co-NTIME (f(n)) ⊆ TIME

(⋃
c>0

2cf(n)

)
⊆ NTIME

(⋃
c>0

2cf(n)

)
.

However, we can show a hierarchy theorem for nondeterministic time complexity
classes.

7.2. A Complexity Hierarchy for Nonderterministic Time

We continue with the following lemma that will help us to circumvent the problem
whether or not nondeterministic time complexity classes are closed under complement.

Lemma 7.4. For every nondeterministic Turing machine Mi there is a nonde-

terministic Turing machine Mj such that for all w ∈ Σ∗

L(Mj) = {w bin(j) ∗w ∈ L(Mi)} and

TMj
(w) 6 ci · TMi

(bin(j) ∗w) .

Proof. By Theorem 7.1, it su�ces to consider an enumeration (Mi)i∈N of all 3-tape
nondeterministic Turing machines. For each given i ∈ N, we construct the wanted j

as follows.

(1) First, we consider the general recursive function r: N → N induced by the given
enumeration (Mi)i∈N having the property that

Mr(k), on input any w ∈ Σ∗, �rst writes bin(k) on its �rst work tape, and then
works as Mk does.

(2) Next, for each given i, we construct a special machine MI. The machine MI,
on input any w ∈ Σ∗ on its input tape and bin(k) on its �rst work tape, works
as Mi on input bin(r(k)) ∗w.

We de�ne j = r(I). By construction, Mj works as follows. Since Mj = Mr(I), by (1)
we get that, on input w, Mj �rst writes bin(I) on its �rst work tape and then works
as MI does.

By (2) we can conclude that Mj works as Mi does on input bin(r(I)) ∗ w. But
since j = r(I), this means that Mj works as Mi does on input bin(j) ∗w. Hence,

L(Mj) = {w bin(j) ∗w ∈ L(Mi)} ,

giving the �rst part of the lemma.

c©Thomas Zeugmann, Hokkaido University, 2008

74 Lecture 7: More about Complexity Classes

Furthermore, we have

TMj
(w) 6 ci · TMi

(bin(j) ∗w) ,

since Mj has to execute TMi
(bin(j) ∗ w) many steps plus a constant number. The

constant results from the number of steps needed to write bin(I) on its �rst work tape
and then returning the head into its starting position. This number is for all w the
same, thus we can compensate this additional constant by the factor ci. This proves
the second part of the lemma.

Using the latter lemma, we can prove the following hierarchy theorem for non-
deterministic time complexity classes. Before presenting it, we also need to prove
that there are arbitrarily complex languages acceptable by nondeterministic Turing
machines. This is done via the following exercise.

Exercise 23. Let g be any T -constructible bounding function and let M = [B, Z, A]

be any nondeterministic Turing machine such that TM(w) 6 g(|w|). Then there is a

deterministic Turing machine M ′ such that L(M) = L(M ′) and TM ′(w) 6 g(|w|) ·
kg(|w|), where k = 2 · |B|.

Having the result of Exercise 23 on hand, Theorem 6.11 directly implies via Ex-
ercise 21 that there are arbitrarily complex languages for nondeterministic time and
nondeterministic space.

Theorem 7.5. Let g: N → N be any T -constructible bounding function and let

f: N → N be any bounding function such that f(n) = o(g(n)) and f(n+1) = O(g(n)).

Then we have

NTIME (f(n)) ⊂ NTIME (g(n)) .

Proof. The simple inclusion NTIME (f(n)) ⊆ NTIME (g(n)) is obvious by the
asymptotic relation f(n) < g(n) for all but �nitely many n ∈ N. Thus, it remains
to show that the inclusion is proper. For seeing this, we construct a language Lnd

such that Lnd ∈ NTIME (g(n)) \ NTIME (f(n)). This is done by using the universal
acceptor V from Theorem 7.3 and by de�ning a nondeterministic Turing machine M

as follows. For all i ∈ N and w ∈ Σ∗ we de�ne:

On input bin(i) ∗w machine M alternatively simulates one step a clock for g and
one step of the universal acceptor V both on input bin(i) ∗w.

If V on input bin(i) ∗w does not stop within g(|bin(i) ∗w|) many steps, the input
is rejected.

If V on input bin(i) ∗w does stop within at most g(|bin(i) ∗w|) many steps, then
M accepts its input i� V accepts bin(i) ∗w.

By construction, L(M) ∈ NTIME (g(n)). Next, suppose there is a nondeterministic
Turing machine Mi such that

Lnd = L(Mi) and

TMi
(n) 6 f(n) . (7.1)

7.2. A Complexity Hierarchy for Nonderterministic Time 75

Now, the contradiction is obtained via a machine Mj that respects a universal time
bound but can accept arbitrary complex languages.

Let any nondeterministic machine M̃ be given. We �rst construct a machine M ′

and then the wanted machine Mj.

The nondeterministic machine M ′ works as follows.

(1) On input any y, the machine M ′ �rst checks whether or not y = bin(j) ∗w ∗ 0k

for some j, k ∈ N and some w ∈ Σ∗. If not, then y is rejected. If y does,
Instruction (2) is executed.

(2) M ′ simulates k steps of M̃'s work on input w. If M̃ accepts w within this
simulation, then M ′ accepts its input y.

If M̃ does not accept w within this simulation, then M ′ simulates Mi on input
bin(j) ∗w ∗ 0k+1. Recall that Mi is the machine supposed to accept Lnd.

Now, by construction and (7.1) we have

TM ′(y) = 2|y| + f(|y| + 1) = O(g(|y|)) .

Next, we apply Lemma 7.4 to the machine M ′. Thus, there exist a Turing machine
Mj such that

L(Mj) = {w ∗ 0k bin(j) ∗w ∗ 0k ∈ L(M ′)} and

TMj
(w ∗ 0k) 6 c · TM ′(bin(j) ∗w ∗ 0k) = O(g(|bin(j) ∗w ∗ 0k|)) . (7.2)

We continue by showing w ∗ 0k ∈ L(Mj) i� w ∈ L(M̃).

(1) For k > TM̃(w) we have by construction

w ∗ 0k ∈ L(Mj) i� bin(j) ∗w ∗ 0k ∈ L(M ′) i� w ∈ L(M̃) .

For the latter �i�� it should be noted that either M ′ accepts w while simulating
M̃ for k steps in Instruction (2) or it cannot accept w at all, since later it
simulates Mi on input bin(j) ∗w ∗ 0k+1.

(2) Assume for some k 6 TM̃(w) that w ∗ 0k ∈ L(Mj) i� w ∈ L(M̃). Then, for
k − 1 we obtain

w ∗ 0k−1 ∈ L(Mj) i� bin(j) ∗w ∗ 0k−1 ∈ L(M ′)

i� bin(j) ∗w ∗ 0k ∈ L(Mi)

i� bin(j) ∗w ∗ 0k ∈ L(V)

i� w ∗ 0k ∈ L(Mj) (∗ by Theorem 7.3 ∗)
i� w ∈ L(M̃) (∗ by the induction assumption ∗)

Thus, we have shown w∗0k ∈ L(Mj) i� w ∈ L(M̃). But now we get a contradiction to
(7.2), since Mj obeys the time bound given in (7.2) while M̃ can be chosen arbitrarily.
Hence L(M̃) can be arbitrarily complex by Exercise 23.

c©Thomas Zeugmann, Hokkaido University, 2008

76 Lecture 7: More about Complexity Classes

7.3. The Immerman-Szelepcsényi Theorem

We are going to prove a nondeterministic space hierarchy theorem. Fortunately
enough, after three decades of failure, in 1988 it could be proved that nondeterministic
space is closed under complement. Even more interestingly, in 1988 two proofs have
been published independently of one another by Immerman [1] and Szelepcsényi [2],
respectively. So, we continue with the Immerman-Szelepcsényi Theorem.

Theorem 7.6. co-NSPACE (f(n)) = NSPACE (f(n)) for every S-constructible

bounding function f satisfying f(n) > log n for all n ∈ N.

Proof. Let L ∈ NSPACE (f(n)) be witnessed, without loss of generality, by a non-
deterministic 2-tape Turing machine M = [B, Z, A] with SM(n) 6 f(n) for all n ∈ N.

Let Cx denote the set of f(|x|)-space bounded con�gurations of M on input x. Note
that

|Cx| 6 |Z| · |B|f(|x|)+1 − 1

|B| − 1
· f(|x|) .

Furthermore, we write Cx(τ) to denote the set of con�gurations that can be reached
by M on input x within precisely τ steps of computation. For the ease of notation,
we write cx(τ) to denote the cardinality of Cx(τ), i.e., cx(τ) = |Cx(τ)|. Without
loss of generality, we can also assume that there is a uniquely determined accepting
con�guration Ca and that M works in each of its computations on input x exactly t

steps, where t 6 |Cx|. We leave the proof of this statement as an exercise.

Then we have

M does not accept x i� Ca /∈ Cx(t)

i� Cx(t) contains cx(t) many rejecting �nal con�gurations.

The latter observation can be generalized to

Ca /∈ Cx(τ) i� Cx(τ) contains cx(τ) many con�gurations C ′ 6= Ca . (7.3)

Note that the time needed to check Condition (7.3) is at least cx(τ) which is clearly
exponential in τ.

We have to construct a nondeterministic Turing machine M ′ that accepts L (=

Σ∗ \ L) in space at most f(n). The idea for the construction of M ′ is given by the
equivalence (7.3) displayed above. Having the additional information cx(τ) on hand,
one can decide nondeterministically in space f(|x|) whether or not Ca ∈ Cx(τ).

Let C0(x) denote the initial con�guration of M on input x. If x 6∈ L, the positive
answer is easily obtained by guessing a sequence of con�gurations C1, . . . , Cτ such
that C1 = C0(x) and Ci+1 is reachable by M in one step as well as Cτ = Ca. Of
course, we have to do this guessing iteratively. That is, we always have at most two
con�gurations on the work tape. This can be easily achieved by deleting Ci−1 as soon
as Ci is generated and veri�ed. Again, for the sake of notation, we write Ci ` Ci+1 if
Ci+1 can be reached by M in one step.

7.3. The Immerman-Szelepcsényi Theorem 77

For the negative answer, we successively check for C ′ ∈ Cx with C ′ 6= Ca whether
C ′ ∈ Cx(τ). The number of positive answers is counted (that is the reason, why we
need f(n) > log n). If we �nd cx(τ) many such con�gurations C ′, we must conclude
Ca /∈ Cx(τ).

All what is left is to formalize this idea appropriately. For doing this, we �rst
de�ne a Procedure REACH. On input τ, c, C1, . . . , Cτ, REACH tries to decide whether at
least one of the con�gurations C1, . . . , Cτ is in Cx(τ). If REACH does not succeed, it
returns �?�. The parameter c is used to estimate the cardinality of Cx(τ).

Procedure REACH(τ, c, C1, . . . , Cτ)

Input: τ, c ∈ N, {C1, . . . , Cτ} ⊆ Cx

Output: true, false or ?

Method: number := 0;

for C ∈ Cx in lexicographical order do begin

guess nondeterministically a computation

C0(x) ` D1 ` · · · ` Dτ of length τ;

if Dτ = C then number := number + 1;

if Dτ ∈ {C1, . . . , Cτ} then return REACH(τ, c, C1, . . . , Cτ) = true;

end;

if number = c then return REACH(τ, c, C1, . . . , Cτ) = false;

if number < c then return REACH(τ, c, C1, . . . , Cτ) = ?;

end REACH

Now, we can show the following lemma.

Lemma 7.7. If procedure REACH is called with c = cx(τ) and REACH returns true

or false then this answer is correct.

Proof. First, assume true is returned. This can happen if and only if REACH

has found an initial segment C0(x) ` D1 ` · · · ` Dτ of a computation such that
Dτ ∈ {C1, . . . , Cτ}. So, the answer is correct.

Next, assume false is returned. Then we have number = c = cx(τ), i.e., REACH
has found c many di�erent con�gurations none of which is equal to one of the Cis.
By de�nition of cx(τ) this implies that all con�gurations in Cx(τ) have been tested,
thus Cx(τ) ∩ {C1, . . . , Cτ} = ∅. Hence, the answer is correct.

If REACH returns ? for c = cx(τ), then not all con�gurations C ∈ Cx(τ) have
been found in the for-loop. Therefore, one can neither conclude Ci /∈ Cx(τ) nor
Ci ∈ Cx(τ).

Since number 6 |Cx|, one can represent number in space O(f(|x|). Moreover, every
con�guration C ∈ Cx(τ) needs space at most f(|x|), and thus REACH can be realized
by a nondeterministic Turing machine that obeys the space bound f(n).

c©Thomas Zeugmann, Hokkaido University, 2008

78 Lecture 7: More about Complexity Classes

Next, we have to deal with the question how the numbers cx(τ) are determined.
This is done iteratively by the following procedure COUNT.

Procedure COUNT(τ, c)

Input: τ, c ∈ N

Output: d ∈ N or ?

Method: d := 0;

for C ∈ Cx in lexicographical order do begin

compute the direct predecessors C1, . . . , Cτ of C;

z := REACH(τ − 1, c, C1, . . . , Cτ);

if z = true then d := d + 1;

if z = ? then return COUNT(τ, c) = ?;

end;

return COUNT(τ, c) := d;

end COUNT.

Lemma 7.8. If COUNT is called with c = cx(τ−1) and returns a natural number d,

then d = cx(τ).

Proof. If COUNT is not stopping with output �?� received from REACH, then, by
Lemma 7.7, REACH correctly answers each question whether one of the predecessors
Ci of C belongs to Cx(τ − 1). Thus, after completion of the for-loop, the value of d

coincides with |Cx(τ)|, since every C ∈ Cx(τ) must have a predecessor in Cx(τ − 1).

Moreover, it is easy to verify that COUNT can be executed in space O(f(|x|)). Now,
we can put it all together to decide nondeterministically whether or not M, on input
any x does not possess an accepting computation.

On input x do the following:

cx(0) := 1;

for τ = 1, . . . , t do

if cx(τ − 1) 6= ? then cx(τ) := COUNT(τ, cx(τ − 1));

else cx(τ) := ? ;

if cx(τ) 6= ? then z := REACH(t, cx(t), Ca);

if z = false then accept x.

This program part can be executed by a nondeterministic Turing machine M ′ in
space O(f(|x|)), too. Furthermore, if M ′ is accepting an input x, then there must be
a computation path of M ′ such that neither REACH nor COUNT do return �?�. Hence,
COUNT correctly computes the values cx(τ) for τ = 1, . . . , t and REACH veri�es that
Ca /∈ Cx(t). Consequently, x /∈ L, thus x ∈ L and we are done.

7.3. The Immerman-Szelepcsényi Theorem 79

Finally, if x /∈ L, then for every con�guration C ∈ Cx(τ) there is partial computa-
tion C0(x) ` D1 ` · · · ` Dτ = C that can be guessed while processing

REACH(τ, cx(τ), C1, . . . , Cτ) .

Consequently, COUNT is correctly computing the values cx(1), . . . , cx(t), too. But then
REACH(t, cx(t), Ca) must return false. Therefore, M ′ is accepting x.

Thus, we have shown that L ∈ co-NSPACE (f(n)) implies L ∈ NSPACE (f(n)),
i.e.,

co-NSPACE (f(n)) ⊆ NSPACE (f(n))

for all S-constructible bounding functions f satisfying f(n) > log n for all n ∈ N.
Hence, we can conclude

co-NSPACE (f(n)) = NSPACE (f(n))

by Exercise 24 below.

Note that the S-constructibility of f ensures that s = f(|x|) can be determined by
M ′ and thus, also t is known.

A closer look at the proof of Theorem 7.6 shows that an easy modi�cation at the
end of the proof even allows to prove the following more general corollary.

Corollary 7.9. co-NSPACE (f(n)) ⊆ NSPACE (f(n)) for all bounding functions f

satisfying f(n) > log n for all n ∈ N.

We leave it as an exercise to show Corollary 7.9. Furthermore as already mentioned
in the proof of Theorem 7.6, the following result always holds.

Exercise 24. For every complexity class C we have, if co-C ⊆ C then co-C = C.

Now, it is easy to prove the following hierarchy result for nondeterministic space.

Theorem 7.10. Let f, g: N −→ N be any two bounding functions such that f(n) =

o(g(n)), g(n) > log n for all n ∈ N and g is S-constructible. Then

NSPACE (f(n)) ⊂ NSPACE (g(n)) .

The proof is left as an exercise.

One �nal remark is in order here. In all our hierarchy theorems, we have always
required the bounding function of the larger complexity class to be constructible. This
condition cannot be dropped. For non-constructible functions one can prove nice gap
theorems. For giving you a �avor, we �nally include the following exercise here.

Exercise 25. There are recursive functions f, g: N −→ N such that

(1) TIME (f(n)) = TIME (2f(n))

(2) SPACE (g(n)) = SPACE (22g(n)

).

c©Thomas Zeugmann, Hokkaido University, 2008

80 Lecture 7: More about Complexity Classes

After having seen that nondeterministic space is closed under complement provided
that the bounding function f satis�es f(n) > log n for all n ∈ N, we can answer the
question whether or not the context-sensitive languages (abbr. CS) are closed under
complement. This is done by characterizing CS in terms of complexity theory.

7.4. CS and Linear Bounded Automata

First, we de�ne linear bounded automata. There are several possibilities to de�ne
linear bounded automata from which we have chosen the one that should make our
proofs as easy as possible.

De�nition 7.1. A linear bounded automaton is a nondeterministic one-tape

Turing machine such that

(1) its input alphabet contains two special symbols ¶ and $ which are used to mark

the leftmost and rightmost position of the tape, respectively, that can be reached

by the head.

(2) The head can neither replace ¶ nor $.

So, a linear bounded automaton can only use the space between the two markers ¶
and $. The input is written between these markers. Please note that the end-markers
are written on the tape together with the input but are themselves not considered to
belong to the input. Now, taking Theorem 10.11 from [3] into account, we can easily
show the following.

Theorem 7.11. For every context-sensitive language L there is a linear bounded

automaton M such that L = L(M).

Proof. First, we divide the tape into two traces. The upper trace contains the input
w which will not be changed during the computation. The lower trace is actually used
to simulate a possible derivation of w provided it exists. Both traces are uniformly
marked by ¶ and $.

Let L = L(G), where G = [T , N, σ, P] is without loss of generality length increasing.
(cf. [3], Theorem 10.11). If the input is λ, M just stops in its accepting state. If the
input is not λ, M starts its computation by writing σ on the leftmost place in the lower
trace. Then M guesses nondeterministically a derivation. If the derivation yields the
input w, the input string w is accepted. Otherwise, M stops without accepting the
input.

To formalize this idea, we have to think about a way how this nondeterministic
guessing is performed. This is done by guessing a production and a position on the
tape. From the production it can be derived how many cells are needed to replace
the nonterminal at the guessed position. If the guessed position does not contain a
nonterminal in the lower trace, nothing is done and a new guess is made. If there
is a nonterminal at the guessed position, the substring to the right of the position is
moved by the number of cells needed to replace the nonterminal. If there is enough

7.5. Important Complexity Classes 81

space to perform this shift, then the replacement is done. If there is not enough space,
then M stops without accepting.

Finally, if a string has been derived that is precisely as long as the input, it is
compared with the input in the upper trace. If both strings are identical, M accepts.
Otherwise it stops without accepting. Since G is length increasing, there cannot be a
derivation for w that exceeds the space between the markers ¶ and $. Therefore, M

accepts a string w if and only if w ∈ L(G).

Interestingly enough, the converse direction is also true. That is, every language
accepted by a linear bounded automaton is context-sensitive. Thus, we have the
following result.

Theorem 7.12. If L = L(M) for a linear bounded automaton, then L ∈ CS.

The proof is not too hard and left as an exercise.

Thus we could characterize the context-sensitive languages as the set of all those
languages that are accepted by a linear bounded automaton. Since a linear bounded
automaton uses space |w| + 2 on its tape, we can apply the Immerman-Szelepcsényi
Theorem and obtain the a�rmative answer to the problem whether or not CS is closed
under complement.

Corollary 7.13. CS is closed under complement.

7.5. Important Complexity Classes

Now, we are ready to introduce the following important complexity classes.

L = SPACE (log n)

NL = NSPACE (log n)

P = TIME (nO(1)) =
⋃
c∈N

TIME (nc)

NP = NTIME (nO(1)) =
⋃
c∈N

NTIME (nc)

PSPACE = SPACE (nO(1)) =
⋃
c∈N

SPACE (nc)

NPSPACE = NSPACE (nO(1)) =
⋃
c∈N

NSPACE (nc)

One remark is mandatory here. Quite often one uses P to denote the set of all
partial recursive functions over N, while we use it here to denote the set of all languages
acceptable by a deterministic Turing machine within polynomial time. Though this is
for sure an overloading of this particular notation, it is quite common in the literature
and it should always be clear from context what is meant.

c©Thomas Zeugmann, Hokkaido University, 2008

82 Lecture 7: More about Complexity Classes

Then, we can immediately make the following observations.

Proposition 7.1.

(1) L ⊆ NL,

(2) P ⊆ NP,

(3) PSPACE ⊆ NPSPACE,

(4) P ⊆ PSPACE,

(5) NP ⊆ NPSPACE.

Moreover, we already know the following proper inclusion.

Theorem 7.14. L ⊂ PSPACE

Proof. The inclusion is obvious. The proper inclusion is a direct consequence of
Theorem 6.12.

Moreover, one is often interested in simultaneously bounding the time and space
resources needed to accept a language. Thus, we shall also study the following com-
plexity classes.

DTISP(f(n), g(n)) = {L(M) M is DTM and TM(n) 6 f(n) ∧ SM(n) 6 g(n)}

NDTISP(f(n), g(n)) = {L(M) M is NDTM and TM(n) 6 f(n) ∧ SM(n) 6 g(n)}

PLOPS = DTISP
(
nO(1), (log n)O(1)

)
Algorithms belonging to the complexity class PLOPS are considered to be practi-

cally realizable using current computer technology. Nevertheless, even this statement
has to be read with care, since in practice one has also to ensure that the exponents
and constants involved are moderate.

References

[1] N. Immerman (1988), Nondeterministic space is closed under complementation.
SIAM J. Computing 17, 935�938.

[2] R. Szelepcsényi (1988), The method of forced enumeration for nondetermin-
istic automata. Acta Inf. 26, 279�284.

[3] T. Zeugmann (2007), Course notes on theory of computation. Technical Re-
port TCS-TR-B-07-2, Division of Computer Science, Hokkaido University.

Lecture 8: More about Important Complexity Classes

We �nished the last lecture by introducing several important complexity classes.
Within this lecture, we study them in some more detail.

8.1. Fundamental Inclusions

First we show that a logarithmic space bound can always be combined with a poly-
nomial time bound.

Theorem 8.1.

(1) L ⊆ DTISP(nO(1), log n),

(2) NL ⊆ NDTISP(nO(1), log n).

Proof. Let M be a k-tape Turing machine such that SM(n) = O(log n). That is,
there exists a constant c > 0 such that SM(n) 6 c · log n. Recalling that a macro
state consists of the head position on the input tape, the actual state of M, and for
every work tape the content of all cells visited as well as the actual head position, we
can bound the total number of macro states by

n · |Z|
(
|B|c·log nc · log n

)k−1
6 nO(1) . (8.1)

Here n is the number of possibilities for the head position on the input tape. Moreover,
the machine M can be in at most |Z| many di�erent states. On each work tape, the
head can have visited at most c · log n many positions, and thus it can write only
strings of the same length on each of its work tapes. Since we have |B| many symbols,
and k − 1 many work tapes, the formula displayed above follows. Recall that

log|B| n =
ln n

ln |B|
and log n =

ln n

ln 2
,

and hence

c · log n = c · ln n

ln 2
= c · ln |B|

ln 2
· log|B| n = ĉ · log|B| n

Consequently, |B|c·log n = |B|ĉ·log|B| n = nĉ . Furthermore, log n 6 n for n > 1, and
therefore (

|B|c·log nc · log n
)k−1

6
(
c · nĉ+1

)k−1
= ck−1nc̃

for c̃ = (ĉ + 1)(k − 1). Additionally, for n > 2 there exists an m such that nm > |Z| .

Thus, the estimate (8.1) is proved and the theorem follows for the deterministic case.

For the nondeterministic case, we have additionally to take into consideration that
every polynomial is T -constructible. Hence, the nondeterministic Turing machine M

can be combined with a clock for the particular polynomial time arising without
changing the language accepted. We leave it as an exercise to show that the amount
of space needed to implement the clock can be logarithmically bounded. Thus, (2)
follows.

84 Lecture 8: More about Important Complexity Classes

The polynomial time bound just proved is essential to show the following inclusion.

Theorem 8.2. NL ⊆ P.

Proof. Let M be a nondeterministic Turing machine such that SM(n) 6 c · log n

for a suitably chosen constant c > 0. We have to construct a deterministic Turing
machine M̃ that accepts the same language as M and that uses at most polynomial
time, i.e., TM̃(n) 6 nO(1).

The machine M̃ works as follows.

(1) M̃ uses the same input w as M does. First, it writes all possible macro states
of M on its �rst work tape. By Theorem 8.1 we already know that there are
only polynomially many macro states.

(2) Next, M̃ marks the one macro state of all the macro states written on its �rst
work tape in which M starts its computation.

(3) Then, M̃ marks all macro states that can be reached in one step by M from one
of those already marked. If this increases the number of marked macro states,
M̃ repeats Stage (3).

Otherwise, M̃ checks whether or not there is marked macro state in which M

accepts the current input. If this is the case, M̃ accepts the current input.
Otherwise, the input is rejected.

By construction, we directly obtain L(M) = L(M̃). Finally, there are only polynomi-
ally many macro states to be read one time in each execution of Stage (3). Hence, M̃

executes at most nO(1) many steps.

Note that the deterministic Turing machine provided in the proof above also
uses nO(1) many tape cells on its work tape.

Next, we aim to show that NPSPACE ⊆ PSPACE. This will be done by proving
the following more general theorem.

Theorem 8.3. Let f(n) be an S-constructible function satisfying S(n) > log n.

Then, we have NSPACE (f(n)) ⊆ SPACE ((f(n))2) .

We shall prove this theorem in the appendix in a more general context.

So far, we have obtained the following insight:

L ⊆ NL ⊆ P ⊆ NP ⊆ NPSPACE = PSPACE .

Moreover, by Theorem 7.14 we also know that at least one of the inclusions must be
proper. It is conjectured that all inclusions are proper. However, despite many e�orts,
so far none of the inclusions could be proved to be proper nor could any equality be
shown.

Right now, we turn our attention to the problem whether or not there are problems
which can be considered to be the most di�cult ones within their corresponding

8.2. Hardness and Completeness 85

complexity class. As we shall see, such problems do exist. We shall refer to these
problems as to complete problems.

The importance of complete problems is easily explained. The e�cient solution of a
complete problem for NL or NP could be used to e�ciently solve all of the problems
in NL or NP, respectively. Thus, establishing the existence of complete problems
allows one to focus all e�orts to solve any such complete problem in a way such
that the resulting algorithm obeys the constraints of the complexity class in question.
For example, showing for one NL-complete problem to be in L then establishes the
equality L = NL.

8.2. Hardness and Completeness

For de�ning what is meant by complete and hard problem, respectively, we introduce
the notion of reduction. For that purpose, we have to modify the deterministic Turing
machine model in a way such that strings can be computed as output. We use Σ to
denote any �xed �nite alphabet and Σ∗ for denoting the free monoid over Σ.

De�nition 8.1. A function f: Σ∗ → Σ∗ is said to be log-space computable if

there exists a deterministic Turing machine Mf satisfying the following properties:

(1) Mf possesses an input tape with a two-way read-only head, an output tape with

a one-way write-only head and �nitely many work tapes each of which has a

two-way read-write head.

(2) On input w the machine Mf computes f(w) and writes it on its output tape.

While performing this computation, Mf uses on each of its work tapes at most

O(log n) many tape cells.

Log-space computable functions have an interesting property which is stated as an
exercise.

Exercise 26. Show that for each log-space computable function the condition

|f(w)| 6 |w|O(1) is satis�ed.

Next, we de�ne reductions.

De�nition 8.2. Let A, B ⊆ Σ∗ be any two decidable languages. A is said to be

log-space reducible to B (written A 6log B) if there exists a log-space computable

function f such that for all w ∈ Σ∗ the condition w ∈ A if and only if f(w) ∈ B is

satis�ed.

Exercise 27. Let L1, L2, L3 ⊆ Σ∗ be any decidable languages. Then we have: If

L1 6log L2 and L2 6log L3 then L1 6log L3, i.e., log-space reducibility is transitive.

Now, we are ready to de�ne the notion of hardness and completeness.

De�nition 8.3. Let S be a family of decidable languages over Σ∗ and let L0 ⊆ Σ∗.

L0 is said to be log-space hard for S if L 6log L0 for every L ∈ S.

c©Thomas Zeugmann, Hokkaido University, 2008

86 Lecture 8: More about Important Complexity Classes

If additionally L0 ∈ S is satis�ed then L0 is said to be log-space complete for S.

Next, we ask in which sense a language A ⊆ Σ∗ is easier than a language B ⊆ Σ∗

provided A 6log B. This is done via the following lemma.

Lemma 8.4. Let M be a Turing machine such that SM(n) /∈ o(log n). If a

language L ⊆ Σ∗ is log-space reducible to L(M) then there exists a Turing machine M̃

such that L = L(M̃) and SM̃ ∈ O(SM(n)).

Proof. The proof idea is to combine the acceptor Turing machine M with a Turing
machine Mf that realizes the log-space translation of L into L(M). But there is a
problem. The space bound of M does not allow, in general, to write the result f(w)

of the translation of w via Mf on M's work tape(s). Hence, we have to modify Mf

appropriately. We de�ne a deterministic Turing machine M ′
f as follows.

On input w and input bin(k) on an auxiliary work tape M ′
f works as Mf but

writes only the kth symbol of f(w) on its output tape. Since |f(w)| 6 |w|O(1) the
space bound O(log n) for M ′

f is ensured. M ′
f can count all attempts of Mf to write

a symbol on its output tape until the kth one is reached which is then executed.

Finally, M is modi�ed in way such that each change of the head position on the
input tape of M is accompanied by setting the binary counter to the actual input
head position and by computing the symbol to be read by executing M ′

f on input w

and bin(k) as described above.

Please note that the condition SM(n) /∈ o(log n) was essential for proving the
latter lemma, since otherwise we could not have used the binary counter.

Lemma 8.4 allows the following corollary.

Corollary 8.5. Let L, L ′ ⊆ Σ∗ be any languages.

(1) If L ∈ L and L ′ 6log L then L ′ ∈ L.

(2) If L ∈ L and ∅ 6= L ′ 6= Σ∗ then L 6log L ′.

Proof. We leave it as an exercise to prove this corollary.

Consequently, L constitutes the lowest level of log-space reducibility. It should
also be noted that there are a couple of reducibility notion around which have been
intensively studied in the literature. We mention here only polynomial-time re-
ducibility which is de�ned analogously as log-space reducibility. The only di�erence
to De�nition 8.2 is that the function f is now only required to be computable by a
deterministic Turing machine obeying a polynomial time bound for its computation
time instead of the log-space bound required in De�nition 8.1. If a language L1 is
polynomial-time reducible to a language L2 then we write L1 6poly L2. For getting
a better understanding of polynomial-time reducibility, we recommend to solve the
following exercise.

Exercise 28. Let L1, L2 be any two languages. If L1 6log L2 then L1 6poly L2.

8.3. Properties of the GAP problem 87

The notion of reducibility also allows one to de�ne an equivalence relation.

De�nition 8.4. Let L1, L2 ⊆ Σ∗ be any two decidable languages. L1 and L2

are said to be equivalent with respect to log-space (polynomial-time) reducibility if

L1 6log L2 and L2 6log L1 (L1 6poly L2 and L2 6poly L1).

If L1 and L2 are equivalent with respect to log-space and polynomial-time reducibility

then we write L1 ≡log L2 and L1 ≡poly L2, respectively.

We leave it as an exercise to show that �≡log� and �≡poly� are indeed equivalence
relations.

However, we shall mainly deal with log-space reducibility within this course. Our
next goal is to establish the existence of complete problems for the complexity class
NL de�ned in the last lecture.

For that purpose, we �rst de�ne the graph accessibility problem (abbr. GAP).

GAP:

Input: A directed graph G = (V , E) with vertex set V = {v1, . . . , vm} and a
distinguished start node vs and a distinguished end node ve.

Problem: Does there exist a path between vs and ve?

If the graph G is given by its adjacency-list, then the input length n of GAP can
be bounded by O(m2 log m). Moreover, we can safely assume n > m.

8.3. Properties of the GAP problem

Next, we show GAP to be NL-complete. This is done in two steps, i.e., by �rst
showing GAP to be NL-hard and then GAP to be in NL.

Lemma 8.6. GAP is NL-hard.

Proof. Let M be a Turing machine such that SM(n) ∈ O(log n) and let w be an
input to M. We de�ne a graph Gw = (V , E) as follows.

The nodes of Gw are all the macro states of M that can occur under the space
bound SM(|w|). Let v and v ′ be any two macro states of M (that is, any two nodes of
Gw). Then we de�ne (v, v ′) ∈ E if and only M can reach macro state v ′ from macro
state v in one step. Without loss of generality, we can assume that the macro state
at the beginning of M's computation on input w is uniquely determined. Moreover,
again without loss of generality, we can additionally assume that, if M accepts w the
the accepting macro state of M is uniquely determined, too.

Now, it is easy to see that the graph Gw is log-space computable from input w,
since the number of nodes is uniformly polynomially bounded in |w|. Finally, if the
nodes of Gw are appropriately numbered, then our construction directly implies

w ∈ L(M) ⇐⇒ Gw ∈ GAP .

Hence, every language from NL is log-space reducible to GAP.

c©Thomas Zeugmann, Hokkaido University, 2008

88 Lecture 8: More about Important Complexity Classes

Next, we show GAP to be acceptable by a nondeterministic Turing machine.

Lemma 8.7. GAP ∈ NL.

Proof. Let any graph G = (V , E) with vertex set V = {v1, . . . , vm} and a distin-
guished start node vs and a distinguished end node ve be given as input. Let n be
the length of the input. As shown above, n can be bounded by O(m2 log m). Thus,
the space bound log n is su�cient to store any node number in binary.

The nondeterministic Turing machine M works as follows. First, it stores the
number s of the start node vs. Then, non-deterministically any successor of vs, say
vi, is chosen (that is, (vs, vi) ∈ E), s is erased, and the number i is stored as actual
node number.

Next, the process is iterated. That is, assuming j to be the actual node number,
any successor of vj, say vk, is chosen and its number k is stored as actual node number
and j is erased. The storing and erasing is done in a way such that the total amount
of space used by M is O(log n).

The graph G is accepted, if e is reached as actual node number. Otherwise, G is
not accepted.

Clearly, if there is a path from vs to ve in G, then there is an accepting computation
of M on input G. Otherwise, no computation can accept G.

By De�nition 8.3, the Lemmata 8.6 and 8.7 directly imply the following corollary.

Corollary 8.8. GAP is NL-complete.

Moreover, we immediately obtain the following corollary.

Corollary 8.9. Let f(n) 6= o(log n) be a space bounding function. Then we have:

GAP ∈ SPACE (f(n)) if and only if NL ⊆ SPACE (f(n)).

Further NL-complete problems are studied in the appendix (see Subsection 15.5).

8.4. NP-complete Problems

Now, we turn our attention to the class NP which contains many important problems.
We start with a list of examples for decision problems that turn out to be all in NP.
We de�ne these problems here as languages and assume any reasonable encoding of
the input.

Let G = (V , E) be an undirected graph. A complete subgraph of size k of G is said
to be a k-Clique. Here a graph is said to be complete if every vertex is connected to
any other vertex. We set

CLIQUE = {(G, k) G possesses a k-Clique} .

Let G = (V , E) be an undirected graph. A set U ⊆ V is said to be independent

if (u, v) /∈ E for all u, v ∈ U, u 6= v. We set

INDSET = {(G, k) G possesses an independent set of size k} .

8.4. NP-complete Problems 89

Now, let G = (V , E) be a directed graph. A Hamiltonian path is a path visiting
all vertices of G exactly ones. We set

dHAMILTON = {(G, k) G possesses a Hamiltonian path} .

A vertex cover of an undirected graph G = (V , E) is a subset V ′ ⊆ V such that
if (u, v) ∈ E, then u ∈ V ′ or v ∈ V ′. The size of a vertex cover V ′ is the cardinality
of V ′. We set

VCOVER = {(G, k) G possesses a vertex cover of size k} .

Subset Sum Problem

Input: a number M and a vector (a0, . . . , an−1) ∈ Nn.

Problem: Decide whether there exists a vector (b0, . . . , bn−1) ∈ {0, 1}n such that

M =
n−1∑
j=0

ajbj.

As with any arithmetic problem, it is important to recall that the input integers
are coded in binary. Then we de�ne SUBSUM to be the language of all subset sum
problems ((a0, . . . , an−1), M) for which there is a vector (b0, . . . , bn−1) ∈ {0, 1}n such

that M =
n−1∑
j=0

ajbj.

Finally, we de�ne the famous satis�ability problem.

De�nition 8.5. Let F = f(x1, . . . , xn) be a Boolean formula consisting of the

variables x1, . . . , xn and the Boolean operators ∨, ∧, ¬. F is said to be in `-CNF form

if F is in conjunctive normal form and each clause contains precisely ` literals. F is

said to be satisfiable if the exists an assignment (a1, . . . , an) ∈ {0, 1}n to the variables

x1, . . . , xn such that F(a1, . . . , an) = 1.

The satis�ability problem is then the language

SAT = {F F is a satis�able formula}.

Let us ask what all the languages de�ned in this subsection do have in common.
The general pattern is that is presumably very hard to �nd a witness that any of its
instances belongs to them. For example, in order to �nd a satisfying assignment one
may have to try all possible assignments, i.e., all 2n many Boolean vectors a1, . . . , an ∈
{0, 1}n. The same clearly applies for SUBSUM.

As for dHAMILTON, one may be forced to try all n! permutations of the vertices
of G = (V , E), where |V | = n in order to �nd a Hamiltonian path.

On the other hand, it is for all the languages given above easy to check whether or
not a witness is given. For instance, for any given assignment one can quickly check
whether or not it is satisfying a given Boolean formula by a deterministic Turing

c©Thomas Zeugmann, Hokkaido University, 2008

90 Lecture 8: More about Important Complexity Classes

machine. Informally, this property may serve as a rule of thumb for deciding whether
or not any given language belongs to NP.

Next, we ask whether or not the class NP contains an NP-complete language.
The a�rmative answer has been given by Cook [1], who could show the following
important theorem.

Theorem 8.10. SAT is NP-complete.

We are not going to prove this theorem here, since there are many proofs in the
literature. Furthermore, you will not need to prove any problem to be NP-complete
by using Cook's [1] original proof technique. Instead, to show the NP-completeness
of any other language L it su�ces to reduce SAT or any other language known to be
NP-complete to L. This approach has been used to show a large number of languages
to be NP-complete (cf. Garey and Johnson [2] and numerous resources on the web).
Therefore, we are going to exemplify it here, too. Let `-SAT be the language of all
Boolean formulae in `-CNF form that are satis�able. Then, we can show the following.

Theorem 8.11. `-SAT is NP-complete for all ` > 3.

Proof. Since SAT is in NP we obviously have `-SAT ∈ NP, too. Thus, it su�ces
to log-space reduce SAT to `-SAT. First, we show that any Boolean formula F can be
transformed into a sat-equivalent formula F ′ in CNF. Here by sat-equivalent we mean
that F is satis�able if and only if F ′ is satis�able.

Note that we cannot just transform F into its CNF, since the length of the CNF
may be exponential in the length of F, thus violating our requirement to log-space
reduce SAT to `-SAT.

For obtaining the desired transformation of F into a sat-equivalent formula F ′ in
CNF, in general we need new auxiliary variables. Here by new we mean that these
variables do not occur in F. We proceed as follows. In our �rst step we transform F

into a logical equivalent formula F ′ by using de Morgan's rules as well as ¬¬x ≡ x.
Note the we use both ¬x and x to denote negation.

Step 1. Using de Morgan's rules, we transform F into F ′ such that all negations in
F ′ appear at the variables.

Example: Let F = ¬(¬(x1∨x2∨x3)∧(x4∨(x3∧x5))). Then, in Step 1 we successively
obtain:

¬(¬(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ (x3 ∧ x5))) ≡ ¬¬(x1 ∨ x2 ∨ x3) ∨ ¬(x4 ∨ (x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ ¬(x4 ∨ (x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ (x4 ∧ ¬(x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ (x4 ∧ (x3 ∨ x5)) .

After a bit of re�ection it is easy to see that Step 1 can be realized in log-space.

8.4. NP-complete Problems 91

Let F ′ be the formula obtained so far. Next, we transform F ′ into a sat-equivalent
CNF. This transformation is based on the following observation. If F ′ = F1 ∨ F2 and
F1, F2 are already in CNF, then we can replace F ′ by

(F1 ∨ y) ∧ (F2 ∨ y) ,

where y is a new variable. Clearly, the new formula is sat-equivalent to F ′. We refer
to this rule as to Rule 1. Furthermore, we need Rule 2 displayed below to transform
F1 ∨ y and F2 ∨ y into a CNF. This is done as follows. Let Fi = G1 ∧ G2 ∧ . . . ∧ Gk.
Then Fi ∨ yα is equivalent to

(G1 ∨ yα) ∧ (G2 ∨ yα) ∧ . . . ∧ (Gk ∨ yα) ,

and we have again a conjunction of clauses.

Step 2. Apply Rule 1 and Rule 2 recursively until a CNF is obtained.

Step 2 introduces for every ∨ a new variable. Let the result be F ′′. So, if the original
formula F has length m then F ′′ has length at most O(m2) and the transformation
takes at most O(m2) steps. Again, it is not too hard to show that Step 2 can be
realized in log-space, too. We leave it as an exercise to prove this formally.

Continuing our example, we thus obtain (where ∼ denotes sat-equivalence)

(x1 ∨ x2 ∨ x3) ∨ (x4 ∧ (x3 ∨ x5))

∼ (x1 ∨ x2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1) ∧ (x3 ∨ x5 ∨ y1) . (8.2)

Next, we have to show that any formula in CNF can be transformed into a sat-
equivalent formula in `-CNF form. For the sake of presentation we handle here the
case ` = 3, only. Consider any clause C = (z1 ∨ · · · ∨ zk). In dependence on k we
replace C by the following formula by using new variables yi:

k = 1 : (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2)

k = 2 : (z1 ∨ z2 ∨ y1) ∧ (z1 ∨ z2 ∨ y1)

k = 3 : (z1 ∨ z2 ∨ z3) i.e., we do not change C

k > 3 : (z1 ∨ z2 ∨ y1) ∧ (y1 ∨ z3 ∨ y2) ∧ (y2 ∨ z4 ∨ y3) ∧

. . . ∧ (yk−4 ∨ zk−2 ∨ yk−3) ∧ (yk−3 ∨ zk−1 ∨ zk) =: C̃ .

Clearly, these formulae can be computed in log-space.

The sat-equivalence of the formulae obtained can be seen as follows. In case k =

1, the four clauses can be simultaneously satis�ed if and only if z1 is assigned the
value 1, since independently of the assignments for y1, y2, in one of the four clauses
the resulting evaluation is 0. Analogously, one directly sees that in case k = 2 the two
clauses can be simultaneously satis�ed if and only if z1 or z2 is assigned the value 1.
For k = 3 nothing has to be shown.

c©Thomas Zeugmann, Hokkaido University, 2008

92 Lecture 8: More about Important Complexity Classes

Finally, for k > 3 it remains to show that C is satis�able if and only if C̃ is
satis�able. Assume (z1 ∨ · · · ∨ zk) is satis�ed by zi = 1. If i = 1 or i = 2, then we
set yj = 0 for all j = 1, . . . , k − 3. So, the �rst clause in C̃ is satis�ed by z1 or z2 and
all remaining clauses in C̃ are satis�ed by yj, j = 1, . . . , k − 3.

If i > 3, then we set y1 = y2 = · · · = yi−2 = 1, yi−1 = yi = · · ·yk−3 = 0. Now, by
construction, in C̃ the �rst i− 2 clauses are satis�ed by by the yi, the (i− 1)st clause
(containing zi) is clearly satis�ed by z1, and the remaining k − (i − 2) − 3 clauses in
C̃ are satis�ed by yi.

Next, assume C̃ to be satis�ed. We distinguish the following 3 cases. If all yj = 0,
then zk−1 ∨ zk must evaluate to 1, thus also C is satis�ed. Analogously, if all yj = 1,
then z1 ∨ z2 must evaluate to 1, and hence C is satis�ed, too.

It remains to consider the case that up to some i, 1 6 i < k − 3 we have y1 =

· · · = yi = 1 and yi+1 = 0. Now, the (i + 1)st clause of C̃ can evaluate to 1 if and
only if zi+2 = 1, that is, C is again satis�ed.

For the sake of completeness, we �nish our example here for the case of 3-CNF.
It remains to transform (8.2) into a 3-CNF. So, we have to apply the rules for k > 3
and k = 2. Applying the rule for k > 3 requires the introduction of a new variable y2

and applying the rule for k = 2 requires the introduction of a new variable y3. Thus,
we �nally obtain.

(x1 ∨ x2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1) ∧ (x3 ∨ x5 ∨ y1)

∼ (x1 ∨ x2 ∨ y2) ∧ (y2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1 ∨ y3) ∧ (x4 ∨ y1 ∨ y3) ∧ (x3 ∨ x5 ∨ y1) .

The importance of 3-SAT is its simple combinatorial structure which allows to apply
it to prove the NP-completeness of many other problems as shown below.

Exercise 29. Prove or disprove 2-SAT ∈ P.

Theorem 8.12. CLIQUE is NP-complete.

Proof. CLIQUE is in NP, since on input (G, k) a nondeterministic Turing machine
M may guess an appropriate set of k vertices and then verify that it is indeed forming
a k-Clique provided (G, k) ∈ CLIQUE. On the other hand, if (G, k) /∈ CLIQUE, then
no witness does exist and thus M will not �nd any accepting computation.

So, it remains to show that CLIQUE is NP-hard. This is done by reducing 3-SAT to
CLIQUE. Let F = F1∧· · ·∧Fk be a Boolean formula in 3-CNF, i.e., Fi = zi,1∨zi,2∨zi,3,
where zi,j ∈ {x1, x1, . . . , xn, xn} for i = 1, . . . , k and j = 1, 2, 3. For F we de�ne a graph
GF = (VF, EF) having 3k many vertices vi,j, i = 1, . . . , k and j = 1, 2, 3. Intuitively,
vertex vi,j corresponds to literal zi,j. A pair (vi,j, vi ′,j ′) of vertices is connected by an
edge if and only if i 6= i ′ and zi,j 6= zi ′,j ′ .

Claim 1. GF possesses a k-Clique if and only if F is satis�able.

First, we observe that GF cannot possess a complete subgraph having more than k

vertices, since any subgraph with more than k vertices must contain at least two
vertices having the same i, i.e., vi,j and vi,j ′ . But for all such vertices we have by
de�nition (vi,j, vi,j ′) /∈ EF.

8.4. NP-complete Problems 93

Now, assume F to be satis�able, i.e., there is an assignment a such that F(a) = 1.
Then each clause Fi must contain at least one literal zi,j evaluating to 1 under the
assignment a. Such a literal cannot be the negation of any other literal z`,j ′ satisfying
clause F`. Consequently, for all pairs i, ` such that i 6= ` there must be an edge
(vi,ji

, v`,j`
) ∈ EF. Therefore GF has a k-Clique.

Next, assume that GF has a k-Clique. Then the complete subgraph forming the
k-Clique must contain for every i = 1, . . . , k precisely one vertex vi,ji

. Now, we can
easily de�ne an assignment a for F by assigning the value 1 to the literals zi,ji

, where
vi,ji

belongs to the k-Clique. To the remaining literals we assign the value 0. Since
no such literal can be the negation of any other such literal corresponding to a vertex
in the k-Clique, no con�ict can occur. Thus, a satis�es F, and Claim 1 is shown.

Therefore, we have reduced 3-SAT to CLIQUE. Moreover, it is easy to see that
the reduction de�ned above is log-space computable. By the transitivity of 6log it
follows that CLIQUE is NP-hard. As shown above, CLIQUE ∈ NP, we conclude that
CLIQUE is NP-complete.

The following �gure shows an example for the reduction given in the proof of
Theorem 8.12 for

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ,

that is k = 3. Thus the formula above is mapped to the graph G partially displayed
below, where the 3-Clique corresponding to the satisfying assignment x1 = 1, x2 =

1 is shown in red. Furthermore, the the 3-Clique corresponding to the satisfying
assignment x3 = 1 and x2 = 1 is shown in blue. The green 3-Clique corresponds to
the assignment x1 = 1, x2 = 1 and x3 = 1.

v1,1 v2,1 v3,1

v1,2 v2,2 v3,2

v1,3 v2,3 v3,3

Figure 8.1: Mapping (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) to (G, 3).

Having shown CLIQUE to be NP-complete directly allows to prove VCOVER to
be NP-complete, too.

Theorem 8.13. VCOVER is NP-complete.

Proof. It is easy to see that VCOVER ∈ NP. Next, we reduce CLIQUE to
VCOVER. The reduction is almost trivial. Let G = (V , E) and k be given. We map G

to its complement graph G = (V , E), where E = {(u, v) u, v ∈ V , u 6= v, (u, v) /∈ E}.
Furthermore, k is mapped to |V | − k. We omit the details.

c©Thomas Zeugmann, Hokkaido University, 2008

94 Lecture 8: More about Important Complexity Classes

Exercise 30. Show SUBSUM to be NP-complete.

8.5. Remarks Concerning P versus NP

As already mentioned, so far we do not know whether or not P = NP. Resolving this
problem remains a huge challenge.

So, let us shortly discuss consequences of the two possible answers. If P 6= NP,
then not much will change, since this conjecture is favored by many scientists. The
main change, of course, is then the switch from conjecture to theorem, and all the
theorems having a �. . . if P 6= NP� in their statement would be unconditionally true.

Furthermore, there are some philosophical implications. The perhaps most impor-
tant one is that testing or verifying an answer is indeed much easier than �nding it.
For example, verifying that a given proof is correct is easier than �nding one. For the
typical NP-complete problem, �nding a solution seems to involve exhaustive search

over a set that has size exponential in the length of the input. If P 6= NP, then we
know that exhaustive search cannot be avoided in general.

What are the consequences if we could prove that P = NP? Clearly this result
would be also of fundamental epistemological importance. But the practical conse-
quences may vary. If, for some important NP-complete problem like 3-SAT someone
�nds a very e�cient algorithm, say having running time O(n2), then the practical
consequences would be heaven and hell at the same time. Heaven for those who need
to �nd quickly solutions for NP-complete problems, e.g., for many AI applications,
for VLSI designers, for engineers.

On the other hand, all tools currently in use for privacy protection, e.g., SSL, RSA,
or PGP will become useless over night. Also, much of what mathematician are doing
could then be done by a machine performing e�cient theorem proving.

But it is also possible that the best polynomial time algorithm for any NP-complete
problem has a running time of order O(nc), where c is a six digit number, or even
a 1000000 digit number. Of course, in this case the practical consequences would be
much less dramatic, since the NP-complete problems remain hard to solve for larger
inputs. If the latter would be true, this would also explain why we have not found
any such algorithm yet.

Last but not least, if P = NP then randomization would not provide any principal
gain.

References

[1] S.A. Cook (1971), The complexity of theorem-proving procedures, in, Pro-
ceedings of the third annual ACM symposium on Theory of computing, Shaker
Heights, Ohio, United States, pp. 151-158, ACM Press.

[2] M.R. Garey and D.S. Johnson (1979), Computers and Intractability: A

Guide to the Theory of NP-completeness, W.H. Freeman and Co., San Francisco.

Lecture 9: Probabilistic Complexity Classes

After having studied two di�erent probabilistic algorithms in Lecture 5, and im-
portant complexity classes in Lectures 6 through 8 we are going to �nish our short
introduction to complexity by taking a look at probabilistic complexity classes.

9.1. Probabilistic Turing Machines

Perhaps the �rst papers mentioning probabilistic Turing machines are von Neumann [5]
and de Leeuw et al. [4]. The complexity classes studied within this lecture have been
introduced by Gill [3].

So, �rst we have to de�ne probabilistic Turing machines. This is done informally.

Probabilistic Turing machines (abbr. PTM) are de�ned as deterministic Tur-
ing machines except that they have an additional tape equipped with a one-way read
only head. On this auxiliary tape, an in�nite sequence of zeros and one is written.
These zeros and ones are realizations of a sequence of coin �ips. It is assumed that
zero and one each have probability 1/2. Moreover, the coin �ips are independent
of one another. Furthermore, it assumed that each realization, i.e., each in�nite se-
quence of zeros and ones written on the auxiliary tape is independent of all other such
sequences.

On input a string w, the probabilistic Turing machine now works as a deterministic
Turing machine. In each step of its computation it may read one symbol from the
auxiliary tape. If it does, the one-way read only head of the auxiliary tape moves
one position to the right. Consequently, a probabilistic Turing machine may obtain
di�erent results on the same input, but the result is determined for every random
sequence written on the auxiliary tape.

So, it remains to rede�ne the notion of acceptance. We present here the usual
de�nition found in the literature.

De�nition 9.1. Let p be a constant such that 1/2 < p 6 1, let P be a probabilistic

Turing machine and let w ∈ Σ∗. P is said to accept w provided the probability of the

following event E is greater than or equal to p.

Event E. P stops in an accepting con�guration.

Moreover, we write Lp(P) to denote the set of all strings w ∈ Σ∗ that are accepted

by P with probability greater than or equal to p.

Furthermore, the space and time complexity of a probabilistic Turing machine P

are de�ned by requesting P to obey a space or time bound f(n) in the event E de�ned
above. That is, on all accepting computations P uses at most f(n) cells on all its work
tapes (for space complexity) and/or works at most f(n) steps (for time complexity).

We are not going to provide a formal proof for the correctness of our de�nition,
since this is beyond the scope of this course. Before discussing further issues of

96 Lecture 9: Probabilistic Complexity Classes

probabilistic Turing machines, we are going to exemplify their power by looking again
at the language L = {0n1n n ∈ N}. This is done by the following theorem.

Theorem 9.1 (Freivalds [2]) For every p with 1/2 < p < 1 there exist a constant

κ > 0 and a probabilistic Turing machine P accepting L with probability p which uses

only κ many cells on all its work tapes.

Proof. Let p with 1/2 < p < 1 be given. First, we choose two numbers c, d ∈ N,
c, d > 1, depending on p such that

1 − 2 ·
(

1

2

)d

> p and (9.1)

(
2c

2c + 1

)d

> 1 − p (9.2)

are satis�ed. The desired machine P (again depending on p) is de�ned as follows. On
input w ∈ {0, 1}∗ the machine P does the following.

(1) P checks whether or not the input w has the form 0m1n for some m, n ∈ N. If
this is not the case, P rejects w. Otherwise, P continues by executing (2).

(2) P checks whether or not (m−n) mod c = 0. If this is not the case, P rejects w.
Otherwise, P continues by executing (3).

(3) Now, P has to �gure out whether or not m = n. This is done by performing the
following probabilistic experiment. P starts on the leftmost symbol of the input
and reads the whole input from left to right, thereby also reading in each step a
symbol from its auxiliary tape. This is done until the last input symbol has been
read. We refer to this procedure as to a run of the experiment. Furthermore,
let us refer to the string 0m as to the left block of the input and to 1n as to the
right block of the input.

A run of the experiment is successful for the left block of the input provided P

reads only zeros on its auxiliary tape while reading zeros on its input tape. A
run of the experiment is successful for the right block of the input provided P

reads only ones on its auxiliary tape while reading the ones on its input tape.

A set of the experiment consists of successive runs. A set is �nished provided
either the run for the left block of the input was successful or the run for the
right block of the input was successful. The set is then said to be won for the
respective block.

The experiment consists of d sets. P accepts the input w if and only if each
block could win at least one set.

Note that P, while executing (1) and (2), does not read any symbol on its auxiliary
tape. Clearly, (1) can be performed without using any cells on the work tapes. It

9.1. Probabilistic Turing Machines 97

su�ces to scan the input ones, and then to return the head of the input tape to the
�rst position of the input.

Also, for the execution of (2), P does not use any cell of its work tapes. It su�ces
�rst to count the number of zeros modulo c (by using an appropriate number of
states), and then the number of ones, again modulo c, where P can memorize the
outcome of counting the zeros modulo c in an appropriate state sr. Here r stands for
the remainder, i.e., for m mod c. From this state, P can switch to c di�erent states
(which all memorize sr). If n mod c = r, then P switches to the particular state in
which it can start executing (3). Otherwise, the input is already rejected, and P stops.

When starting (3), there are only two cases left, i.e., m = n or |m − n| > c. It is
clear that for the execution of the experiment only a constant number κ of tape cells
is su�cient. Also, it is clear that the probability to arrive at a run successful for either
the left of right block, say ε, satis�es ε > 0. Hence, 1− ε < 1 is the probability that a
run was neither successful for the left block nor for the right block or it was successful
for both blocks. Since limn→∞(1 − ε)n = 0, we directly see that the probability to
�nish a set tends to 1 if the number of steps performed by P tends to in�nity.

Consequently, it remains to calculate the probability of acceptance for the input
for both cases.

Case 1. n = m.

In this case, the probability to win is for each block the same, i.e., 1/2. Therefore,
the probability for the left block to win all d sets is (1/2)d and so is the probability
for the right block to win all d sets. Thus, the probability that one of the blocks wins
all d sets is 2 · (1/2)d. By (9.1) we can conclude

1 − 2 ·
(

1

2

)d

> p ,

and thus, with probability greater than or equal to p the input is accepted.

Case 2. |m − n| > c.

Without loss of generality we can assume m < n, and therefore, m + c 6 n.

Now, the probability for the left block to win is

2−m

2−n + 2−m − 2−(n+m)
.

Thus, we can estimate

2−m

2−n + 2−m − 2−(n+m)
>

2−m

2−n + 2−m

=
2c

2c + 2−n+m+c
>

2c

2c + 1
.

Consequently, the probability for the left block to win all d sets can be estimated by(
2c

2c + 1

)d

.

c©Thomas Zeugmann, Hokkaido University, 2008

98 Lecture 9: Probabilistic Complexity Classes

Finally, by (9.2) we can conclude(
2c

2c + 1

)d

> 1 − p and, therefore

1 −

(
2c

2c + 1

)d

< 1 − (1 − p)

= p .

That is, the probability to accept a string of the form 0m1n with m < n, i.e., not
belonging to L, is less than p.

So, we have just seen what amazing computational power probabilism can provide
if the computational resources are severely restricted. But some remarks are in order
here. Though the algorithm presented in the proof above is very space e�cient, it is
not nearly as time e�cient. Performing the probabilistic experiment described takes
a huge amount of time.

In the following we are mainly interested in algorithms that have an e�cient run-
time. Thus, we shall restrict ourselves to consider probabilistic Turing machines
obeying an (expected) polynomial bound for their run time.

9.2. The Probabilistic Complexity Classes PP, RP, ZPP, and BPP

We de�ne the following complexity classes PP, RP, ZPP, and BPP as follows.
First, we recall what is meant by saying that a language is acceptable in probabilistic
polynomial-time.

De�nition 9.2. The probabilistic polynomial (PP) class is the set of lan-

guages L for which there is a PTM P running in polynomial-time such that for all

strings x we have

(a) x ∈ L =⇒ Pr(x is accepted) > 1/2,

(b) x /∈ L =⇒ Pr(x is rejected) > 1/2.

It can be said that PP is the weakest class of problems that can be approximately
solved in the very intuitive sense of the word. Moreover, it seems that any problem
not in PP will take more than polynomial-time to be solved. However, no proof is
known.

Requiring the majority of answers to be correct is a natural idea. But if the correct
solution is given with a probability close to 1/2 it is hard to di�erentiate the incorrect
solution from the correct one. Moreover, as the input size grows, we may be faced
with the problem that the probability of the correct solution tends more and more to
1/2. Thus, such a machine will be hard to distinguish from a machine that is simply
guessing without performing any computation. This gives way to a more restrictive

9.2. The Probabilistic Complexity Classes PP, RP, ZPP, and BPP 99

de�nition which we present next. Now, we are going to bound away from 1/2 the
margin of the solution.

De�nition 9.3. The bounded probabilistic polynomial (BPP) class is the

set of languages L for which there are a PTM P running in polynomial-time and some

constant ε > 0 such that for all strings x we have

(a) x ∈ L =⇒ Pr(x is accepted) > 1/2 + ε,

(b) x /∈ L =⇒ Pr(x is rejected) > 1/2 + ε.

Clearly, we directly get BPP ⊆ PP, since 1/2 + ε > 1/2 for all ε > 0. Note that
De�nition 9.3 can be modi�ed and still gives the same complexity class. In particular,
for any constant ε ∈ (0, 1/2) we again arrive at BPP. The class BPP contains all
languages that can be accepted by e�cient Monte-Carlo algorithms. Thus, one can
use the same idea as in the proof of Corollary 5.8 to verify the invariance of BPP on
the particular choice of ε ∈ (0, 1/2).

Moreover, we can further sharpen the de�nition of BPP by requiring that the PTM
is making only one type of error. More precisely, we require that for all inputs x /∈ L

the PTM for accepting L makes no error. Furthermore, every string from L must be
accepted with probability at least 1/2. Again, we could replace 1/2 by any constant
greater than 1/2 and less than 1. The resulting complexity class is denoted by RP.
Intuitively, RP stands for random polynomial time though this term may be a bit
misleading.

More formally, we arrive at the following de�nition.

De�nition 9.4. The one-sided error probabilistic polynomial (RP) class

is the set of languages L for which there are a PTM P running in polynomial-time

such that for all strings x we have

(a) x ∈ L =⇒ Pr(x is accepted) > 1/2,

(b) x /∈ L =⇒ x is rejected.

As a matter of fact, we already know an important problem belonging to RP.
Recalling our results obtained in Lecture 5, we have seen that PRIM ∈ RP, where
PRIM denotes the set of all binary representations of prime numbers.

The last probabilistic complexity class we are going to de�ne represents the e�cient
Las Vegas algorithms. Here, no error whatsoever is allowed and the expected run
time must be uniformly bounded by a polynomial in the length of all inputs over the
underlying alphabet Σ. This class is denoted by ZPP. So, ZPP stands for �zero-error
probabilistic polynomial time.�

The following theorem establishes the more obvious relations with respect to set
inclusion between the probabilistic complexity complexity classes and some other
previously de�ned complexity classes.

c©Thomas Zeugmann, Hokkaido University, 2008

100 Lecture 9: Probabilistic Complexity Classes

For this purpose, let us recall the notion of a balanced Turing machine.

De�nition 9.5. A nondeterministic Turing machine is balanced if all computa-

tion paths over a string x are of the same length and, moreover, each state is a guess

state.

Now, it is easy to see that every NP machine M can be replaced by a balanced
NDTM M ′ such that L(M) = L(M ′).

Furthermore, the notion of a balanced nondeterministic Turing machine can be
easily adapted to a probabilistic Turing machine. The only modi�cation to be made
is to replace �guess state� by �coin-tossing� state.

Exercise 31. Prove that for every probabilistic Turing machine P accepting a

language L in the sense of PP there is balanced probabilistic Turing machine P ′ such

that L(P) = L(P ′) = L.

Theorem 9.2.

(1) P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE

(2) RP ⊆ NP ⊆ PP

(3) ZPP, RP and BPP are closed under union and intersection.

Proof. First, we prove Assertion (1). Clearly, by de�nition we have P ⊆ ZPP ⊆ RP

and BPP ⊆ PP (as already mentioned above).

For seeing that PP ⊆ PSPACE it su�ces to notice that a PTM P can be simulated
by a deterministic Turing M machine which performs all possible computations of P.
Additionally, M counts the number of accepting computations and makes at the end
a majority vote. We omit the details.

Furthermore, RP ⊆ BPP is obtained as follows. Let L be accepted in the sense
of RP by a PTM P. Thus, if x /∈ L then x is always rejected. If x ∈ L, then
Pr(x is accepted) > 1/2. Thus, we can construct a PTM P ′ which behaves as follows.
On every input x it runs the PTM P exactly twice. P ′ accepts x, if x has been accepted
by P at least once. Hence, if x /∈ L, then P ′ will never accept x, too. On the other
hand, if x ∈ L, then P ′ makes an error if and only if P has made an error on x twice.
The probability that P is not accepting x twice is, however, less than 1/4. Hence P ′

accepts L in the sense of BPP. This proves Assertion (1).

For showing Assertion (2), �rst assume a language L that is accepted in the sense
of RP by a PTM P. Again, if x /∈ L, then x is always rejected. Thus, we can simply
remove the coin-�ips made by P and replace them by a nondeterministic choice. Hence,
the resulting machine M nondeterministically accepts L. This proves RP ⊆ NP.

Next, we have to show that NP ⊆ PP. Let L ∈ NP be witnessed by the nonde-
terministic Turing machine M. First recall that for all x /∈ L there is no accepting
computation of M for x. But if x ∈ L, then at least one accepting computation of M

9.2. The Probabilistic Complexity Classes PP, RP, ZPP, and BPP 101

for x must exist. However, the desired PTM P has to accept/reject a string x if the
majority of the computations performed is accepting/rejecting x. For reaching this
goal, we proceed as follows.

Let M be a balanced nondeterministic Turing machine and let L(M) be the lan-
guage accepted by M. Moreover, there exists a polynomial p such that M takes time
p(|x|) on all inputs x. Without loss generality we can also assume that Σ = {0, 1}. We
construct a balanced probabilistic Turing machine P from the machine M as follows.

First, each guessing state is replaced by a coin-tossing state. The outcome of a
coin-toss then corresponds to a guess. Each terminal node of the computation tree
of M over a string x with n = |x| is then reached with probability 1/2p(n). Now, a
further computation is carried out at each such leaf. That is, the terminal leafs of
M's computation tree on x are no longer terminal leafs for the computation tree of P

over x.

Let q be a polynomial such that p(n) 6 q(n) for all n ∈ N. If the terminal leaf of
M's computation tree on x is rejecting, then P will toss its coin q(n) times. If not all
outcomes of these coin tosses are head, then P tosses the coin again. It accepts if the
last coin toss is head and rejects x otherwise. If all outcomes of these q(n) coin tosses
are head, then P tosses the coin again (for being balanced) but rejects the input x

regardless of the outcome of the last coin toss.

On the other hand, if the reached terminal leaf in M's computation tree on x is
accepting, then machine P tosses its coin again q(n) + 1 times and accepts regardless
of the outcome (again this done only to make P balanced).

It remains to analyze the probability of acceptance/rejection of x by P. Since we
have designed P in a way such that it balanced, it su�ces to count accepting leaves.

Case 1. x /∈ L(M).

Then, the de�nition of P directly implies that

Pr(x is rejected|x /∈ L) =
2p(n)

(
2q(n) + 1

)
2p(n)+q(n)+1

=
1

2
+

1

2q(n)+1

Case 2. x ∈ L(M).

Pr(x is accepted|x ∈ L) >

(
2p(n) − 1

) (
2q(n) − 1

)
2p(n)+q(n)+1

+
2q(n)+1

2p(n)+q(n)+1

=
1

2
+

2q(n) − 2p(n) + 1

2p(n)+q(n)+1

>
1

2
since q(n) > p(n) .

Hence P accepts L(M) in the sense of PP. This completes the proof of Assertion (2).

c©Thomas Zeugmann, Hokkaido University, 2008

102 Lecture 9: Probabilistic Complexity Classes

Finally, we have to show (3). Consider two probabilistic Turing machines P and P ′

such that L(P) and L(P ′) are accepted in the sense of ZPP. Then it easy to see that
a probabilistic Turing machine P̂ accepts L(P) ∩ L(P ′) (L(P) ∪ L(P ′)) in the sense
of ZPP if P̂ works as follows. It simulates both P and P ′ and accepts its input x if P

and P ′ accept x (if P or P ′ accept x).

We leave it as an exercise to show the closure with respect to union and disjunction
for the remaining classes.

Exercise 32. Prove that ZPP is also closed under complement.

Next, we show the following characterization for ZPP. In order to this, we intro-
duce the notation co-C for any of the complexity classes de�ned in this lecture.

Theorem 9.3. ZPP = RP ∩ co-RP

Proof. We partition the proof into the usual two parts.

Claim 1. ZPP ⊆ RP ∩ co-RP.

Let L ∈ ZPP be arbitrarily �xed. First, recall Markov's inequality, i.e., let T be a
random variable such that E[T] exists. Then we have: for all real numbers α > 1

Pr(T > α · E[T]) 6
1

α
. (9.3)

Thus, we can bound the run time of a probabilistic Turing machine P on input x by

Pr(timeP(x) > 2 · E[timeP(x)]) <
1

2
, (9.4)

i.e., by choosing α = 2 in (9.3). Now, let P be an expected T time bounded proba-
bilistic Turing machine accepting L. We de�ne a probabilistic Turing machine P̂ as
follows.

On input x the PTM P̂ simulates the PTM P at most 2 · T(|x|) many steps. If P

did not accept x while performing this simulation, then P̂ rejects x and stops. On
the other hand, if P has accepted x within the time bound of 2 · T(|x|), then P̂ also
accepts x, and stops.

By construction, if x /∈ L then P̂ will never accept x. On the other hand, if x ∈ L

then P always accepts x. However, P̂ may be forced to reject x in case the simulated
computation exceeds the time bound of 2 · T(|x|) many steps. The probability for this
event is less than 1/2 due to the choice of α (cf. (9.4) above). Consequently, P̂ accepts
x with probability greater than 1 − 1/2 that is with probability greater than 1/2.
Thus, by De�nition 9.4 we can conclude that P̂ is an RP Turing machine accepting
L, i.e., L ∈ RP.

Next, recall that ZPP is closed under complement. Hence, L ∈ ZPP, too. So, we
can repeat the same proof as above for showing that L ∈ RP. But this means nothing
else than L ∈ co-RP. This proves Claim 1.

9.2. The Probabilistic Complexity Classes PP, RP, ZPP, and BPP 103

Claim 2. RP ∩ co-RP ⊆ ZPP.

Assume any language L ⊆ Σ∗ such that L ∈ RP∩ co-RP. By De�nition 9.4 we can
conclude that there are PTMs PL and PL witnessing L ∈ RP and L ∈ RP. Moreover,
these PTMs both obey a polynomial time bound for their runtime, i.e., there are
polynomials qL and qL such that timePL

(x) 6 qL(|x|) and timePL
(x) 6 qL(|x|) for all

x ∈ Σ∗. We set q(n) = max{qL(n), qL(n)} for all n ∈ N.

It remains to construct a PTM P such that P accepts L in the sense of ZPP. This
is done as follows.

On input x, the machine P simulates both PL and PL on input x until both machines
have stopped.

If PL has accepted x then also P accepts x. If PL has accepted x then P rejects x.

If both PL and PL did not accept x, we repeat the simulation until one the machines
PL or PL does accept.

It remains to show that P accepts L in the sense of ZPP and that the expected
running time of P is bounded by a polynomial in the length of the input.

First, we prove the correctness. If PL has accepted x, then by the de�nition of RP

we know for sure that x ∈ L. Thus, in this case, P correctly accepts x.

If PL accepts x then we can conclude that x ∈ L. Consequently, P correctly
rejects x.

Next, we estimate the expected running time of P. Note that in case neither PL nor
PL did accept x we know nothing. Both cases x ∈ L and x /∈ L are possible. However,
one of the machines PL and PL must have made an error. The probability for making
an error is for both machines less than 1/2. Therefore, we can estimate the expected
running time of P on input x as follows.

E[timeP(x)]) 6
∞∑

k=0

1

2k

(
timePL

(x) + timePL
(x)
)

6 2 · (timePL
(x) + timePL

(x)) 6 2 · q(|x|) .

Consequently, P witnesses L ∈ ZPP.

We like to conclude our short excursion into the �eld of randomized computations
by mentioning that there is much more. In particular, it is not too hard to prove
that there are complete problems for PP. The perhaps easiest PP-complete problem
is MAJ de�ned as the set of all Boolean formulae that are satis�ed by the majority
of possible assignments of the variables occurring in them. But we do not know any
problem that is complete for BPP under polynomial time reductions. One reason for
the di�culty to �nd a problem that is complete for BPP is that the de�ning property
of the class BPP is semantic. That is, for every string x over the underlying alphabet,
a Turing machine has either to accept x with probability at least 1/2 + ε or it has to

c©Thomas Zeugmann, Hokkaido University, 2008

104 Lecture 9: Probabilistic Complexity Classes

reject it with probability at least 1/2 + ε. Given a description of a Turing machine,
it is undecidable whether or not it has this property.

Furthermore, it has been a long standing open problem whether or not PP is also
closed under union and intersection. This problem got solved in 1991, but the proof
technique used is too complex to be included here. We refer the reader to Beigel et
al. [1] for further information.

References

[1] Richard Beigel, Nick Reingold and Daniel Spielman (1991), PP is
closed under intersection. In Proceedings of the twenty-third annual ACM
symposium on Theory of computing, New Orleans, Louisiana, United States,
pp. 1�9.

[2] R	usin�² Freivalds (1981), Probabilistic Two-Way Machines, In Mathematical
Foundations of Computer Science 1981, Strbske Pleso, Czechoslovakia, August
31 - September 4, 1981, Proceedings. Lecture Notes in Computer Science 118,
Springer, pp. 33�45.

[3] John Gill (1977), Computational Complexity of Probabilistic Turing Ma-
chines, SIAM Journal on Computing 6, no. 4, 675�695.

[4] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro (1956),
Computability by probabilistic machines. In C. E. Shannon and J. McCarthy,
editors, Automata Studies, pages 183�212.

[5] John von Neumann (1961), Probabilistic logics and synthesis of reliable or-

ganisms from unreliable components, Volume 5. Pergamon Press.

Part 2: Cryptography

�Ceux qui se vantent de lire les lettres chifrées sont de plus grands charlatans que

ceux qui se vanteraient d'entendre une langue qu'ils n'ont point apprise.�

Voltaire (Dictionnaire philosophique, 1769)

�It may be well doubted whether human ingenuity can construct an enigma of this

kind [a cryptogram] which human ingenuity may not, by proper application, resolve.�

E. A. Poe, (in The Gold Bug, 1843)

Part of this course is devoted to �nding out who of those famous thinkers is closer
to the truth.

Lecture 10: Classical Two-Way Cryptosystems

10.1. Introduction

AESYAISLAGFAKEGJWAEHGJLSFLLZSFCFGODWVYW

WAFKLWAF

This lectures mainly clari�es the subject of cryptology. Generally speaking, cryptology
is about communication in the presence of adversaries. Cryptology can be diveded
into two major parts, i.e., cryptography and cryptanalysis. Cryptography is the science
or art of secret writing while cryptanalysis is its natural counterpart, that is, the art
of reading secret messages. A classic goal of cryptography is privacy : two or more
parties wish to communicate in a way such that an adversary knows nothing about
what was communicated.

The history of cryptology goes back to ancient times. However, for centuries cryp-
tology has been mainly considered as a secret art developed, taught and learned only
by those few people that had access to the black chambers. Historically, its applica-
tions have been mainly restricted to diplomacy and military domains. The invention
of radio gave a tremendous impetus to cryptology. On the one hand, it became easy
for an adversary to eavesdrop over long distances. Thus, an adversary could easily
scan the message exchange of two parties on a regular basis. On the other hand, the
ability to communicate over great distances in real time provided serious advantages in
a variety of domains. This led to the development of more sophisticated cryptographic
encryption schemes. During Word War II, cryptanalytic needs heavily enforced the
development of electronic computing devices culminating in the appearance of the
�rst computers. On the other hand, the rapid development of computer technology
created a mass market for cryptographic techniques. Nowadays, cryptographic tech-
niques are sought for in industrial applications, governmental applications, and by
many citizens for protecting their privacy. Typical applications include electronic sig-
natures, electronic banking, secret exchange of electronic mails and the like. We shall
consider them throughout this course in some more detail.

108 Lecture 10: Classical Two-Way Cryptosystems

The remaining part of this course is to Public Key Cryptography. We present
the general framework for public key cryptosystems and describe several popular
realizations of it. Finally, we deal with the rapidly developing area of cryptographical
protocols. In particular, we describe methods to �ip a coin by telephone, to play
poker by telephone, to share a secret and to sign electronically.

10.2. The Basic Model

In the basic model, we consider the communication between two parties, the sender
and receiver. The sender wants to transmit a message to the receiver using an insecure
channel. We do not specify the physical nature of the channel, i.e., it could be
anything, a radio, a computer net, a telephon, a human and the like. By insecure we
mean that the message transmitted may be eavesdropped by an adversary.

encrypts the plaintext

ciphertext
and sends the

RECEIVER

receives the ciphertext
and deciphers it

EAVESDROPPER
reads the ciphertext and

tries to decrypt it

SENDER

Figure 10.1: The Basic Model

The message we want send is called plaintext. However, only the intended recipients
should be able to read and to understand the message sent. Thus, messages are sent
in disguised form, and the disguised message is called the ciphertext. The process
of converting a plaintext to a ciphertext is called enciphering or encryption, and the
reverse process is referred to as deciphering or decryption. We are confronted with
the following somehow contradictory requirements. Encryption and decryption should
be �easy,� i.e., they should be computable using a reasonable amount of space and
time. On the other hand, decryption should be �hard,� i.e., the adversary should
either not be able to decipher the message eavesdropped in principal or it should be
computationally infeasible for her to do so. The classical solution to this problem is a
secret-key cryptosystem. Both sender and receiver agree on a key which they will keep
secret (hence the name secret-key cryptosystem). Figure 10.1 displays the classical
model of two-way cryptology.

Next, we exemplify this basic model using a cryptosystem invented by Julius Cae-
sar. The underlying idea is fairly simple. We write all the letters of the latin alphabet

10.2. The Basic Model 109

A = {A, B, . . . , Z, b} (b denotes the blank symbol) in a row and rewrite A starting
with A under the letter D as shown in Figure 10.2.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z b

Y Z b A B C D E F G H I J K L M N O P Q R S T U V W X

Figure 10.2: The Caesar system

Now, a plaintext is easily encrypted by replacing each letter in it by the corre-
sponding letter displayed in the second row of Figure 10.2, i.e., A is replaced by Y,
B is replaced by Z and so on. The secret key is just the table above. Hence, the de-
cryption can be easily performed by reversing the replacement. That is, each letter in
the ciphertext is replaced by the corresponding letter in the �rst row. As an example
consider �WHY� which is encrypted as �TEV.� Hence, this cryptosystem ful�lls the
�rst two requirements established above, i.e., encryption and deciphering are easy to
compute provided the table given in Figure 10.2 is known.

Does it also ful�ll the 3rd requirement? What can be said about the complexity of
cryptanalysis in this case? For answering this question, we have two distinguish two
cases.

Case 1. The cryptosystem itself is unknown.

Case 2. The principal cryptosystem is known but the actual key is is unknown.

In the following, we always assume Case 2. There are several reasons for doing this.
First of all, if a cryptosystem is hard two break in Case 2, it is even harder to break in
Case 1. Thus, we are on the safer side when assuming Case 2. Second, the experience
gained shows that the principal structure of a cryptosystem cannot be kept secret for
a long time. Thus, a potential adversary may well know what cryptosystem is used
by the communicating parties. Moreover, the principal choice of cryptosystems is not
large. Thus, an adversary may well try to attack several of them in parallel.

Moreover, we generally distinguish the following sources of information available
to an eavesdropper.

Case 2.1. Ciphertext only.

This scenario refers to a situation in which the adversary has eavesdropped mes-
sages encrypted by using the same key. Her task is to decipher the whole messages or
at least part of them.

Case 2.2. Ciphertext obtained from known plaintext.

Now, the adversary has additionally access to some message in plaintext (or part of
a longer message) and knows its particular encryption. Again, her task is to decrypt
the whole message or at least part of the remaining ciphertext. This variant appears
most often in practical situations.

c©Thomas Zeugmann, Hokkaido University, 2008

110 Lecture 10: Classical Two-Way Cryptosystems

Case 2.3. Ciphertext obtained from plaintext chosen by the adversary.

In this scenario, the adversary has been able to force the sender to encrypt some
plaintext carefully chosen by herself. Again, the task consists in decrypting the whole
message. As we shall see later, this scenario is also well conceivable, and part of the
design of a cryptosystem has to be devoted to avoid such attacks to a large extent.

Let us now analyze the cryptosystem described above with respect to these 3
cases. For this purpose, it is very helpful to look a little bit closer to the cryptosystem
described above. It is easy to see that Caesar's cryptosystem is nothing else than
a cyclical shift of the alphabet A. Thus, knowing the cipher of one letter is already
su�cient to break it. Consequently, in Case 2.3 the adversary has no di�culties at all.
The same applies mutatis mutandis to Case 2.2. Moreover, there are only 27 cyclical
shifts. Thus, even in Case 2.1 the adversary has no principal di�culty to decipher
the message received. Just trying all possibilities is feasible and leads to successful
encryption. As we shall see a little bit later there are also additional techniques to
reduce the number of possibilities considerably.

Next, we ask how to improve the Caesar system. For achieving this goal it is
very useful to introduce the general mathematical framework for describing two-way
cryptosystems. The �rst step in inventing a cryptosystem is to �label� all possible
plaintext message units and all possible ciphertext message units by means of math-
ematical objects from which functions can be �easily� constructed. These objects are
often the integers in some range. For example, in the approach undertaken above
we can label the letters by using the integers from 0 to 26, i.e., A is represented by
0, B is represented by 1, and so on, b is represented by 26. The same applies for
ciphertext message units. Thus, we may think of the integers {0, 1, . . . , 26} as of the
ring Z27. Now, we may use the operations addition and multiplication modulo 27.
The Caesar system used above can be now expressed as f(x) = x + 24 mod 27. For
example, f(D) = f(3) = 3 + 24 mod 27 = 27 mod 27 = 0 = A. Decryption is de�ned
by d(y) = y − 24 mod 27 = y + 3 mod 27.

In general, any cryptosystem of the Caesar type can be expressed as f(x) =

x + r mod m, where m is any suitably chosen natural number and r ∈ {0, . . . , m − 1}.
However, the number m of possible keys is by no means su�cient for nowadays ap-
plications. This is a good point to make the following important observation.

Observation 10.1. Cryptosystems must be designed in a way such that the number

of possible keys is huge.

As a straightforward generalization, one may try cryptosystems de�ned by

f(x) = (ax + r) mod m where a, m ∈ {0, . . . m − 1} ,

where m is again a suitably chosen natural number. For example, we may consider
pairs of letters (so called 2-grams) as plaintext message units, or more generally, n-
grams. Then, m = 728 and m = n2 − 1, respectively. Now, there are m2 possible

10.2. The Basic Model 111

keys (a, r). However, some care is necessary. In order to ensure decipherability, the
function f must be injective. Consider m = 27, (a, r) = (3, 3). Then,

f(8) = 3 · 8 + 3 = 27 ≡ 0 mod 27

and
f(17) = 3 · 17 + 3 = 54 ≡ 0 mod 27 .

Thus, f is not injective. The critical point is best elaborated by considering y = ax+

r mod m. Hence, a−1(y−r) ≡ x mod m, where a−1 denotes the multiplicative inverse
of a. Consequently, d(y) = f−1(y) = a−1y + r ′ mod m, where r ′ = −a−1r mod m.
Therefore, we have to ensure that a−1 does really exist. By Theorem 3.4 we already
know that the equation ax ≡ 1 mod m is solvable if and only if gcd(a, m) = 1.
Moreover, if ax ≡ 1 mod m is solvable, then the solution is uniquely determined.

Thus, in order to keep the number of possible keys as large as possible it is recom-
mendable to choose m as a prime number. Now, we can prove the following theorem
characterizing the di�culty to compute the secret key.

Theorem 10.1. Let p ∈ N be a prime number, let a, r ∈ {0, . . . , p − 1} and let

x1, x2 ∈ {0, . . . , p−1} be two di�erent numbers such that f(x1), f(x2) are known. Then

the secret key (a, r) of the cryptosystem f(x) = ax + r mod p can be easily computed.

Proof. Let n1 =df f(x1) and n2 =df f(x2) as well as x1 and x2 be all known. Hence,
the following equations must be simultaneously satis�ed:

n1 ≡ (ax1 + r) mod p (10.1)

n2 ≡ (ax2 + r) mod p . (10.2)

Subtracting (10.2) from (10.1) immediately yields

n1 − n2 ≡ a(x1 − x2) mod p ,

and thus
a ≡ (n1 − n2)(x1 − x2)

−1 mod p .

Since p is prime, the multiplicative inverse (x1 −x2)
−1 always exists provided x1 6≡ x2.

Having thus computed a the parameter r can be easily obtained from (10.1) or (10.2),
and the theorem is shown.

Exercise 33. Determine the complexity of the algorithm given in Theorem 10.1.

Theorem 10.1 implicitly says that the security of a cryptosystem cannot be solely
based on a huge number of possible keys. We would like to illustrate this insight.
Let us again take our alphabet A and as the set of all possible keys we consider all
permutations of A. This would be the most general version of the Caesar system.
Thus, we have 27! many keys, and since 27! 6 8 · 1027 just trying them all is not
feasible. Even if we could test 109 many permutations per second, this exaustive
testing would take roughly 1011 years.

c©Thomas Zeugmann, Hokkaido University, 2008

112 Lecture 10: Classical Two-Way Cryptosystems

So, at �rst glance, everything looks �ne. Unfortunately, there is a �but,� and in
this case it sounds �but there is frequency analysis.� The background of frequency
analysis is the observation that letters appear with di�erent frequencies in natural
language. For example, in German we have the following picture.

E 18,46 % R 7,14 % T 5,22 %
N 11,42 % S 7,04 % U 5,01 %
I 8,02 % A 5,38 % D 4,94 %

Note that there is no absolute table for the relative frequencies of letters, since
they vary in dependence on the subjects. For instance, if you compute frequencies in
stock market reports and book of tales, then you get di�erent values. Nevertheless,
in German texts the letters E and N always have the highest frequency.

Now, the idea of frequency analysis is to compute the frequencies in the cipher-
text and to try a mapping with respect to the table displayed above. It works very
often quite well. Moreover, this method can be successfully applied to satisfy the
assumptions in Theorem 10.1.

So, why don't we give it a try.

Exercise 34. Here is some nice text from the club of cryptomanic students waiting

to be deciphered: (you have to �nd a key (a, r) mod 27)

TJLKSCLVSOLTUBTLSPbTOVSMTL

MUTLKIOOQTLJUFNLJITZTBLGTCSMTL

MXCFNLHSXTBLXBMLDTCMSXTBL

TUBTBLSPbTOJQIOOTBLZSXTBL

MSLKXCMTLJUTLOTUMTCLVUQQTBL

DIBLTUBTVLVTJJTCLMXCFNGTJFNBUQQTBL

JUTLHIBBQTLBXCLBIFNLEUJFNTBL

ZTULVCLHIVVQLUVVTCLKSJLMSEKUJFNTB

Hint : Suppose that the blank symbol has the highest frequency in the plaintext.

This example also shows that one has to exclude the blank symbol from the plain-
text before enciphering it. Here is another example showing the same just for fun.

MIBQLMCTSVLYIXCLOUbTLOUDTLYIXCLMCTSV

GCSbbUQU

Exercise 35. Decipher the text above!

10.3. Polyalphabetic Cryptosystems

MIWEMOZAYGUSJGHMVQAEBPYK

RDLOKINUUYIPN

Until now, we have considered cryptosystems that enciphered all plaintext message
units using one and the same rule. Such cryptosystems are referred to as monoal-
phabetic systems. In contrast, in the following we study cryptosystems working as

10.3. Polyalphabetic Cryptosystems 113

follows. The �rst plaintext message unit is enciphered using Rule 1, the second plain-
text message unit is enciphered using Rule 2, . . . , the kth plaintext message unit is
enciphered applying Rule k. In case the plaintext contains more than k plaintext
message units, one applies the rules modulo k, i.e., the k+ 1st plaintext message unit
is then enciphered by Rule 1, the k + 2nd plaintext message unit is encrypted using
Rule 2, and so on. We exemplify this idea by having a closer look at one of the oldest
and well studied polyalphabetic systems - the VIGENÈRE system. This system is
named after its inventor Vigenère (1523 - 1596). The basic idea consists in applying
the Caesar systems d 6 26 times. Since we have already gained some knowledge
concerning the power of frequency analysis, from now on, we shall exclude the blank
symbol from the alphabet used.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Figure 10.3: The VIGENÈRE Tableau

The VIGENÈRE system is based on the tableau displayed in Figure 10.3. Ad-
ditionally, the communicating parties have to agree upon a key word w of length d

containing every letter at most ones. For example, we may use the key word MAGIC.

The plaintext message units are the letters A, B, . . . , Z. The enciphering is
performed as follows. Suppose, we want to encrypt the word CRYPTOLOGY.

c©Thomas Zeugmann, Hokkaido University, 2008

114 Lecture 10: Classical Two-Way Cryptosystems

First, search the row starting with the �rst letter of the plaintext, i.e., in our example
with C. Then, look for the column starting with the �rst letter of the key word,
i.e., in our example with M. At position (C, M) of the VIGENÈRE Tableau we
�nd O which is the �rst letter of the ciphertext.

The ith letter of the plaintext is enciphered by searching the row starting with the
ith letter of the plaintext and the column starting with the ith letter of the
key word. The letter found at the intersection of this row and column in the
VIGENÈRE Tableau constitutes the ith letter of the ciphertext. In case the
plaintext is longer than the keyword, the keyword is written several time one
behind the other.

Thus, enciphering our plaintext CRYPTOLOGY with the key wordMAGIC yields
OREXVALUOA.

Note that CRYPTOLOGY contains the letter O two times. However, the �rst O is
encrypted by A, while the second one is enciphered by U. The reason for this nice
behavior of the VIGENÈRE cryptosystem is that we used di�erent rules to encipher
the letters in the plaintext and, in particular, to encrypt the two occurrences of O.

Finally, decryption is performed by reversing the algorithm described above. That
is, the ith letter of the ciphertext is deciphered by determining the ith letter of the
key word (or in its appropriate repetition). Then, one scans the column starting with
this letter until one has found the row containing the ith letter in the ciphertext. The
�rst letter in this row is the wanted ith letter in the plaintext.

Exercise 36. Decipher the message at the beginning of this subsection that has

been eavesdropped from the club of kryptomanic students.

Before dealing with the problem of breaking ciphertext encrypted by using the
VIGENÈRE Tableau, we remark that there are several similar tableaus that can be
easily reproduced, too. One the better known ones is the so-called BEAUFORT
Tableau obtained from the VIGENÈRE TABLEAU by replacing the ith row of it by
the ith row of it in reverse order (cf. Figure 10.4). Alternatively, one can design similar
tableaus by using any other reasonable alphabet, e.g., the cyrillic one, the hiragana
or katakana, the arabic letters a.s.o.

Next, we deal with possible cryptological attacks. Let w = s0 . . . sd−1 be the
unknown key word of length d. Clearly, each key word uniquely de�nes a Vigenère
Substitution. Moreover, if the encrypted plaintext has been long enough then the
substitution becomes periodically with period length d. We distinguish the following
two cases of cryptanalysis.

Case 1. d is known.

In this case, the following lemma is the basis of any cryptological attack.

Lemma 10.2. Let d be the length of the key word used. Then, for every key

word of length d, the corresponding Vigenère Substitution can be decomposed into d

monoalphabetic substitutions.

10.3. Polyalphabetic Cryptosystems 115

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

B A Z Y X W V U T S R Q P O N M L K J I H G F E D C

C B A Z Y X W V U T S R Q P O N M L K J I H G F E D

D C B A Z Y X W V U T S R Q P O N M L K J I H G F E

E D C B A Z Y X W V U T S R Q P O N M L K J I H G F

F E D C B A Z Y X W V U T S R Q P O N M L K J I H G

G F E D C B A Z Y X W V U T S R Q P O N M L K J I H

H G F E D C B A Z Y X W V U T S R Q P O N M L K J I

I H G F E D C B A Z Y X W V U T S R Q P O N M L K J

J I H G F E D C B A Z Y X W V U T S R Q P O N M L K

K J I H G F E D C B A Z Y X W V U T S R Q P O N M L

L K J I H G F E D C B A Z Y X W V U T S R Q P O N M

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

N M L K J I H G F E D C B A Z Y X W V U T S R Q P O

O N M L K J I H G F E D C B A Z Y X W V U T S R Q P

P O N M L K J I H G F E D C B A Z Y X W V U T S R Q

Q P O N M L K J I H G F E D C B A Z Y X W V U T S R

R Q P O N M L K J I H G F E D C B A Z Y X W V U T S

S R Q P O N M L K J I H G F E D C B A Z Y X W V U T

T S R Q P O N M L K J I H G F E D C B A Z Y X W V U

U T S R Q P O N M L K J I H G F E D C B A Z Y X W V

V U T S R Q P O N M L K J I H G F E D C B A Z Y X W

W V U T S R Q P O N M L K J I H G F E D C B A Z Y X

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

Y X W V U T S R Q P O N M L K J I H G F E D C B A Z

Figure 10.4: The BEAUFORT Tableau

Proof. Let w = s0 . . . sd−1 be any key word of length d, and let k0k1 . . . km be the
plaintext to be enciphered. Now, when writing the plaintext in blocks of length d

below the key word we obtain:

s0 s1 . . . sd−1

k0 k1 . . . kd−1

kd kd+1 . . . k2d−1

k2d k2d+1 . . . k3d−1

·
·
·

k`d k`d+1 . . . km

Hence, all plaintext message units in column i ∈ {0, . . . , d − 1} are enciphered by the
same monoalphabetic substitution de�ned by letter si of the key word. More precisely,
the �rst letter of the alphabet A is mapped to si; thus canonically de�ning a shift
operation for the remaining letters.

Consequently, if d is known then the cryptanalysis reduces to d simple monoalpha-
betical attacks. However, in practical situations d is often unknown. Obviously, there

c©Thomas Zeugmann, Hokkaido University, 2008

116 Lecture 10: Classical Two-Way Cryptosystems

are only |A| many possible length, since we have required the key word to contain
each letter at most ones. Thus, we may simply try all possibilities which is not a
big problem having a computer on hand. However, in 1860 the German cryptanalyst
F. W. Kasiski developed a method allowing to determine d with high probability pro-
vided the ciphertext is su�ciently long. Because of its importance for understanding
security issues of cryptosystems, we present Kasiski's algorithm here.

10.4. Kasiski's Algorithm

It is the periodicity of the repeating key which leads to the weaknesses in this
method and its vulnerabilities to cryptanalysis. Kasiski's general solution of repeated
key Vigenère ciphers starts from the fact that the same pairings of message and key
symbols produce the same cipher symbols. These repetitions can be recognized by
the cryptanalyst. Thus, the general algorithm can be described as follows:

Step 1. Search all words v0, . . . , v` in the ciphertext that appear at least twice in the
ciphertext, i.e., search all vi such that the ciphertext can be presented as wiviqiviri,
where wi, qi, ri are also words over the cipher alphabet.

Step 2. For each vi found, i = 0, . . . `, compute all divisors of |viqi|.

Step 3. Order the divisors found in Step 2 by their frequency. Starting with the
most frequent one try for each divisor a monoalphabetic attack until a �meaningful�
plaintext has been discovered.

A V X Z H H C S B Z H A L V X H F M V T L H I G H

K A L B R V I M O F H D K T A S K V B M O S L A C

G L G M O S T P F U L Q H T S L T C K L V N T W W

H B W M S X S G A V H M L F R V I T Y S M O I L H

P E L H H L L I L F B L B V L P H A V W Y M T U R

A B A B K V X H H B U G T B B T A V X H F M V T L

H I G H P N P Z W P B Z P G G V H W P G V B G L L

R A L F X A V X T C L A Q H T A H U A B Z H T R S

B U P N P Z W P B Z H G T B B T P G M V V T C S M

V C L T O E S O L A C O L K B A V M V C Y L K L A

C G L G B M H A L G M V J X P G H U Z R H A B Z S

K H P E L H B U M F L H T S P H E K B A V T J C N

W Z X V T L A C G L G H U H H W H A L B M O S K V

C F J O G U C M I S A L O M L R I Y C I L F E F I

G S S L Z W M P G O L F R Z A T S Z G L J X Y P X

Z H B U U R D W M O H A L V X H F M V T L H I G H

Figure 10.5: A ciphertext eavesdropped.

We illustrate the application of Kasiski's algorithm using the following example
due to A. Salomaa [4]. Suppose, the ciphertext displayed in Figure 10.5 has been
eavesdropped.

10.4. Kasiski's Algorithm 117

In Step 1 we �nd the words v0 = HALVXHFMVTLHIGH (appearing twice) having
|v0q0| = 375, v1 = VXHFMVTLHIGH (appearing thrice) having |v1q1,0| = 129 (dis-
tance between �rst and second appearance), |v1q1,1| = 246 (distance between second
and third appearance) and |v1q1,2| = 375 (distance between �rst and third appear-
ance). Additionally, VXH appears in the 6th row twice having distance 12, and so
does VX in the �rst row. Moreover, AVX appears thrice (distances 141, 39), and
VX gives additionally 180, and HAL can be found four times (having the successive
distances 246, 60, and 69). Computing the divisors of those lengths we obtain:

for 375: 1, 3, 5, 25, 125, 15, 75, 375,

for 129: 1, 3, 43, 129,

for 246: 1, 2, 3, 41, 6, 82, 123, 246,

for 180: 1, 2, 3, 4, 6, 5, 10, 15, 20, 45, 12, 36, 180,

for 141: 1, 3, 47, 141,

for 60: nothing new, because 60 divides 180,

for 39: 1, 3, 13, 39,

for 69: 1, 3, 23, 69, and

for 12: nothing new.

s0 s1 s2 s0 s1 s2 s0 s1 s2 s0 s1 s2 s0 s1 s2 s0 s1 s2 s0 s1 s2

A V X L Q H Y M T A V X A V M W Z X L F R

Z H H T S L U R A T C L V C Y V T L Z A T

C S B T C K B A B A Q H L K L A C G S Z G

Z H A L V N K V X T A H A C G L G H L J X

L V X T WW H H B U A B L G B U H H Y P X

H F M H B W U G T Z H T M H A W H A Z H B

V T L M S X B B T R S B L G M L B M U U R

H I G S G A A V X U P N V J X O S K DWM

H K A V H M H F M P Z W P G H V C F O H A

L B R L F R V T L P B Z U Z R J O G L V X

V I M V I T H I G H G T H A B U C M H F M

O F H Y S M H P N B B T Z S K I S A V T L

D K T O I L P Z W P G M H P E L O M H I G

A S K H P E P B Z V V T L H B L R I H

V B M L H H P G G C S M U M F Y C I

O S L L L I V H W V C L L H T L F E

A C G L F B P G V T O E S P H F I G

L GM L B V B G L S O L E K B S S L

O S T L P H L R A A C O A V T Z WM

P F U A V W L F X L K B J C N P G O

Figure 10.6: Rewriting the ciphertext in three columns

Thus, 3 is the most frequent divisor found, since it divides all distances. Moreover,
since several words have been pretty long, it is highly improbable that this is just by

c©Thomas Zeugmann, Hokkaido University, 2008

118 Lecture 10: Classical Two-Way Cryptosystems

Letter s0 s1 s2 Letter s0 s1 s2

A 12 5 9 N 0 0 4
B 4 9 12 O 6 4 2
C 2 11 0 P 10 7 0
D 2 0 0 Q 0 2 0
E 1 0 4 R 1 3 5
F 1 10 2 S 5 13 0
G 0 13 10 T 6 4 13
H 15 14 11 U 9 1 1
I 1 7 3 V 14 11 2
J 2 2 0 W 2 3 6
K 1 5 4 X 0 1 12
L 27 1 13 Y 4 0 1
M 2 2 17 Z 7 5 2

Figure 10.7: Counting the number of occurences of each letter in s0, s1 and s2

E 12,31 % O 7,94 % S 6,59 %
T 9,59 % N 7,19 % R 6,03 %
A 8,05 % I 7,18 % H 5,14 %

Figure 10.8: Statistical information for English text

chance. Consequently, we conjecture the key word length to be 3. In order to perform
the monoalphabetical attacks, we rewrite the ciphertext in three columns as described
in Lemma 10.2, and obtain Figure 10.6 above.

Now, for each of the columns s0, s1, s2, we count the number of occurrences of
each letter, and get the result shown in Figure 10.7.

Furthermore, conjecture the plaintext to be written in English. Therefore, we use
the statistical information available for general English text provided by the table
shown in Figure 10.8.

However, the ciphertext received has been pretty short. Thus, instead of conjectur-
ing E to be the letter having the highest frequency, we re�ne our approach as follows.
Looking at Figure 10.8, we recognize that the triple RST is the only of consecutive
letters that all have high frequency. Therefore, we search for triples of consecutive
letters having simultaneously high frequency. In the �rst column of Figure 10.7 we
�nd TUV and YZA. Assuming R → T , S → U, and T → V results in conjecturing a
monoalphabetic right shift by two positions. Thus, Y, Z, and A would be the image
of W, X, and Y, respectively. Consequently, the letters W, X, and Y must appear 4,
7, and 12 times, respectively, in the plaintext. This seems highly unlikely. Therefore,
we favor R → Y, S → Z, and T → A resulting in:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

10.4. Kasiski's Algorithm 119

Analogously, for the second column of Figure 10.7 we �nd ABC and FGH (possibly
ZAB and GHI, too; but they are less probable). Using similar arguments as above,
ABC is less probable than FGH. Thus, we continue working with

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

Finally, in the third column KLM and FGH are possible candidates. First, we
favor KLM; thus obtaining:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

Consequently, our three conjectures t0(x) = x + 7 mod 26, t1(x) = x + 14 mod 26,
and t2(x) = x + 19 mod 26 provide the key word HOT . Trying to decipher the
ciphertext using this key word successively delivers

THESTOVEISTHEHEARTOFSAUNA

WHENYOUTHROW. . . ;

that is a meaningful text about sauna. Deciphering it completely and inserting the
appropriate blanks and interpunction symbols, the whole text reads as follows:

�The stove is the heart of sauna. When you throw water on the stones, the air
becomes more humid and feels hotter. You are thus able to experience both dry and
humid heat in sauna. The art of sauna building is not discussed here. The most
common mistake in building a sauna is to have too small a stove with too few stones.
If the stove is only a miserable tiny metal box with a couple of stones on the top, then
the room cannot be heated properly unless it is very small. Never be stingy with the
heart of sauna.�

Moreover, we see that VXH constitutes the cipher of HEA. However, the di�erent
appearances of VXH in the ciphertext stem from HEART, HEATING and THEART.
Thus, we have been a bit in luck doing our deciphering. Usually, a longer text is
needed.

Finally, some more historical remarks are in order here. Actually, Kahn [2] credits
Giovan Batista Belaso who published a booklet in 1553 for having �proposed the
use of a literal, easily remembered, and easily changed key . . . for a polyalphabetic
cipher," for what we know today as the Vigenère cipher. According to Kahn [2],
Vigenère himself developed a far more sophisticated system, an �autokey� that uses
the plaintext as its own key. For example, if we want to encrypt

THIS IS A SECRET MESSAGE

we choose a secret seed key character, say �D,� and we write:

autokey: DTHISISASECRETMESSAG

message: THISISASECRETMESSAGE

c©Thomas Zeugmann, Hokkaido University, 2008

120 Lecture 10: Classical Two-Way Cryptosystems

You can see how the autokey consists of the seed character followed by the plain-
text message itself shifted once to the right. Now, the key and message characters
are looked up in a tableau to produce the enciphered message, not entirely unlike
the usual, so-called �Vigenère cipher.� However, there is s one important di�erence.
While the tableau still consists of standard (shifted) alphabets, Vigenère proposed
scrambling the row and column indexing alphabets at the top and side. This scram-
bling plus the seed character would form what we would consider the �secret key�
nowadays.

If we still use the unscrambled tableau, we get the following ciphered message

ciphered: WAPAAASSWGTVXFQWKSGK

Decryption is rather interesting. Using the seed character �D,� the intended re-
cipient can decipher the �rst ciphertext character to get the �rst plaintext character
� this plaintext character is now the key character to use to decrypt the second
ciphertext character, and so on.

Exercise 37. Use Kasiski's algorithm to decipher the following message,

KSMEH ZBBLK SMEMP OGAJX SEJCS FLZSY

where the blanks have only been introduced for better readability.

Finally, the following references are recommended for further information through-
out this course of introductory cryptology.

References

[1] G. Brassard (1988), Modern Cryptology, Lecture Notes in Computer Science
325, Springer-Verlag.

[2] D. Kahn (1967), The Codebreakers: The Story of Secret Writing, Macmillan.

[3] N. Koblitz (1987), A Course in Number Theory and Cryptology, Springer-
Verlag.

[4] A. Salomaa (1990), Public-Key Cryptology, EATCS Monographs on TCS,
Springer-Verlag.

Lecture 11: Public Key Cryptography

Starting with this lecture, we shall deal with more contemporary ideas in cryptol-
ogy. Until now, we mainly considered two way cryptosystems. In such cryptosystems
the security of the communication has been mainly established by a private key. As
we have seen, breaking the key enabled the cryptanalyst to decipher the message
eavesdropped. However, this classical key management requires the exchange of the
secret key which may be well imaginable if the number of participants is small. But
what if, for instance, people like to ensure their privacy when communicating over the
internet. Imagine a bank with tens of thousands customers all over the word who like
to access their accounts via their computers at home. It seems absolutely hopeless
to exchange frequently secret keys with all customers. But most customers have a
much larger range of applications than simply accessing their accounts. Just to men-
tion some few more things, e.g., shopping over the net using a credit card, frequently
exchange of email with varying addressees, or using di�erent computers via telnet.
In the latter case, a user is required to identify herself by providing a password. The
password is, however, transmitted over the net as plaintext, and only after having ar-
rived at the host computer it is enciphered and checked. Thus, a potential adversary
may eavesdrop it before arrival. So, please use ssh instead of telnet.

But still, there is more. Another important problem is authentication. The main
problem addressed here is to ensure that a message received indeed originates from
the source it pretends to be have sent o�. In classical communication via letters, this
problem has been solved by using hand written signatures (in the western hemisphere)
or a �hanko,� i.e., a personal seal (e.g. in China, Japan). Thus, we need something
equivalent, i.e., an electronic signature.

All those real and potential applications stimulated a huge amount of research dur-
ing the last three decades. In 1976, Di�e and Hellman [2] proposed a new approach,
i.e., public key cryptography. Starting with the observation that a key in classical two-
way cryptosystems has actually two separate tasks, i.e., enciphering and deciphering,
Di�e and Hellman proposed to replace this double task by two keys. One key is used
for encryption, and one key for decryption. The revolutionary idea, however, was to
make the key for encryption publicly available. Clearly, this is really unimaginable in
classical cryptology. The key for decryption is kept secretly by the receiver.

11.1. The General Scheme of Public Key Cryptography

The general scenario can be described as follows. Assume ` communicating parties
M1, . . . , M`. Each party Mi chooses and publishes its public key ki, and keeps its
secret key k̃i private. Suppose, party Mi wishes to send a message to party Mj. Then
Mi looks for Mj's public key in the list of all public keys. Next, Mi enciphers its
message using kj and sends it out. The receiver Mj exploits his private key k̃j and
deciphers the message received from Mi.

122 Lecture 11: Public Key Cryptography

This sounds really challenging. The only problem is how to realize this nice idea.
Obviously, there must be some connection between the public and the private key,
since otherwise it is very hard to imagine how the deciphering can be performed.
Thus, we have to require that, given the public key, it must be extremely hard to
compute the private one. Additionally, computing the cipher must be easy, while
deciphering has to remain extremely hard, too, without knowing the private key.
These requirements directly lead to the idea of one-way functions.

De�nition 11.1. Let X, Y be non-empty sets. A one-way function f is an

injective function f: X → Y such that f(x) can be computed in time polynomial in the

length |x| of x for all x ∈ X but there is no algorithm computing f−1(y) e�ciently for

any interesting fraction of arguments y ∈ range(f).

Unfortunately, no one has yet proved the existence of one-way functions. Com-
plexity theory is still not ready to handle this extremely di�cult problem. Moreover,
classical complexity theory mainly deals with worst-case complexity what is by no
means ideal from the viewpoint of cryptology. The reasons for this are as follows.

(1) A problem having high worst-case complexity may be anyway easily solvable for
most of its instances. Furthermore, no non-linear lower bound for a particular
problem has been proved yet.

(2) For all practical purposes it is su�cient to possess an e�cient probabilistic algo-
rithm computing f−1. That means, even if we would know that no deterministic
algorithm computes f−1 for almost all inputs in polynomial time, we cannot
conclude the relevant cryptosystem to be secure.

(3) Even worse, having a proof that no probabilistic algorithm computes f−1 for
almost all inputs in polynomial time is not su�cient to derive reasonable con-
clusions concerning the security of the relevant cryptosystem. It still may be
possible to invert f for almost all inputs of practical length. For example, if
we would have a proved tight lower bound of nlog log n, then for all inputs y of
length |y| 6 2210

the inversion of f can be performed in time less than or equal
to |y|10.

(4) Since all practically appearing inputs are below some length, even non-uniform

families of di�erent algorithms inverting f may be interesting for a cryptanalyst.

There are, however some functions f which are widely considered to be good can-
didates for one-way functions, e.g. modular exponentiation (the inverse is computing
the discrete logarithm), computing the product of prime numbers (the inverse is fac-
toring a given number into its prime factors), and computing M =

∑m
i=0 xiai, where

(a0, . . . , am) ∈ Nm+1 and (x0, . . . , xm) ∈ {0, 1}m+1 (the inverse is the general knapsack
problem).

Next we describe how to apply one-way functions to the solution of public key
cryptography. Clearly, we cannot directly apply one-way functions f for enciphering

11.2. Merkle and Hellman's Public Key Cryptosystem 123

messages. Additionally, we have to incorporate an idea how the receiver can circum-
vent the di�culty of inverting f. As outlined above, solely the receiver possesses the
additional information provided by her secret key. This additional information should
enable her to decrypt the ciphertext. The following de�nition formalizes this idea.
The sets X and Y stand for the plaintexts and ciphertexts, respectively. Furthermore,
we use K1 and K2 to denote the set of public keys and private keys, respectively.

De�nition 11.2 (Trap-Door Function).

A trap-door function f: X× K1 → Y is a function satisfying the following require-

ments.

(i) hk1
= f(·, k1) is a one-way function for every k1 ∈ K1,

(ii) there exists a polynomial p such that the time to compute hk1(x) is uniformly

bounded by p(|x|) for all k1 ∈ K1,

(iii) there exist a one-way function d: K2 → K1 and a polynomial time computable

function g: K2 × Y → X such that y = f(x, k1) implies x = g(d−1(k1), y) for all

x ∈ X, k1 ∈ K1, and y ∈ Y.

The information d−1(k1) constitutes the trap-door enabling the receiver to decipher
the message obtained. Thus, the general scenario for public key cryptography outlined
above can be realized as follows. Each party M1, . . . , M` is equipped with algorithms
for computing f, g, and d. Furthermore, we assume |K2| > `. Now, party Mi chooses
its private key k̃i ∈ K2 such that k̃i 6= k̃j for i 6= j, where i, j ∈ {1, . . . , `}. How to realize
this requirement is discussed later. Then, she computes ki = d(k̃i) and publishes it.
The message exchange is performed using the following protocol. Suppose Mi wishes
to send a message x to Mj.

(1) Mi computes y = f(x, kj) using Mj's public key kj, and sends y over a public
channel to Mj.

(2) Mj receives y and uses her private key k̃j to compute x = g(k̃j, y).

We proceed by providing an example for a concrete public key cryptosystem.

11.2. Merkle and Hellman's Public Key Cryptosystem

Within the Merkle and Hellman's public key cryptosystem plaintext is encoded into
bit-vectors of length n, i.e., b = (b0, . . . , bn−1), bi ∈ {0, 1}. For example, we may
encode the 26 letters of the Latin alphabet by using 00000 for A, 00001 for B, . . . ,
and 11001 for Z. Thus, each letter comprises 5 bits. For error detecting, it may be
recommendable to add some check bits using, for example, a Hamming code. For
keeping our examples small, we neglect the issue of error detecting here and use the
bit strings given above.

c©Thomas Zeugmann, Hokkaido University, 2008

124 Lecture 11: Public Key Cryptography

The public key is a knapsack vector a = (a0, . . . , an−1), ai ∈ N. How to choose a

is described below. The enciphering c of a plaintext b is computed by

c = abT =

n−1∑
j=0

ajbj (11.1)

(* bT denotes the transpose of b *).

The result is a number c between 0 and
∑n−1

j=0 aj. This number c is represented
as a bit string of length ` = dlog(1 +

∑n−1
j=0 aj)e including leading zeros.

Now we describe the trap-door information and how to choose a. The trap-door
is a pair (w, m) ∈ N× N which should be large and has to satisfy

w < m and gcd(w, m) = 1 , (11.2)

For all âj =df (w−1aj) mod m âj >

j−1∑
i=0

âi holds for all j = 1, . . . , n − 1 , (11.3)

m >

n−1∑
i=0

âi . (11.4)

Therefore, party M chooses large numbers w and m satisfying (11.2). Then, a
vector (â0, . . . , ân−1) is chosen such that Condition (11.3) is ful�lled. Furthermore,
one has to check Condition (11.4). Finally, M computes a = (a0, . . . , an−1) by setting
ai = (âiw) mod m for all i = 0, . . . , n − 1. The vector a is published, and the pair
(w, m) is kept secretly.

The deciphering is done using the following procedure dec.

(1) Compute ĉ = (w−1c) mod m,

(2) Compute b = (b0, . . . , bn−1) as follows:

If ĉ > ân−1 then set bn−1 = 1 else set bn−1 = 0

For j = n − 2, n − 3, . . . , 0, if

ĉ −
n−1∑

i=j+1

âibi > âj then set bj = 1 else set bj = 0.

The following example illustrates the computation to be performed.

Example 11.1. Let n = 5, m = 8443, and w = 2550. Furthermore, party M

chooses â = (171, 196, 457, 1191, 2410). One easily veri�es Conditions (11.2) through
(11.4). The published vector is then a = (5457, 1663, 216, 6013, 7439). Moreover, the
modular inverse of w = 2550 is w−1 = 3950 mod 8443. Let b = (0, 1, 0, 1, 1); then
c = 1663 + 6013 + 7439 = 15115, and the message sent is c = 11101100001011.

Now, suppose we have received 15115. Thus, we compute successively

(1) ĉ = (w−1c) ≡ 3950 · 15115 ≡ 3797 mod 8443.

11.2. Merkle and Hellman's Public Key Cryptosystem 125

(2) Since 3797 > 2410 we set b4 = 1.

(3) Next, we compute 3797 − 2410 = 1387 > 1191. Therefore, we set b3 = 1.

Now, 3797 − (2410 + 1191) = 196 which is smaller than 457. Hence, we get
b2 = 0.

Furthermore, since 3797 − (2410 + 1191) = 196 we set b1 = 1.

Finally, 3797 − (2410 + 1191 − 196) = 0, and thus b0 = 0.

Exercise 38. Prove the correctness of the deciphering procedure dec described

above.

We continue with some remarks concerning the complexity of the problems in-
volved. The di�cult problem used in the design of the trap-door function f is the
knapsack or subset sum problem de�ned as follows. Given a number M and a vector
(a0, . . . , an−1) ∈ Nn decide whether or not there exists a vector (b0, . . . , bn−1) ∈

{0, 1}n such that M =
n−1∑
j=0

ajbj. This problem is known to be NP-complete (cf. Lec-

ture 8). However, several subclasses of this problem are known for which it is easy to
solve the decision problem. For example, if ai < ai+1 for all i = 0, . . . , n−2, then the
knapsack problem can be solved by using at most n subtractions as outlined in our
deciphering procedure. Another subclass consists of all vectors (a0, . . . , an−1) ∈ Nn

for which all ai are powers of 2. In the latter case, one has simply to compute the
binary representation of M. A more sophisticated subclass has been described in
Lagarias and Odlyzko [3], i.e., subset sum problems having density less than .645.
The density of a knapsack vector a is de�ned by d(a) = n

log2(maxai)
. In this case,

the problem is solved for almost all instances using the Lenstra/Lenstra/Lovász Basis
Reduction Algorithm.

Thus, special care has to be taken. In particular, Merkle and Hellman [4] hoped
that the modular transformation of the trap-door knapsack â will result in almost all
cases in a hard one. And indeed, A. Shamir [6] proposed a polynomial time method
for breaking the Merkle and Hellman [4] public key cryptosystem. Since then, more
sophisticated methods have been proposed to design public key cryptosystem that are
based on the di�culty of the subset sum problem. Since all proposed systems are not
very satisfying we shall continue our course by looking at the most widely used public
key cryptosystems that are based on the di�culty of number theoretic problems.

Recall our knowledge concerning the di�culty of computing discrete roots. First,
assume the modulus m to be prime. For this case there exist well-known e�cient
probabilistic algorithms (Las Vegas type) for computing discrete roots in expected
polynomial time (in the length of the input), see Theorem 5.9. Another algorithm has
been proposed by Adleman, Manders and Miller [1]. In case of a composite modulus
one may directly apply the Chinese Remainder Theorem for taking some discrete root
provided the prime factorization of the modulus is known. Thus, in this case the
problem of taking discrete roots remains feasible. On the other hand, the problem

c©Thomas Zeugmann, Hokkaido University, 2008

126 Lecture 11: Public Key Cryptography

of �nding the least square root is NP�complete. If the prime factorization of the
modulus is not known there is no known algorithm for e�ciently computing discrete
roots. This di�culty is used in the following public key cryptosystem.

11.3. The RSA Public Key Cryptosystem

Next, we present the public key cryptosystem invented by R. Rivest, A. Shamir and
L. Adleman [5] (abbr. RSA cryptosystem). Let A (= Alice) be anybody wishing to
participate at the RSA cryptosystem. Then, Alice has to do the following.

(1) Choose randomly two huge primes pA and qA (at least 200 bits each, and the
bigger prime should preferably have some more digits than the smaller one).

(2) Compute nA = pAqA and calculate

ϕ(nA) = ϕ(pA)ϕ(qA) = (pA − 1)(qA − 1) = nA − pA − qA + 1 .

(3) Choose randomly any number eA ∈ {1, . . . , ϕ(nA)} such that

gcd(eA, ϕ(nA)) = 1 .

(4) Compute dA = e−1
A mod ϕ(nA). Publish KA = (nA, eA) and keep pA, qA, and

dA secretly.

Now, assume any other participant B (=Bob) wishing to communicate secretly with
Alice. Then, Bob codes his plaintext into a binary number w. Using Alice's public
key KA = (nA, eA) Bob calculates c = weA mod nA and sends c. Alice deciphers c

by computing cdA mod nA.

Theorem 11.1. w = cdA mod nA.

Proof. By assumption, c = weA mod nA. First, assume gcd(w, nA) = 1; then
applying the Theorem of Euler

cdA ≡ (weA)dA ≡ weAdA ≡ w(eAdA) mod ϕ(nA) ≡ w mod nA ,

since eAdA ≡ 1 mod ϕ(nA).

What can be said if gcd(w, nA) 6= 1? Suppose that exactly one of the two primes
p and q does divide w, say p. Then the Little Theorem of Fermat is telling us

wq−1 ≡ 1 mod q .

Taking into account that ϕ(n) = (p − 1)(q − 1), we can conclude

wϕ(n) ≡ (wq−1)p−1 ≡ 1p−1 ≡ 1 mod q .

Moreover, ed ≡ 1 mod ϕ(n), and therefore ed = jϕ(n)+1 for some positive integer j.
Consequently,

wed ≡ w mod q .

11.3. The RSA Public Key Cryptosystem 127

But the last congruence is also true modulo p, since, by assumption, p divides w, and
thus wed − w ≡ 0 mod p. Hence, we can conclude wed ≡ w mod n.

Finally, if both p and q divide w, then we trivially have wed − w ≡ 0 mod p as
well as wed − w ≡ 0 mod q, and thus wed ≡ w mod n.

What can be said concerning the security of the RSA cryptosystem? By its con-
struction, breaking the RSA cipher is as most as hard as �nding discrete roots modulo
the composite number nA. As we have seen above, computing discrete roots must be
judged as feasible if the prime factorization of nA is known. Therefore, the cryptanal-
ysis of the RSA cryptosystem is as most as hard as factoring. However, there is no
known e�cient algorithm for factoring a large composite number except for quantum
computers which are currently not available (cf. Shor [7]).

However, some care must be taken be choosing the primes p and q. Obviously, the
chosen primes should be nowhere listed. Thus, testing primality is such an important
problem. Moreover, one has to avoid primes of special form, e.g., p = 2e ± 1. As
mentioned above, the di�erence between p and q should be large. For seeing this, we
prove the following theorem.

Theorem 11.2. Let p and q be primes such that p > q and p − q = O((log p)c)

for a �moderate� constant c ∈ N. Then, there exists an e�cient algorithm for factoring

n = pq.

Proof. Consider

(p + q)2

4
− n =

p2 + 2pq + q2 − 4pq

4
=

(p − q)2

4
(11.5)

Thus, the left side is a perfect square. Then the following method may be applied for
factoring n.

(1) Compute
√

n within a precision of b(log n + 2)/2c bits.

(2) Check for x = b
√

nc+1, b
√

nc+2, . . . whether or not x2−n is a perfect square.

If it is, output p = x +
√

x2 − n and q = x −
√

x2 − n.

The correctness of the above algorithm can be shown as follows. First, assume that√
n has been computed within a precision of b(log n+2)/2c bits. Then we have b

√
nc.

(Exercise !). Next, observe that

p + q

2
>
√

pq =
√

n (11.6)

by applying the well-known inequality between arithmetic and geometric mean. Con-
sequently, b

√
nc < (p + q)/2 (* note that (p + q)/2 is always an integer *). Thus,

the algorithm must terminate by �nding a perfect square and the �rst x found must
ful�ll x2 6 (p+q)2

4
by (11.5) and (11.6). Thus, x 6 p+q

2
.

Case 1. x =
p + q

2
.

c©Thomas Zeugmann, Hokkaido University, 2008

128 Lecture 11: Public Key Cryptography

Let z2 = x2 − n. By (11.5) we directly obtain z = p−q
2
. Hence, x + z = p and

x − z = q.

Case 2. x <
p + q

2
.

Since z2 = x2 − n we obtain n = x2 − z2 = (x + z)(x − z). Thus, p = x + z and
q = x − z, and therefore, (p + q)/2 = x, a contradiction.

This proves the correctness.

Finally, we show that the algorithm above is e�cient. The computation of
√

n up
to the desired precision can be easily performed using the Newton method, i.e.,

x`+1 := x` −
x2

` − n

2x`

for ` = 0, . . . , b(log n + 2)/2c

with x0 = n. Taking into account that
√

n > q = p − (p − q) ≈ p − (log p)c we see
by (11.5) that

p + q

2
= p −

p − q

2
≈ p −

(log p)c

2
>
√

n . (11.7)

Hence, (p + q)/2 is only �a bit� greater than
√

n. Consequently, the algorithm has
to try at most (log p)c/2 many candidates until its search terminates. But this is a
polynomial in the length of the input, and hence we are done.

Next, we formally formulate the problem of �nding discrete logarithms.

Problem 11.4. Discrete Logarithms

Input: Prime number p ∈ N, b ∈ Z∗p, and a generator α for Z∗p.

Problem: Compute the index x such that x = dlogαb.

So far, there is no known algorithm e�ciently computing discrete logarithms for
any standard model of sequential or parallel computation. On the other hand, Quan-
tum computer would be able to compute discrete logarithms in polynomial time
(cf. Shor [7]).

Next, we present a public key cryptosystem based on the di�culty to compute
discrete logarithms.

11.4. The Di�e-Hellman Public Key Cryptosystem

This public key cryptosystem requires a system designer. The system designer chooses
a huge prime q (preferably more than 1000 bits) and a generator α for Z∗q. The
prime q and the generator α are global information, and thus known to everybody
participating in this public key cryptographic system.

Next, we describe how the public and the secret key, respectively, are chosen by
any participant. Subsequently, we provide the protocol used.

11.4. The Diffie-Hellman Public Key Cryptosystem 129

Let A be any participant. A chooses randomly a number xA ∈ {1, . . . , q − 1} and
computes yA = αxA mod q. That is, xA = dlogαyA. Participant A publishes yA as
her public key and keeps xA secretly.

Now, let A and B (= Bob) be any two participants who wish to communicate.
Assume, B likes to send a message to A. Then the following key is used.

B computes the key KAB = yxB
A mod q.

Assume, A likes to send a message to B. Then, A computes KBA = yxA
B mod q.

The following theorem shows the usefulness of these keys.

Theorem 11.3. KAB = KBA

Proof.

KAB = yxB
A ≡ (αxA)xB ≡ αxAxB

≡ (αxB)xA ≡ yxA
B ≡ KBA mod q .

Note, however, that A and B compute KBA and KAB, respectively, using di�erent

information. That is, A computes KBA using her own secret key xA and the public
key yB published by B while Bob calculates KBA from his secret key xB and Alice's
public key yA. On the other hand, any cryptanalyst does neither possess xA nor xB,
hence she must compute KBA solely from yA and yB. Since KAB = y

dlogαyB

A mod q

this is at most as hard as computing discrete logarithms. Moreover, so far no easier
method is known for computing KBA from yA and yB. Therefore, it is widely believed
that computing KBA from yA and yB is hard.

Next, we describe how the parties A and B can communicate. Taking Theorem 11.3
into account, two possibilities are imaginable. First, the system designer additionally
provides any su�ciently advanced classical two way cryptosystem, for example the
DES. Then, any pair of users wishing to secretly communicate may use the key KBA.
Thus, no key exchange is required in advance. Note that public key cryptosystems
are relatively slow compared to classical cryptosystems (at least to our present stage
of technology and theoretical knowledge). Thus, it is sometimes more realistic to use
them in the limited role in conjunction with a classical cryptosystem in which the
actual messages are transmitted as described above.

Second, the communication is performed by using directly the Di�e-Hellman sys-
tem. The underlying idea is best explained using a bag having two locks. Each
partner possesses exclusively one key for one of the two locks. Initially, both locks
are unlocked. Now, A puts the message w into the bag and locks her lock with her

key. The bag is taken by a messenger who delivers the bag to B. Obviously, B is
not able to unlock the bag right now, since he posses only the key for the other lock.
Therefore, B locks his lock using his key, and returns the bag to the messenger who is
returning it to A. Now, A may unlock her lock, but the bag remains anyway locked.

c©Thomas Zeugmann, Hokkaido University, 2008

130 Lecture 11: Public Key Cryptography

Finally, the messenger delivers the bag again to B. Now, B may unlock the bag using
his key, and thus, he �nally has access to the secret message w.

The protocol described above has the following advantage. The public messenger
always delivered a locked bag. On the other hand, A and B could exchange a secret
message without exchanging any key.

The impact of this method can be hardly overestimated. Looking back into the his-
tory of cryptography, we see that the cryptography community unanimously agreed,
for thousands of years, that the only way for two parties to establish secure com-
munications was to �rst exchange a secret key. This was so much common wisdom
that nobody questioned it. If the recipient did not have a secret key giving her the
information needed to encrypt the message e�ciently, how could she be in a better
position than an eavesdropper?

As we have mentioned, this idea got published in 1976. Interestingly enough, there
is an old Bell Labs paper from October, 1944, titled �Final Report on Project C43�,
describing a clever method of secure telephone conversation between two parties with-
out any pre-arrangement. If John calls Mary, then Mary can add a random amount
of noise to the phone line to drown out John's message in case any eavesdroppers
are listening. However, at the same time Mary can also record the telephone call,
then later play it back and subtract the noise she had added, thereby leaving John's
original message for only her to hear. While there were practical disadvantages to
this method, it suggested that the logical possibility existed: there might be methods
of establishing secure communications without �rst exchanging a shared secret key.

And in 1997 it was revealed that there has been secret work in the UK Gover-
ment Communication Headquartes in the early seventies done by Ellis, Cocks and
Williamson. Ellis started thinking about the problem to avoid a secret key in the
sixties. In this time he also discovered the old Bell Labs paper from 1944 mentioned
above which motivated him even more. He then developed an existence proof that
the concept of avoiding a secret key was possible with mathematical encryption. His
�ndings were published in a secret CESG report titled �The Possibility of Non-Secret
Encryption� in January 1970. The quest was then to �nd a practical example.

The �rst workable mathematical formula for non-secret encryption was discovered
by Cli�ord Cocks, which he recorded in 1973 in a secret CESG report titled �A Note
on Non-Secret Encryption�. This work describes a special case of the RSA algo-
rithm, di�ering in that the encryption and decryption algorithms are not equivalent,
and without mention of the application to digital signatures. A few months later in
1974, Malcolm Williamson discovered a mathematical expression based on the com-
mutativity of exponentiation that he recorded in a secret report titled �Non-Secret
Encryption Using A Finite Field�, and which describes a key exchange method simi-
lar to that discovered by Di�e, Hellman, and Merkle. It is not known to what uses,
if any, the GCHQ work was applied.

Now, we outline the formal realization of the idea described above to use a bag
with two locks. For that purpose, a small modi�cation of the choices for xA and xB,

11.4. The Diffie-Hellman Public Key Cryptosystem 131

respectively, has to be made. Again, A and B randomly choose a number xA and
xB between 1 and q − 1. Additionally, they must ensure that gcd(xA, q − 1) = 1

and gcd(xB, q − 1) = 1, respectively. This can be easily done by using the Euclidean
algorithm, i.e., if the randomly chosen number does not ful�ll this requirement a
new number is randomly chosen until one is found that is relatively prime to q − 1.
Moreover, as shown in the proof of Theorem 3.4, the Euclidean algorithm can be also
used for computing x−1

A mod (q − 1) and x−1
B mod (q − 1), respectively.

Suppose, A wishes to send B a message, and let w be A's plaintext.

(i) A sends wxA mod q to B,

(ii) B returns wxAxB mod q to A,

(iii) A computes ŵ ≡ (wxAxB)x−1
A mod q and sends the result ŵ to B,

(iv) B deciphers ŵ by calculating ŵx−1
B mod q.

The correctness of the above algorithm is an immediate consequence of the Theorem
of Euler.

This �nishes our lecture, and the only thing remaining is the midterm problem for
cryptology. Below three problems are provided to warm you up, and you are requested
to solve at least two. Then, we present the midterm problem for cryptology which
you should solve to prove your successful participation in this course.

Advanced Exercises

Advanced Exercise 1. Prove or disprove the following: If the coe�cient dA

for deciphering received messages within the RSA cryptosystem could be computed in

deterministic polynomial time from the public key KA then one could factor nA in

probabilistic polynomial time.

Advanced Exercise 2. Consider the following knapsack vector a = (a1, . . . , an)

with ai = P/pi, where the pi are pairwise distinct primes and P =
n∏

i=1

pi.

Prove or disprove: Using such knapsack vectors, one can design a public key cryp-

tosystem of the Merkle and Hellman type presented in Lecture 11. If applicable, discuss

which information should be kept secretly, and which information may serve as pub-

lic key. Describe the enciphering and deciphering algorithm, respectively. What can

you say concerning the security of your cryptographic system. Otherwise prove the

inappropriateness of the proposed knapsack vectors.

Advanced Exercise 3. Consider the following public key cryptosystem. A huge

prime p is known to every participant. Each member chooses e and d such that

ed ≡ 1 mod (p − 1). The message transfer is done by the same protocol as in the

c©Thomas Zeugmann, Hokkaido University, 2008

132 Lecture 11: Public Key Cryptography

Di�e and Hellman public key cryptosystem. Discuss the usefulness of this systems as

well as its security.

Midterm Problem for Cryptology

The following so-called midterm problem is an exercise you should solve. There
will also be a �nal problem.

Midterm Problem. A user of the RSA cryptosystem has published the following

information:

K = (32193235888665727, 147893). You have eavesdropped the following message:

0101101111110000011011100110100000011011100000101101111

1010101010111101010000010011001011101011010000100100111

1011001111001100001111000101111001010010000000010011010

0000110100000111000010111101111100110111001111001110001

and wonder what does it mean. Fortunately for you, this user has ignored at least one

of the advices given throughout Lecture 11, so you have a good chance for breaking the

code. Good Luck!

References

[1] L. Adleman, K. Mander and G. Miller (1977), On taking roots in �nite
�elds, in Proc. 18th Annual Symposium on Foundations of Computer Science,
pp. 175 � 177, IEEE Computer Society Press.

[2] W. Diffie and M.E. Hellman (1976), New directions in cryptography, IEEE
Transactions on Information Theory IT-22 No. 6, 644 � 654.

[3] J.C. Lagarias and A.M. Odlyzko (1983), Solving low-density subset sum
problems, in Proc. 24th IEEE Annual Symposium on Foundations of Computer
Science.

[4] R.C. Merkle and M.E. Hellman (1978), Hiding information and signatures
in trapdoor knapsacks. IEEE Transactions on Information Theory IT-24, 525
� 530.

[5] R. Rivest, A. Shamir and L. Adleman (1978), A method for obtaining dig-
ital signatures and public-key cryptosystems, Communications of the ACM 21,
120 � 126.

[6] A. Shamir (1982), A polynomial time algorithm for breaking the Merkle-
Hellman cryptosystem, in Proc. 23rd IEEE Annual Symposium on Foundations
of Computer Science, 145 � 152.

[7] P.W. Shor (1994), Algorithms for quantum computation: Discrete log and fac-
toring, in Proc. 35th Annual Symposium on Foundations of Computer Science,
pp. 124 � 134, IEEE Computer Society Press.

Lecture 12: Authentication, Cryptographic Protocols

We �nished the last lecture by showing how realize the idea to use a bag with
two locks. Though our solution looked good, it is not perfect. The problem is a
possible attack by a third party in the middle between Alice and Bob. Thus, we need
authentication.

12.1. Authentication

The security of the communication between two parties can be a�ected as follows.
Suppose, an eavesdropper C (=Claire) could pretend to be the true receiver. Then
she could easily apply the same procedure as Bob does using her own numbers xC

and x−1
C . Looking at our informal description of how to use the bag and the two locks

given in Lecture 11, this would refer to the scenario that both parties have a lock
and a key for it. Thus, as long as Alice cannot be sure that the lock on the bag is
really Bob's there is always the danger that some eavesdropper has applied her lock.
This leads us directly to the problem of authentication. That is, we are looking for
a method that may serve as a digital signature but it should be more resistant to
forgery than the usually used hand written signatures. The following method is due
to El-Gamal and based on the Di�e-Hellman public key cryptosystem.

Recall that q is a huge prime, and that α is a generator of Z∗q. Furthermore, Bob's
public key is yB.

To send his signature S, Bob chooses a random integer k with gcd(k, q − 1) = 1.
Then Bob calculates r = αk mod q and solves the following congruence for the un-
known x: αS ≡ yr

Brx mod q, and sends Alice the pair (r, x) along with S.

Now, Alice can easily verify that αS ≡ yr
Brx mod q, and she is happy, secure in

her con�dence that Bob did send the message S.

It remains to argue that Bob can perform e�ciently all the computations necessary,
and that Alice can be really happy.

Obviously, r can be e�ciently computed using the algorithm described in the proof
of Theorem 4.3 and so can αS. But what about solving αS ≡ yr

Brx mod q? Taking
into account that yB ≡ αxB mod q, we obtain, by putting it all together:

αS = αxBrαkx ≡ αxBr+kx mod q . (12.1)

Thus, applying the Theorem of Euler to (12.1) we obtain the condition

S ≡ xBr + kx mod (q − 1)

and hence, x ≡ (S − xBr)k−1 mod (q − 1). Now, we see why the number k has been
required to satisfy gcd(k, q − 1) = 1. Clearly, all the needed computations can be
e�ciently performed by Bob.

134 Lecture 12: Authentication, Cryptographic Protocols

Finally, Alice can be sure to have obtained Bob's signature, since solving the con-
gruence αS ≡ yr

Brx mod q in order to determine x requires the knowledge of xB which
is kept secretly by Bob. Forging Bob's signature is as complicated as computing dis-
crete logarithms. Now, we also understand why the parties have to publish their key
y. It is either for using it for the key exchange described in the previous lecture, or
for just performing the authentication as described above.

So far, we have provided an authentication scheme for avoiding an attack by a
third party in the middle between Alice and Bob.

The only thing that kind of remains open is how S is chosen by Bob. Using the
protocol provided above, the best choice is to use the whole message Bob wishes to
send as signature S. One advantage of the protocol described above is the probabilistic
element introduced by the random choice of k. On the other hand, there is also a
serious disadvantage, since the ciphertext to be send it now blown up.

Before we are going to look at other digital signature schemes, we would like to
put them in the more general context of cryptographic protocols which are de�ned as
follows. We shall return to digital signature in Lecture 14.

12.2. Cryptographic Protocols

De�nition 12.1. Cryptographic protocols describe algorithms used for the

communication between di�erent parties, adversaries or not.

By de�nition, cryptographic protocols apply cryptographic transformations. Con-
sequently, they are at most as secure as the underlying cryptosystem. Usually, we
shall use public key cryptosystems for cryptographic protocols. However, the goal of
the protocol is usually something beyond the simple secrecy of message transmission.
For example, the communicating parties may want to share parts of their secrets to
achieve a common goal, or they like to convince the other parties that they know
a particular secret without providing even a single bit of the secret on hand. Pro-
tocols realizing such goals have considerably changed our understanding about what
is impossible when several parties, adversaries or not, are communicating with each
other.

For seeing how digital signatures �t into the domain of protocols just consider the
following very general task. A private conversation should be established between
two individual users of an information system or a communication network. We do
not make any assumption concerning whether or not these two individual users have
ever communicated with each other before. Clearly, having a public key cryptosystem
on hand, we can solve this problem. First, our users publish their public key. Then,
messages send to user A are encrypted by using A's public key. But even if the
cryptosystem is considered to be secure, we still have to deal with the problem that a
user C might pretend to be the user B when sending a message to A. To prevent the
occurrence of such situations, some convention of signing messages has to be added
to the protocol.

12.2. Cryptographic Protocols 135

Before going into details, some more remarks are mandatory here. One always
has to separate security properties of the underlying cryptosystem from those of the
protocol. When doing this, the possible adversaries should be kept in mind. In most
communication protocols, an adversary belongs to one of the following three types.

(1) Communicating parties who try to cheat. Later we shall meet two types of
cheaters, i.e., passive and active.

(2) Passive eavesdroppers. They may obtain information not intended for them,
but are otherwise harmless.

(3) Active eavesdroppers. Besides obtaining secret information (as passive eaves-
droppers do), they may mess up the whole protocol.

In our problem above where C tries to impersonate B we have an adversary of
Type (3), i.e., an active eavesdropper. For having an example for Type (1), just
imagine that some people like to play poker by telephone. Clearly, somebody might
by tempted to cheat. We shall come back to this point later. Looking at typical
application of cryptography, it should be also clear that adversaries of Type (2) may
cause huge trouble, e.g., in military or diplomatic applications, or in banking.

For the sake of illustrating the di�erence between an active and passive eavesdrop-
per let us look at the RSA cryptosystem. We claim that it vulnerable against attacks
with chosen ciphertext.

This can be seen as follows. Suppose an eavesdropper E has received

c = me mod n .

Of course, now the eavesdropper is interested in knowing m. Let A be the legal
receiver of m. It is meaningful to assume that A will not decrypt c for E (otherwise
there wouldn't be any secure cryptosystem). But now, E can modify c as follows.

Using some randomly chosen x ∈ Z∗n and computing

ĉ = cxe mod n = m̂e mod n ,

E can send ĉ to A. Suppose E additionally succeeds to get A to decrypt this message
for him. Then E gets m̂, and thus he knows the original message m, too, since

ĉ = cxe mod n = mexe mod n = (mx)e mod n .

Hence, by construction of RSA, E knows that m̂ = mx mod n. So all what is left is
to multiply m̂ by the modular inverse x−1 of x modulo n.

This is a good point to highlight another potential danger of using plain public key
cryptosystems. In the preceding example we have not said how E succeeds to get A to
decrypt ĉ for him. Assuming A is unexperienced, E may have pretended to be B (the
original sender). Then, after having encrypted ĉ, the legal receiver A was confused,

c©Thomas Zeugmann, Hokkaido University, 2008

136 Lecture 12: Authentication, Cryptographic Protocols

since m̂ did not make any sense to her. Thus, A sent m̂ back to E instead of sending
it to B. As we have seen, this is very dangerous and should be avoided at all. A much
better way to recover from the confusion would have been to send just a request to B

to resend the message.

For making the need of protocols more transparent, we provide two more exam-
ples of weak points that may occur when using plain RSA which also apply mutatis

mutandis to many other plain public key cryptosystems.

Suppose Alice wants to send orders to her stock broker Bob. An eavesdropper
would like to know Alice's order. Furthermore, suppose the eavesdropper has good
reason to belive that m is one of the following three messages:

• m1 = �buy IBM�

• m2 = �sell IBM�

• m3 = �hold IBM�

The eavesdropper can compute the encryptions c1, c2, and c3 of the three messages
for himself, and when Alice is sending an encryption of one of these three messages,
say m2, the eavesdropper simple compares the ciphers and knows it is m2. This
example shows that plain RSA can leak partial information.

Next, suppose Alice wants to submit a number m, representing her bid, to Bob.
Bob is accepting many bids, and will choose the lowest bid.

Suppose the eavesdropper is a competitor, too, and wants to underbid Alice by 10%.
If we make the reasonable assumption that Alice's bid is made in round numbers and
thus amounts to be a multiple of 10. Then the eavesdropper can intercept Alice's
encrypted message c. Now, he computes

ĉ = c ·
(
9 · 10−1

)e
mod n ,

where 10−1 denotes the modular inverse of 10 modulo n. This inverse exists, since
n is the product of two large primes and 10 = 2 · 5. Hence gcd(10, n) = 1. So, we
indeed have m̂ = 0.9 ·m. In this way, Alice's competitor can underbid Alice by 10%,
without knowing anything about the value of Alice's bid.

Thus �ipping some bits in the ciphertext will also �ip some bits in the message.
This type of weakness is usually called malleability, and is a weakness that should
not occur.

More generally speaking, encryption is often identi�ed with �secure envelope� or
a locked box that cannot be opened without destroying it. This metaphor has a
very compelling and convenient touch and is often used by engineers. However, an
encryption scheme can at best approximate a �secure envelope.� This is a fundamental
fact, and we provide some more arguments to support it.

Ciphertexts are bit strings (electronically represented) and not physical envelopes.
This is obvious and trivial, but one has to think about the consequences.

12.2. Cryptographic Protocols 137

• First, the bit string representing a ciphertext can be observed by an eaves-
dropper. An ideal �secure envelope� leaks no information about the message it
contains. For example, if Alice sends two messages to Bob by using a �secure
envelope,� an eavesdropper cannot tell whether or not these messages are iden-
tical or not. The same should hold then for an encryption scheme. But this
requirement alone rules out any deterministic encryption scheme, i.e., encryp-
tion schemes that encrypt the same message always in the same way.

• Second, ciphertexts can easily be replicated, whereas messages contained in �se-
cure envelopes� cannot. There is really nothing we can do about this. Thus,
higher level protocols using encryption must deal with the fact that this can
happen.

• Third, ciphertexts can easily be modi�ed, creating other ciphertexts as we have
seen above. We can do many things to a ciphertext such as �ipping some bits
from `1' to `0' or vice versa. Even if an encryption scheme is secure, as we have
seen, �ipping bits in the ciphertext may �ip bits in the message. Using the
terminology introduced above, we see that malleability cannot be tolerated in
many applications. Obviously, malleability has no counterpart in the world of
ideal �secure envelopes.�

• Fourth, any bit string is potentially a ciphertext, i.e., the encryption of some
message. As we have seen, the fact can also be misused by an adversary who
actively participates in a protocol by sending its own messages to other parties.
Such a chosen ciphertext attack has also no counterpart in the world of ideal
�secure envelopes.�

Clearly, we want to overcome these di�culties. But this is easier said than done.
For example, when thinking about avoiding attacks from a man in the middle, one can
start from the idea that a receiver should acknowledge the receipt of the encrypted
message. Thus, if a third party has pretended to be A and has send a message to B,
but B is acknowledging it to A, A can immediately inform B that something is wrong.

Suppose EA, EB, EC, . . . are the public encryption algorithms of parties A, B, C,
. . . and DA, DB, DC, . . . are the decryption algorithms kept secretly by A, B, C,
Furthermore, let the following protocol be agreed upon. For sending a message from
A to B the following steps have to be performed.

(1) A sends the triple (A, EB(w), B) to B, where w is the message.

(2) B deciphers w by using DB and sends the triple (B, EA(w), A) back to A.

At �rst glance, this protocol looks well designed. But there are some dangers
with it.

Suppose an active eavesdropper C who has caught the message for B. Since he
is knowing the structure, he is changing the triple (A, EB(w), B) to (C, EB(w), B)

c©Thomas Zeugmann, Hokkaido University, 2008

138 Lecture 12: Authentication, Cryptographic Protocols

and sends it to B. Following the protocol, B returns the message (B, EC(w), C) to
C. Consequently, C can decipher it and knows w. Of course, A is waiting for the
acknowledgment and may inform B that it did not arrive. Now, B and A can realize
that something went wrong, but it is too late. C already does possess w.

A better variant might be the following Challenge-Response protocol.

Assumption: A and B have a common secret key k and have agreed to use the
cryptosystem f.

A is communicating with someone from whom she expects it is B. For verifying
this, the following protocol is used.

(1) A randomly generates a number r and sends it to B.

(2) The communication partner (hopefully B) encrypts r by using the secret key k

in the cryptosystem f and sends f(r, k) back to A.

(3) A computes f(r, k) by himself and compares the computed value with the re-
ceived one. If they are identical, A assumes that she is indeed communicating
with B. If the values are not equal, A concludes that her partner is not B.

Please think about this protocol and its security.

We continue our course by looking at some more cryptographic protocols. In order
to have an example for a more complex protocol we are going to explain how to
play poker per telephone, how to �ip a coin per telephone, and how to realize partial
disclosure of secrets.

We start with the poker protocol.

12.3. Playing Poker per Telephone

Before elaborating the protocol, we have to think about the demands that such a
protocol should ful�ll. So, we continue by listing the necessary demands. Note that
we do not claim this list to be exhaustive.

(i) All hands (sets of �ve cards) are equally likely.

(ii) The hands of player A and B are disjoint.

(iii) Both players know their own cards but have no information about the opponent's
hand.

(iv) It is possible for each of the players to �nd out the eventual cheating of the
other player.

Next, we propose a protocol. A cryptosystem, classical or public-key is used.
However, neither the encryption methods EA and EB nor the decryption methods DA

12.3. Playing Poker per Telephone 139

and DB are publicized. Furthermore, we assume commutativity in any composition
of E's and D's. The mutual order is immaterial.

Before the actual play, both players A and B agree about the names w1, . . . , w52 of
the 52 cards. The names are chosen in a way such that the cryptosystem is applicable
in the sense needed in the sequel. For instance, if EA and EB operate on integers in
a certain range then each wi, i = 1, . . . , 52, should be an integer in this range.

Now we are ready to describe the protocol. Player A acts as the dealer but the
roles of A and B can be interchanged. The protocol consists of the following �ve steps.

Protocol Poker

Step 1: Player B shu�es the cards, encrypts them using EB, and sends them to A.
That is, player A receives a random permutation of EB(w1), . . . , EB(w52).

(* A can now only verify that all cards are in the game *)

Step 2: Player A chooses 5 cards from the sequence received at random and sends
them back to B as they are. These 5 cards are B's hand. A also encrypts them
by using EA and sends them to B for checking purposes.

Step 3: Player A again chooses 5 cards from the remaining cards and encrypts them
by applying EA. The result is again sent to B, i.e., B receives EA(EB(wij

)),
j = 1, . . . , 5.

(* these �ve cards will be A's hand. *)

Step 4: Player B applies to these �ve cards EA(EB(wij
)), j = 1, . . . , 5, its own deci-

phering algorithm DB. Then he sends the result back to A. That is, A receives

DB(EA(EB(wij
))) = EA(DB(EB(wij

))) = EA(wij
) .

(* that is the point where we need commutativity *)

Step 5: Player A applies its own deciphering algorithm DA to the �ve cards EA(wij
).

Now, he also nows his hand and the game starts.

Let us now see how Requirements (i) through (iv) are ful�lled. As already stated,
both players know their own hand. The hands will also be disjoint. B can immediately
check that the items given in Step 3 are di�erent from those received in Step 2.

No conclusive evidence can be presented concerning the remaining Requirements
from (i) through (iv). The matter largely depends on how truly one-way functions
have been chosen for the encryption algorithms EA and EB. For example, it might
be impossible to �nd wi on the basis of EB(wi) but, still, some partial information
about wi could be found. If, for instance, wi is a sequence of bits, the last bit
could be found from EB(wi). Such partial information could tell A that all aces are
within a certain subset of EB(w1), . . . , EB(w52). Then, he clearly would deal B's cards

c©Thomas Zeugmann, Hokkaido University, 2008

140 Lecture 12: Authentication, Cryptographic Protocols

from outside this subset and his own cards from inside the subset. In this case also
Requirement (i) and (iii) would be partially violated.

These re�ections also show why all algorithms EA and EB as well as DA and DB

must be kept secretly. Otherwise, A could also compute EB(w1), . . . , EB(w52) and
would have perfect knowledge about the cards.

We can also derive a conclusion concerning the plaintext space of any public-key
cryptosystem. It must be so huge that no one can encrypt the possible plaintexts
in advance and can perform decryption by simply searching through all resulting
ciphertexts.

For further illustration of the di�culties to prove that our requirements are ful�lled,
let us consider a more concrete scenario.

Let us assume that A and B have agreed about a huge prime p and to represent the
cards as numbers chosen from {2, . . . , p − 1}. Each player chooses secretly for himself
an encryption and decryption exponent eA, dA and eB, dB, respectively, such that

eA · dA ≡ eB · dB ≡ 1 mod p − 1 .

Then encryption and decryption are done in an RSA like fashion, i.e., EI(w) =

weI mod p for I = A, B and decryption of a cipher c is done by computing DI(w) =

cdI mod p for I = A, B. Then, we can prove the following claim.

Claim. The property to be or not to be a quadratic residue is inherited when using

this type of encryption.

Proof. Let w be a quadratic residue modulo p. Then we have

(
w

p

)
= 1, where(

w

p

)
denotes the Legendre symbol. By the theorem of Euler, we then know

(
w

p

)
≡ w

p−1
2 ≡ 1 mod p .

Therefore, we also have(
weA

p

)
≡ (weA)

p−1
2 ≡

(
w

p−1
2

)eA

≡ 1eA ≡ 1 mod p .

That is, weA is a quadratic residue modulo p if and only if w is a quadratic residue
modulo p.

If one player has discovered this property she can cheat the other player. For
example, the numerical values of the four aces may be all a quadratic residue modulo p.
When using the protocol above, clearly A will never send a quadratic residue modulo p

to B. Again, the hands are no longer equally likely and (iii) is also violated.

This simple example shows that one cannot take too much care. It is very com-
plicated to prove non-trivial theorems about the security of protocols. We shall come
back to this issue later. Before doing it, we shall have a look at other protocols.

Lecture 13: More Cryptographic Protocols

As already mentioned in the last lecture, we aim to take a closer look at some more
advanced ccryptographic protocols. We start this lecture by looking at the problem
to �ip a coin per telephone.

13.1. Flipping a Coin per Telephone

As a matter of fact, the coin �ipping problem is the problem which initiated the whole
area. In 1981, Manuel Blum presented this problem and a solution to it (cf. Blum [2]).

Blum described the scenario as follows. Suppose Alice and Bob and are going to
get a divorce. They already live in cities far apart of each other and they don't want
to see each other again. For deciding who will obtain the new car, they have agreed
to �ip a coin. Of course, they don't like to make their choice, say choosing head, and
then hearing from the other end of the phone: �I am �ipping the coin,. . . , the outcome
is tail. I am so sorry for you.�

This scenario shows already the main di�culty. We do not only have to realize the
coin �ip but also a method for verifying its outcome by the other party.

So, how can we attack this problem. Let us have a look at the proposals made.

Proposal 1 (Blum/Micali)

Let X be a �nite set of numbers containing as much even numbers as odd ones,
and let f: X → Y be a one-way function. Furthermore, assume Alice and Bob have
agreed to use f. Then, the following protocol is used.

Step 1: Alice chooses at random an element x ∈ X, computes y = f(x) and sends y

to Bob.

Step 2: Bob guesses whether or not x is even or odd and sends his guess to Alice.

Step 3: Alice tells Bob whether or not his guess was right and proves her claim by
sending x to Bob, too.

Step 4: Bob veri�es Alice's claim by computing f(x) and comparing it to y.

At �rst glance, this protocol looks good. But we are already warned. So, let us
ask if a participant of this protocol can cheat.

For doing it, we assume that f is indeed a one-way function (cf. De�nition 11.1).
This is a good place to see why we have required one-way functions to be injective.
If not, there could be two numbers x and x ′ such that x is even, x ′ is odd and
f(x) = f(x ′).

But still, the de�nition of one-way function does not imply that we cannot compute
that last bit of x. If we could, we already have to whole information needed.

142 Lecture 13: More Cryptographic Protocols

So, we cannot prove anything about the protocol above. Therefore, Blum [2]
proposed the following more advanced protocol for �ipping a coin per telephone.

Protocol CF

Step 1: Alice chooses two huge primes p and q sends their product n = pq to Bob.

Step 2: Bob chooses randomly a number s from {1, . . . , bn
2
c}. Furthermore, he com-

putes z = s2 mod n and sends z to Alice.

Step 3: Alice computes the four discrete roots ±x and ±y of z modulo n. Let x ′ be
the smaller number of x mod n and −x mod n and let y ′ be de�ned analogously.

Step 4: Alice looks for the smallest bit position i in which x ′ and y ′ di�er. Then
she guesses one of these numbers and communicates her guess to Bob by telling
him: �The ith bit of your number is 0� and �The ith bit of your number is 1,�
respectively.

Step 5: Bob tells Alice whether or not her guess was correct.

Step 6: Bob sends his number s to Alice.

Step 7: Alice tells Bob the factorization of n.

This protocol looks more complex than the previous one. It is also not obvious
whether or not it is correct and fair. Thus, we have to analyze it carefully and have
also to check whether or not it is secure. Finally, we have tell whether or not all steps
can be executed e�ciently.

If Alice is making her guess randomly and if Bob is choosing his number s indeed
randomly from the set {1, . . . , bn

2
c}, then the probability that Alice wins is clearly 1/2.

Furthermore, it is not a good idea for Bob not to choose his number randomly
(provided the protocol is executed repeatedly), since a certain preference for some
numbers would o�er Alice a possibility to possibly increase her chance of winning.

So, the most important question we have to study right here is whether or not Bob
can possibly cheat, if he is changing s after having sent z to Alice. In order to avoid
being detected as cheater, Bob should possess x ′ as well as y ′. Taking into account
that

(x ′)2 ≡ z mod n

(y ′)2 ≡ z mod n , we get

(x ′)2 − (y ′)2 ≡ 0 mod n .

Furthermore, we have x ′ 6≡ y ′ mod n. This clearly implies x ′ − y ′ 6≡ 0 mod n.
Additionally, it is not hard to see that we also have x ′ + y ′ 6≡ 0 mod n. Thus,
putting it all together we directly arrive at

(x ′)2 − (y ′)2 ≡ (x ′ − y ′)(x ′ + y ′) ≡ 0 mod n .

13.2. Partial Disclosure of Secrets 143

This is possible if and only if

gcd(n, x ′ + y ′) = p or

gcd(n, x ′ + y ′) = q .

Thus, if Bob is able to cheat he is able to factorize n, too. Therefore, the security
of our second protocol is based on the di�culty to factorize. We summarize our
knowledge by the following theorem.

Theorem 13.1. The protocol CF is secure provided factoring is di�cult.

We have elaborated this point here in some more detail, since it also shows why
Alice is sending just one bit in Step 4 and not x ′ or y ′.

So, it remains to show that the protocol can be executed e�ciently. Since Alice is
knowing the factorization of n, it su�ces to argue that Alice can e�ciently compute
discrete square roots modulo a prime. Again, we refer to Lecture 5, where we studied
Berlekamp's [1] procedure for taking discrete square roots modulo a prime. This algo-
rithm is a Las Vegas method and has an expected running time that is polynomially
bounded in the length of the input a and the modulus p.

Next, we look at another problem of high practical relevance, i.e., partial disclosure
of secrets.

13.2. Partial Disclosure of Secrets

Suppose two or more persons possess a secret. In order to achieve a common goal,
they have to exchange parts of their secrets without disclosing the secret itself.

More formally, we can model this situation as follows.

Let A1, . . . , At, t > 2, be the participants. They all know the de�nition of a
function f(x1, . . . , xt). Each variable can take values from the set {1, . . . , m}, where
m ∈ N+. The values of f are natural numbers, too. Thus, we could present f in a
table. Now, each participant Ai is knowing a speci�c value ai ∈ {1, . . . , m} but does
not possess any information about aj, j 6= i. The common goal the participants wish
to achieve is to compute

f(a1, . . . , at)

without disclosing any of the values ai to any of the participants.

That is, we want to design a protocol achieving the following. After execution
of the protocol, each participant Ai is knowing f(a1, . . . , an) but non of the partici-
pants has disclosed more information about his ai than can be deduced from knowing
f(a1, . . . , at).

Clearly, this is the best we can hope for. Just consider the situation that f is
addition and that the value of f(a1, . . . , at) = t. Then, obviously each participant
must have input 1. To have another example, let us consider

f(x1, x2, x3) =

{
1 , if none xi is prime,
min{x1, x2, x3}, otherwise.

c©Thomas Zeugmann, Hokkaido University, 2008

144 Lecture 13: More Cryptographic Protocols

Now, suppose that a2 = 19 and that f(a1, a2, a3) = 17. Then A2 can conclude that
one of the values a1 or a3 must have been 17. But if a2 = 4 and f(a1, a2, a3) = 1,
then A2 does not know anything about the values a1 and a2. Hopefully, this example
clearly illustrated what is meant by partial disclosure of a secret.

The trivial solution to this problem would be to use a neutral referee every par-
ticipant is trusting in. Then everybody sends his ai to the referee who in turn
sends f(a1, . . . , at) back to all participants. Afterwards the referee is deleting all
ai, i = 1, . . . , t.

Looking at practical needs, we see that such a trusted referee would be seldom
available.

So, in the literature, we �nd a variety of proposals for protocols solving this prob-
lem or variations thereof. In general, it is, however, very di�cult to prove useful
assertions concerning the security of such protocols. The di�cult point here is that
some participants may conspirate for cheating the remaining partners. On the other
hand, the range of potential applications of such protocols is very large, e.g., secret
voting. If we look at secret voting then it also possible to include a veto right for some
participants. If the voting is negative, then nobody knows whether or not it was a
majority vote or if somebody used his veto.

For having another example, we again may look at Alice and Bob. They want to
�gure out who has more money on the personal bank account without disclosing the
actual account balance. In this example, we may also assume that both balances are
upper bounded by some natural number c (also known to both).

Next, we shall present a protocol satisfying the following conditions. Before exe-
cuting the protocol, Alice is exclusively knowing her balance i and Bob is exclusively
knowing his balance j.

After execution of the protocol both know if i > j or j > i, but they do not know
nothing more about i and j. We choose any �xed public-key cryptosystem (given by
EA, EB, DA, DB as usual) as well as a bound S. Then, the protocol works as follows.

Protocol Compare

Step 1: Bob chooses randomly a large number x > S and computes k = EA(x) as
well as k − j.

Step 2: Bob sends k − j to Alice.

Step 3: Alice computes for herself yu = DA(k − j + u) for 1 6 u 6 S.

Then Alice chooses randomly a big prime p. (The approximate size of p is
somewhat smaller than than the size of x. So, Alice and Bob have to agree
on the approximate sizes of x and p in advance). Alice computes for herself
zu = yu mod p for 1 6 u 6 S.

13.2. Partial Disclosure of Secrets 145

Next, Alice veri�es that for all u and v 6= u the condition

|zu − zv| > 2 and 0 < zu < p − 1 (13.1)

is satis�ed.

If this condition is not satis�ed, then Alice chooses randomly a new prime p and
iterates the construction.

Step 4: Alice sends Bob the sequence z1, z2, . . . , zi, zi+1 + 1, zi+2 + 1, . . . , zc + 1 and
p (in this order).

Step 5: Bob checks if the jth number in the sequence ẑ1, ẑ2, . . . , ẑc, ẑc+1 received is
satisfying

ẑj ≡ x mod p .

If it is, Bob concludes �i > j.�

Otherwise, Bob concludes �i < j.�

Step 6: Bob sends his conclusion to Alice.

We continue by checking the correctness of the protocol given.

Lemma 13.2. Protocol Compare is correct.

Proof. We distinguish the following cases.

Case 1: i > j

Then the jth number in the sequence ẑ1, ẑ2, . . . , ẑc, ẑc+1 received satis�es ẑj = zj.
By construction we therefore obtain

ẑj ≡ yj mod p .

Now, it su�ces to show that yj ≡ x mod p.

By construction we have

k = EA(x) (cf. Step 1) and

yj = DA(k − j + j) (cf. Step 3) and thus

yj = DA(k) = DA(EA(x)) = x .

Hence, we can conclude yj ≡ x mod p.

Case 2: i < j

Then, by construction, we have ẑj = zj + 1. Consequently,

ẑj ≡ zj + 1 6≡ zj ≡ yj = x mod p

and thus ẑj 6≡ x mod p.

This shows that the inequality concluded by Bob does imply the checked congru-
ence as necessary condition.

On the other hand, the validity of the checked congruence also implies the inequal-
ity concluded by Bob provided all numbers ẑu are in the range between 0 and p − 1

and no number appears twice.. The latter two conditions are satis�ed by the test
(13.1) performed by Alice.

c©Thomas Zeugmann, Hokkaido University, 2008

146 Lecture 13: More Cryptographic Protocols

Some more remarks are in order here. First, Step 3 has been designed in the
complex way described above to ensure that Bob can only conclude the inequality.
For seeing this, suppose Alice would send the sequence

y1, y2, . . . , yi, yi+1 + 1, yi+2 + 1, . . . , yc + 1 .

Then Bob could compute

EA(y1), EA(y2), . . . , EA(yi), EA(yi+1 + 1), EA(yi+2 + 1), . . . , EA(yc + 1) .

Additionally, he can compute k− j+1, k− j+2, . . . , k− j+c. This information su�ces
to compute i. You are advised to show this as an exercise.

Second, the only information exchanged between Bob and Alice occurs in Step 2
(Bob to Alice) and Step 4 (Alice to Bob). We have no idea how this information can
be used to determine i and j by Bob and Alice, respectively. We also have no idea
how this information can be used to derive more than i > j or i 6 j. However, we do
not have a proof for it.

Third, some form of misuse is always possible. Suppose Bob is only interested
in learning whether or not Alice possesses more than $10 000. Then Bob could set
j = 10000 and not to his true balance. If he applies this trick by also using binary
search (possibly by changing his identity as often as necessary), then he could even
�gure out what Alice's balance really is.

This brings us back to the problem of digital signature which we shall study in
some more detail in the next lecture.

Next, we look at the problem how to share a secret.

13.3. Threshold Schemes

�Three may keep a secret, if two of them are dead.�

Benjamin Franklin

The problem we want to consider goes back to Liu [3] who stated it as follows.

Eleven scientists are working on a secret project. They wish to lock up
the documents in a cabinet so that the cabinet can be opened if and only
if six or more of the scientists are present. What is the smallest number
of keys to the locks each scientists must carry?

Shamir [4] showed that the smallest solution comprises 462 locks at all and 252 keys
per scientist. These numbers look large and thus we want to explain how Shamir [4]
arrived at them. Let us assume that all keys and all locks have numbers printed on
them. The locks are numbered by pairwise di�erent numbers, and without loss of
generality we shall assume that they are numbered ` = 1, . . . , n.

13.3. Threshold Schemes 147

A key with number ` can open the lock with number m if and only if ` = m.
For the sake of presentation, we �rst look at a smaller number of scientists, i.e., we
consider the case of 4 persons A, B, C, D. Moreover, we vary the condition of how
many persons are needed to open the cabinet from 1 through 4. The �gures below
display the resulting (k, 4) threshold schemes for k = 1, 2, 3, 4.

key1
A ©
B ©
C ©
D ©

Figure 13.1: (1, 4) threshold scheme

key1 key2 key3 key4
A © © ©
B © © ©
C © © ©
D © © ©

Figure 13.2: (2, 4) threshold scheme

key1 key2 key3 key4 key5 key6
A © © ©
B © © ©
C © © ©
D © © ©

Figure 13.3: (3, 4) threshold scheme

key1 key2 key3 key4
A ©
B ©
C ©
D ©

Figure 13.3: (4, 4) threshold scheme

The idea is easily explained. The number of rows is always 4, i.e., equal to the
number of persons. The number of columns equals the number of locks needed. We
display who is getting a key for the lock in the corresponding column (marked by a
circle).

First, we ask for the smallest number of locks needed. The answer is provided by
the following claim which we present in full generality.

c©Thomas Zeugmann, Hokkaido University, 2008

148 Lecture 13: More Cryptographic Protocols

Claim 1. The smallest number of locks needed is
(

n
k−1

)
and the smallest number of

keys needed is
(

n−1
k−1

)
.

This can be seen as follows. We have to ensure that k − 1 or fewer persons cannot
open the cabinet. That means, for any choice of k − 1 persons out of the n ones,
there must be a lock for which these k−1 persons do not have a key. There are

(
n

k−1

)
many possibilities to choose k − 1 persons out of n which gives the lower bound for
the number of locks.

Next, we show this number of locks to be su�cient, too. Obviously, at least one key
from every lock has to be given to some person, since otherwise this lock cannot be
opened at all. Moreover, by symmetry, it is easy to see that everybody must receive
the same number of locks.

Next, let us take any k persons. We have to ensure that they have at least one key
for every lock. If we take any subset

T = {i1, . . . , ik−1} ⊆ {1, . . . , n}

then there is a lock LT for which none of the persons i ∈ {i1, . . . , ik−1} does have a
key. Hence, in the complement of T there are n − (k − 1) many persons. Moreover,
if we pick any person from this complement, then she must have a key for the lock
LT , since otherwise there would be a subset of k persons which cannot open the door.
Thus, we arrive at the following number of keys(

n
k−1

)
· (n − (k − 1))

n
=

(
n − 1

k − 1

)
.

Now, we distribute the keys as follows. We start with lock
(

n
k−1

)
and take the

lexicographically �rst subset of k− 1 persons. These persons do not get a key for this
lock, while everybody in the complement does. Then we take lock

(
n

k−1−1

)
and the

lexicographically second subset of k − 1 persons. Again, everybody in the subset is
not getting a key for the lock

(
n

k−1−1

)
, while everybody in the complement does. This

procedure is repeated until all locks and subsets have been handled.

Finally, if we take any k persons, an easy application of the pigeonhole principle
shows that in each column there must be row (marked by one of the k persons chosen)
that has a circle in it. This shows the claim, and we are done.

Hence, in the quoted problem, we need
(
11
5

)
= 462 many locks, and

(
10
5

)
= 252 keys

per person for the quoted problem.

Furthermore, it should be mentioned that
(

n
k

)
becomes maximal for k = n/2, if

n is even, and for k = (n + 1)/2, if k is odd. Moreover,
(

n
n/2

)
= O(4n/2), and thus

it grows exponentially in n. Thus, a (k, n) threshold scheme, for being practically
applicable, has to give up the intuitive appealing idea of locks and keys. Instead, we
shall look for di�erent possibilities to share a secret.

13.3. Threshold Schemes 149

For doing this, let us �rst give the general de�nition of a shared secret and of a
(k, n) threshold scheme given by Shamir [4]. Assume we have n persons P1, . . . , Pn

and a secret datum D which we want to divide into n pieces D1, D2, . . . , Dn.

De�nition 13.1. We say that n participants k-divide a secret, where 1 < k 6 n

provided the following 3 conditions are satisifed.

(1) Each participant Pi possesses an information Di which is not known to any

other participant Pj, i 6= j for j ∈ {1, . . . , n}.

(2) The knowledge of any k or more of the D1, D2, . . . , Dn pieces allows us to com-

pute the whole datum D easily,

(3) the knowledge of any k − 1 or fewer D1, D2, . . . , Dn pieces leaves D completely

undetermined.

A set {D1, . . . , Dn} satisfying (2) and (3) is said to be a (k, n) threshold scheme.

The pieces Di of information are referred to as a share. The example at the
beginning of this chapter provides at least evidence that (k, n) threshold schemes can
be realized. However, while the idea of using locks is intuitively appealing we still
have to outline how to simulate them by appropriately chosen problems that meet
the wanted complexity theoretic requirements in Items (2) and (3). Furthermore, we
aim to �nd a simulation such that the the number of simulated �locks� does no longer
grow exponentially.

The following construction is based on Mignotte's threshold sequences. A sequence
m1 < · · · < mn of pairwise relatively prime and positive numbers is said to be a (k, n)

threshold sequence if

m1 ·m2 · . . . ·mk > mn ·mn−1 · . . . ·mn−k+2 (A) .

Now, suppose, we have a (k, n) threshold sequence. We set

M = m1 ·m2 · . . . ·mk , and

N = mn ·mn−1 · . . . ·mn−k+2 .

The secret is then any number D satisfying N 6 D 6 M. Now, the pieces for each
participant are de�ned by

Di = D mod mi ,

that is, Pi obtains Di and nothing else, i = 1, . . . , n.

Thus, Condition (1) is ful�lled by construction. We have to show that the Condi-
tions (2) and (3) of De�nition 13.1 are satis�ed, too.

Let Di1 , . . . , Dik
be any subset of k elements from {D1, . . . , Dn}. By the Chinese

remainder theorem, the system

x ≡ Di mod mi , i ∈ {i1, . . . , ik}

c©Thomas Zeugmann, Hokkaido University, 2008

150 Lecture 13: More Cryptographic Protocols

has a uniquely determined solution D̂ modulo
∏k

j=1 mij
. By the de�nition of a (k, n)

threshold sequence and the choice of D we obtain

D 6 M = m1 ·m2 · . . . ·mk 6
k∏

j=1

mij
.

Since D̂ ≡ Di ≡ D mod mi for all i ∈ {i1, . . . , ik}, we see that any k participants
of the secret sharing scheme can compute the secret datum D. This proves (2).

We continue with the proof of Condition (3), i.e., we show Condition (3) to be
satis�ed. Let {Di1 , . . . , Dik−1

} be any subset of k − 1 elements from {D1, . . . , Dn}.
Again, we may apply the Chinese remainder theorem, and obtain

D̂ = ei1 ·Di1 + · · ·+ eik−1
·Dik−1

mod

k−1∏
j=1

mij
. (13.2)

Obviously, (13.2) is the congruence containing all information we have. Nevertheless,
(13.2) leaves many possibilities for D. Therefore, we continue by estimating the
number of possibilities.

The biggest product of k−1 numbers chosen from {m1, . . . , mn} is N. The smallest
product of k numbers chosen from {m1, . . . , mn} is M. Since D ≡ D̂ mod mi for all
i ∈ {i1, . . . , ik−1}, we also have

D ≡ D̂ mod

k−1∏
j=1

mij
,

(remember that the numbers mi, i ∈ {1, . . . , n} are pairwise relatively prime), i.e., D

and D̂ di�er by a multiple of
∏k−1

j=1 mij
. Consequently, one can try all

D = D̂ +

k−1∏
j=1

mij
, D = D̂ + 2 ·

k−1∏
j=1

mij
, . . . ,

possibilities. This gives a lower bound of

M − N − 1

N

many possibilities. Of course, the true value of D can be only determined, if one has
an oracle for testing these possibilities. For example, it is well imaginable that one
has only 3 trials to test D (like passwords).

Thus, it remains to show that one can always choose (k, n) threshold sequences in
a way such that (M − N − 1)/N is large. Let π(x) be the number of all primes less
than or equal to x. The prime number theorem is telling us that

x

ln x
< π(x) <

5

4
· x

ln x
for all x > 114 ,

13.3. Threshold Schemes 151

i.e., there is constant c such that

π(x) 6 c · x

log x
.

Now, let π(n, α) be the number of all primes in the interval (pα
n, pn), where pn is the

n-th prime number and α ∈ (0, 1). Then, we can show the following lemma.

Lemma 13.3. Let n ∈ N with n > 2. For every k with 2 6 k 6 n there are

arbitrarily big numbers y such that

π

(
y,

k2 − 1

k2

)
> n .

Before proving the lemma, we show how to get the desired result from it. We
choose y such that π(y, k2−1

k2) > n. That is, in the interval

(p(k2−1)/k2

y , py]

there are at least n prime numbers. Let m1, . . . , mn be the �rst n primes in this
interval.

Claim. m1, . . . , mn form a (k, n) threshold sequence.

The condition m1 < m2 < · · · < mn is obvious. Moreover,

M =

k∏
i=1

mi > mk
1 >

(
p

k2−1
k2

y

)k

= p
(k+1)(k−1)

k
y > pk−1

y

> mn ·mn−1 · . . . ·mn−k+2 = N ,

where the last inequality holds, since mn 6 py and thus mk−1
n 6 pk−1

y . This proves
the claim.

Finally, we obtain

M − N

N
>

p
k2−1

k
y − pk−1

y

pk−1
y

= p
k−1

k
y − 1 .

Consequently, one can start with a lower bound B for (M − N − 1)/N. Then one
searches for pz such that

p
k−1

k
z − 1 > B .

By the lemma above, then there exists a y > z such that one can form the wanted
(k, n)-threshold sequence from m1, . . . , mn.

Finally, we have to show the lemma above. Let k, n be arbitrarily �xed, and let
α ∈ (0, 1). By the prime number theorem we know that pm = O(m log m). Hence,
pα

m = O(mα(log m)α). Furthermore,

π(m, α) = π(pm) − π(pα
m) .

c©Thomas Zeugmann, Hokkaido University, 2008

152 Lecture 13: More Cryptographic Protocols

We choose c1 such that π(pm) > c1m and c2 such that

π(pα
m) 6 c2 ·

mα(log m)α

log(mα(log m)α)
6 c2 ·

mα(log m)α

log mα

= c2 ·
mα(log m)α

α · log m
.

Thus, we obtain

π(m, α) = π(pm) − π(pα
m) > c1 ·

m log m

log m
− c2 ·

mα(log m)α

α · log m

> c

(
m log m

log m
−

mα(log m)α

α · log m

)
=

c

log m

(
m log m −

mα(log m)α

α

)
=

c ·m log m

log m

(
1 −

1

α ·m1−α(log m)1−α

)
= c ·m

(
1 −

1

α ·m1−α(log m)1−α︸ ︷︷ ︸
=:X

)
.

The expression X converges to 1 as m tends to in�nity. Consequently, for all su�-
ciently large values of m we see that π(m, α) > n. Thus, setting α = (k2 − 1)/k2, the
lemma follows.

References

[1] E.R. Berlekamp (1970), Factoring polynomials over large �nite �elds, Math-

ematics of Computations 24, 713 � 735.

[2] M. Blum (1981), Coin �ipping per telephone: A protocol for solving problems
impossible. SIGACT News 15, 23�27.

[3] C.L. Liu (1968), Introduction to Combinatorial Mathematics., McGrawHill,
New York.

[4] A. Shamir (1979), How to Share a Secret, Communications of the ACM 22,
pp. 612 � 613.

Lecture 14: Digital Signatures

In this lecture, we want to deal in some more detail with the problem of digital
signatures. As usual, we consider two parties A and B with possibly con�icting inter-
ests. Typically, the parties could be a bank and its customer, any two parties wishing
to do business over the internet, diplomats from countries with di�erent interests, and
so on. If you are doing business on the internet you require security and trust, since
you cannot see the person you are dealing with, you cannot see any document proving
the partner's identity and you cannot even know if the web site you are connected to
belongs to the society it says. To answer these juridical demands, the European Union
adopted a community framework for electronic signatures some time ago (directive
1999/93/EC of the European Parliament and the council of December 13, 1999, on a
community framework for electronic signatures) that has been implemented in various
European countries. The European directive is used for business in which European
partners (persons or societies) or public administrations are involved. It also means
that if a Japanese or an American organization enters into an electronic contract with
a European society it has to respect European requirements to ensure the contract is
valid.

Before discussing further details, let us also stress the important point that there
is another fundamental di�erence between conventional and digital signatures besides
that you see the partner signing a document (or let somebody else see it for you,
i.e., a notary). If you copy a conventionally signed document, then there are usually
ways for distinguishing the copied document and the original one. But a copy of a
signed digital document is identical to the original one. So, if A sends a message
to B authorizing B to withdraw 1000 € form A's bank account then the intention is
usually that B is doing is once and not all the time B feels the need of getting 1000 €.
Since the identity of the digital copy and the digital original cannot be prevented,
the message itself should contain the necessary information such as a date, the clear
statement once, and so on.

Nowadays, a digital signature is usually based on public-key cryptographic systems.
European law distinguishes between an electronic signature (also called weak digital

signature) which is used for authentication. That is, such a signature should prove
that the person who sent the text is the electronic signature's holder. However, you
cannot be sure that the person who sent the message is also the key owner. The key
owner does not only have the means to sign a message appropriately but has also the
explicit right to use it. For seeing the di�erence, we look at a typical example. Usually
a key holder would be a server that creates signatures on, for example, a company's
software. The company or employee would be the key owner. So, someone in the
company could hack the server and sign something contentious using the company's
authority. Furthermore, an electronic signature does not guarantee the integrity of
the message signed. That is, a third party may have altered the text sent without
having changed the signature. Of course, this is usually not what we want. We also

154 Lecture 14: Digital Signatures

want to be sure that the text received is the same that was sent, and that no hacker
had changed it.

To summarize, authentication guarantees that the message received, say from A,
has been really sent by A. It should be at least very di�cult if not impossible for
a third party C to pretend to be A. Integrity guarantees that the message received
is the same as the message sent. So, no third party and also not the legal recipient
should be able to forge a message and to pretend to have received it in properly signed
form from A.

Putting these requirements together leads to an advanced electronic signature. In
terms of law an advanced electronic signature must ful�ll the following requirements.

(1) it is uniquely linked to the signatory;

(2) it is capable of identifying the signatory;

(3) it is created using means that the signatory can maintain under his sole control;
and

(4) it is linked to the data to which it relates that any subsequent change of the
data is detectable.

In some sense, these requirements are contradictory. For verifying that the message
received is from A, as claimed, B should know at least something about A's signature.
For B not being able to manipulate a signed message received from A (or for a third
party C aiming the same), neither B nor any third party should know too much about
A's signature.

14.1. Realizing Advanced Digital Signatures

So, let us �rst see how these requirements can be ful�lled simultaneously, at least in
principle, when using a public-key cryptosystem. As before, we denote by EA, EB,
. . . , and DA, DB, . . . , the encryption and decryption algorithms (keys) used by the
parties A, B, Then the following Protocol DS can be used. Let us assume that
A sends a message to B.

Protocol DS

Step 1: First, A applies to message w she wants to send her decryption algorithm
DA obtaining ŵ = DA(w). Then she computes

c = EB(ŵ)

and sends c to B.

Step 2: First, B applies DB to the message c received, i.e., B computes ĉ = DB(c).
Then B computes

w = EA(ĉ) .

14.1. Realizing Advanced Digital Signatures 155

Observe that the protocol is correct, since by associativity we have

EA(DB(EB(DA(w)))) = EA(DA(w)) = w .

Furthermore, taking into account that only A knows DA neither B nor a third
party C can forge A's signature. This is that case at least if plaintexts are meaningful
messages written in some natural language. Then the probability is negligible that
some text not obtained from by DA from a meaningful plaintext would translate into
something meaningful. Also, A cannot deny having sent the signed message to B,
since A is the only one knowing DA.

There is also another advantage of the method described above. If the underlying
public-key cryptosystem is indeed satisfactory, then the application of DA changes
the whole text and not only the name of the sender A. Thus, even if many messages
are exchanged it seems hard to get some knowledge concerning A's signature. For a
better understanding of this point you should do the following exercise.

Exercise 39. Discuss the pros and cons of the Protocol DS provided above to

the idea of sending (name, DA(name)) as signature.

Moreover, let us ask why A �rst applies DA and then EB. She could also �rst apply
EB and then DA. This would require that B is also changing the order of applications,
i.e., �rst EA and then DB. Consequently, the protocol would be still correct. Does
this mean that we have two possibilities for designing our advanced digital signature
scheme?

For seeing the di�erence let us assume that C is an eavesdropper. So, C catches
the message from A and makes sure that it is not directly delivered to B. If we use
the second version, then C may itself apply EA and has now EB(w). This gives C the
possibility to sign the message with its own name by applying DC to it. If C transmits
DC(EB(w)) to B then B would verify to have received the message from C instead
of having received it from A. Thus, though the original plaintext remains unchanged
the identity of the sender (that is A) is gone. Because of this potential di�culty, our
Protocol DS was designed in a way that sending happened before encryption.

Our Protocol DS has also the advantage that only the legal recipient can read it
provided DB is kept secretly. This property is usually referred to as con�dentiality.

But still, we have a problem. The Protocol DS does not take care of two issues
that are very important. A can still deny to have sent the message and B can deny to
have received it. In terms of law these two issues are summarized by the term non-

repudiation. A digital signature satisfying authentication, integrity, con�dentiality
and non-repudiation is usually called strong digital signature or undeniable digital

signature.

In order to achieve this goal, one has to combine the Protocol DS with a challenge
response protocol as described in Lecture 12.

c©Thomas Zeugmann, Hokkaido University, 2008

156 Lecture 14: Digital Signatures

14.2. An Undeniable Digital Signature Scheme

We describe here an undeniable digital signature scheme that was introduced by
Chaum and van Antwerpen in 1989. It consists of three components: a signing al-
gorithm sig , a veri�cation protocol and a disavowal protocol. Again we assume that
A sends a message to B. The new point is that A's cooperation is required to verify
a signature made by the signer A. This protects A against the possibility that that
documents signed by her are duplicated and distributed electronically without her
approval. But what prevents A from disavowing a signature made by her at an earlier
time? A might claim that a valid signature is a forgery, and either refuse to verify it,
or carry out the veri�cation in a way such that the valid signature will not be veri�ed.
That is the point where the disavowal protocol comes into play. Using this disavowal
protocol, A can prove that a signature not made by her is indeed a forgery. Now, if
A refuses to take part in this disavowal protocol, court will take this as evidence that
the signature given has been made by A.

Next, we present the formal protocol.

Protocol CvA

Let p = 2q + 1 be a prime such that q is prime and the discrete log problem in
Zp is intractible. Let α ∈ Z∗p be an element of order q. Let 1 6 a 6 q − 1 and de�ne
β = αa mod p. Furthermore, by G we denote the multiplicative subgroup of Z∗p of
order q. Note that G consists of the quadratic residues modulo p. The values p, α

and β are public and a is kept secretly by A.

The plaintext messages x are assumed to be elements of G and so are the ciphers
(as we shall see in a moment).

A signs the plaintext message x by computing

y = sig(x) = xa mod p

Then she sends (y, x) to B.

The veri�cation (for x, y ∈ G) is done by executing the following protocol.

Step 1: B chooses randomly e1, e2 ∈ Z∗q.

Step 2: B computes (the challenge) c = ye1βe2 mod p and sends it to A.

Step 3: A computes the modular inverse a−1 of a modulo q and then d = ca−1
mod p

and sends it to B.

Step 4: B accepts y as a valid signature if and only if

d ≡ xe1αe2 mod p .

end

14.2. An Undeniable Digital Signature Scheme 157

We should explain the roles of p and q in this scheme. The scheme lives in Zp but
we need to be able to perform computations in a multiplicative subgroup G of Z∗p of
prime order. In particular, we need to be able to compute inverses modulo |G|. This
is the reason why |G| should be prime. It is convenient to take p = 2q + 1 where q

is prime. In this way, the subgroup is as large as possible. This is desirable, since
plaintexts and ciphers are both elements of G.

We �rst prove that B will accept a valid signature. In the following computations,
all exponents are assumed to be reduced modulo p.

First, observe that

d ≡ ca−1 ≡ ye1a−1

βe2a−1

mod p .

Since β ≡ αa mod p we have

βa−1 ≡ α mod p .

Similarly, y = xa mod p implies that ya−1 ≡ x mod p. Hence,

d ≡ xe1αe2 mod p

as desired.

Example 14.1. We take p = 467. Thus, q = (467 − 1)/2 = 233. Then 2 is a
generator (a primitive root) of Z∗p. We can conclude that 22 = 4 is a generator of G,
the quadratic residues modulo p. Thus, we take α = 4. Let a = 101 be A's secret
number. Then

β = 4101 ≡ 449 mod 467 .

A wishes to sign the message x = 119. Thus she computes

y = 119101 ≡ 129 mod 467 .

Next, suppose B wants to verify the signature y. Suppose, B has chosen at random
e1 = 38 and e2 = 397. Then B computes

c = 12938 · 449397 ≡ 13 mod 467 .

A in turn �rst computes the modular inverse a−1 of 101 modulo 233 which is 30.
Then she calculates

d = ca−1

mod 467 ≡ 1330 ≡ 9 mod 467 .

Finally, B checks the response by verifying that

11938 · 4397 ≡ 9 mod 467 .

Hence, B accepts A's signature as valid.

end Example

c©Thomas Zeugmann, Hokkaido University, 2008

158 Lecture 14: Digital Signatures

Next, we prove that A cannot fool B into accepting a fraudulent signature as valid,
except with a very small probability.

Theorem 14.1. If y 6≡ xa mod p, then B will accept y as a valid signature for x

with probability 1/q.

Proof. First we observe that each possible challenge c corresponds to exactly q

ordered pairs (e1, e2). This is because y and β are both elements of the multiplicative
group G of prime order q.

Now, when A receives the challenge c she has no way of knowing which of the q

possible pairs (e1, e2) B has been used to construct c. We claim that, if y 6≡ xa mod p,
then any possible response d ∈ G that A might make is consistent with exactly one
of the q possible ordered pairs (e1, e2).

Since α generates G, we can write any element g of G as a power of α, say g = αz

where the exponent z is determined uniquely modulo q. So, we can write

c = αi d = αj x = αk and y = α` ,

where i, j, k, ` ∈ Zq and all arithmetic is done modulo q. Consider the following two
congruences:

c ≡ ye1βe2 mod p

d ≡ xe1αe2 mod p

This system is equivalent to the following system:

i ≡ `e1 + ae2 mod q

j ≡ ke1 + e2 mod q .

Now, we are assuming that

y 6≡ xa mod p ,

so it follows that

` 6≡ ak mod q .

Hence, the coe�cient matrix of this system of congruences modulo q has non-zero
determinant. Therefore, there is a unique solution to the system. That is, every
d ∈ G is the correct response for exactly for exactly one of the q possible ordered
pairs (e1, e2). Consequently, the probability that A gives B a response d that will be
veri�ed is is exactly 1/q, and the theorem is shown.

14.2. An Undeniable Digital Signature Scheme 159

Finally, we turn our attention to the disavowal protocol. This protocol consists of
two runs of the veri�cation protocol (see below).

The Disavowal Protocol

Step 1: B chooses e1, e2 ∈ Z∗q at random.

Step 2: B computes c = ye1βe2 mod p and sends it to A.

Step 3: A computes a−1 modulo q and then d = ca−1
mod p and sends it to B.

Step 4: B veri�es that d 6≡ xe1αe2 mod p.

Step 5: B chooses f1, f2 ∈ Z∗q at random.

Step 6: B computes C = yf1βf2 mod p and sends it to A.

Step 7: A computes a−1 modulo q and then D = Ca−1
mod p and sends it to B.

Step 8: B veri�es that D 6≡ xf1αf2 mod p.

Step 9: B concludes that y is a forgery if and only if

(dα−e2)
f1 ≡

(
Dα−f2

)e1
mod p .

Example 14.2. As before, we take p = 467, q = 233, α = 4, a = 101 and
β = 449.

Suppose the message x = 286 is signed with the bogus signature y = 83, and that
A wants to convince B that the signature is invalid.

Furthermore, suppose B begins choosing at random values e1 = 45 and e2 = 237.
B then computes

c = ye1βe2 ≡ 8345449237 ≡ 305 mod 467 ,

and A responds with

d = ca−1 ≡ 30530 ≡ 109 mod 467 .

Then B computes
286454237 ≡ 149 mod 467 .

Since 149 6= 109, B proceeds to Step 5 of the protocol. Now, suppose B chooses at
random f1 = 125 and f2 = 9. Then B computes

C = 831254499 ≡ 270 mod 467 ,

and A responds with

D = Ca−1 ≡ 27030 ≡ 68 mod 467 .

c©Thomas Zeugmann, Hokkaido University, 2008

160 Lecture 14: Digital Signatures

Now B veri�es that
68 6≡ 28612549 ≡ 25 mod 467 .

Thus, B performs the consistency check in Step 9 and obtains(
109 · 4−237

)125 ≡ 188 ≡
(
68 · 4−9

)45
mod 467 .

Thus, the consistency check succeeds and B is convinced that the signature is not

valid.

end Example

Steps 1 through 4 and Steps 5 through 8 comprise two unsuccessful runs of the
veri�cation protocol. Step 9 is a �consistency check� that enables B to determine if A

is forming her responses in the manner speci�ed in the protocol.

We have to show two things at this point.

(1) A can convince B that an invalid signature is a forgery.

(2) A cannot make B believe that a valid signature is a forgery except with a very
small probability.

First, we show the following.

Theorem 14.2. If y 6≡ xa mod p, and B and A follow the disavowal protocol,

then

(dα−e2)
f1 ≡

(
Dα−f2

)e1
mod p .

Proof. Using the facts that

d ≡ ca−1

mod p

c ≡ ye1βe2 mod p and

β ≡ αa mod p ,

we have that

(dα−e2)
f1 ≡

(
(ye1βe2)

a−1

α−e2

)f1

mod p

≡ ye1f1βe2a−1f1α−e2f1 mod p

≡ ye1f1αe2f1α−e2f1 mod p

≡ ye1f1 mod p .

Using the facts that D ≡ Ca−1
mod p, C ≡ yf1βf2 mod p and β ≡ αa mod p, a

similar computation establishes that(
Dα−f2

)e1 ≡ ye1f1 mod p ,

and therefore the consistency check in Step 9 succeeds.

14.2. An Undeniable Digital Signature Scheme 161

Now we look at the possibility that A might attempt to disavow a valid signature.
In this situation we do not assume that A follows the protocol. That is, A might not
construct d and D as speci�ed by the protocol. Hence, in the following theorem, we
only assume that A is able to produce values d and D which satisfy the conditions in
Steps 4, 8, and 9 of the Disavowal Protocol presented above.

Theorem 14.3. Suppose y ≡ xa mod p and B follows the Disavowal Protocol.

If

d 6≡ xe1αe2 mod p

and

D 6≡ xf1αf2 mod p

then the probability that

(dα−e2)
f1 6≡

(
Dα−f2

)e1
mod p .

is 1 − 1/q.

Proof. The proof is done indirectly. Suppose the following is satis�ed

y ≡ xa mod p

d 6≡ xe1αe2 mod p

D 6≡ xf1αf2 mod p

(dα−e2)
f1 ≡

(
Dα−f2

)e1
mod p .

We shall derive a contradiction as follows. The consistency check (cf. Step 9) can be
rewritten in the following form.

D ≡ df1
0 αf2 mod p ,

where
d0 = d1/e1α−e2/e1 mod p

is a value that depends only on steps 1 through 4 of the Disavowal protocol.

Applying Theorem 14.1, we conclude that y is a valid signature for d0 with prob-
ability 1 − 1/q. But we are assuming that y is a valid signature for x. That is, with
high probability we have

xa ≡ da
0 mod p

which implies that x = d0.

However, the fact that
d 6≡ xe1αe2 mod p

means that that
x 6≡ d1/e1α−e2/e1 mod p .

Since
d0 ≡ d1/e1α−e2/e1 mod p

we conclude that x 6= d0 and we have a contradiction.

c©Thomas Zeugmann, Hokkaido University, 2008

Appendix for Complexity

In this appendix, we provide a bit more material for further reading as well as some
proofs that had to be omitted due to the lack of time.

15.1. A Lower Bound for the Complexity of Accepting Palindromes

We introduce a technique that may be used to prove lower bounds. For doing this, let
us de�ne traces of Turing computations (sometimes also called crossing sequences).
We consider the computation process of a Turing machine M that has received the
string w = x1 · · · xn, xi ∈ Σ, as input and which is started in the initial con�guration
described above. Let us �x a border on the tape at position j (cf. Figure 15.1 for the
case j = 2).

0 2 3 4 5125 34 1

border at position 2

x1 x2 x3∗ ∗ ∗ ∗ ∗ ∗ ∗

z(1)

z(2)

Figure 15.1: A fragment of the trace at border 2.

The trace of M on input w at position j is a word z over the set of state symbols
de�ned as follows.

(0) If the read-write head is never crossing the border j, then z = λ.

(1) Assume the read-write head is crossing the border j exactly s times. The �rst
time the border is crossed M is in state z(1), the second time in in state z(2),
. . . , and the sth time in state z(s). Then, we set z = z(1)z(2) · · · z(s).

We denote the trace of M at position j on input w by TRM(w, j). Of course, if
j > 0, then the �rst time the head crosses the border at position j is a move from left
to right, the second time from right to left, and so on.

If j 6 0, then the �rst time the head crosses the border at position j is a move
from right to left, the second time from left to right, and so on.

164 Appendix for Complexity

If M's computation on input w does not stop, then it could also happen that the
trace at some position j becomes in�nite. But we are going to consider terminat-
ing computations only. Thus, all traces will have �nite length which is denoted by
|TRM(w, j)|.

The importance of traces is expressed by our �rst observation, where Z denotes
the set of all integers.

Observation 1. TM(w) >
∑
j∈Z

|TRM(w, j)|.

The observation clearly holds, since every time the head crosses the border, a step
has to be performed. Therefore, if we can prove that for every machine accepting
a language L there must be in�nitely many strings such that at su�ciently many
positions su�ciently long traces occur, then we can obtain a lower bound for the time
needed to accept L.

So, how can we prove this? Suppose that you know the trace z(1) · · · z(s) of a
Turing machine M on input w at position j. For the sake of presentation, let us
assume j > 0. Now, cut the tape at position j and remove the right part of the tape
cut. Then you can still simulate the whole computation of M on the left part of the
tape. As long as M did not cross the border j, let the machine work as before. If it is
crossing the border for the �rst time (in state z(1)), stop the machine, put the head
back on the left part of tape on the rightmost position, and switch M's state to z(2).
Now, it will work again on the left part of the tape. Even more importantly, it will
behave precisely the same way as if we have not cut the tape. This is true, since we
restarted M is state z(2) and M has no other possibility than its state to memorize
something it has done on the right part of the tape that may be needed while working
on the left part of it.

Moreover, let M be any Turing machine, let w = x1 · · · xm and w̃ = x̃1 · · · x̃n be
any strings, and let i, j ∈ N with 0 < i < m, 0 < j < n be such that TRM(w, i) =

TRM(w̃, j). Furthermore, let w̃
j
0 = x̃1 · · · x̃j and w̃n

j = x̃j+1 · · · x̃n as well as wi
0 =

x1 · · · xi and wm
i = xi+1 · · · xm. Then

TRM(w̃, j) = TRM(w, i) = TRM(w̃j
0w

m
i , j) = TRM(wi

0w̃
n
j , i) .

Furthermore, consider M's behavior when started on input w̃
j
0w

m
i . We distinguish

the following cases.

Case 1. |TRM(w̃, j)| is even.

Then the read-write head is left from position j when M terminates its compu-
tation. Moreover, the head observes in its �nal position a | if w̃ ∈ L(M) and a ∗
provided w̃ /∈ L(M).

Case 1. |TRM(w̃, j)| is odd.

Then M stops its computation right from position j. Moreover, the head observes
in its �nal position a | if w ∈ L(M) and a ∗ provided w /∈ L(M).

15.1. A Lower Bound for the Complexity of Accepting Palindromes 165

Now, the scenario that w̃ and w are equivalent with respect to acceptance by M

is of particular importance. Here, by equivalence with respect to acceptance by M

we mean that either both w̃, w ∈ L(M) or both w̃, w /∈ L(M).

Taking the latter observation into account, we directly get the following Replace-

ment Lemma. In this lemma we use the notations introduced above.

Lemma 15.1. Let M be any Turing machine. Assume w̃ = w̃
j
0w̃

n
j and w =

wi
0w

m
i to be strings such that w̃ and w are equivalent with respect to acceptance by

M and such that TRM(w̃, j) = TRM(w, i). Then, the four strings w̃, w, w̃
j
0w

m
i and

wi
0w̃

n
j are pairwise equivalent with respect to acceptance by M.

Now, we are ready to prove the desired lower bound for Lpal . Note that following
theorem is due to J	anis B	arzdi�n�s.

Theorem 15.2. For every deterministic one-tape Turing machine M accepting

Lpal there is a constant cM > 0 such that TM(n) > cMn2 for all but �nitely many

n ∈ N.

Proof. For avoiding unnecessary technical details let us assume∗ that n is divisible
by 4.

Claim 1. Let M be any deterministic one-tape Turing machine accepting Lpal . Then

there is a constant DM such that for all su�ciently large n there are strings

w ∈ Lpal satisfying

|TRM(w, j)| > DM · n for all j =
n

4
+ 1,

n

4
+ 2, . . . ,

n

2
.

Before proving Claim 1, we show that it directly implies the assertion of the theo-
rem. Using Observation 1, we get

TM(w) >

n
2∑

j= n
4 +1

|TRM(w, j)| >
n

4
DMn =

DM

4
n2 ,

and hence the theorem follows by setting cM = DM/4.

We continue by showing Claim 1. Let M = [B, Z, A] be such that M accepts
Lpal . We shall prove that DM = 1/(8 log2 k) will do, where k = |Z|. Let N(j, n) for
n
4

+1, n
4

+2 . . . , n
2
be the number of palindromes w over {a, b} of length n for which

|TRM(w, j)| <
n

8 log2 k
.

We claim that N(j, n) 6 2
3n
8 . Since there are 2

n
2 many palindromes, this will prove

Claim 1.
∗Reprove the theorem without making this assumption.

c©Thomas Zeugmann, Hokkaido University, 2008

166 Appendix for Complexity

Let σ1, . . . , σp be all pairwise di�erent traces of length less than n
8 log2 k

. By A(α)

we denote the number of all palindromes of length n which have trace σα in position j.
Then, we clearly have

N(j, n) = A(1) + A(2) + · · ·A(p) .

First, let us estimate p. Since |Z| = k and traces are strings over Z, we immediately
obtain

p 6 k + k2 + · · ·+ k
n

8 log2 k −1

=
k

n
8 log2 k − 1

k − 1
− 1

6 k
n

8 log2 k = 2
n
8 .

Next, we estimate A(α). Let w̃ = w̃
j
0w̃

n
j and w = w

j
0w

m
j be palindromes of length n

and let j 6 n/2. If M generates in position j the same traces on input w̃ and on
input w, then w̃

j
0 = w

j
0 by the replacement lemma.

Therefore, all strings contributing to A(α) must have the same initial part, say v.
The number of palindromes with initial part v is 2(n/2)−j, i.e., A(α) 6 2(n/2)−j.

Consequently,

N(j, n) 6 p · 2n
2 −j 6 2

n
8 · 2n

2 − n
4

= 2
3n
8 .

Thus, Claim 1 is proved and as shown above the theorem follows.

15.2. Time Complexity Gap for Accepting Non-regular Languages

We start this subsection by asking what can be accepted by deterministic one-tape
Turing machines if we allow traces bounded by any �xed constant c > 0. For answering
this question, let us introduce the following notations, where M = [B, Z, A] stands for
any deterministic one-tape Turing machine, and w ∈ Σ∗ as well as n ∈ N.

TRM(w) = max{|TRM(w, j)| j ∈ Z}

TRM(n) = max{TRM(w) |w| = n}

First, we prove the following lemma.

Lemma 15.3. Let M be any deterministic one-tape Turing machine. If there is

a constant c > 0 such that TRM(n) 6 c for all n ∈ N then L(M) ∈ REG.

Proof. Without loss of generality, we assume that the input string w is read at
least once. We consider the echo mapping on input w of M = [B, Z, A]. Let
z(2), z(4), · · · , z(2n) be any �xed �nite sequence of states from Z. We de�ne the
echo z(1), z(3), . . . , z(2n − 1) of z(2), z(4), · · · , z(2n) of M on input w as follows.

15.2. Time Complexity Gap for Accepting Non-regular Languages 167

M is started on w as usual. By assumption, M leaves the input sometimes for the
�rst time on the right hand side. We let z(1) be the state when crossing position |w|.
Now, M is put into state z(2) and the head is put back to the cell where the last symbol
of the input was or still is. After some time, M's head crosses again position |w|. We
let z(3) be the state the machine is taking when this event happens, then put M into
state z(4) and put the head again back to cell where the last symbol of the input was
or still is, and so on. If M is not crossing often enough the position |w| to the right,
then the echo is not de�ned. For z ∈ Z∗ we use echo(w, z) to denote the echo of z on
input w of M.

Next, we de�ne a relation ∼ over Σ∗ as follows. Let u, v ∈ Σ∗. We set

u ∼ v i� ∀z[z ∈ Z∗ ∧ |z| 6 c −→ echo(u, z) = echo(v, z)] .

One easily veri�es that ∼ is an equivalence relation. Thus, Σ∗ is partitioned by ∼ into
equivalence classes. Let Σ∗/∼ denote this set of equivalence classes.

Claim 1. |Σ∗/∼| < ∞.

Since Z is �nite, we directly get that |{z z ∈ Z∗ ∧ |z| 6 c}| < ∞. Moreover,
the length of echo(w, z) is, for all z ∈ Z∗ with |z| 6 c also bounded by c, by the
de�nition of the echo mapping. Hence, for every w ∈ Σ∗ there are only �nitely many
echo mappings with length less than or equal to c. But the set of all echo mappings
on input w of M completely determines the equivalence class generated by w. Thus,
|Σ∗/∼| is �nite and Claim 1 follows.

Moreover by assumption we have TRM(n) 6 c for all n ∈ N. Hence, if u ∼ v then

TRM(uw, |u|) = TRM(vw, |v|) for all w ∈ Σ∗ .

Therefore, we may conclude that

uw ∈ L(M) if and only if vw ∈ L(M) for all w ∈ Σ∗ .

But this means that L(M) satis�es the Nerode relation ∼N, where

u ∼N v i� ∀w[w ∈ Σ∗ −→ uw ∈ L(M) ↔ vw ∈ L(M)] .

Since u ∼ v implies u ∼N v as shown above, we conclude that |Σ∗/∼N
| is �nite, too. By

the Nerode Theorem, it follows that L(M) ∈ REG.

Next, we are going to sharpen Lemma 15.3 by proving a gap for TRM(n). Recall
that for f, g: N → N we write f(n) = o(g(n)) if and only if

lim
n→∞

f(n)

g(n)
= 0 .

Lemma 15.4. Let M be a deterministic one-tape Turing machine and assume

TRM(n) = o(log n). Then there exists a constant c > 0 such that TRM(n) < c for

all n ∈ N.

c©Thomas Zeugmann, Hokkaido University, 2008

168 Appendix for Complexity

Proof. The proof is done indirectly. Suppose to the contrary that there is an in�nite
sequence of strings (vi)i∈N such that TRM(vi+1) > TRM(vi) for all i ∈ N. Moreover,
without loss of generality we can choose the strings vi in a way such that for all i ∈ N
we have

TRM(u) < TRM(vi) for all strings u with |u| < |vi| , (15.1)

i.e., for no shorter string the maximum trace length TRM(vi) does occur.

Claim 1. Then among all traces TRM(vi, j) with 0 6 j 6 |vi| there are no three

identical ones.

Suppose the converse. Then there are j1, j2, j3 with 0 6 j1 < j2 < j3 6 |vi| such
that

TRM(vi, j1) = TRM(vi, j2) = TRM(vi, j3) .

Now, let j∗, 0 6 j∗ 6 |vi| be such that TRM(vi, j∗) > TRM(vi, j) for all j ∈ {0, . . . , |vi|}.
If there is more than one j∗, we take the smallest one. Next, we distinguish the
following cases.

Case 1. j∗ = j1.

We can delete all symbols in vi between j2 and j3 without changing TRM(vi, j∗),
thus obtaining a contradiction to (15.1).

Case 2. j∗ 6= j1.

Then either j∗ ∈ (j1, j2), j∗ ∈ (j2, j3) or it does not fall in any of the two intervals
(j1, j2) and (j2, j3). In any case, there is one interval such that j∗ /∈ (ja, jb), a, b ∈
{1, 2, 3}, a 6= b. Thus, again we can delete all symbols between ja and jb without
changing TRM(vi, j∗) and obtain again a contradiction to (15.1). This proves Claim 1.

Consequently, the length of the strings vi is bounded by twice the number of
di�erent traces of length at most TRM(vi). We continue by estimating |vi|. Let
M = [B, Z, A] and recall that |Z| > 2.

|vi| 6 2 ·
TRM(vi)∑

j=0

|Z|j

= 2 · |Z|TRM(vi)+1 − 1

|Z| − 1

Thus, taking logarithms to the base |Z| directly yields

log|Z| |vi| 6 log|Z|

(
1

|Z| − 1

)
+ TRM(vi) + 1 ,

and therefore

ln 2

ln |Z|
· log2 |vi| 6

ln 2

ln |Z|
· log2

(
1

|Z| − 1

)
+ TRM(vi) + 1 ,

15.2. Time Complexity Gap for Accepting Non-regular Languages 169

Hence, there is a constant c > 0 such that

log2 |vi| 6 c · TRM(vi)

and consequently
log2 |vi| = 0(TRM(vi)) .

But the latter assertion directly implies

TRM(n)

log n
>

TRM(vi)

log |vi|
>

1

c
6= 0 ,

a contradiction to TRM(n) = o(log n).

Now we are ready to show the �rst concrete complexity gap which has been dis-
covered by J. Hartmanis and B. Trachtenbrot independently of each other.

Theorem 15.5. Let M be a deterministic one-tape Turing machine and assume

TM(n) = o(n log n). Then L(M) ∈ REG.

Proof. Let M = [B, Z, A] and suppose, L(M) /∈ REG. By Lemmata 15.3 and 15.4
we can conclude that TRM(n) is unbounded. As in the proof of Lemma 15.4 we
can choose an in�nite sequence (vi)i∈N of strings such TRM(vi+1) > TRM(vi) for all
i ∈ N and such that (15.1) is ful�lled. Moreover, as the proof of Lemma 15.4 shows,
then there is a constant c > 0 such that

log2 |vi| 6 c · TRM(vi) .

Furthermore, by construction there are at least (1/2)|vi| many di�erent traces in
positions j = 0, . . . , |vi|. The number of traces of length k is |Z|k. Let us assume that
the traces of minimum possible length do occur. Now, we determine the minimum a

such that
a∑

k=0

|Z|k >
1

2
|vi| .

Hence, it should hold
|Z|a+1 − 1

|Z| − 1
>

1

2
|vi| ,

giving us the condition

|Z|a+1 >
1

2
|vi|(|Z| − 1) + 1 .

Taking logarithms to the base |Z| directly yields

a + 1 > log|Z|

(
1

2
|vi|(|Z| − 1) + 1

)
.

Since |Z| > 2 and since log n is monotonically increasing, we therefore obtain

a > log|Z|

(
1

2
|vi|

)
− 1 .

c©Thomas Zeugmann, Hokkaido University, 2008

170 Appendix for Complexity

Consequently, by lower bounding TM(|vi|) by the sum of the lengths of all traces of
minimum length that must occur, we obtain the following.

TM(|vi|) > 2 ·
a∑

k=0

k · |Z|k > 2a · |Z|a

> 2 ·
(

log|Z|

(
1

2
|vi|

)
− 1

)(
|Z|log|Z|(1

2 |vi|)−1
)

= 2 ·
(

log|Z|

(
1

2
|vi|

)
− 1

)(
|Z|log|Z|(1

2 |vi|)

|Z|

)

=

(
log|Z|

(
1

2
|vi|

)
− 1

)(
|vi|

|Z|

)
=

1

|Z|

(
|vi| log|Z|

(
1

2
|vi|

)
− |vi|

)
=

1

|Z|

(
|vi| log|Z| |vi| − |vi|(1 + log|Z| 2)

)
.

We can therefore conclude TM(n) 6= o(n log n), a contradiction. Hence, L(M) must
be regular.

15.3. Space Complexity Gaps for Accepting Non-regular Languages

First, we show that enlarging the space available to any constant does not allow to
accept non-regular languages. That is, we again obtain a gap-theorem.

Theorem 15.6. Let c > 0 be any constant and let M be a deterministic 2-tape

Turing machine such that SM(n) 6 c for all n ∈ N. Then L(M) is regular.

Proof. For proving this theorem, we �rst show that there is a constant ĉ such that
M can work at most ĉn many steps on inputs of length n without reaching a cycle.

The desired constant ĉ can be estimated as follows. Let M = [B, Z, A] be given.
Hence, there are |B|k many pairwise di�erent strings of length k over B. Consequently,
there are at most

c∑
k=0

|B|k =
|B|c+1 − 1

|B| − 1

many pairwise di�erent strings of length less than or equal to c which can be written
on M's work tape. For writing a string of length k on its work tape, M needs k steps.
Thus, M needs

c · |B|c+1 − 1

|B| − 1

many steps for writing all possible strings on its work tape. Furthermore, for estimat-
ing ĉ it su�ces to assume that M can write all these strings in every of its states on
its work tape. Hence, there are at most

c · |Z| · |B|c+1 − 1

|B| − 1

15.3. Space Complexity Gaps for Accepting Non-regular Languages 171

many pairwise di�erent steps that can be performed by M on every input symbol
read on its inputs tape. Setting

ĉ = c · |Z| · |B|c+1 − 1

|B| − 1

now directly yields that M can work at most ĉn many steps without reaching a cycle.

Next, we can conclude that there is a deterministic one-tape Turing machine M̂

such that TM̂(n) = ĉn for all n ∈ N and L(M̂) = L(M). The Turing machine M̂ is
easily obtained by encoding all possible inscriptions on M's work tape into states and
the changes M can make on these inscriptions into state transitions. Here it is crucial
that there are only

c · |B|c+1 − 1

|B| − 1

many possible inscriptions. Finally, by Theorem 15.5 we directly get L(M) ∈ REG.

For making further progress we extend the de�nition of traces made for one-tape
Turing machines (cf. Page 163) by using con�gurations (cf. De�nition 6.8).

De�nition 15.1. Let k ∈ N, k > 1, let M be a k-tape Turing machine and let

w ∈ Σ∗ be any input to M. We de�ne the trace of M on input w at position j to be

TRM(w, j), where

TRM(w, j) = the string formed out of con�gurations of M such that the

ith position of TRM(w, j) is the con�guration M is in, when its

head on the input tape is crossing the border j for the ith time .

Furthermore, TRM(w) and TRM(n) are de�ned as before, i.e., for every input

string w ∈ Σ∗ and all n ∈ N we set

TRM(w) = max{|TRM(w, j)| j ∈ Z}

TRM(n) = max{TRM(w) |w| = n} .

Note that for k = 1 we just obtain the de�nition of traces previously made for
one-tape Turing machines.

Exercise 40. Prove the following generalization of the Replacement Lemma.

Let M be a deterministic Turing machine. If TRM(uvw, |uv|) = TRM(uvw, |u|)

then TRM(uvivjw, |uvi|) = TRM(uw, |u|) and thus, uvivjw ∈ L(M) i� uw ∈ L(M).

Next, we are going to show a complexity gap for the complexity measure �space
complexity� with respect to the acceptability of non-regular languages.

Theorem 15.7. Let M be any deterministic 2-tape Turing machine such that

SM(n) = o(log log n). Then L(M) is regular.

c©Thomas Zeugmann, Hokkaido University, 2008

172 Appendix for Complexity

Proof. By Theorem 15.6 it su�ces to show that there is a constant c > 0 such that
SM(n) < c. We continue indirectly.

Suppose there is an in�nite sequence (vi)i∈N of strings such that

SM(vi+1) > SM(vi) for all i ∈ N . (15.2)

Then we can choose the strings vi in a way such that for all i ∈ N

SM(u) < SM(vi) for all strings u with |u| < |vi| .

Now we observe that there are no two equal traces among all traces TRM(vi, j), where
0 < j < |vi|. To see this, suppose there are positions j1 and j2 with 0 < j1 < j2 < |vi|

and TRM(vi, j1) = TRM(vi, j2). Then we could remove all symbols between j1 and j2

in vi without reducing the amount of space needed, a contradiction to (15.2).

By Exercise 40, without loss of generality, we can assume that each single trace
does not contain two identical con�gurations, since the part of M's work done between
such identical con�gurations cannot in�uence the acceptance of the input string given.

Provided M = [B, Z, A] uses ` cells on its work tape, there are at most

c` = |Z| · |B|`+1 − 1

|B| − 1
· `

many possible con�gurations of length at most `. By Exercise 40, we can conclude
that there are at most cc`

` many di�erent traces that can be built from the possible
con�gurations. Therefore

|vi| 6 cc`
` , where ` = SM(vi) ,

since there are no two identical traces among all traces TRM(vi, j), where 0 < j < |vi|.

Since c` = |Z| · |B|`+1 − 1

|B| − 1
· `, there exists an r such that

|vi| 6 rr`

.

Consequently,
log log |vi| 6 c · ` = c · SM(vi) .

Thus,

1 6 c · SM(vi)

log log |vi|
,

a contradiction to SM(n) = o(log log n).

This contradiction has been caused by (15.2), and hence (15.2) cannot hold. But
this means nothing else than SM(n) 6 c for some constant c > 0. Now, Theorem 15.6
implies L(M) ∈ REG.

15.3. Space Complexity Gaps for Accepting Non-regular Languages 173

Note that the gap established in Theorem 15.7 cannot be improved. For seeing
this, we consider the language

L = {1 ∗ 10 ∗ 11 ∗ · · · ∗ bin(k) k ∈ N} ,

where bin(k) denotes the binary representation of the number k.

By using the Nerode Theorem, it is immediately obvious that L /∈ REG, since the
de�nition of the Nerode Relation directly implies w1 ∼L w2 i� w1 = w2. But we have
the following lemma.

Lemma 15.8. There is deterministic Turing machine M such that SM(n) =

log log n and L(M) = {1 ∗ 10 ∗ 11 ∗ · · · ∗ bin(k) k ∈ N}.

Proof. Since |1∗10∗11∗ · · · ∗bin(k)| > k, it su�ces to argue that an input string of
the form 1∗10∗11∗ · · · ∗bin(k) can be accepted in space log log k. For doing this, one
has to decide for a sequence of symbols of the form bin(n1) ∗ bin(n2) with n1, n2 6 k

whether or not n2 = n1 + 1. This can be done by comparing the dual representations
bit by bit. Hence, when crossing the separation symbol ∗, one has only to memorize
the actual bit position which can be done in space log log k. Finally, one has to check
whether or not the input starts with 1.

Applying the techniques developed so far, we can prove the following assertion.

Theorem 15.9. For every deterministic Turing machine M such that L(M) =

{0n1n n ∈ N} the condition SM(n) 6= o(log n) is satis�ed.

Proof. By Corollary 6.6, without loss of generality, we can M assume to be a
deterministic 2-tape Turing machine. As in the proof of Theorem 15.7, provided
M = [B, Z, A] uses ` cells on its work tape, there are at most

c` = |Z| · |B|`+1 − 1

|B| − 1
· `

many possible con�gurations of length at most `. Again, we choose r su�ciently large
for getting

|Z| · |B|`+1 − 1

|B| − 1
· ` 6 r` .

Suppose, SM(n) = o(log n). Then there exists a su�ciently large m such that
SM(2m) < logr m.

Consequently, M on input any string of length 2m generates less than m di�erent
con�gurations. But this means, when working on the left block 0m the machine M

must be twice in the same con�guration. Hence, these con�gurations appear period-
ically with a period length less than m. Therefore, M must also accept 0m1m+m!,
since m! is a multiple of all these possible period lengths. This contradiction to
L(M) = {0n1n n ∈ N} proves the theorem.

c©Thomas Zeugmann, Hokkaido University, 2008

174 Appendix for Complexity

Exercise 41. Prove or disprove {0n1n n ∈ N} ∈ SPACE (log n).

Exercise 42. Show that there are neither non-trivial S-constructible functions

nor non-trivial weakly S-constructible functions below log log n, where trivial means

constant functions.

Next, we shall de�ne further complexity measures for nondeterministic Turing
machines.

De�nition 15.2. Let M be a nondeterministic Turing machine and let w ∈ Σ∗.

We de�ne Tmax
M (w) to be the maximum number of steps performed by M on input

w among all possible computations on input w.

Furthermore, we de�ne Smax
M (w) to be the maximum number of all cells on

M's work tapes visited by the read-write heads of M on input w among all its possible

computations on input w.

Both Tmax
M and Smax

M are unde�ned for inputs on which the maximum does not exist,
i.e., in particular if M does not stop.

Moreover, we set

Tmax
M (n) = max{Tmax

M (w) |w| = n}

Smax
M (n) = max{Smax

M (w) |w| = n}

and de�ne the resulting complexity classes NTIMEmax(f(n)) and NSPACEmax(f(n))

analogously as above.

We continue with the following important lemma.

Lemma 15.10. Let f: N → N be any S-constructible function. Then we have

NSPACEmax(f(n)) = NSPACE (f(n)) .

Proof. The inclusion NSPACEmax(f(n)) ⊆ NSPACE (f(n)) is obvious by the de�-
nitions of the complexity classes NSPACEmax(f(n)) and NSPACE (f(n)).

For showing the part NSPACE (f(n)) ⊆ NSPACEmax(f(n)), let M be any given
nondeterministic Turing machine such that SM(n) 6 f(n) for all n ∈ N. We are
going to construct a nondeterministic Turing machine M ′ such that L(M ′) = L(M)

and Smax
M ′ (n) 6 f(n).

Since f is S-constructible, there exists a deterministic Turing machine M̃ such that
SM̃(w) = f(|w|) for all w ∈ Σ∗. Without loss of generality, we may assume that all
cells visited by M̃ on the work tape are marked by a special symbol.

Thus, on input any w ∈ Σ∗, the desired machine M ′ �rst simulates machine M̃

until it stops. Next, it simulates machine M until it either stops or tries to use more
space than marked by M̃. If M has stopped and accepted the input w, then M ′

accepts w, too. If M tries to use more space than marked by M̃, then M ′ rejects the
input w and stops.

15.3. Space Complexity Gaps for Accepting Non-regular Languages 175

By assumption, there is an accepting computation path of M using at most space
f(|w|). Hence, M ′ will eventually simulate this computation part. Since in all other
cases, M ′ is rejecting the input, we have w ∈ L(M ′) if and only if w ∈ L(M). Finally,
by construction, the machine M ′ uses on all its computations space f(n). Thus, the
lemma follows.

Next, we show a result analogous to Lemma 15.10 for time complexity. Before
doing this, you should solve the following exercise.

Exercise 43. Show that there are neither non-trivial T -constructible functions

nor non-trivial weakly T -constructible functions below n, where trivial means constant

functions.

Lemma 15.11. Let f: N → N be any T -constructible function. Then we have

NTIMEmax(f(n)) = NTIME (f(n)) .

Proof. The inclusion NTIMEmax(f(n)) ⊆ NTIME (f(n)) is obvious by the de�ni-
tions of the complexity classes NTIMEmax(f(n)) and NTIME (f(n)).

For showing the part NTIME (f(n)) ⊆ NTIMEmax(f(n)), let M be any given
nondeterministic Turing machine such that TM(n) 6 f(n) for all n ∈ N. We are
going to construct a nondeterministic Turing machine M ′ such that L(M ′) = L(M)

and Tmax
M ′ (n) 6 f(n).

The construction is performed in two steps. First, we construct a machine M ′′

such that L(M ′′) = L(M) and Tmax
M ′′ (n) 6 2 · f(n). By Exercise 43 we additionally

know that n is the smallest non-trivial T -constructible function. Thus, we can apply
Theorem 6.3 to obtain M ′ from M ′′.

The nondeterministic Turing machine M ′′ is obtained as follows. Since f is T -
constructible, there exists a deterministic Turing machine M̃ such that TM̃(w) =

f(|w|) for all w ∈ Σ∗. So, M ′′ simulates simultaneously M̃ and M on input w by
working one step as M̃ and then one step as M, and so on. If M̃ stops �rst, M ′′ does
a last step for M. If M does not accept the input in this step, M ′′ rejects the input,
otherwise it accepts it, too.

If M̃ has not stopped yet, but M does, then M ′′ accepts the input w if and only
if M has accepted w. Thus, the theorem follows.

Consequently, the complexity measures space and time for nondeterministic Turing
machines are in a sense robust. Therefore, in the following, we shall mainly deal with
SM(n) and TM(n), but only occasionally with Smax

M (n) and Tmax
M (n).

We �nish this part by shortly analyzing the minimum amount of space needed by
nondeterministic Turing machines for accepting non-regular languages.

c©Thomas Zeugmann, Hokkaido University, 2008

176 Appendix for Complexity

The following Theorem can proved analogously as Theorem 15.6. We therefore
omit the proof here.

Theorem 15.12. Let c > 0 be any constant and let M be a nondeterministic

2-tape Turing machine such that SM(n) 6 c for all n ∈ N. Then L(M) is regular.

Theorem 15.13. Let M be any nondeterministic 2-tape Turing machine such

that Smax
M (n) = o(log log n). Then L(M) is regular.

Proof. By Theorem 15.12 it su�ces to show that there is a constant c > 0 such
that SM(n) < c.

We continue indirectly. Suppose there is an in�nite sequence (vi)i∈N of strings such
that

Smax
M (vi+1) > Smax

M (vi) for all i ∈ N . (15.3)

Then we can choose the strings vi in a way such that for all i ∈ N

Smax
M (u) < Smax

M (vi) for all strings u with |u| < |vi| .

Next, we �x any computation of M that needs the maximum amount of space. The
rest can then be shown as in the proof of Theorem 15.7.

Note that it remains open whether or not Theorem 15.13 does also hold for the
complexity measure SM.

Now, we look at the GAP problem and show how it can be used to prove a special
case of Theorem 8.3.

15.4. More Properties of the GAP Problem

Next, we provide a concrete function f such that GAP ∈ SPACE (f(n)). Unfortu-
nately, we are not able to prove GAP ∈ SPACE (log n), but only a slightly weaker
result.

Theorem 15.14. GAP ∈ SPACE (log2 n).

Proof. Let G = (V , E) be any directed graph with vertex set {1, . . . , m} and edge
set E. Then G can be represented as a string of length n = O(m2 log m). Without loss
of generality we can assume that the distinguished start node and the distinguished
end node is 1 and m, respectively. We de�ne the Boolean function GAP(i, j, `) as
follows.

GAP(i, j, `) =


1 , if there is a path in G between nodes i and j

having length at most `,

0 , otherwise.

For computing GAP(i, j, `) we shall use the following procedure, where (i = j)

denotes the Boolean predicate that is 1 if i = j and 0 otherwise. The other predicates
used below are de�ned analogously.

15.4. More Properties of the GAP Problem 177

PROCEDURE GAP(i, j, `);

if ` = 0 then GAP := (i = j) else

if ` = 1 then GAP := (((i, j) ∈ E) ∨ (i = j)) else

GAP :=

m∨
k=1

[(
GAP

(
i, k,

⌈
`

2

⌉))
∧

(
GAP

(
k, j,

⌊
`

2

⌋))]
Now, for deciding GAP it su�ces to call GAP(1, m, m). The maximum number

of recursive calls is the bounded by log m. At each level of recursion, one has to store
the actual node number in binary. This needs space at most 1+ log m. Consequently,
the total amount of space needed is O(log2 m) = O(log2 n).

Some remarks are mandatory here. The procedure presented in the proof of The-
orem 15.14 does not achieve the optimal running time, since it must be called super-
polynomially often. On the other hand, since NL ⊆ P, we also know that there is an
acceptor for GAP working in polynomial time. However, it remains open whether or
not we can construct an acceptor for GAP achieving simultaneously polynomial time
complexity and a space bound of (log n)

O(1). Hence, it also remains open whether or
not

NL ⊆ PLOPS

P ⊆ SPACE (log2 n) or

SPACE (log2 n) ⊆ P .

Nevertheless, Theorem 15.14 proves a special case of Theorem 8.3. Next, we prove
a very general theorem relating non-deterministic and deterministic space complexity.
This is done by using the so-called padding method. The idea of the padding
method is easily explained. For a given language L one de�nes a language L0 of lower
complexity by �stretching the inputs� as long as necessary. Now, assuming we have a
method for deciding L0, we can transform this decision procedure back for obtaining
a decision procedure for L. The following theorem is due to Savitch [3].

Theorem 15.15. Let f(n) be an S-constructible function satisfying f(n) > log n

and let ε > 0 be such that NL ⊆ SPACE (log1+ε n). Then we also have

NSPACE (f(n)) ⊆ SPACE
(
f1+ε(n)

)
.

Proof. Let L ∈ NSPACE (f(n)). By using the padding-function g de�ned as

g(n) = 2f(n) − n − 1

we de�ne the desired language L0 as follows

L0 = {w ∗ 0g(|w|) w ∈ L} .

We continue with the following claim.

c©Thomas Zeugmann, Hokkaido University, 2008

178 Appendix for Complexity

Claim 1. Provided L ∈ NSPACE (f(n)) we have L0 ∈ NL.

We have to de�ne a NDTM M ′ accepting L0. Let M be any NDTM witnessing
L ∈ NSPACE (f(n)).

Let v be any given string. For �nding out if v ∈ L0, the NDTM M ′ �rst checks
whether or not v = w∗0k for some k ∈ N. If this is the case, M ′ uses a binary counter
to test whether or not |v| = 2f(|w|). This can be done by using at most f(|w|)+1 work
tape cells.

Now, if |v| = 2f(|w|), the NDTM M ′ uses the NDTM M for checking if w ∈ L.
Provided w ∈ L, the NDTM M ′ will �nd a computation of M witnessing this. Note
that the amount of space needed by M ′ in this simulation of M is bounded by f(|w|).

Taking into account that indeed

|v| = |w| + 1 +
∣∣0g(|w|)

∣∣ = |w| + 1 + g(|w|)

= |w| + 1 + 2f(|w|) − |w| − 1

= 2f(|w|) ,

we directly get L0 ∈ NL. This proves Claim 1.

Next, by assumption we additionally know that NL ⊆ SPACE (log1+ε n). Hence,
we can conclude L0 ∈ SPACE (log1+ε n). Thus, it remains to show any deterministic

Turing machine obeying a space bound of log1+ε n can be used for deciding L in space
f1+ε(n). This is done by the following claim.

Claim 2. L0 ∈ SPACE (log1+ε n) implies L ∈ SPACE (f1+ε(n)).

We have to construct a DTM M ′ deciding L. Let any string w over the underlying
alphabet be given as input. For deciding whether or not w ∈ L, we use ideas similar
to those exploited in the proof of Lemma 8.4. However, we are only allowed to use at
most space f1+ε(n). Therefore, we cannot write v = w ∗ 0g(|w|) on any of the work
tapes of M ′, since |v| = 2f(|w|).

Thus, we construct a translator which, on input w and bin(k) on the �rst work
tape, where 0 6 k 6 2f(|w|), will print the kth symbol of v on a special work tape of
M ′ which is then used as input tape for the deterministic machine deciding L0 which
we like to simulate. Note that the translator uses space at most f(|w|).

Finally, we combine the translator with a simulator for the DTM M deciding L0.
Each symbol M wishes to read to read on its input tape is then produced by the
translator and after having been read by M erased. Consequently, the total amount
of space needed by M ′ is bounded by

(log |v|)1+ε = (f(|w|))1+ε .

Now, by construction we have w ∈ L if and only if v ∈ L0, and thus M ′ accepts w if
and only if M accepts v.

15.5. More NL-complete Problems 179

Clearly, Theorem 15.15 directly implies Theorem 8.3, since for ε = 1 we already
know that NL ⊆ SPACE (log2 n). Nevertheless, Theorem 15.15 is stronger than
Theorem 8.3. In particular, Theorem 15.15 directly allows one to transform any im-
provement achieved at the log-level upwards. The converse, however, is not true, i.e.,
it is usually not possible to transform results achieved above the log-level downwards.

Finally, Theorem 15.15 allows the following corollary which we have already men-
tioned in Lecture 8.

Corollary 15.16. PSPACE = NPSPACE

Next, we shall present some more NL-complete problems. This material should
help you to get acquainted with proof techniques suitable for showing NL-complete-
ness results.

15.5. More NL-complete Problems

While we had to prove the NL-completeness of GAP from scratch, now the situation
becomes easier, since from now on its su�ces to reduce a problem already known to
be NL-complete to the problem on hand. We continue with the de�nition of two
problems.

First, we de�ne a variant of the well-known satis�ability problem.

SAT2:

Input: A propositional expression e in conjunctive normal form such that each
clause contains at most two literals.

Problem: Is e not satis�able ?

Next, we de�ne the associative generation problem (abbr. AGEN).

AGEN:

Input: An associative binary operation over a �nite set A as well as subset S ⊆ A.

Problem: Does a �xed element a ∈ A belong to the algebraic closure of S ?

Theorem 15.17. SAT2 and AGEN are NL-complete.

We leave it as an exercise to proof Theorem 15.17.

Next, we de�ne particular classes of directed graphs that are commonly studied in
the literature.

De�nition 15.3. Let G = (V , E) be a directed graph with vertex set V = {1, . . . , n}.

(1) G is called a monotone graph provided (i, j) ∈ E implies i 6 j for all edges

(i, j) ∈ E.

(2) G is said to be a binary graph, if all vertices of G have input and output

valence at most 2.

c©Thomas Zeugmann, Hokkaido University, 2008

180 Appendix for Complexity

(3) Let f: N → N be any function. G is said to be a graph with bandwidth f(n)

provided (i, j) ∈ E implies |i − j| 6 f(n) for all edges (i, j) ∈ E.

The restriction of GAP to the types of graphs de�ned in (1) through (3) is denoted by

MGAP, GAP2, and GAP(f(n).

First we show that bounding the bandwidth f(n) has direct in�uence to the com-
plexity of the language GAP(f(n).

Theorem 15.18. Let f: N → N be any function such that 2 6 f(n) 6 n. Then we

have

GAP(f(n) ∈ SPACE (log(f(n)) · log n) .

Proof. For proving this theorem we use the procedure GAP(i, j, `) de�ned within
the proof of Theorem 15.14. However, when calling GAP(1, n, n), we do not store the
vertex numbers, but instead only the di�erence of the actual vertices to the number
of their parent vertex. By the given band with, this will require only log(f(n)) tape
cells. The number of recursive calls remains log n. Finally, taking into account that
f(n) > 2, we see that log(f(n)) · log n > log n. Hence, whenever necessary, we can
reconstruct a true vertex number. Thus, the theorem follows.

15.6. The Complexity of MGAP and GAP2

In this part of our course we take a closer look at MGAP and GAP2. First, we deal
with MGAP.

Theorem 15.19. GAP is log-space reducible to MGAP.

Proof. Let G = (V , E) be any given directed graph with vertex set V = {1, . . . , n}.
Let 1 be the distinguished start node, and let n be the distinguished end node. We are
going to describe a log-space computable transformation mapping G to a monotone
graph G ′ = (V ′, E ′) with respect to the lexicographical order.

We set V ′ = V × V and E ′ = E ′1 ∪ E ′G. The edge sets E ′1 and E ′G are de�ned
as follows. E ′1 is independent of E and connects vertices having the same second
component. More precisely, we de�ne

E ′1 = {((i, j), (i + 1, j)) j = 1, 2, . . . , n ∧ i = 1, 2, . . . , n − 1} .

The edge set E ′G is obtained from E in the following way.

E ′G = {((i, k), (i + 1, `)) (k, `) ∈ E, i = 1, 2, . . . , n − 1} .

Hence, by construction, every path in G corresponds to a path in G ′ such that the
�rst component is always increased. Thus, there is a path in G between 1 and n if
and only if there is a path in G ′ between (1, 1) and (n, n). We leave it as an exercise
to verify that G ′ is monotone with respect to the lexicographical order

(i, j) −→ (i − 1) · n + j .

Since this transformation is clearly log-space computable, the theorem follows.

15.6. The Complexity of MGAP and GAP2 181

For the sake of illustration, we exemplify the construction outlined in the proof
of Theorem 15.19. Let G = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 2), (4, 3)}). One directly sees
that there is no path from 1 to 4 in the graph G.

Next, we construct G ′. Both graphs G and G ′ are displayed in Figure 15.2 below.

Figure 15.2: The graph G and its monotone transform G ′

The vertex set V ′ is obtained as described above, i.e.,

V ′ = {1, 2, 3, 4}× {1, 2, 3, 4}

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), . . . , (2, 4), (3, 1), . . . , (3, 4), (4, 1), . . . , (4, 4)}

These vertices are mapped by the lexicographical order to the following numbers:

(1, 1) −→ (1 − 1) · 4 + 1 = 1

(1, 2) −→ (1 − 1) · 4 + 2 = 2

·
·
·

(1, 4) −→ (1 − 1) · 4 + 4 = 4

(2, 1) −→ (2 − 1) · 4 + 1 = 5

·
·
·

(4, 4) −→ (4 − 1) · 4 + 4 = 16

c©Thomas Zeugmann, Hokkaido University, 2008

182 Appendix for Complexity

The edge set E ′1 is easily computed, i.e.,

E ′1 = {((1, 1), (2, 1)) , ((1, 2), (2, 2)) , . . . , ((3, 4), (4, 4))}

= {(1, 5), (2, 6), (3, 7), (4, 8), (5, 9), . . . , (9, 13), (10, 14), (11, 15), (12, 16)} .

The edges from E ′1 are drawn in red in Figure 15.2. Finally, we compute E ′G, i.e.,

E ′G = {((1, 1), (2, 2)) , ((1, 2), (2, 3)) , ((1, 3), (2, 2)) , . . . , ((3, 4), (4, 3))}

= {(1, 6), (2, 7), (3, 6), (4, 7), . . . , (9, 14), . . . , (12, 15)} .

The edges from E ′G are drawn in blue in Figure 15.2.

The following corollary is left as an exercise.

Corollary 15.20. MGAP is NL-complete.

Next, we turn our attention to GAP2.

Theorem 15.21. GAP is log-space reducible to GAP2.

Proof. Let G = (V , E) be any given directed graph with vertex set V = {1, . . . , n}.
Let 1 be the distinguished start node, and let n be the distinguished end node. We
are going to describe a log-space computable transformation mapping G to a binary
graph G ′ = (V ′, E ′). Again, we set V ′ = V × V . Furthermore, we let E ′ = E ′I ∪ E ′G,
where the sets E ′I and E ′G are de�ned as follows.

E ′I = {((1, j), (2, j)) , (2, j), (3, j)) , . . . , ((n, j), (1, j)) j = 1, . . . , n} ,

and
E ′G = {((j, i), (i, j)) (i, j) ∈ E, i 6= j} .

Intuitively speaking, each vertex v in G corresponds to an n-gon in G ′ such that
the valences of v are distributed to the corners of the n-gon.

By construction, G ′ is a binary graph. Moreover, the transformation given above
is obviously log-space computable. Finally, it is easy to see that there is a path in
G from 1 to n if and only if there is path in G ′ from (1, 1) to (n, n). We omit the
details.

Again, we are going to exemplify the transformation described in the proof of
Theorem 15.21. Let G = ({1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4), (2, 3), (4, 3)}). So, there is a
path from 1 to 4 as witnessed by the edge (1, 4).

Next, we construct G ′. Both graphs G and G ′ are displayed in Figure 15.3 below.

The vertex set V ′ is obtained as described above, i.e.,

V ′ = {1, 2, 3, 4}× {1, 2, 3, 4}

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), . . . , (2, 4), (3, 1), . . . , (3, 4), (4, 1), . . . , (4, 4)}

15.6. The Complexity of MGAP and GAP2 183

Graph

1

43

2

G

(3,2)

(2,3)
(1,3) (2,4)

(3,1)

Graph G’
(4,4)(3,4)(4,3)(3,3)

(2,2) (1,2) (2,1) (1,1)

(4,1)

(1,4)

(4,2)

Figure 15.3: The graph G and its binary transform G ′

The edge set E ′I is as follows:

E ′I = {((1, 1), (2, 1)) , ((2, 1), (3, 1)) , ((3, 1), (4, 1)) , ((4, 1), (1, 1)) , . . . ,

= ((1, 4), (2, 4)) , ((2, 4), (3, 4)) , ((3, 4), (4, 4)) , ((4, 4), (1, 4))} .

Finally, we calculate the edge set E ′G.

E ′G = {((2, 1), (1, 2)) , ((3, 1), (1, 3)) , ((4, 1), (1, 4)) , ((3, 2), (2, 3)) , ((3, 4), (4, 3))} .

The edges from E ′I are displayed red and the edges from E ′G, i.e., those corresponding
to the original edges in G are drawn in blue in Figure 15.3.

Again, we leave it as an exercise to prove the following corollary.

Corollary 15.22. GAP2 is NL-complete.

We �nish this lecture by pointing to an interesting open problem. If we switch from
directed graphs to undirected ones, then we obtain the problem UGAP. Of course,
undirected graphs can be considered as special cases of directed graphs, i.e., those ones
having a symmetric edge relation. Thus, the complexity of UGAP is bounded by the
complexity of GAP. However, a precise characterization of UGAP's complexity has
not been obtained so far. In particular, it remains open whether or not UGAP ∈ L

or whether or not UGAP is NL-hard. We refer the interested reader to [1] and [2] for
further details.

Moreover, many more interesting results concerning the complexity classes studied
so far can be found in the literature.

References

[1] M. Ajtai and R. Fagin (1988), Reachability is harder for directed than for
undirected �nite graphs, in Proc. 29th Annual IEEE Symposium on Foundations
of Computer Science, pp. 358 � 367.

c©Thomas Zeugmann, Hokkaido University, 2008

184 Appendix for Complexity

[2] H. Lewis and C. Papadimitriou (1982), Symmetric space-bounded compu-
tation, Theoretical Computer Science 19, 161 � 187.

[3] W. J. Savitch (1970), Relationships between nondeterministic and determin-
istic tape complexities, Journal of Computer and System Sciences, 4(2):177-192.

Appendix for Cryptography

In this appendix, we provide a bit more material for further reading which had to
be omitted due to the lack of time but which may be interesting.

First, we provide another example illustrating Theorem 10.1. We assume the
following mapping of numbers to letters:

b A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 16.1: Mapping numbers to letters

Example 16.1. Suppose we have eavesdropped the cipher NUObT and, ad-
ditionally, . . . RY. . . . Moreover, we know that the message is related to a popular
telecast in Germany. The title of it is XY unresolved. Thus, we conjecture R = f(X)

and Y = f(Y). Since R, X and Y are the 18th, 24th, and 25th letter, respectively, we
obtain the following system of linear congruences:

18 ≡ a · 24 + r mod 27 and

25 ≡ a · 25 + r mod 27

Applying the algorithm described in the proof of Theorem 10.1, we directly obtain
a ≡ 7 mod 27 and r ≡ 12 mod 27. Therefore, we can decipher the encrypted message
NUObT as follows:

f−1(N) = f−1(14) ≡ 8 = H

f−1(U) = f−1(21) ≡ 9 = I

f−1(O) = f−1(15) ≡ 12 = L

f−1(b) = f−1(0) ≡ 6 = F

f−1(T) = f−1(20) ≡ 5 = E

That is, we have obtained the German word HILFE which means HELP. This example
also shows another aspect. If one can correctly guess at least part of the plaintext,
cryptanalysis becomes usually much easier. For example, when using cryptography
in governmental applications, politeness may create enormous danger. Just assume
someone writes all the time �Dear Mr. President.� The same is true for sending the
same message twice, but using di�erent keys.

The cryptosystems studied so far a special cases of so-called a�ne cryptosystems.
We continue with a closer look at them.

16.1. A�ne Cryptosystems

The principal idea of a�ne cryptosystems is as follows. Let A be any �xed �nite
and non-empty alphabet with |A| = N. We assume that the messages to be sent are

186 Appendix for Cryptography

spelled out using the alphabet A. We de�ne the set of all plaintext message units

to be the set of all k-tuples of letters from A, where k > 1 is any �xed natural
number. In order to assign numbers to the plaintext message units, we proceed as
follows. First, we assign the numbers 0, 1, . . . , N− 1 to the letters in A. For example,
if A = {b, A, B, C, . . . , Z}, we may use the assignment b → 0, A → 1, B → 2,
. . ., Z → 26. Obviously, this mapping is bijective. Next, let w = xk−1 · · · x0 be any
plaintext message unit, i.e., xi ∈ A, 0 6 i 6 k − 1. Using the assignment de�ned
above, we replace the letters xi by the corresponding numbers wi, and de�ne the
coding c(w) of w by

c(w) =

k−1∑
j=0

wjN
j .

That is, we canonically express w as an N−ary number in the number system having
the basis N.

The enciphering of c(w) is performed via the a�ne transformation t de�ned as
follows:

t(c(w)) = (a · c(w) + r) mod Nk where a, r ∈ {0, 1, . . . Nk − 1} .

Moreover, in order to ensure decipherability, we additionally require gcd(a, Nk) = 1.
The ordered pair (a, r) is referred to as secret key and has to be kept secretly by the
sender and receiver.

Finally, we express t(c(w)) as a number to the basis N, i.e., we write

t(c(w)) =

k−1∑
j=0

yjN
j where yj ∈ {0, . . . , N − 1} .

Using the inverse assignment of numbers to letters, we obtain the wanted ciphertext
units over Ak.

The deciphering is performed mutatis mutandis. The only di�erence is that the
receiver has to compute (â, r̂) as follows: â = a−1 mod Nk (* this is possible, since we
have assumed gcd(a, Nk) = 1 *), and r̂ = Nk − a−1r mod Nk. Instead of applying t,
the receiver applies t−1 de�ned as t−1(y) = ây + r̂ mod Nk.

Remark: The number of possible keys is given by Nk · ϕ(Nk), where ϕ is Euler's
totient function. Note that ϕ(n) = n

∏
p|n(1 − 1

p
), p prime. There are also

some special cases we should remember, i.e.,

ϕ(p) = p − 1, provided p is prime, and

ϕ(pα) = pα−1(p − 1), if p is prime and α > 1.

For example, if N = 27, k = 2, then ϕ(272) = ϕ(36) = 35 · 2 = 486. Thus, there
are 354294 many possible keys.

16.1. Affine Cryptosystems 187

We continue by asking how secure are a�ne cryptosystems. First of all, Theorem 10.1
directly extends. Thus, we have to analyze the di�culty of �nding or guessing two
plaintext units for two ciphertext units. If we are in Case 2.2. or 2.3. of the crypt-
analysis scenarios described in Lecture 10, then we are easily done. However, even if
we are in Case 2.1. there is some hope to break the encryption. In order to see what
the main weakness of a�ne cryptosystems is, let us consider the following example.

Example 16.2. Let N = 27, k = 2, and let A = {b, A, B, . . . , Z}. Moreover,
we assign the numbers 0, 1, . . . 26 to {b, A, B, . . . , Z} in canonical order to the letters.
Furthermore, let (7, 26) be the key chosen. We compute the cipher of KL and ZL,
respectively. Since K → 11 and L → 12 we obtain c(KL) = 11 · 27 + 12 = 309. Thus,
t(c(KL)) = 7 ·309+26 ≡ 2 mod 729. Finally, 0 = 0 ·27+2, and therefore the cipher is
bB. Analogously, using Z → 26, we obtain c(ZL) = 714, and t(c(ZL)) = 7 ·714+26 ≡
650. Finally, 650 = 24 · 27 + 2, and therefore the cipher is XB. At this point we can
make the following observation: The plaintext units KL and ZL have the common
su�x L. Interestingly enough, the ciphertext units bB and XB have a common su�x,
too, i.e., B. Is this a general phenomenon? The a�rmative answer is provided by our
next theorem.

Theorem 16.1. Let A be any �xed non-empty �nite alphabet with |A| = N.

Furthermore, let k > 1 be arbitrarily �xed, and let (a, r) be any key with gcd(a, Nk) =

1. Let w and ŵ be any two plaintext units from Ak having a common su�x of length

i 6 k. Then the ciphers t(c(w)) and t(c((̂w)) have a common su�x of length i, too.

Proof. Let c(w) =
k−1∑
j=0

wjN
j and c(ŵ) =

k−1∑
j=0

ŵjN
j. By assumption, wj = ŵj for

all j = 0, . . . , i − 1.

Furthermore, consider

y = t(c(w)) = aw + r mod Nk =

k−1∑
j=0

yjN
j

ŷ = t(c(ŵ)) = aŵ + r mod Nk =

k−1∑
j=0

ŷjN
j

We have to show that yj = ŷj for all j = 0, . . . , i−1. By construction, we additionally
know

a

k−1∑
j=0

wjN
j + r ≡

k−1∑
j=0

yjN
j mod Nk (16.1)

a

k−1∑
j=0

ŵjN
j + r ≡

k−1∑
j=0

ŷjN
j mod Nk (16.2)

Now, observing that Equations (16.1) and (16.2) directly imply their validity modulo
N` for every ` 6 k, we get:

a

k−1∑
j=0

wjN
j + r ≡

c©Thomas Zeugmann, Hokkaido University, 2008

188 Appendix for Cryptography

a

i−1∑
j=0

wjN
j + r ≡

i−1∑
j=0

yjN
j mod Ni (16.3)

a

k−1∑
j=0

ŵjN
j + r ≡

a

i−1∑
j=0

ŵjN
j + r ≡

i−1∑
j=0

ŷjN
j mod Ni (16.4)

Taking into account that the left hand sides of Equation (16.3) and (16.4) are equal
since wj = ŵj for all j = 0, . . . , i − 1, we may conclude that the right hand sides are
equal, too. By the uniqueness of number representation with respect to the basis N

we thus have yj = ŷj for all j = 0, . . . , i − 1.

But there is something more to be said concerning cryptanalysis. As already
mentioned in Lecture 10, a very useful tool is frequency analysis. The basic idea
behind this approach is to count the frequencies of the di�erent letters in a huge and
representative text. If there is no knowledge concerning the relevant subject, then one
must use some general text. Applying this approach to English yields the following
frequencies for general text:

E 12,31 % O 7,94 % S 6,59 %
T 9,59 % N 7,19 % R 6,03 %
A 8,05 % I 7,18 % H 5,14 %

The above table does not display the frequency of the blank symbol. This is due
to the fact that this symbol has for sure the highest frequency. Now, all you have to
do is to compute the frequencies of the di�erent letters appearing in the ciphertext. If
k = 1, then you may easily break the encryption scheme by trying to identify the most
often appearing letter to be the cipher of E, the one with the 2nd highest frequency
to be the cipher of T, and so on. Even if this fails (because the text was to short) you
may just continue guessing the next probable combinations until the code breaks.

If k > 1, we may apply Theorem 16.1 by performing a frequency analysis of all
letters at positions congruent 0 modulo k. This might result in providing us the
key modulo N. Then we may proceed by using a 2-gram statistics to obtain the
key modulo N2. Clearly, we may considerably shrink the search space by using the
information gained modulo N. And so on, we may continue until we have made
the right guess. Note that the additional information gained modulo N, modulo N2,
. . . a.s.o. considerably reduces the number of keys to be tried.

We continue by asking how to overcome the principal weakness of a�ne cryptosys-
tems. This is done in the next subsection. We may be a bit surprised how simple the
system presented below is. But we should keep in mind that in those days everything
had to be done by hand.

16.2. The PLAYFAIR System 189

16.2. The PLAYFAIR System

One of the �rst such systems that overcomes the weakness of a�ne cryptosystems
pointed out by Theorem 16.1 has been proposed by the physicist Sir Charles Wheat-
stone in 1854. His friend Baron Playfair of St. Andrews encouraged the British gov-
ernment to put it into use.

Thus, the following cryptosystems are referred to as PLAYFAIR-systems. Take
the letters A, B, . . . , Z without J, and arrange them arbitrarily in a 5 × 5 square.
Figure 16.2 displays a possible arrangement.

S Y D W Z
R I P U L
H C A X F
T N O G E
B K M Q V

Figure 16.2: A 5× 5 square for PLAYFAIR.

The encryption is performed as follows.

(i) Partition the written plaintext in blocks of length 2 in a way such that no
block consists of identical letters. Also make sure that the plaintext is of even
length. This can be achieved by introducing irrelevant letters that can be easily
recognized.

(ii) The enciphering of the blocks obtained is done as follows. If the two letters of
the block are neither in the same row nor column of the square, then consider
the spanned rectangle. Replace the �rst letter of the block by the letter in
the same row of the resulting rectangle, and substitute the second letter by its
corresponding letter in the other row. For example, EA spans the rectangle

A X F
O G E

Thus, E is replaced by O and A is substituted by F resulting in EA → OF.
Analogously, SV → ZB, RF → LH, and so on.

If both letters are in the same row or column then go one step right and down,
respectively. This is done cyclically. For example, HA → CX, WX → UG,
CA → AX, DM → PD, RL → IR.

Decryption is then obviously performed by reversing the rules given above. Moreover,
su�xes are no longer necessarily preserved. For instance, look at EA and CA which
have the common su�x A. They are enciphered as OF and AX, respectively, which
do not have a common su�x. On the other hand, the plaintext pairs HA and CA

also do share the su�x A and so do their ciphers CX and AX.

c©Thomas Zeugmann, Hokkaido University, 2008

190 Appendix for Cryptography

Remark: The rules described above in (i) and (ii) allow several variations of
PLAYFAIR-systems. Instead of using a 5 × 5 square one can alternatively design
3 × 9 or 9 × 3 rectangles. The latter systems again allow to include all 27 letters
including the blank. Those variations were proposed by Wheatstone, too.

Furthermore, PLAYFAIR-systems can be easily memorized by using a key word in
which no letter occurs twice. For example, let MAGIC be the key word chosen. Then
we �rst write the key word into the square and rectangle, respectively, and the all
remaining letters in lexicographical order (cf. Figure 16.3).

M A G
I C B

M A G I C D E F
B D E F H H J K
K L N O P L N O
Q R S T U P Q R
V W X Y Z S T U

V W X
Y Z b

Figure 16.3: Two PLAYFAIR systems using the key word MAGIC.

Though the PLAYFAIR system has been really used by the Foreign O�ce in Great
Britain starting with the Krim war and ending in World War I, it is by no means
secure. To make things worse, the Foreign O�ce quite quickly forgot to use the
variations mentioned above. In particular, the statistics of 2-grams is preserved, only
the statistics of single letters is disturbed. When the 5 × 5 square is used, there are
625 possible 2-grams. But not all of them occur in practice. Even worse, the 18 most
frequent 2-grams in German contribute already 92.93 % to all 2-grams that appear in
a usual text.

Moreover, there is another peculiarity of the PLAYFAIR systems. For discovering
it, let us have a look at the following 5× 5 squares.

P A L M E
R S T O N
B C D F G
H I K Q U
V W X Y Z

E P A L M
N R S T O
G B C D F
U H I K Q
Z V W X Y

G B C D F
U H I K Q
Z V W X Y
E P A L M
N R S T O

Figure 16.4: Three PLAYFAIR squares giving the same encryption.

At �rst glance, these three squares look di�erent. Now, let us encipher
CR YP TO GR AP HY

In all three cases we get
BS VM ON BN AL QV

The reason for this phenomenon is easily explained. As long as we cyclically shift
rows and/or columns, we get the same rule for encryption/decryption. Clearly, this
property severely reduces the combinatorial complexity.

Exercise 44. The club of kryptomanic students organized a competition in poetry.

The following encrypted poem has been submitted. Decipher it.

OVJKIKJVOVJKIKJVKLMVKVJVVYNY
GKLUNWOFPJCTLXZHNVPMVLNYJV
PDZNFYTVVNJFVJNYAELUNWJCHJ
KLTIZNUJHKAMPJLJJNAEJVLYNS

Exercise 45. What can be said about the complexity of breaking PLAYFAIR-

systems provided the sender has added any text of odd length at the beginning of the

plaintext?

17. Using Probability Theory

In Lecture 10 we have seen that redundancy in any natural language provides useful
information to possibly break Vigenère like cryptosystems. Below we take a look at
natural languages from the perspective of probability theory.

17.1. Friedman's Test

First, we ask for the probability p that two randomly and independently chosen letters
of a given plaintext are equal. Let t = s0s1 . . . sn−1 be any text of length n in some
natural language. For the sake of presentation, we assume that t is written in English
using the usual alphabet A = {A, B, C, . . . , Z}. We again exclude the blank symbol
from our considerations. Thus, we assume si ∈ A for all i = 0, . . . n−1. Furthermore,
by n0, n1, . . . , and n25 we denote the number of occurrences of As, Bs, . . . , and

Zs, respectively, in t. Clearly, n =
25∑

i=0

ni. Furthermore, we have n possibilities

to choose the �rst letter and n possibilities for the second one yielding an overall
number of n2 possible choices for pairs of letters chosen in the plaintext. Note that
we allow to choose two times the same position. Analogously, there are n2

0, n2
1, . . . ,

n2
25 many possible choices for pairs containing two times the letter A, B, . . . , and Z,

respectively. Hence, the total number of pairs consisting of two identical letters is

given by n =
25∑

i=0

n2
i . Consequently, the wanted probability p can be expressed as

p =

25∑
i=0

n2
i

n2
. (17.1)

192 17. Using Probability Theory

This probability is often referred to as coincidence index. Clearly, all our arguments
used above remain valid, if we use any text instead of a plaintext, e.g. a ciphertext.

Additionally, we may use statistical information concerning text written in English.
Let p0, p1, . . . , and p25 denote the probability for the occurrence of letter A, B, . . . ,
and Z, respectively, in a text written in English (cf. Figure 17.1).

letter pi letter pi letter pi letter pi

A 0.0856 H 0.0528 O 0.0797 V 0.0092
B 0.0139 I 0.0627 P 0.0199 W 0.0149
C 0.0279 J 0.0013 Q 0.0012 X 0.0017
D 0.0378 K 0.0042 R 0.0677 Y 0.0199
E 0.1304 L 0.0339 S 0.0607 Z 0.0008
F 0.0289 M 0.0249 T 0.1045
G 0.0199 N 0.0707 U 0.0249

Figure 17.1: Probabilities for the occurrence of all letters in English.

Hence, the probability for two randomly chosen letters to be A, B, . . . , and Z,
is p2

0, p2
1, . . . , and p2

25, respectively. Consequently, the overall probability for two
randomly chosen letters to be equal is given by

p̃ =

25∑
i=0

p2
i . (17.2)

Using the probabilities displayed in Figure 17.1, we obtain: p̃ = 0.06873314, i.e.,
6.87% of all possible choices yield a pair containing two times the same letter. On
the other hand, if we generate a text randomly such that each letter has probability
p̂i = 1/26, then

p̂ =

25∑
i=0

p̂2
i = 26 · 1

262
=

1

26
≈ 0.03846 . (17.3)

Comparing the numerical values obtained from (17.2) and (17.3), we see that p̃ is
roughly 1.8 times bigger than p̂. At this point, we can make the following observation.

Observation 17.1. In case of a monoalphabetical enciphering the coincidence

index remains unchanged.

This is obvious, since a monoalphabetical enciphering is nothing else than a per-
mutation.

Next, we ask what happens in case of polyalphabetical encipherings. After a bit of
re�ection, it is easy to see that the coincidence index shrinks. Hence, we may use the
following simple test to decide with high probability whether or not a given ciphertext
results from a monoalphabetical or polyalphabetical substitution.

17.1. Friedman's Test 193

Substitution test T: Count the number of occurrences of each letter in the cipher-
text. Compute the coincidence index p using Formula (17.1).

If p ≈ p̃, output �monoalphabetical substitution.�

If p << p̃, output �polyalphabetical substitution.�

Furthermore, we are interested whether or not one can gain additional information
using the coincidence index. For answering this question we look at Vigenère substi-
tutions. By Lemma 10.2 we already know that a Vigenère substitution performed by
using a key word of length d can be decomposed into d monoalphabetical substitu-
tions. If we write the plaintext in blocks of length d we obtain d columns as displayed
in the proof of Lemma 10.2. Assuming a su�ciently long text, we may directly con-
clude from Observation 17.1 that the coincidence index remains unchanged inside each
column. However, if we consider pairs of letters drawn from di�erent columns, the
probability to obtain pairs of equal letters decreases. Optimally, it should be close to
1/26. We take this values as a working hypothesis. Thus, we may continue as follows.
Each column contains n/d many letters. For choosing the �rst letter, we have again
n possibilities. After having chosen it, the column containing it is determined, too.
Inside this column, we have again n/d many choices resulting in the overall number
of n2/d many possibilities. Outside the column containing the �rst letter are n−n/d

many remaining letters resulting in the total number of n(n − n/d) = n2(d − 1)/d

many such choices. Thus, the expected number of of pairs containing two equal letters
can be approximated by

A =
n2

d
· 0.06873 +

n2(d − 1)

d
· 1

26
. (17.4)

Consequently, the probability to obtain a pair of equal letters is approximated by

A

n2
=

1

d
· 0.06873 +

(d − 1)

d
· 1

26
. (17.5)

Finally, since the coincidence index is an approximation of this probability, we obtain
from (17.5)

p ≈ 1

d
· 0.06873 +

(d − 1)

d
· 1

26

and therefore,

d ≈
0.06873 − 1

26

p − 1
26

≈ 0.0303

p − 0.03846
. (17.6)

The latter estimate can be successfully used to obtain good estimates for the key
word length, and thus to reduce the calculations when applying Kasiski's algorithm.

c©Thomas Zeugmann, Hokkaido University, 2008

194 17. Using Probability Theory

Formula (17.6) was discovered by William Friedman (one of the most successful crypt-
analysts of all times) in 1925.

This is a good place to discuss some special cases of Formula (17.6). First, if the
ciphertext to be analyzed has been enciphered using a monoalphabetical substitution,
then its coincidence index p should be p ≈ 0.06873. Thus, d ≈ 1 and this nicely
re�ects reality. Second, if the key word is a truly randomly generated string then
p should be close to 1/26. Obviously, in this case Formula (17.6) provides evidence
for a huge key size. Finally, it should be remarked that Formula (17.6) is really an
estimate and not an algorithm to compute the true key size. However, the estimate
obtained may help to signi�cantly reduce the number of cases to be considered during
application of Kasiski's algorithm.

Exercise 46. You have received the following cipher (for the sake of readability,

it is displayed here in blocks of length 5, however, this choice was arbitrary):

TPOGD JRJFS UBSFC SQLGP COFUQ NFDSF CLVIF OTGNW GT.

Try to decipher it.

We �nish this part by applying the Substitution Test and Formula (17.6) to our
example from Lecture 10.

Using the data displayed in Figure 10.7, we obtain the following frequencies for the
letters A through Z in the ciphertext given in Lecture 10, Figure 10.5 (cf. Figure 17.2
below):

letter ni letter ni letter ni letter ni

A 26 H 40 O 12 V 27
B 25 I 11 P 17 W 11
C 13 J 4 Q 2 X 13
D 2 K 10 R 9 Y 5
E 5 L 41 S 18 Z 14
F 13 M 21 T 23 all 400
G 23 N 4 U 11

Figure 17.2: Frequencies for the letters A through Z in the ciphertext.

Thus, applying (17.1) we get: p = 0.05565 which is signi�cantly smaller than
0.06873. Thus, we conclude to have a cipher resulting from a polyalphabetical sub-
stitution. Furthermore, formula (17.6) yields the value d = 1.8. Therefore, we have
obtained high evidence for a short key word which matches nicely with the length 3

found in Lecture 10.

17.2. Security

Next, we want to deal with the security of cryptosystems from a higher point of view.
Instead of looking at a particular cryptosystem, we are interested in general properties

17.2. Security 195

a cryptosystems must possess to be secure. We shall distinguish between uncon-

ditionally secure, computationally secure, provably secure, and, of course,
insecure cryptosystems. While it is easy to de�ne these notions on an intuitive level,
it requires some work to provide mathematically sound de�nitions for these notions.
Intuitively, a cryptosystem is said to be unconditionally secure if the probability
p, p < 1, of breaking it, is independent of the computing resources available and
the time an adversary is willing to spend. In contrast, we call a cryptosystem com-

putationally secure if breaking it is possible in principle but all known methods
of executing the computation necessary require an infeasible amount of time and/or
hardware. Furthermore, a cryptosystem is said to be provably secure if it can be
shown that breaking it for any signi�cant number of cases implies that some other
problem � such as computing the factorization of large composite integers � could be
solved with comparable e�ort.

The distinction between computationally secure and provably secure is that while
in either case the security of the system would be impeached if the underlying com-
putationally di�cult problem could be solved, the converse need not hold for compu-
tationally secure systems but does hold for provable secure systems.

Clearly, none of the above descriptions is a precise mathematical de�nition. There-
fore, we continue by providing the necessary framework for making them precise. We
start with the notion of unconditionally secure cryptosystems.

We model cryptosystems as follows. By Zm we denote any �xed alphabet having
m letters. As an example we have already considered Z26. Furthermore, let n ∈ N;
then we use (x0, . . . , xn−1), xi ∈ Zm, i = 0, . . . n − 1, to denote strings of length n

over Zm. We refer to such strings as to n-grams. By Zm,n we denote the set of all
n-grams over Zm. Moreover, we use Pt to denote the set of all possible plaintexts,
i.e., Pt =

⋃
n∈N Zm,n.

De�nition 17.1. A cryptographic transformation T is a sequence of bijective

transformations (T (n))n∈N with

T (n): Zm,n → Zm,n ,

where Zm is arbitrarily �xed.

A cryptosystem T is a family of cryptographic transformations, i.e., T = {Tk k ∈ K}.

K is referred to as set of all admissible keys (admissible means admissible for T), and

k ∈ K is called key.

In accordance with Lecture 10, we generally assume that T is known to the crypt-
analyst but she does not know which key k (i.e., which transformation T

(n)
k) has been

used. Furthermore, we assume that the generation of plaintext and the choice of a
key are independent probabilistic processes.

Now, the task of the cryptanalyst can be formalized as follows: Determine the
plaintext and the key, respectively, by using the available information derivable from

c©Thomas Zeugmann, Hokkaido University, 2008

196 17. Using Probability Theory

- the ciphertext Y received,

- the cryptosystem T = {Tk k ∈ K} used to compute Y,

- the probability distribution Prplain over the set of all plaintexts,

- the probability distribution Prkey over the set K of all keys admissible for T,

- all possible ciphers y = Tk(x), where k ∈ K, x ∈ Pt.

The cryptanalyst has to make a priori assumptions about Prplain and Prkey . Below
we shall describe some possibilities how to arrive at reasonable assumptions about
Prplain and Prkey . Right now, we assume that these probability distributions are given.
Obviously, these probability distributions induce the probability distribution Prcipher

over the set of all ciphertexts Ct. Furthermore, we are interested in the following
probability distributions and probabilities, respectively:

Prplain, key(x, k) =df the product distribution over Pt× K,

Prplain, cipher(x, y) =df the joint distribution over Pt and Ct,

Prcipher , key(y, k) =df the joint distribution over Ct and K,

Prcipher , plain(y, x) =df the joint distribution over Ct and Pt,

Prplain|cipher(x|Y) =df the conditional probability of the plaintext x under the observed
ciphertext Y,

Prkey|cipher(k|Y) =df the conditional probability of the key k under the observed ci-
phertext Y,

Prcipher |plain(Y|x) =df the conditional probability of the cipher Y under the plaintext x,

which are de�ned as follows:

Prplain, key(x, k) = Prplain(x) · Prkey(k) (17.7)

Prplain, cipher(x, y) =
∑

{k∈K Tk(x)=y}

Prplain(x) · Prkey(k) (17.8)

Prcipher , key(y, k) =
∑

{x∈Pt Tk(x)=y}

Prplain(x) · Prkey(k) (17.9)

Prcipher(Y) =
∑

{(x,k) Tk(x)=Y}

Prplain(x) · Prkey(k) (17.10)

Prcipher , plain(y, x) =
∑

{k∈K T−1
k (y)=x}

Prcipher(y) · Prkey(k) (17.11)

17.2. Security 197

Prplain|cipher(x|Y) =
Prplain, cipher(x, Y)

Prcipher(Y)
(17.12)

Prkey|cipher(k|Y) =
Prcipher , key(Y, k)

Prcipher(Y)
(17.13)

Prcipher |plain(y|X) =
Prcipher , plain(y, X)

Prplain(X)
, (17.14)

where the conditional probabilities in (17.12) and (17.13) are de�ned if and only if
Prcipher(Y) > 0, and Prcipher |plain is de�ned if and only if Prplain(x) > 0.

Now we are ready to formalize the notion of unconditional security. The a priori

information concerning plaintexts is provided by Prplain . So, a priori the most probable
plaintexts of length n are the n-grams (x0, . . . , xn−1) for which Prplain(x0, . . . , xn−1)

takes its maximum. Note that there might be more than one plaintext for which the
maximum is taken. A posteriori, that is after having eavesdropped the ciphertext Y,
the most probable plaintexts x are those ones for which Prplain|cipher(x|Y) is maximized.
These observations directly yield the following de�nition.

De�nition 17.2. A cryptosystem T is said to be unconditionally secure if

Prplain|cipher(x|Y) = Prplain(x)

for all plaintexts x and all ciphertexts Y ful�lling Prcipher(Y) > 0.

Thus, for an unconditionally secure cryptosystem the probability distributions
Prplain and Prplain|cipher(· |Y) are identical for all ciphers Y provided the cipher can be
generated at all by the cryptosystem T. In other words, whatever the eavesdropped
cipher Y is, for the cryptanalyst the probability to break it is the same as having
not seen it. Note that this de�nition does not make any assumptions concerning the
computing power available to the cryptanalyst nor does it limit the time she may
spend.

The following theorem provides a �rst characterization of unconditionally secure
cryptosystems.

Theorem 17.1. A cryptosystem T is unconditionally secure if and only if

Prcipher |plain(y|x) = Prcipher(y) for all plaintexts x with Prplain(x) > 0.

Proof. First of all, consider the case Prcipher(y) = 0. Consequently, by (17.11)
we get Prcipher , plain(y, x) = 0, and therefore Prcipher |plain(y|x) = 0, too, in accordance
with (17.14). Hence, the theorem follows. Therefore, it su�ces to consider the case
Prcipher(y) 6= 0.

Necessity: Assume T is unconditionally secure. Thus Prplain|cipher(x|y) = Prplain(x)

for all plaintexts x and all ciphertexts y ful�lling Prcipher(y) > 0 by De�nition 17.2.
Furthermore, by (17.14) we know that

Prcipher |plain(y|x) =
Prcipher , plain(y, x)

Prplain(x)
provided Prplain(x) > 0 .

c©Thomas Zeugmann, Hokkaido University, 2008

198 17. Using Probability Theory

Next, we apply Bayes' formula, i.e.,

Pr(A|B) =
Pr(A) · Pr(B|A)

Pr(B)
, (17.15)

for all events A and B with Pr(B) > 0. Thus, applying (17.15) to Prplain|cipher(x|y)

directly yields

Prplain|cipher(x|y) =
Prplain(x) · Prcipher |plain(y|x)

Prcipher(y)
(17.16)

and hence,

Prplain|cipher(x|y) · Prcipher(y) = Prplain(x) · Prcipher |plain(y|x) . (17.17)

Since Prplain|cipher(x|y) = Prplain(x), Formula (17.17) immediately implies the assertion
of the theorem and the necessity is shown.

Su�ciency: Now, we have the assumption Prcipher |plain(y|x) = Prcipher(y) for all
x ∈ Pt satisfying Prplain(x) > 0. We have to show Prplain|cipher(x|y) = Prplain(x).
Using again (17.15) (this time for Prcipher |plain(y|x)), we get

Prcipher |plain(y|x) =
Prplain(y) · Prplain|cipher(x|y)

Prcipher(x)
. (17.18)

Hence,
Prcipher |plain(y|x) · Prcipher(x) = Prplain(y) · Prplain|cipher(x|y) ,

and the theorem follows.

The following theorem provides a necessary condition for unconditionally secure
cryptosystems by relating the number of keys necessary to the number of plaintexts
having non-zero probability.

Theorem 17.2. Let T be any cryptosystem that is unconditionally secure for all

n-grams x, y with Prplain(x) > 0 and Prcipher(y) > 0. Then

|K| > |{x ∈ Zm,n Prplain(x) > 0}| .

Proof. For the sake of presentation we introduce the following notations:
Zm,n,+,plain =df {x ∈ Zm,n Prplain(x) > 0} and
Zm,n,+,cipher =df {y ∈ Zm,n Prcipher(y) > 0}.

Furthermore, without loss of generality we may assume Prkey(k) > 0 for all k ∈ K,
since otherwise we may replace K by K̂, where K̂ is just the set of all keys having
non-zero probability. Now, we make the following observations:

Observation 17.2. The transformation Tk: Zm,n,+,plain → Zm,n,+,cipher is injective

for all k ∈ K.

17.2. Security 199

By de�nition Tk: Zm,n → Zm,n is bijective. Furthermore, in accordance with
(17.10) we know that

Prcipher(y) =
∑

{(x,k) Tk(x)=y}

Prplain(x) · Prkey(k) .

Thus, Prcipher(y) > 0 i� there is at least one pair (x, k) with Tk(x) = y satisfying
Prplain(x) > 0 and Prkey(k) > 0. Since Prkey(k) > 0 for all k ∈ K, we directly
obtain Tk(Zm,n,+,plain) ⊆ Zm,n,+,cipher for all k ∈ K. Hence, the restriction of Tk to
Zm,n,+,plain de�nes an injective mapping into Zm,n,+,cipher .

Observation 17.3. Let y ∈ Zm,n,+,cipher be arbitrarily �xed. Then, for every

x ∈ Zm,n,+,plain there must be a key k ∈ K such that Tk(x) = y.

Suppose the converse, i.e., there exists an x̂ ∈ Zm,n,+,plain such that Tk(x̂) 6= y for
all k ∈ K. Hence {k ∈ K Tk(x̂) = y} = ∅. Since the cryptosystem is unconditionally
secure we additionally know that

Prplain(x̂) = Prplain|cipher(x̂|y) =
Prplain, cipher(x̂, y)

Prcipher(y)

=

∑
{k∈K Tk(x̂)=y}

Prplain(x̂) · Prkey(k)

Prcipher(y)
= 0 ,

a contradiction to x̂ ∈ Zm,n,+,plain .

Finally, for all x1, x2 ∈ Zm,n,+,plain with x1 6= x2 and all k1, k2 ∈ K satisfying
Tk1(x1) = y = Tk2(x2) we can conclude k1 6= k2. In order to see this, suppose
the converse, i.e., there are x1, x2 ∈ Zm,n,+,plain with x1 6= x2 and a key k such that
Tk(x1) = y = Tk(x2). However, Tk is injective, and therefore this would imply x1 = x2,
a contradiction.

Consequently, the set K must contain at least as many keys as there are elements
in Zm,n,+,plain .

Next, we shall deal with the existence of unconditionally secure cryptosys-

tems. First we de�ne a cryptosystem�the so-called one-time-pads�and provide
a proof for its unconditional security. One-time-pads have been introduced by the
American engineer G.S. Vernam in 1918. Vernam proposed to introduce uncertainty
at the same rate at which is was removed by redundancy among symbols of the mes-
sage. His intuition was absolutely right as would be proved more than two decades
later by C. Shannon [3]. However, as our Theorem 17.2 already established, this
ideal requires exchanging an amount of key in advance of communication that is in
most cases impractical if not totally infeasible. Nevertheless, one-time-pads prove the
existence of unconditionally secure cryptosystems, and are therefore presented here.
For the sake of convenience, we identify the possible keys of the cryptosystem to be
de�ned with random variables.

c©Thomas Zeugmann, Hokkaido University, 2008

200 17. Using Probability Theory

Let {ki 0 6 i < n} be independently and identically distributed random variables
taking all the values from Zm equally likely. That is Pr(ki = x) = 1/m for all x ∈ Zm,
and all i = 0, . . . , n − 1. Now, one-time-pads are speci�ed as follows: The desired
bijections

T (n): X = (x0, . . . , xn−1) → Y = (y0, . . . , yn−1)

are de�ned by using a randomly generated key (k0, . . . , kn−1) in accordance with the
above assumption.

yi = T
(n)
ki

(xi) =df (ki + xi) mod m (17.19)

for all i = 0, . . . , n − 1. Thus, we have Prkey((k0, . . . , kn−1)) = 1/mn. Moreover,
the set of all keys satis�es K = Zm,n, and therefore also |K| = mn. Consequently,
there at least as many keys for enciphering the n-grams from Zm,n as there elements
X ∈ Zm,n with Prplain(x) > 0. Therefore, the condition of Theorem 17.2 is ful�lled.

Theorem 17.3. For every plaintext source S the random variables y0, . . . , yn−1

de�ned by (17.19) are independent and identically distributed, and every yi , i =

0, . . . , n − 1, is equally distributed over Zm, i.e.,

Pr(y0, . . . , yn−1) =

(
1

m

)n

for all y = (y0, . . . , yn−1) ∈ Zm,n .

Proof. xi and yi uniquely determine ki by yi − xi ≡ ki mod m. Furthermore, all
ki are independent and identically distributed, and each ki is equally likely chosen
from Zm. Thus

Prplain, cipher {X = x, Y = y} =
∑

{k∈K T
(n)
k (x)=y}

Prplain {X = x}Prkey(k)

=
1

mn
Prplain {X = x} .

Finally, by (17.10) we have

Prcipher {Y = y} =
∑

(x0,...,xn−1)∈Zm,n

Prplain, cipher {X = x, Y = y}

=
1

mn

∑
(x0,...,xn−1)∈Zm,n

Prplain {X = x}

=
1

mn
.

Thus, the yi are independent and identically distributed, and

Pr(y0, . . . , yn−1) =

(
1

m

)n

for all y = (y0, . . . , yn−1) ∈ Zm,n .

17.3. Making A Priori Assumptions 201

Corollary 17.4. One-time pads de�ned by (17.19) are unconditionally secure for

all plaintexts of length n.

Proof. We compute

Prplain|cipher {X = x|Y = y} =
Prplain, cipher {X = x, Y = y}

Prcipher {Y = y}
=

∑
{k∈K T

(n)
k (x)=y}

Prplain {X = x}Prkey(k)

Prcipher {Y = y}
=

Prkey(k0, . . . , kn−1)Prplain {X = x}

Prcipher {Y = y}

=
1

mn · Prplain {X = x}
1

mn

= Prplain {X = x} ,

where the equality in the second line directly results from the de�nition of the prob-
abilities involved and the equality from the second to the third line is obtained by
Theorem 17.3.

17.3. Making A Priori Assumptions

Until now, we left it open in which way a priori assumptions concerning Prplain and
Prkey are made. Usually, the keys are uniformly distributed, i.e., each key is equally
likely. The harder part is to �nd appropriate models for natural languages allowing
reasonable assumptions over Prplain . In the following, we describe some of the possible
models, and outline generalizations.

First of all, we generally assume the cryptanalyst to know in which language the
plaintext is written, e.g., in English, in Japanese, in French, in FORTRAN. Obviously,
one could try to list all possible n-grams in the relevant language, where n corresponds
to the length of the ciphertext eavesdropped. However, this approach would require
a too huge amount of data to be processes, and moreover, the resulting probabilities
would be hard to handle numerically. Therefore, it is common to model languages as
probabilistic processes. The resulting model should ful�ll the following properties:

- The model should re�ect characteristic properties of the language modeled with
�su�cient� precision. For example, in German, English and French, the letter Q
is always followed by a U (e.g., Quark, question, informatique), while any other
combination like QE, QP, QR, never appears (except in names like QANTAS).

- It must be possible to perform a great amount of computations within the model
using a reasonable amount of time and hardware.

In principle, each language can be modeled with any desired precision. However,
the complexity of the resulting models rapidly increases with the degree of precision
obtained. So, for ensuring the applicability of the models, one has to compromise.

c©Thomas Zeugmann, Hokkaido University, 2008

202 17. Using Probability Theory

The basic idea of modeling languages is as follows. A plaintext source for text over
Zm is formalized as probabilistic process, i.e., as a �nite or in�nite sequence of random
variables X0, X1, . . . , Xn−1, Xn, That is, the source models the generation of plain-
text by a random experiment resulting in a sequence of letters x0, x1, . . . , xn−1,
A source is de�ned by determining the probabilities

Prplain {Xj = x0, Xj+1 = x1, . . . , Xj+n−1 = xn−1}

for every n-gram (x0, . . . , xn−1) ∈ Zm,n and all j, n ∈ N.

For arriving at mathematically sound models, the entity of all de�ned n-gram
probabilities Prplain(x0, . . . , xn−1) must ful�ll the following conditions.

(1) Prplain(x0, . . . , xn−1) > 0 for all n ∈ N and (x0, . . . , xn−1) ∈ Zm,n

(2)
∑

(x0,...,xn−1)∈Zm,n

Prplain(x0, . . . , xn−1) = 1,

(3) Prplain(x0, . . . , xn−1) =
∑

(xn,...,xs−1)∈Zm,s−n

Prplain(x0, . . . , xs−1) for all s > n.

Condition (1) and (2) are the classical axioms of non-negativity and normalization,
respectively. Property (3) is a special case of Kolmogoro�'s consistency requirement.
It establishes the connection between the probability of a pre�x (x0, . . . , xn−1) and
the set of all s-grams, s > n, extending it. For understanding its importance, it may
be helpful to re�ect about composed words in English, e.g. furthermore, moreover,
therein, prefer, preferring, and the like. Its importance may become even clearer if
you think of composed words in German, e.g. Bügeleisen, Waschmaschinenmonteur,
Bildschirmarbeitsplatzbelehrungshandbuch, a.s.o

Next, we consider di�erent possibilities for modeling di�ering from one another
with respect to the degree of accuracy achieved.

Variant 1: 1-gram Source

De�nition 17.3. A plaintext source generates 1-grams over Zm by identical and

independent random experiments if Prplain(x0, . . . , xn−1) =
n−1∏
i=0

p(xi), where p(xi)

denotes the probability to obtain xi.

Hence, we have to de�ne p over Zm such that p(t) > 0 for all t ∈ Zm, and∑
t∈Zm

p(t) = 1. The desired probabilities p(t), t ∈ Zm are empirically obtained by

frequency analysis. But this is something we have already done for English when
attacking the Vigenère cryptosystem (cf. Figure 17.1, pp. 192).

Now, it is easy to verify that Conditions (1) and (2) above are ful�lled for the
distribution Prplain given in De�nition 17.3.

Exercise 47. Prove that the distribution Prplain given in De�nition 17.3 does

satisfy Condition (3) above.

17.3. Making A Priori Assumptions 203

However, modeling languages by 1-gram plaintext source is still rough. For exam-
ple, Prplain(HELP) = Prplain(LHEP). Also, the characteristic mentioned above that Q
must be followed by U is not re�ected, since Prplain(QE) = 0.000156 > 0. It may be,
nevertheless, successfully applied when trying to break messages enciphered by simple
cryptosystems as outlined in Lecture 4. Next, we re�ne the approach presented.

Variant 2: 2-gram Source

De�nition 17.4. A plaintext source generates 2-grams over Zm by identical and

independent random experiments if Prplain(x0, . . . , xn−1) =
n−1∏
i=0

p(x2i, x2i+1), where

p(xi, xj) denotes the probability to obtain xixj.

Hence, we have to de�ne p: Zm × Zm → [0, 1] such that p(t, s) > 0 for all (t, s) ∈
Zm × Zm, and

∑
(t,s)∈Zm×Zm

p(t, s) = 1.

Again, the probability measure p is obtained by performing a frequency analysis
with respect to the language in which the expected plaintexts are written. For arriving
at reasonably precise estimates for the desired probabilities one has, however, to
analyze much larger samples.

A B C D E F G H I J K L M

A 7 125 251 304 13 65 151 13 311 13 67 681 182

B 114 7 2 1 394 0 0 0 74 7 0 152 6

C 319 0 52 1 453 0 0 339 202 0 86 98 4

D 158 3 4 33 572 1 20 1 273 5 0 19 27

E 492 27 323 890 326 106 93 16 118 4 27 340 253

F 98 0 0 0 150 108 0 0 188 0 0 35 1

G 122 0 0 2 271 0 20 145 95 0 0 23 3

H 646 2 5 3 2053 0 0 2 426 0 0 6 6

I 236 51 476 285 271 80 174 1 10 0 31 352 184

J 18 0 0 0 26 0 0 0 5 0 0 0 0

K 14 1 0 1 187 1 0 7 56 0 4 7 1

L 359 5 6 197 513 28 29 0 407 0 21 378 22

M 351 65 5 0 573 2 0 0 259 0 0 2 126

N 249 2 281 761 549 46 630 6 301 4 30 33 47

O 48 57 91 130 21 731 46 14 52 8 44 234 397

P 241 0 1 0 310 0 0 42 75 0 0 144 13

Q 0 0 0 0 0 0 0 0 0 0 0 0 0

R 470 15 79 129 1280 14 80 8 541 0 94 75 139

S 200 4 94 9 595 8 0 186 390 0 30 48 37

T 381 2 22 1 872 4 1 2161 865 0 0 62 27

U 72 87 103 51 91 11 80 2 54 0 3 230 69

V 65 0 0 2 522 0 0 0 223 0 0 0 1

W 282 1 0 4 239 0 0 175 259 0 0 5 0

X 9 0 15 0 17 0 0 1 15 0 0 0 1

Y 17 1 3 2 84 0 0 0 20 0 1 5 11

Z 18 0 0 0 36 0 0 0 17 0 0 1 0

Figure 17.3: Frequency of 2-grams, Part 1

c©Thomas Zeugmann, Hokkaido University, 2008

204 17. Using Probability Theory

N O P Q R S T U V W X Y Z

A 1216 5 144 0 764 648 1019 89 137 37 17 202 15

B 0 118 0 0 81 28 6 89 2 0 0 143 0

C 3 606 0 1 113 23 237 92 0 0 0 25 0

D 8 111 0 1 49 75 2 91 15 6 0 40 0

E 1029 30 143 25 1436 917 301 36 160 153 113 90 3

F 1 326 0 0 142 3 58 54 0 0 0 5 0

G 51 129 0 0 150 29 28 58 0 0 0 6 0

H 14 287 0 0 56 10 85 31 0 4 0 15 0

I 1550 554 62 5 212 741 704 7 155 0 14 1 49

J 0 45 0 0 1 0 0 48 0 0 0 0 0

K 20 7 0 0 3 39 1 1 0 0 0 4 0

L 1 208 11 0 9 104 68 72 15 3 0 219 0

M 8 240 139 0 5 47 1 65 1 0 0 37 0

N 88 239 2 3 5 340 743 56 31 8 1 71 2

O 1232 125 164 0 861 201 223 533 188 194 7 23 2

P 1 268 103 0 409 32 51 81 0 0 0 3 0

Q 0 0 0 0 0 0 0 73 0 0 0 0 0

R 149 510 25 0 97 300 273 88 65 8 1 140 0

S 7 234 128 3 9 277 823 192 0 13 0 27 0

T 9 756 2 0 295 257 131 120 3 54 0 125 3

U 318 4 81 0 306 256 263 6 3 0 2 3 1

V 0 46 0 0 0 2 0 1 1 0 0 5 0

W 44 159 0 0 13 45 2 0 0 0 0 3 0

X 0 1 47 0 0 0 23 0 0 0 5 0 0

Y 5 64 9 0 9 44 5 4 0 3 0 2 1

Z 0 4 0 0 0 0 0 1 0 0 0 0 2

Figure 17.4: Frequency of 2-grams, Part 2

For example, Figures 17.3 and 17.4 display the relative frequencies of all 676
possible 2-grams over Z26 × Z26 obtained by analyzing a sample of size 67320 of
English 2-grams. The entry in the row i and column j stands for the number N(i, j)

of occurrences of the 2-gram (i, j) in the sample.

The desired probabilities are then obtained by computing

p(t, s) = N(t, s)/67320 .

We leave it to the reader to perform this calculation. Nevertheless, a closer look to
Figures 17.3 and 17.4 impressively shows that the characteristics of English are much
better re�ected by 2-gram plaintext sources than by 1-gram ones. For example, all
entries that are 0 result in zero probability, too. Thus, Prplain(QA) = Prplain(QB) =

. . . = Prplain(QT) = 0. Moreover, Prplain(HELP) = 0.0000061 > 0 = Prplain(LHEP).
On the other hand, Prplain(HELP) = 0.0000061 < 0.0000064 = Prplain(HEPL), despite
the fact that HEPL is not an English word.

Thus, the 2-gram source model is not perfect. Alternatively, one could consider `-
gram sources for ` > 2. This approach would require to analyze the relative frequencies
of all 26` possible `-grams. For arriving at reasonable counts much larger samples are

17.3. Making A Priori Assumptions 205

necessary.

Exercise 48. Prove or disprove that the probability distribution de�ned in De�ni-

tion 17.4 satis�es Kolmogoro�'s consistency condition.

A further possibility for modeling languages is provided by the theory of Markov
processes which we want to present next.

Variant 3: Markov Chains

De�nition 17.5. A plaintext source generates 1-grams over Zm by a Markov

chain with transition probabilities P = (p(s|t))s,t∈Zm and initial probability distribution

π = (π0, . . . , πm−1) if Prplain(x0, . . . , xn−1) = π(x0)p(x1|x0)p(x2|x1) . . . p(xn−1|xn−2)

for all n ∈ N and every n-gram (x0, . . . , xn−1) ∈ Zm,n.

Thereby, the following properties must be ful�lled:

(α) p(s|t) > 0 for all 0 6 s, t < m,

(β)
∑

06s<m

p(s|t) = 1 for all 0 6 t < m,

(γ) π(t) > 0 for all t = 0, . . . , m − 1, and
∑

06s<m

π(s) = 1,

(δ) π(s) =
∑

06t<m

π(t)p(s|t) for all s = 0, . . . , m − 1.

This looks much more complicated than our previous de�nitions. Hence, some
additional remarks are in order. The general idea behind the Markov chain model is
to describe a language by a probabilistic automaton having |Zm| states. Thus, each
state stands for a letter. Intuitively , the initial probability distribution π describes
the probability of a plaintext to start with a particular letter. It could be obtained by
counting the number of sentences (paragraphs) in a su�ciently long text starting with
the letter A, B, ..., and Z and dividing these numbers by the number of all sentences
(paragraphs) in this text. There is, however, a better method for computing it which
we describe below. Figure 17.5 displays these probabilities.

letter π letter π letter π letter π

A 0.0723 H 0.0402 O 0.0716 V 0.0117
B 0.0060 I 0.0787 P 0.0161 W 0.0078
C 0.0282 J 0.0006 Q 0.0007 X 0.0030
D 0.0483 K 0.0064 R 0.0751 Y 0.0168
E 0.1566 L 0.0396 S 0.0715 Z 0.0010
F 0.0167 M 0.0236 T 0.0773
G 0.0216 N 0.0814 U 0.0272

Figure 17.5: The initial probabilities π

c©Thomas Zeugmann, Hokkaido University, 2008

206 17. Using Probability Theory

Do not mix these probabilities with those ones displayed in Figure 17.1 at pp. 192.

The matrix P = (p(s|t))s,t∈Zm describes the transition probabilities, i.e., entry
p(s|t) is the conditional probability for the event to obtain letter s under the condition
that the previously obtained letter was t. Thus, P can also be computed by an
appropriate frequency analysis. We may use the sample text exploited for obtaining
Figures 17.3 and 17.4. Let N(i, j) denote the number of occurrences of the 2-gram

(i, j) in the sample text. We set
m−1∑
j=0

N(i, j) and compute p(j|i) = N(i, j)/N(i). For

example, N(A, G) = 151 as displayed in Figure 17.3. Moreover, N(A) = N(A, A) +

N(A, B) + . . . + N(A, Z) = 6476. Thus, p(G|A) = 151/6476 = 0.0233. We leave it to
the reader to compute the whole matrix. Now, it is immediately clear that Properties
(α), (β), and (γ) are ful�lled.

Now, we sketch the announced method for computing π. The key property applied
here is (δ). In matrix notation, (δ) reads as π = πP. Now, we de�ne π(`)(j) to be the
probability that the Markov chain is in state j at the `th step, i.e., π(`)(j) = Pr[Xn = j].
Obviously, π(0)(j) = Pr[X0 = j] = πj. Assuming (δ), one can prove the remarkable
result that π(`)(j) = πj, too. That is, the probabilities π(`)(j), ` = 0, 1, 2, ..., do not

change with time, but are stationary. Thus, π can be computed by solving the matrix
equation π = πP. It is beyond the scope of this lecture to prove this result here.
Instead, the interested reader is encouraged to consult Feller [2].

Finally, it is not hard to see that the Markov Chain Model is not perfect either.
As an easy calculation shows, Prplain(HELP) < Prplain(HEPL), since p(P|L) = 0.0041

and p(L|P) = 0.0812. On the other hand, it is sometimes better than the two gram
source model. For example, consider the English word �gaga,� and the non-English
string �agag.� In the two gram source model, we have Prplain(GAGA) = 0.00000324 <

0.00000484 = Prplain(AGAG), while in the Markov Chain Model Prplain(GAGA) =

π(G)p(A|G)p(G|A)p(A|G) = 0.0216 ·0.10782 ·0.0233 = 0.000005848 > 0.000004231 =

π(A) · p(G|A) · p(A|G) · p(G|A) = Prplain(AGAG). The following exercise points two
further generalizations of the 1-gram Markov Chain Model.

Exercise 49. Generalize De�nition 17.5 to the case that Xi depends on

(Xi−1, Xi−2, . . . , Xi−k+1), i.e., on the previous k − 1 letters.

18. The Bayesian Approach to Cryptanalysis

Next, we shortly describe the Bayesian approach to cryptanalysis. Within this setting,
the task of the cryptanalyst is described by decision functions δ, which model the
decision

�Chi�re y originates from the deciphered plaintext δ(y).�

Now, we can visualize the Bayesian formulation of cryptanalysis by the following
picture (cf. Figure 18.1).

Decision

function

Cryptographic

System

x

k

δ(y)y = Tk(x)

δ

Figure 18.1: Bayesian Formulation of Cryptanalysis

Before continuing in a more formal way, please note that we make extensive use of
the notations introduced above.

18.1. Decision Functions

Formally, we de�ne decision functions as follows.

De�nition 18.1. A deterministic decision function δ = {δ(n)}n∈N is a

sequence of transformations

δ(n) : Zm,n → Zm,n n = 1, 2, . . .

δ(n) : y → δ(n)(y)

We denote the family of all deterministic decision functions by ∆D.

Remark: Note that the cryptanalyst's decision δ(y) is the same for (x, k) for
which Tk(x) = y. Therefore, a deterministic decision function produces an incorrect
guess about the plaintext x to be deciphered for all pairs (x, k) satisfying δ(Tk(x)) 6= x.
Therefore, {(x, k) δ(Tk(x)) 6= x} is the set of all incorrect guesses.

The generality of De�nition 18.1 allows �many� decision functions. However, obvi-
ously not all of them are good in the sense that they deliver the right plaintext. In
order to investigate which decision functions are best for the task of cryptanalysis, we
have to compare decision functions qualitatively. For that purpose, next we introduce
the notion of loss function.

208 18. The Bayesian Approach to Cryptanalysis

De�nition 18.2. Let δ ∈ ∆D. We de�ne the loss function Lδ for δ by

Lδ(x, y) =

{
1, if δ(y) 6= x,

0, if δ(y) = x

for all x ∈ Pt and y ∈ Ct.

Looking at De�nition 18.2 we see that Lδ(x, y) assigns loss 0 to a correct decision,
i.e., if and only if δ(Tk(x)) = x. Otherwise, the assigned loss is 1.

The mean loss of a deterministic decision function δ on n-grams is then nothing
else than the expected value of the random variable Lδ(X, Y) taken with respect to the
probability distribution Prplain, cipher over the set of all ordered pairs (x, y) of n-grams,
where x ∈ Pt and y ∈ Ct. In order to simplify notation, we denote this expected
value by Ln,δ. Thus, more formally we arrive at the following de�nition

Ln,δ =df E[Lδ(n)] =
∑

{(x,y)∈Zm,n}

Prplain, cipher(x, y)Lδ(x, y) .

Finally, we de�ne the mean loss of a deterministic decision function δ (taken over all
n-grams, n = 1, 2, . . .) to be the sequence

Lδ =df {Ln,δ n ∈ N} .

Now, the deterministic Bayesian strategy consists in �nding a function δ ∈ ∆D such
that the expected loss Ln,δ minimizes for every n ∈ N. Here the minimum has to
be taken with respect to all functions from ∆D. Thus, we naturally arrive at the
following de�nition.

De�nition 18.3. A deterministic decision function δ∗ is said to be optimal if

(1) δ∗ ∈ ∆D

(2) Ln,δ∗ 6 Ln,δ for all δ ∈ ∆D and all n ∈ N.

At this point we have to ask whether or not there do exist optimal decision func-
tions. The a�rmative answer will be provided by our �rst theorem in this lecture.
But before presenting it, we need one more de�nition which we provide below.

De�nition 18.4. A Bayesian decision function is a deterministic decision

function δB such that

Prplain|cipher(δB(y)|Y) = max
x

Prplain|cipher(x|Y) .

By its de�nition δB(y) = x if and only if

Prplain|cipher(x|Y) = max
v

Prplain|cipher(v|Y) .

Moreover, δB(y) = x is de�ned for all ciphers y such that Prcipher(y) > 0 and it is not
de�ned if Prcipher(y) = 0.

18.1. Decision Functions 209

Furthermore, it is well possible that there are several x ∈ Pt for which the condi-
tional a posteriori probability Prplain|cipher(x|Y) is taking its maximum. Consequently,
there may be several Bayesian decision functions. The importance of Bayesian deci-
sion functions is pointed out by our next theorem which also provides the promised
a�rmative answer concerning the existence of optimal decision functions.

Theorem 18.1. A deterministic decision function δ is optimal if and only if δ is

Bayesian decision function.

Proof. 1. Necessity:

Ln,δ = E[Lδ(n)]

=
∑

{(x,y)∈Zm,n}

Prplain, cipher(x, y)Lδ(x, y)

=
∑

{(x,y)∈Zm,n}

Prcipher(y)Prplain|cipher(x|y)Lδ(x, y) (by (17.12)

=
∑

{x∈Zm,n}

∑
{y∈Zm,n}

Prcipher(y)Prplain|cipher(x|y)Lδ(x, y)

=
∑

{y∈Zm,n}

∑
{x∈Zm,n}

Prcipher(y)Prplain|cipher(x|y)Lδ(x, y)

=
∑

{y∈Zm,n}

Prcipher(y) ·
∑

{x∈Zm,n}

Prplain|cipher(x|y)Lδ(x, y)

= (∗) .

Now, for any �xed y ∈ Zm,n we know that Lδ(x, y) = 0 provided δ(y) = x. Thus,
those summands vanish in (∗). Consequently, for y ∈ Zm,n we can write∑

{x∈Zm,n}

Prplain|cipher(x|y)Lδ(x, y) =
∑

{x6=δ(y)}

Prplain|cipher(x|y)Lδ(x, y)

=
∑

{x6=δ(y)}

Prplain|cipher(x|y)

= (∗∗) ,

since for the remaining summands we know that Lδ(x, y) = 1.

Furthermore, by using the complement set, we can rewrite (∗∗) as follows

(∗∗) = 1 −
∑

{δ(y)}

Prplain|cipher(δ
(n)(y)|y)

= 1 − Prplain|cipher(δ
(n)(y)|y) ,

since there is only one summand.

Thus, we can put it all together and obtain

(∗) =
∑

{y∈Zm,n}

Prcipher(y)
(
1 − Prplain|cipher(δ

(n)(y)|y)
)
.

c©Thomas Zeugmann, Hokkaido University, 2008

210 18. The Bayesian Approach to Cryptanalysis

At this point it is helpful to recall that we have started with the expected loss Ln,δ.
For optimal decision functions, this expectation should be minimal. Consequently, we
have to investigate under what conditions the term∑

{y∈Zm,n}

Prcipher(y)
(
1 − Prplain|cipher(δ

(n)(y)|y)
)

minimizes. Now, it is easy to see that Prcipher(y) does not depend on δ(n) at all, and
thus it su�ces to minimize

1 − Prplain|cipher(δ
(n)(y)|y) .

But the latter condition is equivalent to maximize

Prplain|cipher(δ
(n)(y)|y)

for every n-gram y with Prcipher(y) > 0. Hence, δ(n)(y) has to satisfy the condition

Prplain|cipher(δ
(n)(y)|y) = max

{x∈Zm,n}
Prplain|cipher(x|y) .

Thus, the latter line and De�nition 18.4 together imply that δ = {δ(n) n ∈ N} has
to be a Bayesian decision function.

The su�ciency part is proved mutatis mutandis. We omit details.

Clearly, for applying Theorem 18.1 successfully, one has to be able to compute the
probabilities involved. This has to be done in a way such that reality is su�ciently
good approximated. The most crucial part is to �nd good estimates for Prplain . Now,
assuming that the cryptanalyst does know in what language the plaintext has been
written, we have already provided a couple of estimates for Prplain in Lecture 5. It
should be noted here that there are also good probabilistic tests for just determining
the plaintext language with high probability. We refer the interested reader to Bauer
(1994) for further information.

18.2. An Example

We �nish this appendix by presenting an easy application of Theorem 18.1. To
encipher plaintexts we use the transformation

t(i) ≡ i + 7 mod 26

for all i ∈ {0, 1, . . . , 25}, i.e., a cyclic shift.

Thus, we have 26 keys and we assume these keys to be equally likely. That is,
every key has probability 1/26.

Our example plaintext is SENDHELP. Thus, using the transformation t above, we
obtain the ciphertext ZLUKOLSW (cf. Figure 18.2).

18.2. An Example 211

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

Figure 18.2: The Transformation t(i) ≡ i + 7 mod 26

By Theorem 18.1 we know that Bayesian decision functions are optimal. Thus, we
continue by computing the following conditional probabilities

Prplain|cipher(X|ZLUKOLSW)

for X varying over all n-grams for which

Prplain|cipher(X|ZLUKOLSW) > 0 .

By the de�nition of Prplain|cipher it is immediately clear that we have to consider
all 8-grams only. For further reducing the number of X to be considered we replace
the cipher ZLUKOLSW by its numerical representation

Y = (y0, . . . , y7) = (25, 11, 20, 10, 14, 11, 18, 22) .

Since we always assume that the cryptanalyst knows the cryptosystem used but
not the actual key, the cryptanalyst may conclude that all plaintexts to be considered
must be of the form

Y − k = (y0 − k, . . . , y7 − k) mod 26 , k ∈ {0, 1, . . . , 25} .

By the de�nition of Prplain, cipher (cf. 17.8) we thus obtain

Prplain, cipher(X, Y) =

{
1
26
· Prplain(Y − k), if X = Y − k, for a k ∈ {0, . . . , 25}

0, otherwise.

Moreover, using its de�nition (cf. 17.10) we can write

Prcipher(Y) =

25∑
i=0

1

26
· Prplain(Y − i) .

Now, incorporating the last two equations into the de�nition of Prplain|cipher (cf. 17.12)
yields

Prplain|cipher(Y − k|Y) =
Prplain(Y − k)

25∑
i=0

Prplain(Y − i)

.

The following table is listing all these probabilities for all 8-grams that have to be
considered. Here, the probabilities Prplain have been computed in accordance with
De�nitions 17.3, 17.4, and 17.5.

c©Thomas Zeugmann, Hokkaido University, 2008

212 18. The Bayesian Approach to Cryptanalysis

k Y − k Prplain Prplain Prplain

by Def. 17.3 by Def. 17.4 by Def. 17.5
0 ZLUKOLSW 0.00002353 0.00000089 0.00000309
1 YKTJNKRV 0.00000736 0.00000000 0.00000000
2 XJSIMJQU 0.00000003 0.00000000 0.00000000
3 WIRHLIPT 0.05269719 0.00418837 0.00033815
4 VHQGKHOS 0.00004373 0.00000000 0.00000000
5 UGPFJGNR 0.00012522 0.00000000 0.00000000
6 TFOEIFMQ 0.00601645 0.00000000 0.00000000
7 SENDHELP 0.35013155 0.99580491 0.99965766
8 RDMCGDKO 0.00158882 0.00000088 0.00000000
9 QCLBFCJN 0.00000412 0.00000000 0.00000000
10 PBKAEBIM 0.00100489 0.00000000 0.00000000
11 OAJZDAHL 0.00013951 0.00000000 0.00000000
12 NZIYCZGK 0.00000043 0.00000000 0.00000000
12 NZIYCZGK 0.00000043 0.00000000 0.00000000
13 MYHXBYFJ 0.00000164 0.00000000 0.00000000
14 LXGWAXEI 0.00007197 0.00000000 0.00000000
15 KWFVZWDH 0.00000134 0.00000000 0.00000000
16 JVEUYVCG 0.00001388 0.00000000 0.00000000
17 IUDTXUBF 0.00037299 0.00000000 0.00000000
18 HTCSWTAE 0.58014350 0.00000495 0.00000111
19 GSBRVSZD 0.00006560 0.00000000 0.00000000
20 FRAQURYC 0.00066643 0.00000000 0.00000000
21 EQZPTQXB 0.00000002 0.00000000 0.00000000
22 DPYOSPWA 0.00658287 0.00000000 0.00000000
23 COXNROVZ 0.00003584 0.00000000 0.00000000
24 BNWMQNUY 0.00005462 0.00000000 0.00000000
25 AMVLPMTX 0.00020646 0.00000000 0.00000000

Figure 18.3: Probabilities for all considered 8-grams

In all cases, the maximum is uniquely determined. Thus, δB would produce the
following outputs: HTCSWTAE (by Def. 17.3) and k = 18, SENDHELP and k = 7

for by De�nitions 17.4 and 17.5. The outcome also supports our remarks concerning
the weakness of the one-gram source model.

References

[1] Bauer, F.L. (1994), Kryptologie, Springer-Verlag, Berlin.

[2] Feller, W. (1968), An Introduction to Probability Theory and its Applications,
Vol. 1, 3rd ed., Wiley, New York.

[3] Shannon, C.E. (1949), Communication theory of of secrecy systems, Bell Syst.
Tech. J. 28, 379 � 423.

Subject Index

Adleman, 126
advanced electronic signature, 154
adversary, 107
Agrawal, 42
algorithm

basis reduction, 125
Berlekamp's, 52
design method, 8
divide et impera, 8
divide and conquer, 8

ECL, 27
EXP, 37
extended Euclidean, 27
for binary addition, 6
for binary division, 18, 20
for binary multiplication, 8
Karatusba and Ofman, 9
Schönhage and Strassen, 11
school method, 8

for binary subtraction, 7
for computing modular inverses, 31
for computing the gcd, 26
for modular exponentiation, 37
Kasiski's, 116
Las Vegas, 52
Monte Carlo, 48
Solovay-Strassen, 48

alphabet, 60
of tape-symbols, 59

approximation, 15
AS-number, 7
attack

third party, 133
authentication, 121, 133, 153
autokey, 119

balanced, see Turing machine
bandwidth, see graph
Beaufort Tableau, 114
Belaso, Giovan Batista, 119

Berlekamp, 52, 143
Blum, Manuel, 141, 142
bounding function, 63
B	arzdi�n�s, J	anis, 62, 165

Caesar system
most general, 111

Caesar, Julius, 108
cancellation law, 33
Carmichael, 43
Carmichael number, 43

example, 45
product property, 45

Carmichael numbers
properties, 43

carry bit, 6
Chinese Remainder Theorem, 32
Church Thesis, 4
ciphertext, 108
classical cryptosystem, 108
clique, 88
clock, 64
coincidence index, 192
complete problem, 85
complexity

average-case, 4
best-case, 4
deterministic space hierarchy, 68
deterministic time hierarchy, 68
machine-independent, 4
nondeterministic space, 70
nondeterministic time, 70
of accepting Lpal , 62
of algorithms, 4
of binary addition, 6
of binary multiplication, 8
of binary subtraction, 7
of Chinese remaindering, 32
of computing discrete roots, 52
of computing Legendre symbol, 47

214 Subject Index

of computing modular inverses, 31
of computing the gcd, 27
of computing the inverse, 16, 18
Newton procedure, 18
with precision 2−2n, 16

of computing the Jacobi symbol, 51
of division, 18, 20
of matrix multiplication
best known upper bound, 24
Strassen's algorithm, 23

of modular exponentiation, 37
of usual matrix multiplication, 23
space, 62
time, 4
worst-case, 4

complexity class, 61
closure under complement, 72
time, 61

con�dentiality, 155
con�guration, 66
congruence relation, 25
Cook, 90
Coppersmith, 24
crossing sequence, 163
cryptanalysis, 107, 109

general setup, 109
cryptographic protocol, 134

Blum-Micali, 141
CF, 142
challenge response, 155
challenge-response, 138
coin-�ip, 141, 142
Compare, 144
CvA, 156
Disavowal Protocol, 159
DS, 154
partial disclosure of secrets, 144
poker, 139

cryptographic transformation, 195
cryptography, 107
cryptology, 107
cryptosystem

a�ne, 185

Caesar, 109
computationally secure, 195
insecure, 195
monoalphabetic, 112
Playfair, 189
polyalphabetic, 112
provably secure, 195
secret-key, 108
security, 111
unconditionally secure, 195, 197, 199
Vigenère, 113

de Leeuw, 95
deciphering, 108
decision function, 207

Bayesian, 208
deterministic, 207
optimal, 208

decryption, 108
De�nition

k-tape Turing machine, 62
accepting Turing machine, 60
cryptographic protocol, 134
Euler's totient function, 38
generating function, 28
linear bounded automaton, 80
of AS-number, 7
of binary division, 15
of Carmichael number, 43
of discrete logarithm, 40
of discrete roots, 38
of gcd, 26
of matrix addition, 22
of matrix multiplication, 22
of modular exponentiation, 37
of pseudo primes, 42
of testing primality, 42
of the Jacobi symbol, 48
of the Legendre symbol, 47
one-way function, 122
quadratic nonresidue, 47
quadratic residue, 47
space constructibility, 64

SUBJECT INDEX 215

time complexity, 61
time complexity class, 61
time constructibility, 64
trap-door function, 123

DES, 129
Di�e, 121
Di�e-Hellman

key exchange, 129
message exchange, 131

digital signature, 153
advanced, 154
strong, 155
weak, 153

Diophantine equation, 36
linear, 36

discrete logarithm, 128
discrete roots, 38, 51
division, 15

complexity of, 18
problem, 15
with remainder, 15

eavesdropper, 109
active, 135
passive, 135

El-Gamal, 133
empty string, 60
enciphering, 108
encryption, 108
equation

recursive, 11
solvability of, 11

equivalence relation, 25
equivalent

log-space reducibility, 87
polynomial-time reducibility, 87

Euler, 41
Euler number, 6

factoring, 142
Fermat, 40
Fibonacci sequence, 28

closed formula, 30
�eld, 21, 25

Franklin, Benjamin, 146
free monoid, 60
Freivalds, 96
frequency analysis, 112, 118
Friedman, 191, 194
Friedman's Test, 191
function

ceiling, 5
Euler's totient, 38
�oor, 5
injective, 122
logical AND , 6
logical EX -OR, 6
logical OR, 6
one-way, 122, 123, 141
candidates, 122

space constructible, 64, 174
time constructible, 64, 175
trap-door, 123

GAP problem, 87
NL-complete, 88
NL-hard, 87

gcd, 26
generating function, 28
generator, 40

of a group, 40
Gill, 95
graph

bandwidth, 179
binary, 179
monotone, 179

Greatest Common Divisor, see gcd
group

Abelian, 25
cyclic, 38
�nite, 38

Hamiltonian path, 89
Hartmanis, 4, 169
head

of a Turing machine, 59, 62
read-only, 62
read-write, 59, 62

c©Thomas Zeugmann, Hokkaido University, 2008

216 Subject Index

Hellman, 121, 123
Hilbert, 3

10th problem, 3

Immerman, 72, 76
independent set, 88
integrity, 154

Jacobi, 48
Jacobi symbol, 48

Kahn, 119
Karatusba, 9
Karatusba and Ofman's algorithm, 9
Kasiski, 116
Kasiski's algorithm

seealgorithm, 116
Kayal, 42
key

private, 121, 123
public, 121, 123
secret, 121

key owner, 153
knapsack, see subset sum problem
knapsack problem, 122
(k, n) threshold scheme, 149
Kolmogoro�, 202

consistency requirement, 202

Lagarias, 125
language, 60

accepted
by a k-tape Turing machine, 63

accepted by a Turing machine, 60
accepted by nondeterministic TM,

70
accepted by PTM, 95
context-sensitive, 80

Legendre, 47
Legendre symbol, 47

computation, 48
Lenstra, 125
Liu, 146
log-space complete, 86
log-space computable, 85

log-space hard, 86
log-space reducible, 85
logarithm

discrete, 40
loss function, 207
Lovász, 125
lower bound

for accepting Lpal , 62

macro state, 66
malleability, 136
Manders, 126
marker, 64
Markov chain, 205
Matijasevi�c, 3
matrix, 20

multiplication, 20
Strassen, 23

Merkle, 123
Micali, 141
Mignotte, 149
Miller, 126
modular exponentiation, 37
modular inverse, 30
multiplication

of two binary numbers, 8

Newton method
for taking square roots, 128

Newton procedure, 17
computing the inverse, 17
convergence, 18

n-gram, 195
Niven, 40, 50, 51
non-repudiation, 155
notation

O(g(n)), 5
Ω(g(n)), 5
Θ(g(n)), 5
o(g(n)), 5

NP-completeness, 88
`-SAT, 90
CLIQUE, 92
SAT, 90

SUBJECT INDEX 217

VCOVER, 93
number

square-free, 43

Odlyzko, 125
Ofman, 9
one-time-pad, 199
one-way function, see function
order

of Z∗p, 38
of a �nite group, 38
of an element, 38

padding, 177
pairwise relatively prime, 32
palindromes

lower bound, 165
plaintext, 108
Playfair, see cryptosystem
Poe, 107
polynomial-time reducible, 86
precision, 15
primality test

Solovay-Strassen, 48
prime, 38
probabilistic complexity class, 98
properties

of the congruence relation, 26
pseudo primes, 42

properties, 42
PTM, 95
public key cryptography, 121

general scenario, 123
public key cryptosystem

Di�e-Hellman, 128, 133
Merkle and Hellman, 123
deciphering, 124

RSA, 126

quadratic
nonresidue, 47
residue, 47

quadratic reciprocity
law, 50

supplements, 50
quadratic residue, 140

characterization, 47

R, 21
Rabin, 4
recursive equation

seeequation, 11
reduction, 85
relation

congruence, 25
equivalence, 25

relatively prime, 32
Replacement lemma, 165
ring, 21

commutative, 21
de�nition, 21
identity element, 21
neutral element, 21
with identity, 21

Rivest, 126
RSA, 38, 126

security, 127

Salomaa, 116
satis�ability problem, 89
Savitch, 177
Saxena, 42
Schönhage, 11
secret

(n, k)-division, 149
secret-key, 108
secrets

partial disclosure, 143
secure envelope, 136
set

of symbols, see alphabet
Shamir, 125, 126, 146
Shannon, 199
share, 149
Shor, 127
signature

digital, 133
electronic, 121

c©Thomas Zeugmann, Hokkaido University, 2008

218 Subject Index

Solovay, 42, 48
source

1-gram, 202
2-gram, 203

space complexity, 63
space constructibility, 64
speed-up, 63

linear, 63
square-free, see number
ssh, 121
Stearns, 4
step, 59
Strassen, 11, 23, 42, 48
string

length of, 61
subset sum problem, 89, 125

low density, 125
substitution test, 193
Szelepcsényi, 72, 76

Testing
primality, 42

Theorem
NL ⊆ P, 84
NL ⊆ NDTISP(nO(1), log n), 83
NPSPACE = PSPACE, 84
L ⊆ DTISP(nO(1), log n), 83
L ⊂ PSPACE, 82
`-SAT NP-complete, 90
CLIQUE NP-complete, 92
SAT NP-complete, 90
VCOVER NP-complete, 93
GAP ∈ SPACE (log2 n), 176
SAT2 NL-complete, 179
CS accepted by LBA, 80
CS closed under complement, 81
AGEN NL-complete, 179
Chinese Remainder, 32
cyclicity of Z∗n, 40
cyclicity of Z∗p2 , 43
deterministic space hierarchy, 68
deterministic time hierarchy, 68
existence of modular inverse, 30

Fermat's Little, 40
Freivalds, 96
Immerman-Szelepcsényi, 72, 76
linear time speed-up, 63
nondeterministic time hierarchy, 74
of Euler, 41, 126
prime number, 150
quadratic residue
characterization, 47

Savitch, 177
solution of recursive equations, 11
solvability of linear congruences, 35
space gap for REG, 66, 171
tape reduction
nondeterministic space, 72
nondeterministic time, 71
space complexity, 66
time complexity, 64, 67

time gap for REG, 62, 169
uniqueness of modular inverse, 30

threshold scheme, see (k, n) threshold
scheme

threshold sequence, 149
time complexity, 61
time constructibility, 64
trace, 163
Trachtenbrot, 169
transpose, 124
trap-door, 123

information, 124
trap-door function, see function
trap-door knapsack, 125
Turing machine, 59

accepting Lpal , 61
balanced, 100
deterministic, 59

k-tape, 62
instruction set, 60
nondeterministic, 69
one-tape, 59
probabilistic, 95
trace, 163
universal, 67

SUBJECT INDEX 219

Turing table, 60

Universal Turing machine
nondeterministic, 72

vertex cover, 89
Vigenère system

cryptanalysis, 114
Vigenère Tableau, 113
Voltaire, 107
von Neumann, 95

Winograd, 24

zero-divisor property, 33
Zuckerman, 40, 50, 51

c©Thomas Zeugmann, Hokkaido University, 2008

List of Symbols

A . 60
a ≡ b mod m 25
A(n) . 9
AGEN . 179
∧ . 6

B . 60
BPP . 98, 99
bT . 124

≡ . 25
dye . 5
CLIQUE . 88, 92
co-C . 72
CS . 80

dHAMILTON 89
dlogga . 40
DTISP(f(n), g(n)) 82
DTISP . 82, 83

e . 6
ECL . 27
≡log . 87
≡poly . 87
⊕ . 6
EXP . 37, 48

ϕ(m) . 38
byc . 5

GAP(i, j, `) . 176
GAP . 87, 176
GAP2 . 180
GAP(f(n) . 180

I(n) . 19
In . 21
INDSET . 88(

a
Q

)
. 48

L . 81, 83
λ . 60

L(M) . 60
L(M) . 63
¶ . 80
ln n . 6
log n . 6
6log . 85
logc n . 6
Lpal . 165
Lpal . 61(

a
p

)
. 47

`-SAT . 90

M . 60
MGAP . 180
Mn . 22
(Mn, +n,×n, 0n, In) 22
modm . 25
M(n) . 9, 18
M(w) . 60, 63

N . 5
N+ . 5
NDTISP(f(n), g(n)) 82
NDTISP 82, 83
NL 81, 83, 84, 87
0n . 21
NP . 81
NPSPACE . 81
NSPACE (f(n)) 70
NSpacek(f(n)) 70
NSPACEmax(f(n)) 174
NTIMEmax(f(n)) 174, 175
NTIME (f(n)) 70
NTimek(f(n)) 70

O(g(n)) . 5
o(g(n)) . 5
Ω(g(n)) . 5
∨ . 6

P . 81, 84

222 List of Symbols

π(x) . 150
π(n, α) . 151
PLOPS . 82
6poly . 86
PP . 98
PRIM . 99
PSPACE . 81

Q . 5
R . 5
REG . 166
$. 80
RP . 98, 99

SAT . 89
SAT2 . 179
Sd . 38
Σ . 60
Σ∗ . 60
Σn . 61
Σ+ . 60
SM(n) . 70
Smax

M (n) . 174
SM(n) . 63
SM(w) . 63
(S, +, ·, 0, 1) 21
SPACE (f(n)) 63
Spacek(f(n)) 63
SUBSUM . 89

Θ(g(n)) . 5
TIME (f(n)) . 63
TM(n) . 61
Time(T(n)) . 61
Timek(f(n)) 63
TM(n) . 70
Tmax

M (n) . 174
TRM(n) 166, 171
TRM(w) 166, 171
TRM(w, j) . 171
TRM(w, j) . 163
2-SAT . 92

VCOVER . 89

|w| . 61

Z . 60
(Zm, +, ·) . 25
Z . 5
z . 163
Zm . 25
Z∗p . 38
ZPP . 98, 99
(Z∗m, ·) . 31
Z∗m . 31

List of Figures

6.1 The tape of a Turing machine with input b1b2b3. 59

6.2 A Turing table . 60

6.3 Instruction set of a Turing machine accepting Lpal 61

6.4 Illustration for the use of the new letters 65

8.1 Mapping (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) to (G, 3). . . 93

10.1 The Basic Model . 108

10.2 The Caesar system . 109

10.3 The VIGENÈRE Tableau . 113

10.4 The BEAUFORT Tableau . 115

10.5 A ciphertext eavesdropped. 116

10.6 Rewriting the ciphertext in three columns 117

10.7 Counting the number of occurences of each letter in s0, s1 and s2 . . . 118

10.8 Statistical information for English text 118

13.1 (1, 4) threshold scheme . 147

13.2 (2, 4) threshold scheme . 147

13.3 (3, 4) threshold scheme . 147

13.3 (4, 4) threshold scheme . 147

15.1 A fragment of the trace at border 2. 163

15.2 The graph G and its monotone transform G ′ 181

15.3 The graph G and its binary transform G ′ 183

16.1 Mapping numbers to letters . 185

16.2 A 5× 5 square for PLAYFAIR. 189

16.3 Two PLAYFAIR systems using the key word MAGIC. 190

16.4 Three PLAYFAIR squares giving the same encryption. 190

17.1 Probabilities for the occurrence of all letters in English. 192

17.2 Frequencies for the letters A through Z in the ciphertext. 194

223

224 List of Figures

17.3 Frequency of 2-grams, Part 1 . 203

17.4 Frequency of 2-grams, Part 2 . 204

17.5 The initial probabilities π . 205

18.1 Bayesian Formulation of Cryptanalysis 207

18.2 The Transformation t(i) ≡ i + 7 mod 26 211

18.3 Probabilities for all considered 8-grams 212

	Part 1: Complexity
	Lecture 1: Introduction
	1.1 Notations and Definitions
	1.2 Addition
	1.3 Multiplication

	Lecture 2: Complexity of Division and Matrix Multiplication
	2.1 Division
	2.2 Comparing the Complexity of Division and Multiplication
	2.3 Complexity of Matrix Multiplication

	Lecture 3: Complexity of Number Theoretic Problems
	3.1 Calculating in Zm
	3.2 Generating Functions and Fibonacci Numbers
	3.3 Algorithms for Computing in Zm

	Lecture 4: Number Theoretic Algorithms
	4.1 Solving Linear Congruences
	4.2 Modular Exponentiation
	4.3 Towards Discrete Roots
	4.4 Pseudo Primes

	Lecture 5: Testing Primality and Taking Discrete Roots
	5.1 Solovay and Strassen's Primality Test
	5.2 Taking Discrete Roots
	5.3 Berlekamp's Procedure for Taking Discrete Square Roots

	Lecture 6: Complexity Classes
	6.1 Deterministic One-tape Turing Machines and Time Complexity
	6.2 Space and Time Complexity of Deterministic k-tape Turing Machines
	6.3 Reducing the Number of Tapes
	6.4 Deterministic Complexity Hierarchies
	6.5 Nondeterministic k-Tape Turing Machines

	Lecture 7: More about Complexity Classes
	7.1 More about Tape Reductions
	7.2 A Complexity Hierarchy for Nonderterministic Time
	7.3 The Immerman-Szelepcsényi Theorem
	7.4 CS and Linear Bounded Automata
	7.5 Important Complexity Classes

	Lecture 8: More about Important Complexity Classes
	8.1 Fundamental Inclusions
	8.2 Hardness and Completeness
	8.3 Properties of the GAP problem
	8.4 NP-complete Problems
	8.5 Remarks Concerning P versus NP

	Lecture 9: Probabilistic Complexity Classes
	9.1 Probabilistic Turing Machines
	9.2 The Probabilistic Complexity Classes PP, RP, ZPP, BPP

	Part 2: Cryptography
	Lecture 10: Classical Two-Way Cryptosystems
	10.1 Introduction
	10.2 The Basic Model
	10.3 Polyalphabetic Cryptosystems
	10.4 Kasiski's Algorithm

	Lecture 11: Public Key Cryptography
	11.1 The General Scheme of Public Key Cryptography
	11.2 Merkle and Hellman's Public Key Cryptosystem
	11.3 The RSA Public Key Cryptosystem
	11.4 The Diffie-Hellman Public Key Cryptosystem
	Advanced Exercises
	Midterm Problem for Cryptology

	Lecture 12: Authentication, Cryptographic Protocols
	12.1 Authentication
	12.2 Cryptographic Protocols
	12.3 Playing Poker per Telephone

	Lecture 13: More Cryptographic Protocols
	13.1 Flipping a Coin per Telephone
	13.2 Partial Disclosure of Secrets
	13.3 Threshold Schemes

	Lecture 14: Digital Signatures
	14.1 Realizing Advanced Digital Signatures
	14.2 An Undeniable Digital Signature Scheme

	Appendix for Complexity
	15.1 A Lower Bound for the Complexity of Accepting Palindromes
	15.2 Time Complexity Gap for Accepting Non-regular Languages
	15.3 Space Complexity Gaps for Accepting Non-regular Languages
	15.4 More Properties of the GAP Problem
	15.5 More NL-complete Problems
	15.6 The Complexity of MGAP and GAP2

	Appendix for Cryptography
	16.1 Affine Cryptosystems
	16.2 The PLAYFAIR System

	17. Using Probability Theory
	17.1 Friedman's Test
	17.2 Security
	17.3 Making A Priori Assumptions
	Variant 1: 1-gram Source
	Variant 2: 2-gram Source
	Variant 3: Markov Chains

	18. The Bayesian Approach to Cryptanalysis
	18.1 Decision Functions
	18.2 An Example

	Indices
	Subject Index
	List of Symbols

	List of Figures

