
TCS -TR-B-09-6

TCS Technical Report

Master's Thesis: The Classi�cation Problem in

Relational Property Testing

by

Charles Harold Jordan

Division of Computer Science

Report Series B

April 27, 2009

Hokkaido University
Graduate School of

Information Science and Technology

Email: skip@ist.hokudai.ac.jp Phone: +81-011-706-7675

Fax: +81-011-706-7675





The Classi�cation Problem in Relational Property Testing

Charles Harold Jordan

Division of Computer Science, Graduate School of Information Science and Technology

Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

Summary

In property testing, we desire to distinguish between objects that have a given property

and objects that are far from the property by examining only a small, randomly selected

portion of the objects. Property testing arose in the study of formal veri�cation, however

much of the recent work has been focused on testing graph properties.

In this thesis we introduce a generalization of property testing which we call rela-

tional property testing. Because property testers examine only a very small portion of

their �inputs,� there are potential applications to e�ciently testing properties of mas-

sive structures. Relational databases provide perhaps the most obvious example of such

massive structures, and our framework is a natural way to characterize this problem.

We introduce a number of variations of our generalization and prove the relationships

between them.

The second major topic of this thesis is the classi�cation problem for testability. Us-

ing the general framework developed in previous chapters, we consider the testability of

various syntactic fragments of �rst-order logic. This problem is inspired by the classi-

cal problem for decidability. We compare the current classi�cation for testability with

early results in the classi�cation for testability, and then prove an additional class to be

testable.





i

Contents

1 Introduction 1

1.1 History of Property Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 4

2.1 Basic De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Property Testing De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Logical De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Classi�cation De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Basic Results 14

3.1 Testable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Untestable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Yao's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 An Untestable Property . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Testable Properties that are Hard to Decide . . . . . . . . . . . . . . . . . 26

3.6 Uniformity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Alternate De�nitions of Distance . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Classi�cation Problem for Testability 35

4.1 History of the Classi�cation Problem . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Gurevich's Classi�ability Theorem . . . . . . . . . . . . . . . . . . 36

4.1.2 Classi�cation Similarities . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Testability of Monadic First-Order Logic . . . . . . . . . . . . . . . . . . . 38

4.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Monadic First-Order Logic is Regular . . . . . . . . . . . . . . . . 39

4.3 Ackermann's Class with Equality . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Testability of Ackermann's Class with Equality . . . . . . . . . . . 43

5 Conclusion 48

i





1

Chapter 1

Introduction

Property testing is an application of induction. Given a large object, for example a

graph or database, we wish to state some conclusion about the entire structure after

examining only a small, randomly selected sample. Lovász [31] has described it as the

�third reincarnation� of this approach, after statistics and machine learning.

Property testers, which we formally de�ne in Chapter 2, are probabilistic approxima-

tion algorithms that examine only a small part of their input. Our goal is always to

distinguish inputs that have some desired property from inputs that are far from having

it. We are especially interested in classi�cation, i.e., considering the testability of large

classes of properties.

There is an enormous amount of recent work in property testing. In the following

section we introduce the history of the �eld, focusing particularly on results that in�uence

our approach. Then, in Section 1.2 we summarize the results and structure of this thesis.

1.1 History of Property Testing

We begin with a brief history and overview of property testing. There are also a

number of surveys of property testing, see for example Fischer [15] or Ron [39].

Property testing is a form of approximation where we trade accuracy for e�ciency.

Probabilistic machines appear to have been �rst formalized by de Leeuw et al. [30], who

showed that such machines cannot compute deterministically uncomputable properties

under reasonable assumptions. However, they explicitly mention the possibility that

probabilistic machines could be more e�cient than deterministic machines. An early

example of such a result is the matrix multiplication checker of Freivalds [17].

Property testing itself is generally considered to have arisen from program veri�cation

(see Blum et al. [10] and Rubinfeld and Sudan [40]). Here we have some program P (x)
that purports to compute a function f(x) and we wish to quickly verify that P is correct

with high probability. Rubinfeld and Sudan [40] de�ne the distance between two functions

with the same domain and arity to be the fraction of the domain that they assign di�erent

outputs. They then de�ne a tester for a set of functions to be a program that accepts

1



1.2. THESIS OVERVIEW 2

P if P is a program for some f in the set and rejects P with high probability if P is far

from being a program for all f in the set.

We can consider a graph to be represented by a binary function e(x, y) that is 1 if

there is an edge from x to y and 0 otherwise, which is essentially an adjacency matrix.

Then, any set of such functions is a graph property, allowing us to consider testable and

untestable graph properties. This approach was �rst considered by Goldreich et al. [20],

where they show the existence of testable NP-complete properties among many other

results. However, if we are interested in properties of bounded-degree graphs, the adja-

cency matrix encoding is wasteful. A related approach using incidence lists to represent

bounded-degree graphs has been studied by Goldreich and Ron [19]. Parnas and Ron [36]

generalized this approach and attempted to move away from the functional representation

of structures.

It is possible to consider properties of other structures, such as strings. Alon et al. [4]

showed that although all regular languages are testable, there exist untestable context-

free languages (see Theorem 4 below). Chockler and Kupferman [13] extended the pos-

itive result to the ω-regular languages. However, much of the recent work has been

focused on graph property testing. Alon and Shapira [6] have written a survey of some

of the recent results in graph testing.

If we consider graph property testing, Alon et al. [2] took the �rst step towards a

logical characterization of the testable properties. They showed that all graph properties

expressible by �rst-order sentences of the form �∃∀� are testable and that there exists

a property expressible in the form �∀∃� that is not testable. This leads naturally to

the classi�cation problem for testability, which we consider in Chapter 4. Their positive

result was obtained by showing that all such properties are essentially instances of a

colorability problem, all of which they then showed to be testable. Fischer [16] showed

various generalizations of this kind of colorability problem to also be testable.

Later, Alon and Shapira [5] gave a (near) characterization of the graph properties

testable with one-sided error by algorithms unaware of the input size, a result that was

generalized to hypergraphs by Rödl and Schacht [38]. Alon et al. [3] obtained an exact

combinatorial characterization of the graph properties testable with a constant number

of queries.

1.2 Thesis Overview

In this thesis we particularly focus on two issues in property testing. First, much of the

recent work in testing has been focused on graph properties. In contrast, we seek a more

general framework, which we call relational property testing. We introduce de�nitions

and notation in Chapter 2 and then show a number of basic results in Chapter 3.

There are several possible variations of our framework. We prove the relationships

between several such variations in Section 3.7. It is also possible to consider applications

of property testing. In particular, we could be interested in e�ciently testing properties

2



1.2. THESIS OVERVIEW 3

of massive structures such as relational databases, a problem which is characterized by

our framework. Properties of databases are generally de�ned in formal query languages

such as SQL and so it is natural to consider the testability of such languages.

The second major topic in this thesis is the classi�cation problem for testability, which

we consider in Chapter 4. The objective here is to provide a classi�cation of exactly

which classes of �rst-order logic are entirely testable and which classes are not, which we

consider in the framework of relational property testing developed in earlier chapters. We

provide an overview of the currently known results for this classi�cation and compare

them with the classical results in the classi�cation for decidability. We also show the

testability of Ackermann's class with equality, providing an additional parallel to the

classical case.

3



4

Chapter 2

Preliminaries

The notations and de�nitions that we require are divided into several topics. We con-

sider property testing in a very general setting instead of restricting ourselves to some

particular type of structure such as graphs.

In order to discuss properties of graphs or of strings, it is necessary to �rst de�ne

these types of structures. We therefore de�ne fundamental notions such as vocabularies

(types of structures) and structures in Section 2.1. This provides a su�cient basis to

formalize our de�nitions of property testing, which we do in Section 2.2. This thesis

is particularly focused on questions of formal logic in property testing, and so we give

de�nitions related to logic in Section 2.3 and those used for discussing the classi�cation

problem in Section 2.4.

Before proceeding further, we recall fundamental de�nitions and introduce notation for

familiar objects such as natural numbers, sets and strings. Our de�nitions are standard

and readers familiar with this material can safely skip to Section 2.1.

The natural numbers are denoted by N and are the set of non-negative integers. We

denote the set of real numbers by R, although these are generally used for probabilities

and so we usually use only real numbers p ∈ [0, 1]. We use bold characters to denote

vectors, for example x ∈ R3. Vectors are row vectors unless otherwise noted, we denote

the transpose of a vector by xT . If x = (x1, . . . , xa) is a vector, we call xi the i-th

component of x.
The empty set is denoted by ∅. If A and B are sets, then the union of A and B is

A ∪ B := {x | x ∈ A or x ∈ B}, the intersection of A and B is A ∩ B := {x | x ∈
A and x ∈ B}, and the set di�erence of A and B is A\B := {x | x ∈ A and x 6∈ B}.
We generalize the union and intersection in the usual way,

∪
i≥0 Ai := A0 ∪A1 ∪ . . . and∩

i≥0 Ai := A0 ∩A1 ∩ . . . respectively.

Set A is a subset of set B, written A ⊆ B if A\B = ∅. Set A is a proper subset of set

B, written A ⊂ B if A ⊆ B and B\A 6= ∅. The cardinality of a set A is the number of

elements in the set, written |A|.
The product of sets A and B is the set of ordered pairs, A × B := {(a, b) | a ∈

A and b ∈ B}. The set of n-tuples of set A, written An is de�ned inductively as follows.

4



2.1. BASIC DEFINITIONS 5

First, A1 = A. Then, An+1 = An × A. We will always omit the extra parentheses,

and so (1, 2, 3) denotes ((1, 2), 3). The number of elements in the tuple is the arity n.

A predicate P with arity n of set A is any subset of An. If x ∈ An, we will generally

abbreviate the proposition x ∈ P with P (x).
An alphabet Σ is a set of symbols, and a string w over Σ is some sequence of the

symbols in Σ. The empty string is denoted by λ. For example, {0, 1} is the alphabet

of binary strings and 0100 is an example of such a string. We number the positions in

a string w from left to right with 0, 1, . . . , n − 1 where n is the length of the string. Of

course, the empty string λ has length 0. As usual, Σ∗ is the free monoid of Σ and any

subset L ⊆ Σ∗ of it is a language.

Let w be a string over the alphabet Σ. The concatenation of strings u and v is uv,

while the product of two sets of strings L1 and L2 is L1L2 := {uv | u ∈ L1 and v ∈ L2}.
The reversal of w is written ←

w. Position i of ←
w corresponds to position n − 1 − i of w.

Formally,
←
λ = λ and ←

aw = ←
wa for a ∈ Σ.

We mention a number of well-known classes of languages, for example the classes of reg-

ular and context-free languages. Hopcroft and Ullman [26] is a well-known introduction

to these classes.

It is natural to represent a binary string w ∈ {0, 1}∗ as a pair {U,S} where U is the

�nite set of bit positions 0, . . . , n− 11 and S ⊆ A is a monadic predicate. We will de�ne

S(i) to mean that �bit position i of w is 1.�
Graphs provide another natural example and allow for representation as a pair, (V, E).

Here V is the set of vertices and the edge set E ⊆ V 2, a set of ordered pairs of V . The

�names� of the vertices are not interesting to us, and we will identify them as 0, . . . , n−1
where n is the number of vertices. It is therefore natural to represent a graph as a pair

{V, E} where E is a binary predicate over V .

We will formalize these notions more exactly in the following section. In particular,

one of our goals is a generalized notion of property testing instead of restricting ourselves

to �xed kinds of structures such as graphs and binary strings. The de�nitions in the

following section are therefore necessarily abstractions of the ideas above.

2.1 Basic De�nitions

Instead of restricting our attention to, for example, graphs, we focus on property testing

in a general setting. We begin by de�ning vocabularies, which will also be the basis for

most of our logical de�nitions. A predicate symbol is simply a syntactic character which

is used to refer to predicates. Likewise, the arities in the following de�nition are simply

positive integers that are later interpreted as arities.

De�nition 1. A vocabulary τ is a tuple of distinct predicate symbols Ri together with

their arities ai,

τ := (Ra1
1 , . . . , Ras

s ).
1The universe is the empty set if w is the empty string.

5



2.1. BASIC DEFINITIONS 6

When we prove general theorems for all vocabularies, we will always use vocabularies τ

as in De�nition 1. The predicate symbols in these theorems will therefore always be

named Ri for 1 ≤ i ≤ s and have arities ai. Two examples of vocabularies are τG := {E2},
the vocabulary of directed graphs and τS := {S1}, the vocabulary of binary strings.

In order to de�ne structures we must consider universes, which are sets. Our universes

are always �nite and we generally refer to the cardinality of a universe with n.

De�nition 2. An (algebraic) structure A of type τ is an (s + 1)-tuple

A := (U,RA
1 , . . . ,RA

s )

consisting of a �nite universe U and where each RA
i ⊆ Uai is a predicate corresponding

to the predicate symbol Ri.

In the following, we omit �(algebraic)� and refer to such structures simply as structures.

We also omit the vocabulary when it is understood. If the universe U is the empty set,

then n = 0 and the structure is the unique empty structure of type τ . Such structures

are not very interesting in terms of testing but it is worth noting their existence.

For convenience we will always identify the elements of U with the non-negative integers

{0, . . . , n − 1} and use n = #(A) for the size of the universe of a structure A. As a

notational convenience, we will use Un := {0, 1, . . . , n− 1} to refer to �the� universe of n

elements. We use calligraphic characters to denote the predicates de�ned by a structure,

however our logical de�nitions will provide a more convenient way (using the predicate

symbols) to state propositions regarding the predicates.

If we consider a binary string, the universe U is the set of bit positions, which we will

identify as {0, . . . , n− 1} from left to right. For i ∈ U , we interpret the meaning of i ∈ S
as �bit i of the string is 1.� Likewise, for a graph G, the universe is the set of vertices,

which we again identify as {0, . . . , n− 1}. For x, y ∈ U , we interpret (x, y) ∈ E as �there

is an edge from x to y in the graph.� Our graphs are therefore directed and possibly

contain loops.

We de�ne STRUC n(τ) to be the set of all structures with vocabulary τ and universe

size n. We then de�ne STRUC (τ) :=
∪

0≤n STRUC
n(τ) to be the set of all structures

of type τ .

A property P of structures of type τ is a set of structures of type τ , and so P ⊆
STRUC (τ). We do not consider properties of structures of mixed types, although it

would be possible to do so. For all A ∈ P , we say that structure A has property P .

That is, in order to avoid unwieldy language, having a property is always de�ned as

membership in the set of structures de�ning the property. To re�ect the conventional

terminology from formal language theory, we use language instead of �property� to refer

to sets of strings.

An example of a property is that of being a binary palindrome. A binary string is a

palindrome if it is equivalent to its reversal. The language of such binary strings can be

de�ned as

LP := {w | w ∈ STRUC (τS) and | ∀i ∈ U : i ∈ S i� (#(w)− 1− i) ∈ S}.

6



2.2. PROPERTY TESTING DEFINITIONS 7

We generally use L, P and Q to denote properties and A and B to refer to structures.

However, we refer to strings as u,v and w to re�ect more common notation.

2.2 Property Testing De�nitions

In property testing we wish to distinguish, with high probability, between inputs that

have some desired property and inputs that are far from having the property. We begin

by de�ning a distance measure between structures. The symbol ⊕ denotes exclusive-or.

We recall that vocabulary τ = {Ra1
1 , . . . , Ras

s } and that the universe of a structure is

denoted by U (cf. De�nition 1).

De�nition 3. Let A,B ∈ STRUC (τ) be structures such that #(A) = #(B) = n. The

distance between structures A and B is

dist(A,B) :=

∑
1≤i≤s |{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|∑s

i=1 nai
.

That is, the distance is de�ned as the number of tuples that are assigned di�erent truth

values for the same predicate symbol in A and B, divided by the total number of tuples.

It is the fraction of assignments on which the two structures disagree. For structures

that are binary strings, the above de�nition is equivalent to their edit distance.

In the case of graphs, De�nition 3 is equivalent to the �adjacency matrix� model intro-

duced by Goldreich et al. [20]. This approach is particularly suited to dense graphs, and

an alternative approach for bounded degree graphs which are represented using bounded

incidence lists has been developed by Goldreich and Ron [19].

De�nition 4. Let P be a property of structures with vocabulary τ and A be such a

structure with a universe of size n. Then, A is said to be ε-far from P if every structure

B with universe of size n and vocabulary τ that has P satis�es dist(A, B) ≥ ε.

Structure A is far from having a property if it is far from all structures that have the

property and are the same size as A. Our goal is to di�erentiate between structures that

have a desired property and those that are far from having the property. As usual, we

must have this property in mind before constructing algorithms for it. We are especially

interested in extremely e�cient probabilistic approximation algorithms that examine

only a very small portion of the structure.

Instead of directly providing these algorithms with the structures as input, we provide

them with access to an oracle. We will assume that the algorithm is for testing property

P of type τ , and that we wish to run this on the �input� A ∈ STRUC (τ). The algorithm
is allowed to query the oracle for desired bits of the input. We formalize the queries as

being of the form Ri(x), where Ri is a predicate symbol in the vocabulary τ determined

by the property and x ∈ Nai is some tuple with the appropriate arity. The oracle then

returns �1� if the tuple is in the predicate RA
i and �0� if it is not.

7



2.2. PROPERTY TESTING DEFINITIONS 8

Once the structure A is �xed, it is of some �xed universe size n. A truly random query

is overwhelmingly likely to be of a tuple x 6∈ Un. It is therefore essential to provide

the algorithm with some means of making �meaningful� queries. In our model we allow

an additional, special query: The algorithm may ask the oracle for n, the size of the

universe.

We discuss multiple variations of the above after formalizing our de�nition in the

following way. In particular, the special query for the universe is not allowed in the

so-called �oblivious� model. There, it is common for the algorithm to give the oracle a

natural number m, in response to which the oracle returns a uniformly random induced

substructure of A with size m or an error if no such substructure exists.

De�nition 5. An ε-tester for property P is a randomized algorithm that is given an

oracle which answers queries for the universe size and truth values of relations on desired

tuples in a structure A. The ε-tester must accept A with probability at least 2/3 if A has

P and must reject A with probability at least 2/3 if A is ε-far from P .

The choice of 2/3 in De�nition 5 is both traditional and arbitrary. Any probability

strictly greater than 1/2 can be chosen and the resulting testers iterated a constant

number of times and the majority taken to achieve any desired accuracy strictly less

than one, see e.g., Hromkovi£ [27]. The tester is not designed according to any particular

structure A and so di�erent �inputs� can be tested using di�erent oracles. However, the

tester may be designed using the approximation parameter ε, which we discuss shortly.

Our de�nition of testers allows them to know the size of the input, have two-sided error

and make adaptive queries based on the results of previous queries. Testers that are not

given the size of their input are known as oblivious testers. These testers generally make

queries by requesting a random sample of the input which is of a certain size. Such a

sample is returned if it exists, otherwise the query fails. It is easy to construct properties

that are testable by our de�nition but not by oblivious testers; for example, the property

that the size of the universe is odd. In fact, several of the testers in this thesis will

examine the size of the universe.

Many of those testers will examine the size of the universe only to determine if it is

su�ciently large, where su�ciently large is de�ned as greater than some function of ε. It

is possible to construct an oblivious tester in such cases, by having the tester request a

sample that is larger than this function. The input is su�ciently large i� such a sample

is available.

Alon and Shapira [7] have provided an exact characterization of the graph properties

testable by oblivious testers with one-sided error. Goldreich and Trevisan [21] have

shown that every graph property testable with q adaptive queries can be tested with

O(q2) non-adaptive queries and Gonen and Ron [22] have shown that this gap exists.

We have mentioned above the notion of testable properties, and also implied the exis-

tence of untestable properties. It is therefore necessary to de�ne testability, which we do

as follows.

8



2.3. LOGICAL DEFINITIONS 9

De�nition 6. Property P is called testable if for every ε > 0 there exists an ε-tester

that makes a number of queries which can be upper-bounded by a function depending only

on ε.

It is interesting to note we allow di�erent ε-testers for each ε > 0 and natural to ask

why a single algorithm does not su�ce. The situation is similar to that familiar in circuit

complexity (cf. Straubing [45]), where we have uniform and non-uniform cases.

De�nition 6 is non-uniform in the sense that the ε-testers may not be constructible

given ε. It is very natural to require the ε-testers for P to be computable given ε,

an additional condition (equivalent to requiring the ε-testers to be a single algorithm)

that results in uniform testability. We [28] have shown that there exist undecidable

properties that are testable i� we use a non-uniform de�nition of testability while Alon

and Shapira [8] have also shown the same separation between uniform and non-uniform

testability using a decidable property. We discuss the role of uniformity in Section 3.6.

Alon and Shapira [8] also emphasize the importance of the function in De�nition 6

being only an upper bound on the number of queries. This is because query complexities

such as 1/ε + (−1)n are acceptable, albeit problematic for oblivious testers.

2.3 Logical De�nitions

The de�nitions in this section are used especially in formulating and discussing classi�-

cation problems in Chapter 4. Our logic is a pure predicate logic with equality that does

not contain function symbols. There are no ordering symbols such as ≤ nor are there

arithmetic relations such as PLUS or BIT. Enderton [14] provides a more comprehen-

sive introduction to logic and Börger et al. [11] is an excellent reference for classi�cation

problems.

We begin by de�ning the underlying language. There exist countably in�nite variable

symbols, which we generally name with (possibly subscripted) x, y and z. We use lower

case letters to distinguish these variable symbols from predicate symbols and let V AR

be the set of variable symbols.

The equality symbol (=) is special. Although = is a predicate, we do not allow struc-

tures to rede�ne it and insist that it is always interpreted as true equality. We do not

allow function symbols or constant symbols (nullary function symbols).

Given a vocabulary τ as de�ned in De�nition 1, the �rst-order logic of τ is de�ned as

follows. Our logic does not contain constant symbols, and so the atomic terms are the

variable symbols, x. Our language does not contain function symbols, and so the terms

are exactly the atomic terms.

The atomic formulas are x = y for terms x and y and Ri(x1, . . . , xai) where the xj are

terms and Ri is a predicate symbol of τ .

The formulas are de�ned inductively. If ϕ and ψ are formulas, then (ϕ ∨ ψ) and (¬ϕ)
are formulas. If x is a variable, then (∃x : ϕ) and (∀x : ϕ) are also formulas. A well-

formed formula is a formula in which no variable occurs free. The �rst-order logic of τ

9



2.3. LOGICAL DEFINITIONS 10

is exactly the set of well-formed formulas. We have no further use for formulas with free

variables and will now refer to well-formed formulas simply as formulas.

Additional connectives including ∧, → and ↔ are allowed but are formally considered

abbreviations. The parentheses required by the de�nition are omitted where the intended

meaning is clear.

We say that a structure A of type τ and universe Un models (or satis�es) a formula ϕ,

written A |= ϕ, if ϕ is true when interpreted in the context of A. We de�ne this more

formally in the following way.

An interpretation is a function from the variable symbols to the universe,

I : V AR 7→ Un.

In addition, the function f maps the predicate symbols of τ to their corresponding

predicates in A, that is, f(Ri) = RA
i . Recalling that vocabularies and structures are

tuples, the function f maps the i-th element of τ to the (i + 1)-th element of A.

As a notational convenience, if I is a function, we will write I[x\\a] to mean

I[x\\a](y) =

I(y), if y 6= x;

a, if y = x.

That is, I[x\\a](y) is the function I(y) except that the value I(x) has been replaced

with a.

The de�nition of truth is inductive and follows our de�nition of formulas. We only

write A |= ϕ for well-formed formulas ϕ and so the initial interpretation is irrelevant,

but formulas which are not well-formed may appear during the inductive steps. We say

that A |= ϕ if there is an interpretation I such that (A, I, f) |= ϕ. Inductively,

1. (A, I, f) |= (x = y) if I(x) = I(y). Note = is always interpreted as equality on Un;

2. (A, I, f) |= Ri(x1, . . . , xai) if the tuple (I(x1), . . . , I(xai)) ∈ f(Ri);

3. (A, I, f) |= (ψ ∨ γ) if it is true that (A, I, f) |= ψ or (A, I, f) |= γ;

4. (A, I, f) |= (¬ψ) if (A, I, f) |= ψ is not true,

5. (A, I, f) |= (∃x : ψ) if there exists an a ∈ Un such that (A, I[x\\a], f) |= ψ;

6. (A, I, f) |= (∀x : ψ) if for every a ∈ Un, it is true that (A, I[x\\a], f) |= ψ.

This de�nition of truth is generally attributed to Tarski [47] (see [48] for an English

translation).

We say that formula ϕ de�nes property P := {A | A |= ϕ} and so A |= ϕ is equivalent

to saying that A has property P . On one hand, the expressive power of our language

is quite weak. First-order logic with ordering (≤) and arithmetic relations PLUS and

TIMES, or equivalently BIT, is a characterization of DLOGTIME-uniform AC0, see e.g.

Barrington et al. [9]. It therefore cannot express the property PARITY, which is true

10



2.4. CLASSIFICATION DEFINITIONS 11

only for binary strings containing an odd number of 1s, see Furst et al. [18]. Our language
does not contain ordering or arithmetic relations and so it is even weaker.

On the other hand, it is rich enough to express both testable and untestable properties.

In some sense (see indistinguishability in Section 3.4) it is more powerful in the context

of testing than classically. It is useful that our language is the same as the pure predicate

logic considered in the traditional classi�cation problem, allowing us to make several

comparisons in Subsection 4.1.2. Finally, properties that are closed under isomorphisms

are most natural in property testing and many possible additions to our language would

force us to focus on properties that are not closed under isomorphisms.

We use lower-case Greek letters, especially ϕ, ψ and γ, for �rst-order formulas and

x, y and z for �rst-order variables. We refer to members of the universes of structures

with a, b and u when it is necessary to distinguish between variables and the underlying

members of the universe that they are bound to.

2.4 Classi�cation De�nitions

Recall that every �rst-order formula has an equivalent formula in prenex normal form.

That is, for any ϕ there exists a logically equivalent ϕ′ that is of the form

ϕ′ = π1x1 . . . πaxa : ψ,

where ψ is quanti�er-free and the πi are either ∀ or ∃. For example, the �rst-order

formula ∃x : (S(x) ∧ ∃x : (¬S(x))) is equivalent to ∃x∃y : (S(x) ∧ ¬S(y)).
This example can be expressed with two existential quanti�ers (∃2), a single monadic

predicate and does not require equality. There are a number of common ways to clas-

sify �rst-order formulas, including the number of distinct variables and the number of

quanti�ers. However, the most traditional methods have been to classify formulas in

prenex normal form based on the pattern of quanti�ers and the vocabulary τ de�ning

the language. In particular, there are a number of interesting relationships between the

testability of properties and the patterns of quanti�ers that can be used to express them.

Our de�nitions for classi�cation are very similar to those used by Börger et al. [11],

however one notable di�erence is that we restrict ourselves to pure predicate logics rather

than also considering logics with function symbols. The similar notation allows us to

easily compare what is currently known regarding the classi�cation for testability with

the traditional classi�cation for decidability, which we do in Section 4.1.2.

De�nition 7. A pre�x vocabulary class is speci�ed as

[Π, p]e.

Here, Π is a string over the four-character alphabet {∃,∀,∃∗,∀∗}, p is either the special

phrase `all' or a sequence over N and the �rst in�nite ordinal ω, and e is either `=' or λ.

11



2.4. CLASSIFICATION DEFINITIONS 12

Note that we have only de�ned a syntactic object; it is essentially a triple that also

contains two brackets. In general, p is an in�nite sequence although we will consider

normal forms shortly. We will use these triples to de�ne classes of �rst-order formulas,

and so we now de�ne their meaning.

The �rst-order sentence

ϕ := π1x1π2x2 . . . πrxr : ψ

in prenex normal form, with quanti�ers πi and quanti�er-free ψ, is a member of the pre�x

vocabulary class given by [Π, (p1, p2, . . .)]e, where pi ∈ N ∪ {ω} i�

1. The string π1π2 . . . πr is contained in the language speci�ed by Π when Π is inter-

preted as a regular expression2.

2. If p is not all, at most pi distinct predicate symbols of arity i ≥ 1 appear in ψ.

3. Equality (=) appears in ψ only if e is `='.

That is, Π describes the pattern of quanti�ers for sentences in the class, p gives the

maximum number of predicate symbols of each arity and e determines whether the equal-

ity symbol is permitted. It is traditional to include an additional sequence f describing

the permitted function symbols, but we do not allow function symbols and so omit f .

Our sentences are always �nite in length. If a pre�x class has pi = ω, then formulas

may contain any �nite number of i-ary relation symbols. If p = all, then formulas in the

class may contain any �nite number of relation symbols of any �nite arities.

We mentioned above that p is, in general, an in�nite sequence. However if we con-

sider graphs as an example, it is tiresome to write the in�nitely many trailing zeros in

(0, 1, 0, . . .). As a convention, we therefore suppress trailing zeros in p, and so (0, 1)
corresponds to the case of graphs.

If there are not in�nitely many trailing zeros in p, then the sum pi + pi+1 + · · · is

in�nite for all i. In this case, we can use some of these higher arity predicate symbols to

�simulate� lower arity symbols, for example using E(x, x) to simulate a monadic predicate

S(x). This implies that all sequences p have an equivalent sequence p′ such that p′ is

either a �nite sequence (omitting trailing zeros) or the special phrase all. This is part of

the de�nition of a standard pre�x class, see Börger et al. [11].

We are interested in the testability of pre�x classes and so we say that a pre�x class is

testable if every formula in the class expresses a testable property in the context of every

vocabulary in which it is possible to evaluate the formula. However, it is su�cient to

consider only the minimal vocabulary needed to evaluate the formula. We formalize this

in the following simple lemma, where an extension of a vocabulary τ is any vocabulary

formed by adding a new (distinct) predicate symbol to those in τ .

2We slightly modify the usual semantics of regular expressions so that ∀ (resp. ∃) matches the empty
string λ as well as ∀ (resp. ∃). This is because we wish to consider closed pre�x vocabulary classes, see
Section 2.3.3 of Börger et al. [11].

12



2.4. CLASSIFICATION DEFINITIONS 13

Lemma 1. Let ϕ be a formula in the �rst-order logic of vocabulary τ and τ ′ be any

extension of τ . If ϕ de�nes a property that is testable in the context of τ , then the

property of type τ ′ de�ned by ϕ is also testable.

Proof. Assume ϕ de�nes property P of type τ when interpreted as a formula of type τ

and property P ′ of type τ ′ when interpreted as a formula of type τ ′. Additionally assume

that the �new� predicate symbol in τ ′ is N which has arity a.

Let T τ
ε be a ε-tester for P . We will show that this is also a ε-tester for P ′. Let A be a

structure with type τ ′ and assume A ∈ P ′. Removing the N predicate, the corresponding

A′ ∈ STRUC (τ) has property P and so the tester will accept with probability at least

2/3, as desired.
Assume that dist(A,P ′) ≥ ε and again let A′ be the structure of type τ formed by

removing the N predicate from A. By the de�nition of distance,

dist(A′, P ) = min
B∈P

∑
1≤i≤s |{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|∑s

i=1 nai
≥

dist(A,P ′) = min
B∈P

∑
1≤i≤s |{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|

na +
∑s

i=1 nai
≥ ε.

The tester will therefore reject such A with probability at least 2/3 as desired.

Testable properties therefore remain testable when the vocabulary is extended and so

a property is testable in every relevant vocabulary if and only if it is testable in the

minimal relevant vocabulary. A pre�x class is untestable if it is not testable, that is, if it

includes some property that is untestable.

13



14

Chapter 3

Basic Results

3.1 Testable Properties

Perhaps the most basic result in property testing is the existence of the objects being

studied, testable properties. The testability of a property depends only on the property

itself and not on which of the various equivalent de�nitions (formulas) expresses it. It

is therefore easy to see that trivial properties such as always true and always false are

testable, but it is worthwhile to prove an example explicitly. We begin by considering

palindromes of even length. It is easy to extend this to all palindromes, however it is

useful to maintain uniformity with later results (cf. Theorem 4) from the literature.

Theorem 1. The property of being an even-length palindrome, LP = {u←u} over the

alphabet {0, 1}, is testable with query complexity O(1/ε).

Proof. The following algorithm is an ε-tester for the property.

1. Query the oracle for the number of characters, n. Reject if n is odd.

2. Choose 2/ε integers uniformly at random from [0, n/2− 1].

3. For each of these integers i, query the oracle for S(i) and S(n− 1− i).

4. Reject if any of these pairs di�er, otherwise accept.

To show that this is an ε-tester for even-length palindromes, we are required to show

that it accepts palindromes with probability greater than 2/3, and rejects when the oracle

uses a string w where dist(w,LP ) ≥ ε, again with probability greater than 2/3. The �rst
part is easy; if the input is a palindrome, the bits we compare will be equal by de�nition

and so we will accept with zero error.

Next, assume that dist(w,LP ) ≥ ε. Therefore, there are at least εn bits in w that must

be modi�ed to reach a palindrome. For each of the random bit pairs that we examine,

the probability that we have failed to �nd one of these bits of evidence is at most (1−ε).
The total error probability is then at most (1− ε)2/ε, which is uniformly upper-bounded

by e−2ε/ε = e−2 ≈ 0.135 for all ε in (0, 1], where e is the Euler number. The tester

therefore rejects such inputs with probability at least 1− e−2 > 2/3, as desired.

14



3.2. UNTESTABLE PROPERTIES 15

The language of palindromes (with even length) is a well-known example of a context-

free language that is not regular. The property of being an empty graph is also testable,

and the proof is nearly identical. However, we will use both results a number of times,

and so we show both explicitly.

Theorem 2. The property of being an empty graph,

PE := {G | G ∈ STRUC (τG) and G has no edges},

is testable.

Proof. The following is an ε-tester for the property.

1. Query the oracle for the number of vertices, n.

2. Choose 2/ε pairs of vertices (x, y) uniformly at random.

3. For each of these pairs, query the oracle for E(x, y).

4. Reject if we see any edges, otherwise accept.

Of course, we will not see any edges if the input is empty and so we will accept with

zero error. For G such that dist(G,PE) ≥ ε, graph G contains at least εn2 edges. For

each of the random pairs that we query, the probability that we have failed to �nd an

edge is at at most (1 − ε). As above, the total error probability is at most (1 − ε)2/ε

which is strictly less than 1/3 for all ε ∈ (0, 1]. Therefore, we will �nd an edge and reject

such G with probability at least 2/3, as desired.

3.2 Untestable Properties

In Section 3.1, we proved that the language of (even-length) palindromes is testable by

providing a correct tester that makes O(1/ε) queries. Here we wish to show that there

exists an untestable property, i.e., a property which cannot be tested with o(n) queries.
The example and proof that we use is due to Alon et al. [4].

The speci�c example given here allows a number of interesting corollaries, for example,

that the testable properties are not closed under complement (Corollary 3). We begin

by reviewing and proving the tool that we will use to prove non-testability.

3.2.1 Yao's Principle

The proof relies on a variation (Principle 1) of Yao's principle, a tool for proving lower

bounds in the context of randomized algorithms. Yao's principle is an interpretation

by Yao [49] of von Neumann's [34] minimax theorem for randomized computation. We

prove only the direction of the minimax theorem that is required for our purposes; for a

survey of minimax theorems and their proofs see Simons [42].

We begin by providing the de�nitions required to state Principle 1.

15



3.2. UNTESTABLE PROPERTIES 16

De�nition 8. A deterministic tester is a binary tree where each internal node is labeled

with a non-negative integer, each leaf is labeled �accept� or �reject,� and the two edges

from a node are labeled 0 and 1.

Given an input, we execute the tester as follows. Beginning at the root, we interpret

the labels on internal nodes as the bit position of the input that will be queried. If the

result of the query is 0, we follow the 0 edge and otherwise the 1 edge. When we reach a

leaf we output the decision on the label. Note that it is equivalent to label the internal

nodes with atomic formulas such as E(0, 1) as these are equivalent to speci�c bits of the

input, the positions of which can be easily computed.

De�nition 9. The complexity of a deterministic tester is the number of internal nodes,

including the root unless it is a leaf, on the longest path from the root to a leaf.

The complexity of a deterministic tester is then the maximum number of queries that

it makes. Our interest is limited to testers of �nite complexity, i.e., those that output

a decision in �nite time. Without loss of generality, we can restrict our attention to

balanced binary trees, by making extra, useless queries on the shorter paths in order to

�pad� their lengths.

Principle 1 (Yao's Principle). Let τ be a vocabulary. If there exists an ε ∈ (0, 1) and a

distribution over STRUC n(τ) such that all deterministic testers with complexity c have

an error-rate greater than 1/3 for property P , then P is not testable with complexity c.

The de�nition of �testable� is of course our usual one involving random testers. In

general, our goal will be to show that it is impossible to test P using randomized testers

whose complexity does not depend on the input size. That is, for su�ciently large n and

some increasing function c := c(n) of n, we wish to �nd a distribution of inputs such

that all deterministic testers with complexity c have error-rates greater than 1/3.
For testability, we are concerned only with the error-rate on inputs that either have our

desired property or are ε-far from having the property. Therefore, we de�ne the error-rate

of a tester to be non-zero only on such examples. Because of this, it su�ces to restrict our

attention to distributions that give zero probability to the remaining �possible� inputs

(those that do not have the property in question, but are also not ε-far from it).

We begin by proving the following direction of the minimax theorem. We say that a

vector x ∈ R|x| is a probability vector if each of its components is a non-negative real

number and the sum of its components is 1. For n > 0, we let Pn be the set of probability

vectors with n components,

Pn :=

{
x | x = (x1, . . . , xn) ∈ Rn, xi ≥ 0 for all 1 ≤ i ≤ n, and

n∑
i=1

xi = 1

}
.

It is well-known that equality holds in the following, however we restrict ourselves to

stating and proving only the direction required for Principle 1, as mentioned above.

16



3.2. UNTESTABLE PROPERTIES 17

Theorem 3 (Minimax Theorem). Let M be an a × b matrix of non-negative reals and

X = Pa and Y = Pb be the sets of all probability vectors with a and b components,

respectively. Then,

max
y∈Y

min
x∈X

xMyT ≤ min
x∈X

max
y∈Y

xMyT . (3.1)

Proof. Let y∗ be any of the arg max on the left in (3.1),

y∗ := arg max
y∈Y

min
x∈X

xMyT ,

and x∗ be any of the arg min on the left in (3.1),

x∗ := arg min
x∈X

xMy∗T .

Then, for any probability vector x ∈ X, by the de�nition of minimum,

xMy∗T ≥ x∗My∗T . (3.2)

Let x+ and y+ be any of the arg min and arg max on the right of (3.1), that is

x+ := arg min
x∈X

max
y∈Y

xMyT and y+ := arg max
y∈Y

x+MyT .

Then, by the de�nition of maximum, x+My+T ≥ x+My∗T . Therefore, by (3.2),

min
x∈X

max
y∈Y

xMyT = x+My+T ≥ x+My∗T ≥ x∗My∗T = max
y∈Y

min
x∈X

xMyT .

Given Theorem 3, it is easy to show Principle 1. In (3.1), we call x on the left and y
on the right �inner vectors.� This is because we can think of them as being chosen after

the �outer vectors� (y on the left and x on the right) are �xed. For the �inner� vectors, it

su�ces to consider unit vectors ei, where component i is 1 and all other elements are 0.
This is because once the outer vector is �xed, denoting the i-th component of a vector z
by [z]i,

min
x∈X

xMyT = earg mini[MyT ]iMyT

and likewise for the maximum on the right of (3.1). This proves the following simple

corollary of Theorem 3.

Corollary 1. Let M be an a× b matrix of non-negative reals and X = Pa and Y = Pb

be the sets of all probability vectors with a and b components, respectively. Then,

max
y∈Y

min
ei∈X

eiMyT ≤ min
x∈X

max
ej∈Y

xMeT
j . (3.3)

17



3.2. UNTESTABLE PROPERTIES 18

Proof (Principle 1). Principle 1 is an interpretation of (3.3) in the context of testing. We

let a be the number of deterministic testers with complexity c whose queries are evaluable

in structures of type τ that have n elements. We assume that there is an enumeration of

these testers. Then, a randomized tester with complexity c for structures of n elements

is given by a probability vector x ∈ X, where [x]i is interpreted as the probability that

the randomized tester behaves like the i-th deterministic tester. A unit vector ei ∈ X

speci�es the i-th deterministic tester.

Likewise, we assume there is an enumeration of structures of type τ that have n

elements and let b be the number of such structures. Then, a probability vector y ∈ Y

is a distribution over these structures and a unit vector ej speci�es the j-th structure.

For matrix M , we let Mij be 1 if the i-th deterministic tester is incorrect on the j-th

input and this input either has the desired property or is ε-far from it. Otherwise, we let

Mij be 0.
We now have have an a×b matrix M and a meaning for a and b component probability

vectors and so we can interpret the meaning of Corollary 1. On the left, eiMyT is

the average-error of the i-th deterministic tester on a structure chosen according to

distribution y. Likewise, on the right, xMeT
j is the error-rate of the randomized tester

speci�ed by x on the j-th structure.

Therefore, the left side of (3.3) is the average-error of the �best� deterministic tester on

the �worst� distribution of inputs, when we de�ne �best� as the lowest average-error. If

we �nd some distribution y+ of inputs such that all deterministic testers have an error-

rate greater than 1/3, then 1/3 is a lower bound on the left side, and therefore the right

side, of (3.3).

The right side of (3.3) is the error-rate of the �best� randomized tester on the �worst�

input structure, when �best� is de�ned as the best worst-case. If the �best� randomized

tester with complexity c has an error-rate greater than 1/3 on an input, we can conclude

that the property in question is not testable with complexity c.

3.2.2 An Untestable Property

We will now prove that there exists an untestable property. The speci�c example that

we use is L := {u←uv
←
v}, where the underlying alphabet is {0, 1}. This is clearly a context-

free language and so Theorem 4 will also imply that there exist untestable context-free

languages. The proof here is due to Alon et al. [4].

In Theorem 1, we showed that LP = {u←u} is testable. We might hope to use this

tester twice in an attempt to test L = {u←uv
←
v}, possibly iterating and taking the majority

decision in order to increase the success probability above 2/3. However, this assumes

that we know the �divider� between u
←
u and v

←
v in advance, which is not true. Our attempt

to use the tester from Theorem 1 is therefore unsuccessful, as we would be forced to search

for the divider by using the previous tester a linear number of times and make too many

queries. In the following theorem, we will show that it is not possible to test L using

18



3.2. UNTESTABLE PROPERTIES 19

any algorithm that makes o(
√

(n)) queries. This is our �rst example of a property that

is untestable.

Theorem 4 (Alon et al. [4]). The language L = {u←uv
←
v}, where u and v are strings over

{0, 1} is not testable with complexity o(
√

n).

Proof. The proof is an application of Principle 1, and so we begin by de�ning a distribu-

tion D of strings. Our goal is to show that D is such that all deterministic testers that

make c = o(
√

n) queries have error rates greater than 1/3 for L. Principle 1 will then

imply that L is not testable with o(
√

n) queries, as desired. In the proof we will assume

that n is su�ciently large, although it is of course always �nite. This will conveniently

allow us to assume that n is divisible by 6 (if it is not, use the �rst multiple of 6 that is

larger than n), avoiding the use of �oors.

Distribution D draws from a distribution D+ of strings in L or from a distribution

D− of strings that are ε-far from L with probability 1/2 in each case. Distribution D−

selects a w ∈ {0, 1}n uniformly at random from the set of w such that dist(w,L) ≥ ε.

Distribution D+ �rst selects a positive integer k ∈ {1, . . . , n/3}, and then selects strings

u ∈ {0, 1}k and v ∈ {0, 1}(n−2k)/2, uniformly at random in each case. The result is a

string w = u
←
uv

←
v ∈ L ∩ {0, 1}n. We can think of D+ as selecting a pair (k,w) and some

w can be chosen with multiple values of k.

We now consider an arbitrary deterministic tester A with complexity c = o(
√

n).
As mentioned above, we can consider A to be a balanced binary tree and it therefore

has 2c leaves. We let T0 be the set of leaves labeled �reject� and T1 be the set of

leaves labeled �accept.� Additionally, we associate to each leaf t a sequence of c pairs

Qt := ((pt
1, r

t
1), . . . , (p

t
c, r

t
c)) corresponding to the bit positions queried (pt

i ∈ [0, n − 1])
and the results (rt

i ∈ {0, 1}) on the path from the root of A to t. Furthermore, we de�ne

q(Q,w) for w ∈ {0, 1}n to be true if w agrees with Q, or more formally, if bit pi in w

is ri for all 1 ≤ i ≤ c, and false otherwise.

We also de�ne E+(Q) (resp. E−(Q)) to be the set of strings with length n that agree

with Q and are positive (ε-far) instances for L. More formally,

E+(Q) := {w | w ∈ L ∩ {0, 1}n and q(Q,w) is true} and

E−(Q) := {w | w ∈ {0, 1}n, dist(w,L) ≥ ε and q(Q, w) is true} .

If we consider some �xed accepting leaf t, then E−(Qt) is the set of strings that A

makes an error on when ending in t and similarly for a rejecting leaf t and E+(Qt). We

de�ne the probability of a set to be the sum of the probabilities of the members of the

set, and therefore the total error of A is

∑
t∈T0

Pr
D

(E+(Qt)) +
∑
t∈T1

Pr
D

(E−(Qt)).

We will show the following two lemmata for any sequence Q of o(
√

n) elements.

19



3.2. UNTESTABLE PROPERTIES 20

Lemma 2. PrD(E+(Q)) = (1/2− o(1))2−|Q|.

Lemma 3. PrD(E−(Q)) = (1/2− o(1))2−|Q|.

Every leaf of A must be labeled with exactly one decision, and so |T0| + |T1| = 2|Q|.

Using the two lemmata, the total error of A is then

|T0|(1/2− o(1))2−|Q| + |T1|(1/2− o(1))2−|Q| =
|T0|+ |T1|

2|Q| (1/2− o(1)) = (1/2− o(1)).

The o(1) term approaches zero as n grows and so the error is greater than 1/3 for su�-

ciently large n. Therefore, by Principle 1, language L cannot be tested with complexity

o(
√

n) and is therefore untestable.

We must now show the two lemmata used by the theorem. We will use the (loose)

upper bound |L ∩ {0, 1}n| ≤ 2n/2n/2, which follows from the observation that we �rst

choose the string uv and then choose the length of u to determine a w ∈ L. In addition,

if the length of u is �xed at k, there are exactly 2n/2 corresponding w, which will be

useful given the de�nition of distribution P .

Lemma 2. If |Q| = o(
√

n), then PrD(E+(Q)) = (1/2− o(1))2−|Q|.

Proof. First, for any w ∈ {0, 1}n ∩ L, by the de�nition of D,

Pr
D

(w) = 1/2 Pr
D+

(w) =
∑n/3

k=1 |{u | ∃v : w = u
←
uv

←
v, |u| = k}|

2n/2 2n
3

.

Next, it follows from the de�nition of E+(Q) that PrD(E+(Q)) = 1
2 PrD+(E+(Q)) =(

1
2n/22n/3

) n/3∑
k=1

|{w | ∃u, v : w = u
←
uv

←
v, |u| = k and q(Q,w)}| .

If the sequence Q contains a pair of queries that are symmetric about k or n/2 + k,

then the pair queries the same bit in u and ←
u or in v and ←

v. If the results of these queries

must be di�erent, then it is impossible for such a w to exist. However, Q contains
(|Q|

2

)
pairs, and so there is no such pair of queries for at least n/3 − 2

(|Q|
2

)
choices of k. For

each of these k,

|{w | ∃u, v : w = u
←
uv

←
v, |u| = k and q(Q,w)}| = 2n/2−|Q|.

Therefore, as an upper bound,

Pr
D

(E+(Q)) ≤
(

1
2n/22n/3

)(
2n/2−|Q|

) (
n/3− 2

(
|Q|
2

))
=

(
1/2−

2
(|Q|

2

)
n/3

)
2−|Q|,

which is (1/2− o(1))2−|Q| for |Q| = o(
√

n), as desired.

20



3.3. CLOSURE PROPERTIES 21

Lemma 3. If |Q| = o(
√

n), then PrD(E−(Q)) = (1/2− o(1))2−|Q|.

Proof. We noted above that the number of strings in L with length n is at most 2n/2n/2
and so the number of strings of length n that are not ε-far from L satis�es

|{w | dist(w,L) ≤ ε, |w| = n}| ≤
(
2n/2n/2

) εn∑
i=0

(
n

i

)
.

This is upper-bounded by 2n/2+2εn log 1/ε. Recall that E−(Q) is the set of w ∈ {0, 1}n

such that dist(w,L) ≥ ε and w agrees with Q. Then, the size of E−(Q) must satisfy∣∣E−(Q)
∣∣ ≥ 2n−|Q| − 2n/2+2ε log 1/εn.

Then, by the de�nition of distribution D,

Pr
D

(E−(Q)) = 1/2PrD−(E−(Q)) ≥ |E−(Q)|
2n

.

For ε < 1/16, this is

(1/2− 2−Θ(n)+|Q|)2−|Q| = (1/2− o(1))2−|Q|,

where the last equality holds for |Q| = o(n). Our assumption is stricter, |Q| = o(
√

n).

Theorem 4 allows a number of interesting corollaries. In particular, now that we

have seen that both testable and untestable properties exist, in the next section we will

examine closure properties of the set of testable properties.

3.3 Closure Properties

The language in Theorem 4 is the set of strings that are the concatenation of two even-

length palindromes. That is, it is the product LP LP , where LP is the language of binary

palindromes with even length proven testable in Theorem 1. We therefore immediately

get the following corollary.

Corollary 2. The testable properties are not closed under product.

In addition, the de�nition of testability is asymmetric in the sense that it requires us

to accept all positive instances with high probability while requiring us to reject, again

with high probability, only those negative instances that are also far from having the

property.

Corollary 3. The testable properties are not closed under complement.

Proof. We use the complement of the language L from Theorem 4, L := {w | w 6∈ L}.
We begin by showing that for su�ciently large n, there is no w ∈ {0, 1}n such that

dist(w, L) ≥ ε.

21



3.3. CLOSURE PROPERTIES 22

Lemma 4. Given ε > 0, there is no w ∈ {0, 1}n such that dist(w, L) ≥ ε for n > 1/ε.

Proof. Let w ∈ {0, 1}n be arbitrary. There are two cases. If w ∈ L, then dist(w, L) =
0 < ε. Therefore, assume that w ∈ L and n > 0. It is trivial to see that all strings in

L have an even number of 1s and an even number of 0s. We change the �rst character

of w to its opposite, and call the resulting string w′. The number of 1s in w was even,

and therefore the number of 1s in w′ is odd (we have either removed one or added one).

Therefore, w′ cannot be in L and so it is by de�nition in L. We have only modi�ed one

bit, and so dist(w,L) = 1/n < ε, where the inequality holds for n > 1/ε. Lemma 4

A tester for L can therefore simply verify that the input string is su�ciently long, i.e.,

that n > 1/ε, and then accept. Membership for inputs that are not su�ciently long can

be computed exactly after querying all n ≤ 1/ε bits. This tester clearly accepts w ∈ L

with no error. When ε > 0 is �xed, if dist(w, L) ≥ ε, then n ≤ 1/ε, by Lemma 4. The

tester therefore queries every bit and rejects without error. The tester makes at most

1/ε queries, which does not depend on n, and therefore L is testable.

However, by the de�nition of complement, L = L, which is not testable by Theorem 4

and so the testable properties are not closed under complement.

The above results are both negative. However, if we consider closure under union, we

obtain the following.

Theorem 5. The testable properties are closed under �nite unions.

Proof. Recall that for all α, β ∈ (0, 1/2), if we have a tester which is correct with proba-

bility at least 1/2+α, we can construct a tester which is correct with probability at least

1/2 + β by running the �rst tester a constant number of times and taking the majority

output (see, e.g., Section 11.2 in Papadimitriou [35]). The number of iterations for �xed

reals α and β does not depend on n and so the number of queries in the new tester is a

constant multiple of the original number of queries.

Let P1 and P2 be two testable properties. Then, for every ε > 0, there exist testers T ε
1

(T ε
2 ) accepting inputs S that have property P1 (resp. P2) and rejecting inputs S where

dist(S, P1) ≥ ε (resp. dist(S, P2) ≥ ε). The discussion above allows us to assume that

the testers are correct in each case with probability at least
√

2/3. It is then simple to

construct the following tester T ε for P1 ∪ P2, for input I.

1. Run T ε
1 on I. If T ε

1 accepts, halt and accept.

2. Next, run T ε
2 on I and output its decision.

Clearly, T ε accepts inputs I that have property P1 or P2 with probability greater

than 2/3. An input I that is ε-far from the property P1 ∪ P2 is ε-far from both P1 and

from P2. This is because, if I is ε-far from P1 ∪ P2, then there is no I ′ ∈ P1 ∪ P2 such

that dist(I, I ′) ≤ ε. By the de�nition of union this implies that there is no I ′ ∈ P1 such

that dist(I, I ′) ≤ ε, and likewise for P2.

22



3.4. INDISTINGUISHABILITY 23

We therefore reject inputs which are ε-far from P1 ∪ P2 with probability at least√
2/3

2
= 2/3 and so T ε is an ε-tester for P1 ∪ P2, as desired.

3.4 Indistinguishability

When proving the testable properties are not closed under complement (Corollary 3),

we showed that all su�ciently long strings were �close� to the language L we were con-

sidering. That is, for all ε there is an upper bound on the length of strings w such that

dist(w, L) ≥ ε (Lemma 4).

This was our �rst example of a concept called indistinguishability, which was de�ned

for graph properties by Alon et al. [2]. Roughly speaking, if we have two languages

(properties) L1 and L2 such that all elements of L1 are close to L2 and all elements

of L2 are close to L1, then we say the two languages (properties) are indistinguishable.

Because property testers only examine a very small portion of their inputs, the probability

that these testers will �nd evidence that a w ∈ L1 is not actually in L2 is small. This

will allow us to show the most important result regarding indistinguishability, that it

preserves testability (Theorem 6).

Unfortunately, formally de�ning �close enough� is not trivial in our generalized setting.

Alon et al. [2] de�ned it for loop-free graphs, but we do not have the luxury of such

restrictions. Two structures are �close enough� if there is no di�erence that can distinguish

them with high probability, and so simply using our de�nition of distance may not su�ce.

To see this, we consider a vocabulary with two relations, H of high arity and L of low

arity. The low arity relation contributes an asymptotically insigni�cant amount to the

distance of De�nition 3 because the number of possible high arity tuples dominates any

di�erence in L assignments. Consider two large structures A and B with this vocabulary,

where A and B have identical H assignments and opposite L assignments. For ε > 0,
if these structures are su�ciently large, then dist(A,B) < ε. However, although these

structures are very close, a tester could distinguish between them by examining only a

small number (one) of the L assignments.

We can use loops in graphs in a similar way, a graph possibly containing loops is

equivalent to an loop-free graph with a monadic color relation. We therefore begin by

de�ning a subtype of a relation.

De�nition 10. Let R be a relation with arity a. Then, a subtype of R is a set of at

most a elements, each of which is a set containing integers from {1, . . . , a}. Each of these
integers must appear in exactly one of the elements of the subtype.

For example, {{1}, {2}} is a subtype of the edge predicate E for graphs. This corre-

sponds to the set of pairs of E for which the element in position 1 of the pair occurs

only in position 1 and the element in position 2 occurs only in position 2. That is, this
subtype is the set of edges that are not loops. The subtype {{1, 2}} then corresponds to

the set of edges that are loops. This can be more formally de�ned as follows.

23



3.4. INDISTINGUISHABILITY 24

De�nition 11. Let R be a relation with arity a and S be a subtype of R,

S =
{
{t11, . . . , t1b1}, . . . , {t

|S|
1 , . . . , t

|S|
b|S|
}
}

.

A tuple (x1, . . . , xa) belongs to S if for all ti1, it is the case that xti1
= xtij

for all j and,

if xu = xv for some u, v then u and v are both contained in the same element of S.

It is harmless but useless for the same i to appear multiple times in the same element

of a subtype. We now de�ne the S−distance between structures, where S is a subtype

of relation Ri.

De�nition 12. Let A,B ∈ STRUC n(τ) be structures with universe U and vocabulary τ ,

and let S be a subtype of relation Ri ∈ τ . Then, the S-distance between A and B is

S-dist(A,B) :=
|{x | x ∈ Uai ,x belongs to S and RA

i (x)⊕RB
i (x)}|

n|S|
.

The S-distance is the fraction of tuples belonging to S that are given di�erent assign-

ments by Ri in A and B. We de�ne the Ri-distance to be the maximum S-distance for

subtypes S of Ri. If the maximum Ri-distance between two structures is very small, all

of the subtypes of all the relations are very similar, and there is no special query that

has a high probability of �nding a di�erence.

Let SUB(R) be the set of subtypes of relation R. Then, the maximum Ri-distance is

the following.

De�nition 13. Let A,B ∈ STRUC n(τ) be structures with universe U and vocabulary τ .

Then, the maximum Ri-distance between A and B is

max
1≤i≤s

Ri-dist := max
1≤i≤s

max
S∈SUB(Ri)

S-dist(A, B).

When de�ning indistinguishability, we use the maximum Ri-distance. Note that

dist(A,B) ≤ maxi Ri-dist(A,B), which we show as part of Theorem 9 in Section 3.7.

The Ri-distance is equal to the usual distance for vocabularies with exactly one predi-

cate symbol if it has one subtype, such as loop-free graphs or binary strings.

We generalize our de�nition of Ri-distance in the following way, where P is a property.

De�nition 14. Let A ∈ STRUC n(τ) be a structure and P be a property of type τ . Then,

the Ri-distance between A and P is

Ri-dist(A,P ) := min
{B∈P |#(B)=n}

Ri-dist(A,B).

If the minimum is taken over an empty set, we de�ne the distance to be in�nite.

Properties that are closed under isomorphisms are most natural in property testing,

and we now de�ne this idea.

De�nition 15. Let A,B ∈ STRUC n(τ) be structures with vocabulary τ . We call A

isomorphic to B if there is a mapping φ : {0, . . . , n− 1} 7→ {0, . . . , n− 1} such that

24



3.4. INDISTINGUISHABILITY 25

1. The mapping φ is bijective;

2. For all Ri ∈ τ and all (x1, . . . , xai), it is true that RA
i (x1, . . . , xai) if and only if

RB
i (φ(x1), . . . , φ(xai)).

The mapping φ is called an isomorphism. We de�ne properties to be closed under

isomorphisms in the following way.

De�nition 16. Let P be a property of type τ . We say that P is closed under isomor-

phisms if for all n ∈ N and all A,B ∈ STRUC n(τ), if A and B are isomorphic then

A ∈ P if and only if B ∈ P .

We note that given the lack of ordering, all properties that can be expressed by formulas

in our logic are closed under isomorphisms, although we do not use this assertion here.

We are now �nally ready to de�ne indistinguishability. In the case of loop-free graphs it

is equivalent to the de�nition given by Alon et al. [2].

De�nition 17. Two properties P and Q of structures with vocabulary τ are said to be

indistinguishable if they are closed under isomorphisms and for every ε > 0 there exists

an Nε such that for any structure A with vocabulary τ and universe of size n ≥ Nε, if A

has P then maxi Ri-dist(A, Q) ≤ ε and if A has Q then maxi Ri-dist(A,P ) ≤ ε.

It is worthwhile to note that indistinguishability is an equivalence relation. It is clearly

symmetric and re�exive, and transitivity is also simple to show. Assume that P is

indistinguishable from P2, which is in turn indistinguishable from P3. For su�ciently

large A, if A has P1 then there is a B that has P2 such that maxi Ri-dist(A,B) ≤ ε/2 and

likewise for B and a C that has P3. Then, maxi Ri-dist(A,P3) ≤ maxi Ri-dist(A,C) ≤ ε,

as desired.

The importance of indistinguishability is expressed by the following theorem, which

was shown by Alon et al. [2] for the case of graphs. Their proof works nearly verbatim

in our setting.

Theorem 6. If P and Q are indistinguishable, then P is testable if and only if Q is

testable.

Proof. We assume without loss of generality that P is testable and provide an ε-tester

for Q. By assumption, P is testable and so there exists an ε/2-tester T ε/2 for P that

makes at most c(ε/2) queries. The tester accepts structures A that have P and rejects

those that are ε/2-far with probability at least 2/3 in both cases.

Let N be such that for structures A of size n ≥ N , if A has Q then maxi Ri-dist(A,P ) ≤
min

(
ε/2, 2

81c

)
. The 2/(81c) appears because we would like to use a trick similar to that

in Theorem 1, and this will cancel nicely because 81 = 3 · 27.
We will test input A for Q in the following way.

1. If #(A) ≤ N , query all of A and output an exact decision.

25



3.5. TESTABLE PROPERTIES THAT ARE HARD TO DECIDE 26

2. Otherwise, run T ε/2 three times on A, using random permutations of the labels of

A each time. Output the majority decision.

The restriction that the properties are closed under isomorphisms allows us to use the

random permutations in Step 2. This tester makes at most 3c := 3c(ε/2) queries and has

a success probability of at least 2/3. Assume that n = #(A) is su�ciently large. If A is

ε-far from Q, it is also ε/2-far from P . Therefore, T ε/2 will reject A with probability at

least 2/3 and our tester correctly rejects with probability at least 20/27 > 2/3.
Now, assume that A has Q. Then, there exists an A′ that has P such that A and A′

di�er in no more than a 2
81c fraction of the possible assignments, for every subtype and

every relation. The probability that any particular query will see one of these assignments

is at most 2
81c and so the probability that any of the 3c queries will see one of these bits

is at most 1 −
(
1− 2

81c

)3c ≤ e−2/27 ≤ 2/27. The probability of success is then at least

20/27− 2/27 = 2/3 and so Q is testable, as desired.

Indistinguishability is an equivalence relation on properties that preserves testability.

It therefore partitions the set of properties into equivalence classes such that each class

contains only testable properties or only untestable properties. However, in the general

case only non-uniform testability is preserved, as we will see in Section 3.6. Alon et al. [2]

used indistinguishability as a tool for proving classes of properties to be testable, as we

will, but it is likely to be of more general interest.

3.5 Testable Properties that are Hard to Decide

We have already seen that there exist context-free languages that are testable (The-

orem 1) and also some that are not testable (Theorem 4). However, the relationship

of the testable properties with the traditional complexity hierarchy is worthy of more

investigation. Goldreich et al. [20] have shown that there exist testable NP-complete

properties. Assuming P 6= NP, this means that there exists properties for which it is

very easy to decide if the input nearly satis�es the property but quite hard to decide the

problem exactly. Here we will show that this gap is much larger: There exist properties

for which it is very easy to decide if the input nearly satis�es the property but extremely

di�cult to decide exactly.

In this section we show the existence of testable properties that are arbitrarily hard to

decide exactly. The testable properties therefore extend arbitrarily high in the traditional

hierarchy, but, by Theorem 4, do not contain even the context-free languages.

We de�ne �arbitrarily hard� properties as meaning, for every computable f(n), con-
taining properties that are not decidable in DTIME(f(n))1.
It su�ces to consider loop-free graph properties, where the maximum Ri-distance is

equal to the usual distance. The same result can also be shown for other vocabularies.

1The choice of DTIME here is arbitrary and other complexity measures such as DSPACE result in
equivalent de�nitions.

26



3.6. UNIFORMITY CONDITIONS 27

Theorem 7. There are arbitrarily-hard testable properties.

Proof. Let P be an arbitrarily-hard property. We de�ne a property Q such that P

reduces to Q. Let p(x) be the characteristic function for P on some reasonable encoding

of the input. We de�ne Q to be true for graph G of size n i� the number of edges in G

is equal to p(n).
We can obviously reduce P to Q by, on input x, computing the encoding x and out-

putting a graph on x vertices with exactly one edge. We can therefore construct arbi-

trarily hard properties Q.

It is worth noting that this reduction increases the input length by an exponential

factor. Because we are only interested in arbitrarily hard properties and by the time

hierarchy theorem (see Hartmanis and Stearns [25]), we can simply choose P such that

it is not computable in DTIME(2f(n)) to construct a property Q that is not computable

in DTIME(f(n)).
Property Q is indistinguishable from the property of being the empty graph, which we

showed to be testable in Theorem 2. If a graph G has property Q, it is either empty or

it has one edge, and so the maximum Ri-distance is at most 1/n2. The converse is the

same, an empty graph either has Q or the distance is at most 1/n2. Obviously, 1/n2 < ε

for n >
√

1/ε and so the properties are indistinguishable.

We showed in Theorem 2 that being the empty graph is testable, and therefore, by

Theorem 6, so is Q.

3.6 Uniformity Conditions

We encoded the characteristic function for an arbitrary property while proving The-

orem 7. There was no particular requirement for the property to be decidable. The

existence of undecidable properties that are testable warrants additional consideration.

We noted that our de�nition of testability (De�nition 6) is non-uniform in the sense

that it does not require the various ε-testers to be computable given ε. It is reasonable

to expect a situation similar to that of circuit complexity classes such as AC0, where

the non-uniform versions contain undecidable properties and the uniform versions do not

(see, for example, Straubing [45]). We will see that this is the case, thereby showing that

the non-uniformly testable properties strictly contain the uniformly testable properties.

Alon and Shapira [8] have shown the same separation by using a decidable graph property.

That probabilistic machines do not compute properties that are deterministically un-

computable was �rst shown by de Leeuw et al. [30]. We have de�ned ε-testers to be

randomized algorithms, and so we assume that the probability of a given choice being

made by an ε-tester is a computable real number. Machines that make choices with

noncomputable probabilities have additional power, see, e.g., de Leeuw [30].

We again consider loop-free graph properties and so the maximum Ri-distance is the

usual distance.

27



3.6. UNIFORMITY CONDITIONS 28

Theorem 8. There exist undecidable properties that are (non-uniformly) testable.

Proof. We de�ne a graph property P that is not decidable but is testable. As shown in

Hopcroft and Ullman [26], there is an enumeration of all and only Turing machines. Let

Mi refer to the i-th machine in this enumeration. A graph G with size n has property

P i� either G is empty and Mi does not halt on the empty string, or G has exactly one

edge and Mi does halt on the empty string.

First, P is clearly undecidable. Given i, the problem of deciding whether machine Mi

halts on the empty string is a canonical RE-complete property, and it is simple to reduce

this to P . On input i, output a graph with i vertices and exactly one edge.

P is indistinguishable from the empty graph in exactly the same way as in the proof

to Theorem 7 and so it is testable.

The non-uniformness of these testers can be seen by observing that for n <
√

1/ε we

are required to decide, correctly with high probability, whether machine Mi halts on the

empty string. Once ε is �xed, there are only a �nite number of machines for which we

must decide this question, and so their behavior can be given in a �nite list. However,

in the case of uniform testability, we must be able to construct these �nite lists for every

value of ε, which would contradict the undecidability of P .

We show this more formally in the following. All uniform testers are probabilistic

machines and, by choosing ε > 0 as a function of n, we can remove the �approximation�

in �probabilistic approximation algorithm.� Of course we then make a number of queries

that depends on the input size.

Proposition 1. All uniformly testable properties can be decided by a probabilistic Turing

machine with success probability at least 2/3.

Proof. Assume property P of structures with vocabulary τ is testable. On input A with

universe size n, choose ε such that ε < 1/
∑

i n
ai , for example, ε = 1

1+
P

i nai
. Run the

ε-test on A and output the result. The tester must di�erentiate between inputs having

P and inputs being ε-far from having P . For A, a structure with universe size n, it must

therefore distinguish between those that have the property and those that do not, with

probability 2/3, as desired.

Corollary 4. All uniformly testable properties are decidable.

Proof. Convert the probabilistic machine of Proposition 1 using the following generic

construction.

All probabilistic machines can be modi�ed such that their randomness is taken from

a special binary �random tape� that is randomly �xed when the machine is started, in

which each digit is 0 or 1 with equal probability.

All halting probabilistic machines must eventually halt, regardless of the random

choices made. We can then simulate the machine over all initial segments of increas-

ing lengths, keeping track of �accepting,� �rejecting� and �still running� states. Once any

28



3.7. ALTERNATE DEFINITIONS OF DISTANCE 29

given segment has halted, all random strings beginning with that initial segment must

also halt. Therefore, the percentage of halting paths is increasing, and we shall eventually

reach a length such that at least 7/10 of the paths have halted. Our error probability

is at most 1/3, strictly less than half of 7/10 and so we can output the decision of the

majority of the halting paths.

Theorem 8 and Corollary 4 immediately yield the following separation. A di�erent

proof using a decidable property has been given by Alon and Shapira [8].

Corollary 5. There exist properties that are non-uniformly testable but not uniformly

testable.

3.7 Alternate De�nitions of Distance

De�nition 3 de�nes the distance between structures to be the fraction of assignments on

which they disagree. As we saw in Section 3.4, this means that any possible di�erence in

the assignments of low-arity relations is dominated by the number of high-arity tuples. In

some sense this is a natural de�nition, as the number of low-arity tuples is asymptotically

insigni�cant and so two structures are close if most of their assignments agree.

However, there are situations where this de�nition may not be ideal. Vertex-colored

graphs are graphs in which each vertex is assigned one of some (usually constant) num-

ber of colors. We say that the coloring is admissible if for all (x, y) ∈ E, vertices

x and y have di�erent colors. If we consider 3-colored graphs with the vocabulary

τC := {E2, R1, G1, B1} we might be interested in testing whether the given coloring

is admissible or not. If we use our usual de�nition of coloring, this is equivalent to

testing whether the graph is 3-colorable and ignores (for su�ciently large graphs) the

existing coloring. If we wish to test whether the given coloring is nearly admissible, we

need a slightly di�erent model.

In this section we present a number of alternate de�nitions for the distance between

structures. In testing we wish to distinguish structures that have a desired property and

those that are far from the property, and so modifying the de�nition of distance changes

the task of testing. We will also show the relationships between the sets of testable

properties that arise from each of our de�nitions. As in De�nition 3, the symbol ⊕
denotes exclusive-or.

De�nition 18. Let A,B ∈ STRUC (τ) be structures such that #(A) = #(B) = n. The

r-distance between structures A and B is

rdist(A,B) := max
1≤i≤s

|{x | x ∈ Uai and RA
i (x)⊕RB

i (x)}|
nai

.

That is, the r-distance is the maximum over the relations Ri of the fraction of Ri-

assignments di�ering between A and B. While De�nition 3 gave equal weight to each

tuple, regardless of its arity, this de�nition gives equal weight to each relation. Tuples

29



3.7. ALTERNATE DEFINITIONS OF DISTANCE 30

with lower arity can then be considered to have greater weight than those with higher

arity. We will also consider the maxi Ri-distance (which we will shorten to mrdist(A,B)),
which was de�ned using subtypes in Section 3.4 (cf. De�nition 13).

We begin by showing the following simple relationship between these distances.

Theorem 9. Let τ be a vocabulary and A, B ∈ STRUC (τ) be structures such that

#(A) = #(B). Then,

dist(A, B) ≤ rdist(A,B) ≤ mrdist(A,B).

Proof. We begin by showing dist(A,B) ≤ rdist(A,B). Essentially, if dist(A,B) = ε then

an ε-fraction of the total assignments di�ers. If we then partition the total assignments,

there must exist a partition such that at least an ε-fraction of the assignments di�ers in

that partition.

Let dist(A,B) = ε and let αi be the fraction of Ri-assignments that di�ers between

the structures, i.e.,

αi :=
|{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|

nai
.

Then, rdist(A,B) = maxi αi and we can write dist(A,B) in terms of the αi:

dist(A,B) =
∑

i αin
ai∑

i n
ai

= ε.

This implies that
∑

i αin
ai = ε

∑
i n

ai . We do not know the values ai, but if equality

holds there must be at least one αi satisfying αi ≥ ε. This implies that dist(A,B) ≤
rdist(A,B), as desired.
Next, we show that rdist(A,B) ≤ mrdist(A,B). The proof is nearly identical to the

above. If rdist(A,B) = ε then there is an Ri such that an ε-fraction of the Ri-assignments

di�ers between the structures. If we partition the Ri-assignments into the subtypes of Ri

(which are disjoint), then there must be some partition such that at least an ε-fraction

of the assignments in that partition di�er. As above we let rdist(A,B) = ε. Let Ri be

a relation such that the Ri-distance between A and B is ε and let αj be the fraction of

assignments in subtype Sj of Ri that di�er between the structures. Using the notation

of Section 3.4, i := arg maxk Rk-dist(A,B) and αj = Sj-dist(A,B) for subtypes Sj of Ri.

Then, mrdist(A,B) = maxj αj and

rdist(A, B) =

∑
j αj |Sj |∑

j |Sj |
= ε.

By exactly the same argument as above, there must exist an αj ≥ ε and so rdist(A,B) ≤
mrdist(A, B).

There exist vocabularies such as τS = {S1} where equality is attained in each of the

above inequalities and also vocabularies where equality is not attained.

30



3.7. ALTERNATE DEFINITIONS OF DISTANCE 31

Theorem 9 immediately admits the following nice corollary, where we let T be the set

of testable properties with our usual de�nitions, Tr be the set of testable properties using

the rdist de�nition for distance and Tmr be the set of testable properties using the mrdist

de�nition for distance.

Corollary 6. Tmr ⊆ Tr ⊆ T .

Proof. Assume we have a Tmr ε-tester for property P . Then, it distinguishes with prob-

ability at least 2/3 between structures with P and structures A such that mrdist ≥ ε.

We will show that this is also a Tr ε-tester for P . Let A denote the input structure. If A

has property P then our tester accepts with probability at least 2/3, as desired. We saw

above that rdist(A,B) ≤ mrdist(A,B) and so if rdist(A,B) ≥ ε then mrdist(A,B) ≥ ε

and the tester rejects with probability at least 2/3, as desired.
The proof of Tr ⊆ T is analogous to the above.

In fact, we can show both of these inclusions are strict and so it is strictly easier to

test using De�nition 3 than the others. Of course, it is possible for equality to hold if

we restrict ourselves to a �xed vocabulary. We have noted above that the de�nitions

are all equivalent in the case of binary strings. In the case of graphs or other structures

with exactly one predicate symbol which is not monadic, rdist(G,G′) = dist(G, G′) and
so testing these properties with the dist de�nition is equivalent to testing with the rdist

de�nition for distance. The proof of Theorem 10 will show that testing such properties

with the mrdist de�nition for distance is not equivalent.

Theorem 10. Tmr ⊂ Tr ⊂ T .

Proof. The inclusions are shown in Corollary 6 and so it su�ces to show the separations.

We begin by showing that T\Tr is not empty. To do this we consider the vocabulary

τC := {E2, S1} which we can interpret as the vocabulary of (not necessarily admissible)

one-colored graphs.

We will show that P1 ∈ T\Tr, where P1 is the set of structures A with vocabulary τC

such that the S assignments encode the language L = {u←uv
←
v} from Theorem 4. That

is, A has P1 if there is some 0 ≤ k ≤ n/2 such that for all 0 ≤ i < k, S(i) is true i�

S(2k − 1 − i) is true and for all 0 ≤ j < (n − 2k)/2, S(2k + j) is true i� S(n − 1 − j)
is true. The property is decided only by the low-arity relation S; the E relation exists

only to provide �padding� so that the property is testable using the dist de�nition for

distance.

We begin by showing that P1 is testable using De�nition 3. An input structure A

with a universe of odd size cannot have P1. With our de�nitions, a tester can begin by

checking the parity of n and then reject if it is odd. We can therefore assume in the

following that the size of the universe is even. It is also possible to de�ne P slightly

di�erently to avoid this problem, for example requiring the S assignments to be of the

form u
←
uv

←
v or 1u

←
uv

←
v. However, it is simpler for us to be consistent with Theorem 4.

Lemma 5. Property P1 is testable under the dist de�nition for distance.

31



3.7. ALTERNATE DEFINITIONS OF DISTANCE 32

Proof. The proof is similar to that of Corollary 3. We again begin by showing that for

su�ciently large n, there is no structure A with universe size n such that dist(A,P1) ≥ ε.

For any (even) n, there exist possible w ∈ {0, 1}n that are of the form u
←
uv

←
v, such

as 1n. Given A we create A′ by changing all S(i) assignments to be true. This involves

at most n modi�cations and so dist(A,P1) ≤ dist(A,A′) = O(n)/Θ(n2) < ε, where the

�nal inequality holds for su�ciently large n. Let N(ε) be the smallest value of n for

which the inequality holds. Then, the following is an ε-tester for P1, where the input has

universe size n.

1. If n < N(ε), query all assignments and output whether the input has P1.

2. Otherwise, accept.

If the input A has P1, we will accept with zero error. If dist(A, P1) ≥ ε, then n < N(ε)
by the above. In this case we query all assignments and will reject with zero error.

Lemma 5

It remains to show that P1 is not testable when using the rdist de�nition for distance.

We do this by showing that if it were testable under the rdist de�nition, we would be

able to construct testers for {u←uv
←
v}, contradicting Theorem 4.

Lemma 6. Property P1 is not testable under the rdist de�nition for distance.

Proof. Assume that P1 is testable under the rdist de�nition for distance. Then, there

exist ε-testers T ε using this de�nition for all ε > 0. We will show that the following is an

ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input with

w and note that w is a binary string with vocabulary τS = {S1}.

1. Run T ε and intercept all queries.

2. When a query is made for S(i), return the value of S(i) in w.

3. When a query is made for E(i, j), return 0.

4. Output the decision of T ε.

That is, given a string w, we simulate T ε on the structure A ∈ STRUC (τC) that

has the same universe size as w, agrees with w on the S assignments and where all E

assignments are false.

Assume that w ∈ L and let n be the size of the universe. Then, any A ∈ STRUC (τC)
with universe size n that satis�es ∀i : Sw(i) ↔ SA(i) has property P1. That is, if w and

A agree on the S assignments, w ∈ L implies A ∈ P1. In this case, T ε will accept A

with probability at least 2/3. Therefore, our tester will also accept w with probability

at least 2/3, as desired.

32



3.7. ALTERNATE DEFINITIONS OF DISTANCE 33

Now, assume that dist(w,L) ≥ ε. In this case, rdist(A,P1) = dist(w,L) ≥ ε and so T ε

will reject A with probability at least 2/3. Our tester will therefore reject such w with

probability at least 2/3 as desired.

We have constructed ε-testers for the language L shown to be untestable in Theorem 4,

and therefore P1 must be untestable under the rdist de�nition of distance. Lemma 6

Lemmata 5 and 6, together with Corollary 6 show Tr ⊂ T . We now show the separation

Tmr ⊂ Tr. The proof is similar: We construct a property where there is su�cient

�padding� to make Tr testing simple but Tmr testing would contradict Theorem 4.

We use the following property P2 of graphs (τG = {E2}). A graph G has P2 if the

�loops� E(i, i) encode the language {u←uv
←
v} from Theorem 4. That is, P2 is determined

only by the linear number of loops and the remaining E assignments can be arbitrary.

More formally, a graph G with universe size n has P2 if there exists some 0 ≤ k ≤ n/2
such that for all 0 ≤ i < k, E(i, i) is true i� E(2k − 1− i, 2k − 1− i) is true and for all

0 ≤ j < (n− 2k)/2, E(2k + j, 2k + j) is true i� E(n− 1− j, n− 1− j) is true.
As before, we �rst show that P2 is testable using the rdist de�nition for distance. The

tester can again begin by checking the parity of the universe, and so we assume that n

is even.

Lemma 7. Property P2 is testable under the rdist de�nition for distance.

Proof. As before, we begin by showing that for su�ciently large n, there is no graph G

with universe size n such that rdist(G,P2) ≥ ε.

Recall that for all (even) n there exist possible w ∈ {0, 1}n that are of the form

u
←
uv

←
v, for example 1n. Given G we create G′ by changing all E(i, i) assignments to be

true. This involves at most n modi�cations. There is only one relation symbol, and so

rdist(G,P2) = dist(G,P2) ≤ dist(G,G′). There are n2 possible E assignments, and so

this is O(n)/n2 < ε where the inequality holds for su�ciently large n. Letting N(ε) be
the smallest value of n for which the inequality holds, we can easily construct a tester as

in Lemma 5 by replacing �P1� with �P2�. Lemma 7

It remains to show that P2 is not testable under the mrdist de�nition for distance.

The proof is nearly identical to that of Lemma 6; given a Tmr style tester for P2, we

construct testers using De�nition 3 for the language {u←uv
←
v} that was proven untestable

in Theorem 4.

Lemma 8. Property P2 is not testable under the mrdist de�nition for distance.

Proof. Assume that P2 is testable under the rdist de�nition for distance. Then, there

exist ε-testers T ε using this de�nition for all ε > 0. We will show that the following is

an ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input by

w and note that it is a binary string with vocabulary τS = {S1}.

1. Run T ε and intercept all queries.

33



3.7. ALTERNATE DEFINITIONS OF DISTANCE 34

2. When a query is made for E(i, i), return the value of S(i) in w.

3. When a query is made for E(i, j) and i 6= j, return 0.

4. Output the decision of T ε.

Given a string w, we simulate T ε on the graph G with �loops� in the graph correspond-

ing to bits of w and all other edges absent. Note that G has the same universe size as w

and that G has P2 i� w ∈ L. Therefore, if w ∈ L, our tester will accept with probability

at least 2/3, as desired.
Now, assume that dist(w,L) ≥ ε. There are exactly two subtypes of a binary relation:

the loops and the non-loops. The S-distance (see De�nition 12) for the subtype S

of non-loops is zero, and so mrdist(G,P2) = SL-dist(G,P2) where SL is the subtype

of loops ({{1, 2}}). This in turn is equal to dist(w,L) by the de�nition of G and so

mrdist(G, P2) ≥ ε. The tester T ε will then reject G with probability at least 2/3, and so

our tester will reject w with probability at least 2/3. Lemma 8

Lemmata 7 and 8, together with Corollary 6 yield the desired Tmr ⊂ Tr. We have

already shown Tr ⊂ T and so the proof is complete. Theorem 10

34



35

Chapter 4

The Classi�cation Problem for

Testability

In this section we consider the classi�cation problem of �rst-order logic for testability.

That is, our goal is to reach a complete classi�cation of the pre�x classes of �rst-order

logic into testable classes (those that contain only testable properties) and untestable

classes (those that contain an untestable property). This program is inspired by the

traditional classi�cation problem, that of decidable and undecidable classes, and also by

results in property testing related to the testability of certain logical classes such as those

by Alon et al. [2].

We begin by brie�y describing the traditional classi�cation problem, and in particular

focus on the results that allow us to draw parallels to recent results in property testing.

Next, we introduce the previous results that begin a classi�cation for testability. Finally,

we prove an additional class, traditionally known as Ackermann's class with equality, to

be a testable class and brie�y mention a few open problems.

4.1 History of the Classi�cation Problem

Here we outline some of the history of the traditional classi�cation problem, focusing

especially on results where we can draw an explicit comparison with testability results.

Börger et al. [11] provide the complete classi�cation and its history, as well as proofs and

an overview of related topics.

The classical decision problem was considered the central problem of logic in the 20th

century. In this problem, we are given a sentence of �rst-order logic and wish to decide

whether or not it is satis�able (or, roughly equivalently, valid). Although Church and

Turing showed the problem to be undecidable in general, Löwenheim [32] had shown

in 1915 that the monadic case is decidable. There was therefore an enormous e�ort to

understand exactly which classes of formulas are decidable and which classes are not.

The traditional classi�cation problem is now considered to be essentially resolved and a

complete classi�cation has been obtained. By complete we mean that for any pre�x class

35



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 36

of �rst-order logic, either the class is contained in a class that is classi�ed as decidable

or it contains a class that is classi�ed as undecidable. That such a complete and �nite

classi�cation exists seems to be quite fortunate.

4.1.1 Gurevich's Classi�ability Theorem

That a complete and �nite classi�cation of the pre�x vocabulary classes of �rst-

order logic exists is explained by Gurevich's Classi�ability Theorem (see Section 2.3

of Börger et al. [11]). Fortunately, this phenomenon is not restricted to decidability

and the theorem gives su�cient criteria for such a classi�cation to exist. A complete

statement and proof can be found in Börger et al. [11] while Gurevich [24] gives a nice

introduction to the theorem and its history.

We can summarize Gurevich's Classi�ability Theorem in the following way. Let D

refer to the set of pre�x vocabulary classes that have the property in question (in our

case, D is the set of testable pre�x vocabulary classes) and U refer to its negation (the

untestable pre�x vocabulary classes). Then, if D is closed downward and under �nite

unions, there exists a �nite set M of the minimal closed classes of U such that U is the

upwards closure of M and all members of M are standard1.

The testable classes are closed downwards and we have shown (Theorem 5) that they

are closed under �nite unions. Therefore, there exists a �nite set M of standard classes

such that every pre�x vocabulary class that contains an untestable property also contains

one of the classes in M . Written in a table, M is a �nite way to give a complete

classi�cation of the pre�x vocabulary classes for testability.

Our goal of eventually �nding a complete characterization of the testable pre�x classes

is then obtainable: there exists a �nite table providing such a classi�cation. In the

following section we state some of the classical results for the classi�cation for decidability

and compare them with what is known regarding the classi�cation for testability. It is

worth noting that we do not necessarily state the optimal classical results, but instead

focus on those that closely parallel the known results for testability.

4.1.2 Classi�cation Similarities

Monadic �rst-order logic2 was the �rst fragment of �rst-order logic to be proven decid-

able. We begin with this result, which is due to Löwenheim [32]. This subsection is an

overview of the similarities and does not contain proofs. Later results in Subsection 4.3

depend on the testability results for monadic �rst-order logic, which we review more

formally in Section 4.2.

Monadic logics are very well studied in the literature. Of particular relevance to us are

the results connecting these logics to formal languages. Perhaps the most well-known is

1Standard classes are those with �nice� representations in our notation, see Börger et al. [11].
2Monadic �rst-order logic is the set of formulas in which all predicate symbols are monadic.

36



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 37

Büchi's [12] result that monadic second -order logic characterizes the regular languages.

We are focused on (a very restricted) �rst-order logic, but we can at least conclude that

all monadic �rst-order formulas express regular properties, given that monadic �rst-order

logic is a subset of monadic second-order logic.

More immediately relevant is the result by McNaughton and Papert [33] that monadic

�rst-order logic characterizes the star-free regular languages. Their de�nition of �rst-

order logic includes an ordering predicate ≤ as well as some additional arithmetic that

is not present in our logic, and so the properties expressible in our �rst-order logic are a

strict subset of the star-free regular languages.

In any case, the star-free regular languages are a subset of the regular languages.

Together with the result by Alon et al. [4], this immediately implies that all properties

expressible in monadic �rst-order logic are testable. Using an extension of our notation

from Section 2.4, we can say that [all, (ω)]= is testable. This is the class proven decidable

by Löwenheim [32], providing the �rst similarity between the classi�cation for decidability

and that for testability.

However, we can say more than this. As previously mentioned, Büchi [12] showed

that monadic second -order logic characterizes the regular languages. As Alon et al. [4]

themselves note, the combination of their result and Büchi's implies that all monadic

second-order formulas express testable properties. This is not part of the classi�cation

problem for �rst-order logic, but it is worth making a comparison with Skolem's [43]

extension to second-order logic of Löwenheim's result. That is, monadic second-order

logic is another example of a class that is both testable and decidable.

If we return to �rst-order logic, Skolem [44] showed a pre�x vocabulary class to be a

reduction class. As a result of developing Skolem Normal Form, he showed the class of

formulas where all universal quanti�ers precede all existential quanti�ers, [∀∗∃∗, all] is a
reduction class. Although it was of course unknown at the time, this implies that the

class is undecidable. This class is not a minimal undecidable class and Skolem's result

was later improved.

Alon et al. [2] considered testing graph properties and showed there exists an untestable

property (an encoding of graph isomorphism) that is expressible in [∀∗∃∗, (0, 1)]=. This
is not identical to the undecidable class considered by Skolem [44], but it is close enough

to be interesting. Among the several improvements of Skolem's result is, for example,

Surányi's [46] result that [∀3∃, (0, ω)] is a reduction class. The encoding of graph isomor-

phism shown to be untestable by Alon et al. [2] can be expressed as a formula with twelve

universal quanti�ers and �ve existential quanti�ers3 while Theorem 12 below implies that

one universal quanti�er is not enough to express any untestable graph property. It would

be worthwhile to attempt to �nd the minimum number of quanti�ers needed to express

such a property, and also to look at other encodings of isomorphisms.

Alon et al. [2] also showed a positive result: that [∃∗∀∗, (0, 1)]= is testable. The restric-

tion to graphs here is more unfortunate. The class [∃∗∀∗, all]= for pure predicate logic is

3That is, by a formula in [∀12∃5, (0, 1)]=.

37



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 38

very well-known and generally called Ramsey's class. This is a maximal decidable class

whose decidability was �rst shown by Ramsey [37]. A generalization of the testability

result to arbitrary vocabularies would be very desirable.

4.2 Testability of Monadic First-Order Logic

In Subsection 4.1.2 we mentioned that we can combine the result by McNaughton and

Papert [33] that monadic �rst-order logic4 characterizes the star-free regular languages

with that of Alon et al. [4] showing the regular languages are testable. This allows us to

conclude that all properties expressible in monadic �rst-order logic are testable. However,

we will use this result in our proof for the testability of Ackermann's class with equality

in Section 4.3, and so we consider this combination more formally.

Our goal is to prove that monadic �rst-order logic, as we have de�ned it, expresses

only testable properties. Our de�nition of �rst-order logic does not contain ordering or

symbols for successor and predecessor, unlike the de�nitions used by McNaughton and

Papert [33].

The proof is structured in the following way. First, in Subsection 4.2.2 we show that all

properties expressible by monadic �rst-order sentences can be expressed in a certain way

which we can easily translate to a regular expression. Regular expressions characterize

the regular languages and so all of our properties are regular. This part of the proof is

based on that given by McNaughton and Papert [33] although our version is simpli�ed

due to the absence of the ordering and other symbols mentioned above.

Next, Alon et al. [4] have shown that all regular languages are testable. The proof

uses the characterization of regular languages as �nite automata. We omit the detailed

proof here for space considerations. Basic results concerning the regular languages, such

as the equivalence of regular expressions and �nite automata, can be found in Hopcroft

and Ullman [26].

4.2.1 Basics

Our proofs will use the vocabulary τM := {R1
1, . . . , R

1
s}, and so there are s monadic

predicate symbols named Ri. As always, if the universe of such a structure has size n, we

label it with the non-negative integers {0, 1, . . . , n − 1} and map these to the character

positions of n-character strings from left to right. That is, universe member 0 corresponds
to the leftmost character position in the string and n− 1 to the rightmost.

Regular languages are de�ned over alphabets, traditionally denoted by Σ. The alpha-
bet corresponding to τM will have 2s symbols, which we will name with binary strings of

length s in the obvious way, Σ := {00 · · · 00, . . . , 11 · · · 11}. These denote the possible as-
signments Ri(x) for some �xed character position x. For example, the leftmost character

4Their de�nition of monadic �rst-order logic allows ordering and other symbols that are not present
in ours.

38



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 39

in a string is 00 · · · 00 i� Ri(0) is false for all 0 ≤ i ≤ s. Likewise, the rightmost character

is 00 · · · 01 i� Ri(n − 1) is false for all 0 ≤ i < s and Rs(n − 1) is true. Any reasonable

encoding will work provided that the character at position i can be determined using a

constant number of queries. We will use c to denote characters in Σ.
The basic idea is to treat formulas ∃x : ψ with the regular expression Σ∗RΣ∗, where

R is a union over the characters for which ψ holds true. More complicated formulas are

handled largely by using the closure properties of regular languages.

4.2.2 Monadic First-Order Logic is Regular

The goal of this subsection is to show the following theorem. This is a weaker result

than that shown by McNaughton and Papert [33].

Theorem 11. All properties expressible in monadic �rst-order logic are regular lan-

guages.

Proof. We are given a monadic �rst-order formula ϕ of type τM = {R1
1, . . . , R

1
s}. Without

loss of generality, we can assume that ϕ is in prenex normal form and by renaming the

variables, that no variable is bound by more than one quanti�er. We rename the variables

to be x1, . . . , xa in order, so that ϕ is of the form

ϕ = π1x1π2x2 · · ·πaxa : ψ

where each πj is either ∃ or ∀ and ψ is quanti�er free.

Regular expressions are inherently ordered in the sense that they are written from left

to right. However, we do not know if x1 < x2 in formulas such as ∃x1∃x2 : ψ. This will

be handled by breaking the formula into a disjunction of three formulas, each enforcing

an order. One formula will correspond to x1 < x2, one to x1 > x2 and one to x1 = x2.

We do this by using restricted quanti�ers.

De�nition 19. Quanti�ers of the form ∃τ2
τ1x : ψ or ∀τ2

τ1x : ψ are restricted quanti-

�ers. These quanti�ers are interpreted in the following way. The formula ∃τ2
τ1x : ψ

is equivalent to ∃x : ((τ1 ≤ x ≤ τ2) ∧ ψ) and the formula ∀τ2
τ1x : ψ is equivalent to

∀x : ((τ1 ≤ x ≤ τ2) → ψ).

The range of the quanti�ed variable is restricted by τ1 and τ2. Note that these quan-

ti�ers are not part of our de�nition of monadic �rst-order logic. However, we will show

that all formulas in our logic can be expressed in a special form using these quanti�ers.

First, we replace all universal quanti�ers ∀xi : ψ with duals of existential quanti�ers

¬∃xi : ¬ψ. Next, we will convert all quanti�ers to restricted quanti�ers and ensure that

the current formula is always equivalent to the original.

We begin with x1. There are no variables in the ordering yet and so we replace ∃x1 : ψ

with ∃n−1
0 x1 : ψ, keeping any initial negation. Inductively, we consider xi+1 and have

existing orderings over the i variables that have already been handled.

39



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 40

Let the current formula be ϕ = α(∃xi+1 : ψ), where α denotes the part of the formula

preceding the quanti�er on xi+1. We replace γ := (∃xi+1 : ψ) with an equivalent dis-

junction (γ1 ∨ · · · ∨ γ2i+1) of at most 2i+1 formulas that correspond to the possible new

orderings, creating

ϕ′ = α(γ1 ∨ · · · ∨ γ2i+1),

which is logically equivalent to ϕ.

There are at most i cases where xi+1 is equal to one of the previous variables. These

are handled by letting γj be the formula γ with the quanti�er ∃xi+1 removed and all

occurrences of xi+1 replaced with xj , for 1 ≤ j ≤ i. Cases where more than two variables

are equal to each other can be easily handled in several ways, for example by renaming

variables or �skipping� removed quanti�ers.

By induction, in ϕ there is a �xed ordering on the variables that have already been

handled. For each adjacent pair (α, β) in this ordering we construct a γj that is identical

to the original formula γ except that ∃xi+1 is replaced with ∃β−1
α+1xi+1. In addition, we

must add formulas where xi+1 is the smallest variable as well as the largest. These

formulas are constructed by replacing the quanti�er with ∃α−1
0 xi+1 and ∃n−1

β+1xi+1, where

α is the minimum and β the maximum element in the ordering. This is at most an

additional i + 1 formulas and the resulting ϕ′ is equivalent to the original formula.

We continue applying the above process until all quanti�ers have been replaced by

restricted quanti�ers. At this point we have a (considerably larger) formula such that

there is always an ordering of the variables. It is now simple to determine whether

equality holds between two variables and so we can replace all instances of xi = xj with

logical truth, written >, if i = j and with logical falsehood, written ⊥, otherwise. We

can then make the obvious simpli�cations if desired. The resulting formula satis�es the

previous conditions and no longer contains equality symbols, which we have replaced

with restricted quanti�ers and case distinctions.

All predicate symbols are monadic. We move all Ri(x) predicates to their minimum

�depth,� by which we mean that Ri(x) may occur in the scope of the quanti�er on x

but must not occur in the scope of any variable whose quanti�er occurs in the scope of

that on x. This is done using the following general procedure, which is borrowed from

McNaughton and Papert [33].

Let Ri(xj) be a relation violating the condition that occurs in the formula. Assume

the formula ϕ is γ∃τ2
τ1xj : ψ. We replace this with

γ∃τ2
τ1xj : ((Ri(xj) ∧ ψ1) ∨ (¬Ri(xj) ∧ ψ2)) .

Here, ψ1 is the result of replacing all occurrences of Ri(xj) in ψ with >, and ψ2 is the

result of replacing these occurrences with ⊥.
We also want to ensure that all quanti�ed formulas are at their minimum depth. This

is because we will use the quanti�er ∃τ2
τ1x : ψ to construct a regular expression for the

part of the string corresponding to the interval [τ1, τ2], and quanti�ers that are not at

40



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 41

their minimum depth can �escape� this interval. We use essentially the same process that

we used to move predicate symbols to their minimum depths.

We will consider the quanti�er ∃τ2
τ1x : ψ. By construction, there is only one case where

both τ1 and τ2 contain no quanti�ed variables. This is where τ1 = 0 and τ2 = n− 1, and
it only occurs at the outermost level. Without loss of generality, we will assume that y

is the quanti�ed variable in τ1 = y + 1 and z is the quanti�ed variable in τ2. We will

also assume that the quanti�er on y is in the scope of the quanti�er on z. Cases where

τ1 = 0 or τ2 = n − 1 are similar although only one of these quanti�ed variables exists,

and so the minimum depth is immediately within the scope of that variable.

The formula ϕ is

α∃τ4

τ3 zβ∃τ6
τ5yγ(∃z−1

y+1x : ψ)ζ.

We move (∃z−1
y+1x : ψ) to its minimum depth in the same way we moved predicate symbols,

replacing ϕ with

ϕ′ := α∃τ4

τ3 zβ∃τ6
τ5y :

[(
(∃z−1

y+1x : ψ) ∧ (γ>ζ)
)
∨

(
¬(∃z−1

y+1x : ψ) ∧ (γ⊥ζ)
)]

.

The quanti�er on x was the innermost quanti�er that did not satisfy the new condi-

tion, and so all quanti�ers within ψ are at their minimum depths. There quanti�ers

immediately within ψ are therefore of the form ∃z−1
x+1x1 or ∃x−1

y+1x2. This is because our

construction has ensured that quanti�ers always range over the interval spanned by ad-

jacent pairs in the ordering. In addition, all variables occurring within ψ are either x

or they are bound by quanti�ers that occur inside ψ. This is because we have moved

all predicates to their minimum depth. Inductively, ψ depends only on the interval

[y + 1, z− 1] and so ϕ′ is logically equivalent to ϕ. If the input is the empty string, then

∃z−1
y+1x : ψ is false by de�nition and the formula evaluates as it would have. We repeat

the process as necessary.

Finally, we will ensure that in all quanti�cations ϕ = ∃τ2
τ1x : ψ, the formula ψ is a con-

junction over atomic formulas, negated atomic formulas, quanti�ed formulas and negated

quanti�ed formulas. This is simple to do. We begin with the innermost quanti�cation

that does not satisfy the condition. If we treat quanti�ed formulas as units, we begin by

converting ϕ into disjunctive normal form,

ϕ1 = ∃τ2
τ1x : (ψ1 ∨ · · · ∨ ψc) ,

where c is the number of clauses. This is equivalent to

ϕ′ =
(
∃τ2

τ1x : ψ1

)
∨ · · · ∨

(
∃τ2

τ1x : ψc

)
.

Each quanti�ed formula is a conjunction and the process is iterated as necessary.

The result we will call a basic formula. These formulas satisfy the following conditions,

which will help us construct regular expressions from them.

1. All quanti�ers are existential.

41



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 42

2. All quanti�ed formulas have a �xed ordering of the variables and no two variables

are equal to each other.

3. Equality does not occur.

4. All predicate symbols occur at �minimum� depth. Predicate symbols are the only

way for a variable to appear in these formulas, and so all variables x occur only at

minimum depth, omitting their appearance on the restricted quanti�ers.

5. All quanti�ers are at their minimum depth.

6. All quanti�ers are over conjunctions of atomic symbols, negated atomic symbols,

quanti�ed formulas and negated quanti�ed formulas.

We will now show that a regular expression corresponds to each of these formulas.

Recall that the regular expressions are closed under complement, union and intersection.

First, the formula > corresponds to the regular expression Σ∗ and ⊥ to ∅. The regular
expressions are closed under complement, and so the regular expression for ¬φ is the

complement of the expression for φ.

Next, all quanti�ed formulas are of the form

φ = ∃τ2−1
τ1+1x : (α ∧ β ∧ γ),

where α is a conjunction of monadic predicate symbols (and possibly > and ⊥) whose
atomic parts are x, β is a (possibly empty) conjunction of quanti�ed formulas ranging

from τ1 + 1 to x − 1, and γ is a (possibly empty) conjunction of quanti�ed formulas

ranging from x + 1 to τ2 − 1.
There is a (possibly empty) set of characters that correspond to assignments of the

Ri(x) that model α. If the set is empty, then φ is equivalent to ⊥ and so the regular

expression ∅ corresponds to it. Otherwise, we let C be regular expression formed by the

union of these characters.

By induction we have regular expressions for each of the quanti�ed formulas appear-

ing in β and γ. The regular expression L corresponding to β is formed by taking the

intersection of the regular expressions for each of the quanti�ed formulas appearing in

it. The regular expressions are closed under intersection, and so L exists. Likewise,

the regular expression R corresponding to γ is formed by taking the intersection of the

regular expressions for each of the quanti�ed formulas appearing in it.

The regular expression corresponding to φ is then the concatenation LCR. This cor-

responds to the part of the string from positions τ1 + 1 to τ2 − 1.
Finally, disjunctions may appear outside of quanti�ed formulas at the outermost level.

These are disjunctions of quanti�ed formulas ranging from 0 to n − 1 and so the reg-

ular expression corresponding to the disjunction is the union of the expressions for the

formulas.

The regular languages are closed under intersection, union and complement, and so we

have shown that monadic �rst-order logic characterizes a subset of the regular languages.

42



4.3. ACKERMANN'S CLASS WITH EQUALITY 43

4.3 Ackermann's Class with Equality

In Section 4.1 we reviewed a small portion of the history of the classi�cation problem

for decidability. We found several similarities between the classi�cation for decidability

and the currently known classi�cation for testability. In this section we consider an

additional class, generally referred to as Ackermann's class with equality, and show this

class to be testable.

In our notation (see Section 2.4), we denote Ackermann's class with equality 2.4)

by [∃∗∀∃∗, all]=. It is the set of sentences containing at most one universal quanti�er.

Equality and any number of predicate symbols of any arities may occur, but we consider

only pure predicate logic and so there are no function symbols.

Ackermann's class, without equality, was �rst shown to be decidable and to have the

�nite model property by Ackermann [1]. If we also allow equality and one unary function

symbol, the resulting class is Shelah's class. The decidability of this class was proven by

Shelah [41], however it does not have the �nite model property.

In Section 4.1 we described similarities between the traditional classi�cation for decid-

ability and the currently known classi�cation for testability. However, all of the decidable

classes mentioned there have the �nite model property and so all of the similarities we

found also hold between the classi�cation for the �nite model property and the classi-

�cation for testability. One interesting open problem is therefore to determine whether

Shelah's class is testable. This would require a further generalization of our de�nitions

to allow function symbols.

Returning to the history of Ackermann's class with equality, Kolaitis and Vardi [29]

showed that the satis�ability problem for the Ackermann class with equality is complete

for NEXPTIME. They also showed that a 0-1 law holds for sentences of existential

second-order logic where the �rst-order part belongs to Ackermann's class with equality.

In the absence of equality, Grädel [23] showed that satis�ability for Ackermann's class

is decidable in deterministic exponential time. The main result of Chapter 4 is the

testability of Ackermann's class with equality, which we show in the next section.

4.3.1 Testability of Ackermann's Class with Equality

We would like to assume that the the formulas we consider contain at least one pred-

icate symbol with arity at least two. Therefore, we must treat the remaining cases

specially, which we do now. For formulas that contain no predicate symbols, we can

simply compute ϕ with at most one query. These are therefore trivially testable. First-

order formulas that contain only monadic predicate symbols characterize a subset of the

regular languages and are therefore testable, see Section 4.2. All remaining cases contain

at least one predicate symbol with arity at least two.

The proof is similar to many of the proofs in Chapter 3. For an arbitrary formula

in Ackermann's class with equality, we show that either there are only �nitely many

43



4.3. ACKERMANN'S CLASS WITH EQUALITY 44

structures that are ε-far from having the property de�ned by the formula, or there are

only �nitely many structures that are models of the formula.

Theorem 12. All properties expressible by a formula in [∃∗∀∃∗, all]= are testable.

Proof. Let P be the property expressed by an arbitrary formula ϕ in [∃∗∀∃∗, all]=. Then,
we can rename the variables in ϕ so that it takes the following form, where ψ is quanti�er-

free,

ϕ := ∃x1 . . .∃xa∀y∃z1 . . . ∃zb : ψ.

We can further assume that P is a property of structures with vocabulary τ , and we

therefore have s relation symbols Ri of arity ai. We let m := maxi(ai) be the maximum

arity. The structures in the proof are all implicitly of vocabulary τ .

Either property P holds for at most �nitely many structures or it holds for in�nitely

many. We can trivially test any property that holds for at most �nitely many structures

by making the constant number of queries required to determine if the input is exactly

one of the models. Therefore, it remains only to consider the case where ϕ has in�nitely

many models.

We will show that in this case, there are only �nitely many structures A ∈ STRUC (τ)
that satisfy dist(A,P ) ≥ ε (cf. Lemma 9). There is therefore a function N(ε) such

that for any A ∈ STRUC (τ), if #(A) > N(ε) then the structure A is not ε-far from P .

Therefore, the following is an ε-tester for P on input A with size #(A) = n.

1. If n ≤ N(ε), query all assignments in A and decide exactly whether A has P .

2. Otherwise, accept.

It is worth noting that in the non-uniform case, the N(ε) is simply a constant. It does

depend on the vocabulary, but N(ε) is computable and so P is also uniformly testable.

The proof is complete conditional on Lemma 9, which we show next.

Lemma 9. Let P be the property with vocabulary τ expressed by

ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψ

where ψ is quanti�er free. If ϕ has in�nitely many models, then there exists an N(ε) for
every ε > 0 satisfying the following. If A ∈ STRUC (τ) has universe size n > N(ε), then
dist(A,P ) < ε.

Proof. Let A ∈ STRUC (τ) be arbitrary and assume it is su�ciently large. We will show

that there exists an A′ such that A′ |= ϕ (and so A′ has P ) and dist(A,A′) < ε.

We begin by showing in Lemma 10 that there must exist a model, A1, of ϕ such that

the size of the universe of A1 satis�es a + 1 ≤ #(A1) ≤ κ1, where

κ1 := a + 3b
(
a + 2

Ps
i=1

Pai
j=1 (ai

j )aai−j
)

.

44



4.3. ACKERMANN'S CLASS WITH EQUALITY 45

The constant κ1 is determined only by ϕ and does not depend on the input structure.

It is possible to prove tighter bounds on #(A1) but this su�ces for our purposes.

Next, we will show in Lemma 11 that we can easily add additional elements to the

universe of A1 and construct larger models of ϕ by making only a small number of

modi�cations. We will then use an inductive argument to show that, for su�ciently

large input structures A, we can construct A′ |= ϕ where A and A′ have the same

universe size and dist(A,A′) < ε.

We now prove the two necessary lemmata.

Lemma 10. If ϕ := ∃x1 . . . ∃xa∀y∃z1 . . .∃zbψ has in�nitely many models with vocabu-

lary τ , then it has a model A1 such that the cardinality of the universe in A1 satis�es

a + 1 ≤ #(A1) ≤ κ1.

Proof. It su�ces to consider cases where ϕ has in�nitely many models with vocabulary τ .

Let B be the smallest5 model of ϕ such that #(B) ≥ a + 1. We are guaranteed that B

exists because there are in�nitely many models. The proof is by contradiction; assume

#(B) > κ1. We will show that we can construct a smaller6 model of ϕ, violating the

requirement that B is the smallest. Therefore, the smallest model of ϕ larger than a + 1
must be of size at most κ1.

We have chosen B such that it models ϕ, and therefore there exists a tuple of a elements

(u1, . . . , ua) such that ϕ is satis�ed when the existential quanti�ers bind these elements

to (x1, . . . , xa). If there are multiple possible choices for the xi, we choose one arbitrarily.

We now consider the xi and the substructure induced by them to be �xed. We refer to

this substructure as Ax.

There are at most κ2 := a + 2
Ps

i=1

Pai
j=1 (ai

j )aai−j

many distinct structures constructed

by adding an element labeled y to Ax when we include the structures where the label y

is simply placed on one of the xi. We let v ≤ κ2 be the number of such structures that

occur in B and assume there is an enumeration of them.

We know that B models ϕ, and so for each of these v structures there exist b elements,

which we call w1, . . . , wb, such that when we label wi with zi, the structure induced by

(x1, . . . , xa, y, z1, . . . , zb) models ψ. We construct Ai,j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ v such

that Ai,j is a copy of the w1, . . . , wb used for the j-th structure in our enumeration. In

each of these cases, we connect the Ai,j to Ax in the same way as in B, by modifying

assignments on tuples (Ax ∪Ai,j)ak .

For each wh in Ai,j , we must consider the case where y is bound to wh. By construction

the substructure induced by (x1, . . . , xa, y) occurs in B. We assume that it is the k-th

structure in our enumeration. In this case we will use the elements of Ai+1 mod 3,k to

construct a structure satisfying ψ. Therefore, we modify the assignments as needed

to create a structure identical to that in B satisfying ψ and claim that the resulting

structure satis�es ϕ. Before this step we have not modi�ed any assignments �spanning�

5If there are multiple �smallest� models, choose one arbitrarily.
6But still of size at least a + 1.

45



4.3. ACKERMANN'S CLASS WITH EQUALITY 46

Ax

A1,1

A1,2

A1,v

A3,1

A3,2

A3,v

A2,1

A2,2

A2,v

Figure 4.3.1: Structure A1

the columns of A1 (see Figure 4.3.1) and so there are no assignments that we modify

more than once.

Counting the number of elements, we have at most a + 3bv ≤ a + 3bκ2 = κ1. If

#(A1) < a + 1, we can �grow� it by adding additional columns to A1 in Figure 4.3.1 to

construct a new A1 satisfying the requirements of the Lemma. Lemma 10

Our goal is to construct an A′ that has property P by making only a small number of

changes. We will make the substructure induced by a constant-sized part of A′ equivalent

to the A1 shown to exist above. The size of A1 is upper-bounded by a constant, and

so this will require only constantly many modi�cations to assignments. However, we

must also deal with the other elements of A. We will use the following lemma for these

remaining elements.

Lemma 11. Let ϕ = ∃x1 . . . ∃xa∀y∃z1 . . . ∃zbψ and assume there exists an A |= ϕ, such

that #(A) ≥ a + 1. Then, for any structure A′ containing A as an induced substructure

where #(A′) = #(A)+1, we can construct a model of ϕ by modifying a constant number

of assignments.

Proof. A′ contains an induced copy of A and one additional element, which we will denote

by q. By assumption, A is a model of ϕ and therefore contains an a-tuple (u1, . . . , ua)
such that the formula is satis�ed when xi is bound to ui. In addition, the size of A is at

least a + 1, and so it also contains at least one additional element, which we will call p.

We will now make q equivalent to p.

We begin by modifying the assignments necessary to make the structure induced

by (x1, . . . , xa, q) identical to that induced by (x1, . . . , xa, p). This requires at most∑s
i=1

∑ai
j=1

(
ai
j

)
aai−j = O(1) modi�cations. There must exist (v1, . . . , vb) in A such that

ψ is satis�ed when zi is bound to vi and y to p. We now modify the assignments

necessary to make the structure induced by (q, v1, . . . , vb) identical to that induced

46



4.3. ACKERMANN'S CLASS WITH EQUALITY 47

by (p, v1, . . . , vb)7. This requires at most an additional
∑s

i=1

∑ai
j=1

(
ai
j

)
bai−j = O(1)

modi�cations. The resulting structure has #(A) + 1 elements, models ϕ and was con-

structed from A′ by making only a constant number of modi�cations to assignments.

Lemma 11

Now, given a su�ciently large structure A, we will construct A′ by making only a

linear8 number of modi�cations, and ensure that A′ |= ϕ.

We begin by selecting arbitrarily #(A1) elements and making the induced substructure

identical to the A1 proven to exist in Lemma 10. The size of A1 is constant and therefore

there are at most a constant number of assignments to modify. The A1 from Lemma

10 is of size at least a + 1 and so it satis�es the conditions of Lemma 11. We proceed

inductively: select an element q of A that has not yet been selected. Using Lemma

10, make the substructure induced by the elements selected so far a model of ϕ. Each

step requires O(1) modi�cations and we require Θ(n) steps. By induction we can then

construct A′ from A such that A′ |= ϕ by making at most O(n) modi�cations to the

assignments of relations in A.

Then, by de�nition,

dist(A,A′) =
O(n)

Θ(nm)
< ε.

The maximum arity is at least two, and so the inequality holds for n su�ciently large.

This completes the proof of Lemma 9 and therefore that of Theorem 12. Lemma 9

7The case where vi = p can be handled either by assuming it does not occur or by replacing vi with
q in (q, v1, . . . , vb).

8Linear in n = #(A).

47



48

Chapter 5

Conclusion

In this thesis we have introduced a generalization of property testing which we call

relational property testing. We gave a number of basic results in Chapter 3. In particular,

in Section 3.7 we considered a number of natural alternative de�nitions of distance and

showed the relationships between the resulting de�nitions of testability. The de�nitions

form a strict hierarchy, and the �best� de�nition depends on the problem in question.

Relational databases are perhaps the most obvious example of massive structures where

it would be promising to consider applications of property testing. Relational property

testing is a natural way to characterize this problem. In addition, properties of databases

are often given by queries written in formal languages such as SQL and so it is very natural

to consider the testability of properties expressible in various syntactic restrictions of

formal languages. Finally, a generalization of property testing such as ours is required if

we wish to consider this kind of classi�cation problem.

The second major topic of this thesis is the classi�cation problem for testability, which

we considered in Chapter 4. This problem is inspired by the classical problem for de-

cidability. The major result of Chapter 4 is the testability of Ackermann's class with

equality, another example of a similarity between the classi�cation for testability and the

classical one for decidability.

Acknowledgements

I am indebted to my advisor, Prof. Thomas Zeugmann, for his constant encouragement

and advice, which has signi�cantly improved both my research life and this thesis. I

am very grateful for the support of the Japanese government via a Monbukagakusho

scholarship. Finally, I will always be indebted to my family for their love and support,

and for putting up with me being so far away for so long.

48



49

Bibliography

[1] Wilhelm Ackermann. Über die Erfüllbarkeit gewisser Zählausdrücke.Math. Annalen,

100:638�649, 1928.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. E�cient testing

of large graphs. Combinatorica, 20(4):451�476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial char-

acterization of the testable graph properties: It's all about regularity. In STOC '06:

Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages

251�260, New York, NY, USA, 2006. ACM.

[4] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular

languages are testable with a constant number of queries. SIAM J. Comput.,

30(6):1842�1862, 2001.

[5] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties

testable with one-sided error. In Proceedings, 46th Annual IEEE Symposium on

Foundations of Computer Science, FOCS 2005, pages 429�438, Washington, DC,

USA, 2005. IEEE Computer Society.

[6] Noga Alon and Asaf Shapira. Homomorphisms in graph property testing. In

M. Klazar, J. Kratochvíl, M. Loebl, J. Matou²ek, R. Thomas, and P. Valtr, edi-

tors, Topics in Discrete Mathematics, volume 26 of Algorithms and Combinatorics,

pages 281�313. Springer, 2006.

[7] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties

testable with one-sided error. SIAM J. Comput., 37(6):1703�1727, 2008.

[8] Noga Alon and Asaf Shapira. A separation theorem in property testing. Combina-

torica, 28(3):261�281, 2008.

[9] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity

within NC1. J. of Comput. Syst. Sci., 41(3):274�306, 1990.

[10] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with

applications to numerical problems. J. of Comput. Syst. Sci., 47(3):549�595, 1993.

49



Bibliography 50

[11] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.

Springer-Verlag, 1997.

[12] J. Richard Büchi. Weak second-order arithmetic and �nite-automata. Z. Math.

Logik Grundlagen Math., 6:66�92, 1960.

[13] Hana Chockler and Orna Kupferman. ω-regular languages are testable with a con-

stant number of queries. Theoret. Comput. Sci., 329(1-3):71�92, 2004.

[14] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, second

edition, 2000.

[15] Eldar Fischer. The art of uninformed decisions. Bulletin of the European Association

for Theoretical Computer Science, 75:97�126, October 2001. Columns: Computa-

tional Complexity.

[16] Eldar Fischer. Testing graphs for colorability properties. Random Struct. Algorithms,

26(3):289�309, 2005.

[17] R	usi�n² Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of

Computer Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia,

September 3-7, 1979, volume 74 of Lecture Notes in Computer Science, pages 57�69.

Springer-Verlag, 1979.

[18] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13�27, 1984.

[19] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,

32:302�343, 2002.

[20] Oded Goldreich, Sha� Goldwasser, and Dana Ron. Property testing and its connec-

tion to learning and approximation. J. ACM, 45(4):653�750, 1998.

[21] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph prop-

erties. Random Struct. Algorithms, 23(1):23�57, 2003.

[22] Mira Gonen and Dana Ron. On the bene�ts of adaptivity in property testing of dense

graphs. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D.P. Rolim, ed-

itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques. 10th International Workshop, APPROX 2007 and 11th Interna-

tional Workshop, RANDOM 2007. Princeton, NJ, USA, August 2007, Proceedings,

volume 4627 of Lecture Notes in Computer Science, pages 525�539. Springer, 2007.

[23] Erich Grädel. Satis�ability of formulae with one ∀ is decidable in exponential time.

Arch. Math. Logic, 29:256�276, 1990.

[24] Yuri Gurevich. On the classical decision problem. Bulletin of the European Associ-

ation for Theoretical Computer Science, pages 140�150, October 1990.

50



Bibliography 51

[25] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.

Transactions of the American Mathematical Society, 117:285�306, 1965.

[26] John E. Hopcroft and Je�erey D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Adison-Wesley Publishing Company, Reading, Mas-

sachusets, USA, 1979.

[27] Juraj Hromkovi£. Design and Analysis of Randomized Algorithms: Introduction to

Design Paradigms. Springer, 2005.

[28] Skip Jordan and Thomas Zeugmann. Indistinguishability and �rst-order logic. In

Manindra Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory

and Applications of Models of Computation, 5th International Conference, TAMC

2008, Xi'an, China, April 2008, Proceedings, volume 4978 of Lecture Notes in Com-

puter Science, pages 94�104. Springer, 2008.

[29] Phokion G. Kolaitis and Moshe Y. Vardi. 0-1 laws and decision problems for frag-

ments of second-order logic. Inf. Comput., 87(1-2):302�338, 1990.

[30] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by prob-

abilistic machines. In C.E. Shannon and J. McCarthy, editors, Automata Studies,

pages 183�212. Princeton University Press, Princeton, NJ, 1956.

[31] László Lovász. Some mathematics behind graph property testing. In Yoav Freund,

László Györ�, György Turán, and Thomas Zeugmann, editors, Algorithmic Learn-

ing Theory, 19th International Conference, ALT 2008, Budapest, Hungary, Octo-

ber 2008, Proceedings, volume 5254 of Lecture Notes in Computer Science, page 3.

Springer, 2008.

[32] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. Math. Annalen, 76:447�

470, 1915.

[33] Robert McNaughton and Seymour Papert. Counter-Free Automata. M.I.T. Press,

1971.

[34] J. v. Neumann. Zur Theorie der Gesellschaftsspiele. Math. Annalen, 100(1):295�320,

1928.

[35] Christos M. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[36] Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct.

Algorithms, 20(2):165�183, 2002.

[37] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. (2), 30:264�

286, 1930.

51



Bibliography 52

[38] Vojt¥ch Rödl and Mathias Schacht. Property testing in hypergraphs and the removal

lemma. In STOC '07: Proceedings of the 39th Annual ACM Symposium on Theory

of Computing, pages 488�495, New York, NY, USA, 2007. ACM.

[39] Dana Ron. Property testing. In Sanguthevar Rajasekaran, Panos M. Pardalos,

John H. Reif, and José Rolim, editors, Handbook of Randomized Computing, vol-

ume II, chapter 15, pages 597�649. Kluwer Academic Publishers, 2001.

[40] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with

applications to program testing. SIAM J. Comput., 25(2):252�271, 1996.

[41] Saharon Shelah. Decidability of a portion of the predicate calculus. Israel J. Math.,

28(1-2):32�44, 1977.

[42] Stephen Simons. Minimax theorems and their proofs. In Ding-Zhu Du and Panos M.

Pardalos, editors,Minimax and Applications, pages 1�23. Kluwer Academic Publish-

ers, 1995.

[43] Th. Skolem. Untersuchungen über die Axiome des Klassenkalküls und über Pro-

duktations und Summationsprobleme, welche gewisse Klassen von Aussagen betre-

�en. Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, (3):37�

71, 1919.

[44] Th. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder

Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen. Vi-

denskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, (4):1�26, 1920.

[45] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.

Birkhäuser, 1994.

[46] János Surányi. Contributions to the reduction theory of the decision problem: Sec-

ond paper: Three universal, one existential quanti�ers. Acta Mathematica Hungar-

ica, 1(2�4):261�271, 1950.

[47] Alfred Tarski. Der Wahrheitsbegri� in den formalisierten Sprachen. Studia Philo-

sophica, 1:261�405, 1936.

[48] Alfred Tarski. The concept of truth in formalized languages. In Logic, Semantics,

Metamathematics, pages 152�278. Oxford University Press, Oxford, 1956.

[49] Andrew Chi-Chih Yao. Probabilistic computations: Toward a uni�ed measure of

complexity. In 18th Annual Symposium on Foundations of Computer Science, pages

222�227. IEEE Computer Society, 1977.

52


