
TCS -TR-B-14-9

TCS Technical Report

Master’s Thesis: Generating PiDDs for Indexing

Permutation Classes with Given Permutation Patterns

by

Yuma Inoue

Division of Computer Science

Report Series B

February 25, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: yuma@mx-alg.ist.hokudai.ac.jp Phone: +81-011-706-7681

Fax: +81-011-706-7681

Master’s Thesis
平成 25年度　修士学位論文

Generating PiDDs for Indexing Permutation Classes
with Given Permutation Patterns

πDDを用いたパターンに基づく順列クラスの列挙索引化

Yuma Inoue

井上　祐馬

Laboratory for Algorithmics, Division of Computer Science
Graduate School of Information Science and Technology

Hokkaido University

北海道大学　大学院情報科学研究科
コンピュータサイエンス専攻　アルゴリズム研究室

February 25, 2014

Contents

1 Introduction 4
1.1 Background . 4

1.2 Contributions . 5

1.3 Related Work . 5

1.4 Thesis Structure . 6

2 Preliminaries 7
2.1 Permutations . 7

2.2 Permutation Patterns . 8

2.3 πDDs . 9

2.3.1 ZDDs . 9

2.3.2 πDDs . 11

2.4 Multiset of Permutations . 12

2.5 πDD Vectors . 12

3 Main Results 16
3.1 Generation of Classical Pattern-Containing Permutations 16

3.1.1 Construction of B . 18

3.1.2 Construction of C . 18

3.1.3 Construction of A . 19

3.2 Generation of Vincular Pattern-Containing Permutations 20

3.3 Generation of Bivincular Pattern-Containing Permutations 21

3.4 Generation of Pattern-Avoiding Permutations 21

3.4.1 Generation Algorithm for all n-Permutations 22

3.4.2 Summary of Generation Algorithm for Avn(σ) 23

3.5 Generation of Permutations with Pattern Occurrence Counts 24

3.5.1 Generation Algorithm for Pn,σ 24

3.5.2 Generation Algorithm for F(k)
n (σ) 24

3.5.3 Summary of Generation Algorithm for F(k)
n (σ) 25

1

4 Experimental Results 26

4.1 Results for Classical Pattern-Avoiding Permutations 27

4.2 Results for Vincular and Bivincular Patterns 28

4.3 Results for Permutations with Pattern Occurrence Counts 30

5 Conclusion 33

2

Summary

Permutation is a basic concept in elementary combinatorics and discrete mathematics.
Permutations appear in various problems such as sorting, ordering, matching, coding and
many other real-life situations. Permutations are also important in group theory since it
corresponds to a bijective function and generates symmetric groups.

Permutation pattern is an important topic about permutations in which many researchers
are interested. A permutation pattern occurs in a permutation if there is a subsequence
of the permutation with the same relative order as the pattern. Otherwise, a permuta-
tion avoids a permutation pattern. Permutation patterns are related to practical and ab-
stract mathematical problems and can provide simple representations for such problems.
For example, some floorplans, which are used for optimizing very-large-scale integration
(VLSI) circuit designs, can be encoded as pattern-avoiding permutations. On the other
hand, strong Wilf-equivalence has been proposed for analysis of permutation classes with
permutation patterns. The generation of permutation classes with given permutation pat-
terns is therefore an important topic in efficient VLSI design and mathematical analysis of
permutation patterns.

In this thesis, we present an algorithm for generating pattern-avoiding permutations,
and extend this algorithm beyond classical patterns to generalized patterns with more re-
strictions. Moreover, we present an algorithm for generating permutations in which a
pattern σ occurs exactly k times. Our approach is based on Permutation Decision Dia-
grams (PiDDs, or πDDs), a data structure which can represent permutation sets compactly
and support various set operations. We demonstrate the efficiency of our algorithms by
computational experiments.

3

Chapter 1

Introduction

Permutation is a mathematical concept, which appears in various mathematical and prac-
tical problems. For example, sorting, ordering, matching, coding, and so on can be de-
scribed as permutation problems. Permutations also appear in group theory. Permutations
correspond to a bijective function between two groups and generates symmetric groups.

Permutation pattern is the important topic in the research area of permutations. A
permutation pattern σ occurs in a permutation π if there is a subsequence in π which is
order isomorphic to σ . Two numerical sequences a = a1a2 . . .an and b = b1b2 . . .bm are
order isomorphic if a and b have the same length and satisfy ai < a j if and only if bi < b j

for all i, j. Conversely, π avoids σ if σ does not occur in π . Permutations that avoid a
pattern σ are called σ -avoiding permutations.

1.1 Background

Research on pattern-avoiding permutations dates back to stack sort, which was pro-
posed by Knuth in [13]. In stack sort, we can use a single stack to sort elements. Knuth
showed that a permutation is stack sortable if and only if it is a 231-avoiding permu-
tation. Several variations of the stack sorting problem, such as the twice stack sorting
problem [22], and the double-ended queue sorting problem [18], have been considered,
and pattern-avoiding permutations were developed in that context.

After pattern-avoiding permutations were first studied, many researchers worked on
computing the number of permutations that avoid given patterns. For example, 1342-
avoiding permutations have been enumerated by a mathematical approach [5], and 1324-
avoiding permutations have been counted by computer programs [15]. Moreover, the
relations between classes of pattern-avoiding permutations have also been examined. Two
patterns σ1 and σ2 are Wilf-equivalent if the number of n-permutations which avoid σ1

is same as the number of n-permutations for σ2 for all positive integers n. In [20], the
nontrivial Wilf-equivalence between 4132-avoiding and 3142-avoiding was discovered.
More generally, two patterns σ1 and σ2 are strongly Wilf-equivalent [11] if |F(k)

n (σ1)| =

4

|F(k)
n (σ2)| for all non-negative integers n and k, where |S| denotes the cardinality of a set

S and F(k)
n (σ) denotes the set of permutations of length n in which σ occurs exactly k

times. Unfortunately, few results are known about strong Wilf-equivalence, as stated in
the survey [21]. The generation of permutation classes with pattern occurrence counts
can contribute to not only discoveries of new strongly Wilf-equivalent classes, but also
identifications of bijective functions between such classes.

Relations between pattern-avoiding permutations and mathematical problems have also
been studied actively [8, 10]. In particular, Yao et al. [24] discovered a bijection between
mosaic floorplans and Baxter permutations, which are generalized pattern-avoiding per-
mutations, and Ackerman et al. [1] proposed a simple encoding and decoding between
these. A floorplan is a topological partition of a rectangle into multiple rectangles, and
have practical applications in areas such as VLSI design. Mosaic floorplans are a subclass
of floorplans. Bijections between other pattern-avoiding permutations and other floor-
plan classes are also discussed in [1, 19]. Storing all pattern-avoiding permutations in
a database is equivalent to preparing a database of floorplans. Database queries such as
searching by criteria and random sampling are useful for VLSI design. Therefore, gener-
ating pattern-avoiding permutations could contribute to solving practical problems.

1.2 Contributions

In this thesis, we provide a practically efficient algorithm for generating pattern-avoiding
permutations. Furthermore, we extend our algorithm to handle some generalized patterns,
such as vincular and bivincular patterns. We also present an algorithm for generating
F(k)

n (σ) based on the above algorithms. Using experiments, we measure the performance
of our algorithms and compare with a naive method. In the experiments, we find some
patterns that are potentialy strongly Wilf-equivalent.

Our algorithms are based on Permutation Decision Diagrams (PiDDs, or πDDs), a
data structure for compactly representating sets of permutations [17]. These diagrams not
only achieve high compression of sets of permutations, but also support rich algebraic
set operations such as union and intersection. The computation time of these operations
depends on the size of the πDDs and not on the number of permutations they represent. If
the πDD is small, computation is fast independently of the number of permutations. This
is a key benefit of our algorithms given that most previous generation algorithms focused
on polynomial-delay algorithms, whose overall time complexity depends on the number
of solutions.

1.3 Related Work

Wilf [23] provided an amortized polynomial-delay algorithm that generates all per-
mutations avoiding the identity pattern (i.e. 12 . . .n), and posed the question about the
complexity of generation for other patterns. Bose et al. [6] proved that the enumeration

5

problem for pattern-avoiding permutations is #P-complete. Theoretically efficient gener-
ation algorithms for some particular patterns have been proposed [9]. On the other hand,
as an instance of practical results, Albert [2] develops PermLab, which is software enu-
merating and listing pattern-avoiding permutations.

Our goal differs from the above results from the following viewpoints.

• Implicit generation:
For applications such as Wilf-equivalence and floorplan databases, it is sufficient to
store some information equivalent to all pattern-avoiding permutations. We do not
have to list them explicitly.

• General patterns:
We want to analyze as many patterns as possible.

• Practical efficiency:
Theoretically fast algorithms are important. However, for practical applications,
experimentally fast algorithms are also required.

• Enumeration with occurrences:
The generation problem for pattern-avoiding permutations, i.e. F(0)

n (σ), has been
studied extensively. However, as far as the author knows, no algorithm generating
F(k)

n (σ) for any non-negative integer k has been proposed.

1.4 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 introduces permutation pat-
terns and πDDs. Chapter 3 presents our generation algorithms. Chapter 4 shows exper-
imental results. The results include some candidates of strongly Wilf-equivalent classes.
Chapter 5 concludes this thesis.

6

Chapter 2

Preliminaries

In this chapter, we give some notations and definitions for permutation patterns. We
also define some generalized patterns, which have more restrictions besides order iso-
morphism. We also introduce πDDs and its extension for multisets of permutations. Our
generation algorithms, which will be described in Chapter 3, are based on these data struc-
tures.

2.1 Permutations

A permutation of length n (n-permutation for brevity) is a bijection from {1,2, ...,n} to
itself. Hereafter, we write permutations in one line as π = π(1)π(2) . . .π(n), and denote
πi = π(i). The k-prefix of π denotes the first k numbers in π , and the k-suffix of π denotes
the last k numbers in π . For example, π = 4312 is a 4-permutation, π3 = 1, and the 2-prefix
of π is 43. An element πi in π is fixed if πi = i holds.

Multiplication over permutations x and y is defined as x · y = yx1yx2 . . .yxn , which is
applying y after x. Note that the leftmost permutation is applied first. For example, let
x= 45213 and y= 41352, then x ·y= 52143 (see Figure 2.1). Note that multiplication over
permutations is non-commutative. We denote by en the identity permutation of length n,
where en satisfies en(i) = i for each 1≤ i≤ n.

1
2
3
4
5

45213 41352
1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

52143
1
2
3
4
5

1
2
3
4
5

・ =

Figure 2.1. An example of multiplication of permutations.

7

Figure 2.2. Decomposition of 54213 into transpositions.

In this thesis, we use the multiplication x · y in order to permute the numbers in y
according to the order of numbers in x, that is, yi is placed in the kth position with xk = i.
We call this operation the rearrangement of y according to x. For example, let r = 54321,
which is the reverse of e5, and π = π1π2π3π4π5. Then we obtain r · π = π5π4π3π2π1,
which is the reverse of π .

A transposition is a permutation that exchanges only two elements. More precisely,
a transposition τi, j is a permutation such that τi, j(i) = j, τi, j(j) = i, and τi, j(k) = k for
all other numbers k. Any n-permutation can be uniquely represented as the product of
at most n− 1 transpositions based on a straight selection sorting algorithm [14]. This
algorithm repeatedly swaps the value k and the kth element from right to left. For example,
consider the decomposition of the permutation 54213 into a product of transpositions
(Figure 2.2). The 5th element of 54213 is 3, hence we exchange 5 and 3, and obtain
54213 = 34215 ·τ3,5. Since the 4th element of 34215 is 1, we then obtain 54213 = 31245 ·
τ1,4 · τ3,5. Repeating this procedure, we finally obtain 54213 = τ1,2 · τ2,3 · τ1,4 · τ3,5.

2.2 Permutation Patterns

A permutation π contains a permutation σ , or σ occurs in π if there is at least one
subsequence in π which is order isomorphic to σ , where the subsequence need not consist
of consecutive numbers in π . In other words, let l be the length of σ . Then, π contains σ if
there are indexes 1≤ i1 < i2 < .. . < il ≤ n such that πix < πiy if and only if σx < σy, for all
pairs of x and y. Such σ is called a pattern. For example, the permutation 4213 contains
the pattern 312 because 423 and 413 are order isomorphic to the pattern. Conversely, π
avoids σ if π does not contain σ .

The above pattern is called a classical pattern because some generalizations have been
proposed. For example, the vincular pattern, which is also called the generalized pattern,
is a well-known generalization [3]. While the defining restriction in classical patterns is
order isomorphism, vincular patterns additionally have another restriction: adjacency of
element positions in the permutation. We use the underline notation to represent adjacen-
cies. If the ith and the (i+ 1)th elements are underlined, the corresponding numbers in
the permutation must be adjacent. For example, we consider the permutation 4213 and
the vincular pattern 312. Both 423 and 413 are order isomorphic to 312, but 423 does
not match 312 because the second and third elements are not adjacent in the permutation.

8

In contrast, 413 matches the pattern because 1 and 3 are adjacent in 4213. Thus, 4213
contains 312.

Vincular patterns have been extended to bivincular patterns [7]. A bivincular pattern
is restricted by adjacency of positions and additionally by consecutiveness of values. We
use a two-line form with bars and underlines to represent bivincular patterns. The first
row represents consecutiveness and an identical order, and the second row represents ad-

jacencies and a relative order. For example, the bivincular pattern
123
312

represents a pattern

where the 1st and the 2nd smallest values must be consecutive, the 2nd and the 3rd el-
ements in a subsequence must be adjacent in a permutation, and the relative order must

match 312. Thus, the permutation 4213 avoids
123
312

. Indeed, both subsequences 423 and

413 are order isomorphic to 312 but 423 does not match the bivincular pattern because
2 and 3 are not adjacent in the permutation, and 413 also does not match the bivincular
pattern because 1 and 3 are not consecutive.

The pattern occurrence count of σ in π is the number of distinct subsequences in the
permutation π which are order isomorphic to the pattern σ . For example, the pattern
occurrence count of 312 in 4213 is 2 as described above. Hereafter, F(k)

n (σ) denotes the
set of n-permutations in which σ occurs exactly k times. Two patterns σ1 and σ2 are Wilf-
equivalent if they have the same number of n-permutations which avoid the patterns, i.e.,
|F(0)

n (σ1)| = |F(0)
n (σ2)| holds for all positive integers n. More generally, two patterns σ1

and σ2 are strongly Wilf-equivalent if |F(k)
n (σ1)| = |F(k)

n (σ2)| holds for all non-negative
integers n and k.

The problem considered in this thesis can be stated as follows: given a positive integer
n and a pattern σ , implicitly generate F(k)

n (σ) for all non-negative integers k.

2.3 πDDs

A Permutation Decision Diagram (PiDD, or πDD) [17] is a data structure which canon-
ically represents and efficiently manipulates a set of n-permutations. The efficiency of our
algorithms is based on the compact representation and rich set operations of πDDs. The
structure of πDDs is based on Zero-suppressed Binary Decision Diagrams (ZDDs) [16],
which are decision diagrams for sets of combinations (families of sets).

2.3.1 ZDDs

A ZDD is derived by reducing a binary decision tree. Figure 2.3 shows the ZDD for
the family of sets {{a,b},{a,c},{c}}. A ZDD has five components: internal nodes with
an item label, 0-edges, 1-edges, the 0-terminal node, and the 1-terminal node.

A ZDD forms a connected DAG (Directed Acyclic Graph) with a single root node.
Each node except the two terminal nodes has exactly one 0-edge and one 1-edge. Each

9

0 1

c

01100010 10

ccc

bb

a

c

b

a

1

1111

1

1 1

1

0

00 0 0

0
0
0

0

reduce

Figure 2.3. A binary decision tree and a ZDD for a set of combinations.

x

0

x x

F0

x

(1) merging rule (2) deletion rule

0 1 0 1

F1F0 F1 F0

F0
11 00

Figure 2.4. Two reduction rules on ZDDs.

path represents a combination of items: if a 1-edge originates from a node with label x,
the combination contains x, while a 0-edge from x means that the combination excludes x.
If a path reaches the 1-terminal node, the combination represented by the path is in the
set represented by the ZDD. On the other hand, if a path reaches the 0-terminal node, the
combination is not in the set. For a node N, we call the subgraph pointed to by its 0-edge
the left subgraph of N and the subgraph pointed to by its 1-edge the right subgraph of N
for convenience. Then, we can consider that the 0-terminal node represents an empty set,
the 1-terminal node represents a singleton of a combination which has no item, and a node
with label x represents the union of the left subgraph and the right subgraph whose each
combination added the item x to.

A ZDD is canonical, and often compact representation if we fix the order of the items
and apply the following two reduction rules:

(1) Merging rule: Share all nodes which have the same left subgraphs, the same right
subgraphs, and the same labels

(2) Deletion rule: Delete all nodes whose 1-edge point directly to the 0-terminal node.

These rules are illustrated in Figure 2.4. In the worst-case scenario, the size of a ZDD
(i.e. the number of nodes in a ZDD) can grow exponentially with respect to the number of
items. In many practical cases, though, ZDDs provide efficient compression.

In addition, ZDDs support efficient set operations such as union, intersection, and set
difference. Since these operations are realized by recursive algorithms with hash table
techniques, the computation time of these operations depends on the number of nodes in
the ZDDs, not on the cardinality of the sets they represent.

10

1

τ1,2

0

τ2,3
τ3,4

τ1,4
1

1
1

1

0
0

0

0

Figure 2.5. The πDD for {2143,2431,4321}= {τ1,2 · τ3,4,τ1,2 · τ1,4,τ2,3 · τ1,4}.

2.3.2 πDDs

We introduce πDDs, which represent a set of n-permutations, by deriving them from
a ZDD. As shown in Section 2.1, any permutation can be uniquely decomposed into a
product of transpositions. Hence, by assigning transpositions to nodes in a ZDD, each
path in the ZDD represents a permutation. This is the basic idea of πDDs. We introduce
the order of transpositions < so that τx1,y1 < τx2,y2 is true if y1 > y2 holds, or y1 = y2 and
x1 < x2 holds, and use this order as the fixed order in a πDD. In πDDs, the 0-terminal
node represents an empty set and the 1-terminal node represents a singleton of the iden-
tity permutation en. We obtain compact and canonical πDDs by applying the above two
reduction rules in the same way to ZDDs, and set operations are also available. Figure 2.5
shows an example of a πDD.

Table 2.1 shows the πDD operations used in this thesis. Here the Cartesian product of
πDDs differs from the usual Cartesian product of sets: the set of multiplications for all
pairs of permutations in one permutation set and those in the other permutation set. While
the union and set difference operations are available like ZDDs, the swap and Cartesian
product operations are unique to πDDs. In particular, the Cartesian product is very useful
because multiplications over permutations results in rearrangements. That is, by applying
the Cartesian product operator, we can simultaneously execute rearrangements of multiple
numerical sequences.

Table 2.1. πDD operations on two πDDs P and Q.

P.Top return the transposition τx,y by which the root node is labeled.
P∩Q return intersection {π | π ∈ P and π ∈ Q}.
P∪Q return union {π | π ∈ P or π ∈ Q}.
P\Q return difference {π | π ∈ P and π /∈ Q}.
P · τx,y return swap {π · τx,y | π ∈ P}.
P×Q return Cartesian product {α ·β | α ∈ P and β ∈ Q}.

11

2.4 Multiset of Permutations

In this section, we introduce some definitions and notations for multisets of permuta-
tions. Let P = ⟨P, f ⟩ be a multiset over P, where P is a permutation set and f : P→ N is a
function. Here, f (π) is the multiplicity of permutation π and we use the notation P(π) in-
stead of f (π) for convenience. We define P⊎Q as the multiset sum of two multisets P and
Q, where (P⊎Q)(π) = P(π)+Q(π) holds for all permutations π . Scalar multiplication
of an integer k and a multiset P is defined by k ·P = ⟨P,k · f ⟩. Cartesian product of two
multisets P= ⟨P, f ⟩ and Q= ⟨Q,g⟩ is defined by P×Q= ⟨P×Q,h(π ·π ′) = f (π) ·g(π ′)⟩,
where π ∈ P, π ′ ∈ Q, and P×Q means Cartesian product of permutation sets like that of
πDDs.

A set of permutations weighted by pattern occurrence counts can be represented by a
multiset. Given a positive integer n and a pattern σ , Pn,σ = ⟨Sn, fσ ⟩ denotes the set of n-
permutations weighted by the pattern occurrence count of σ , i.e., fσ (π) equals the pattern
occurrence counts of σ in π . Our algorithm, which will be described in Section 3.5, first
generates Pn,σ , and then computes F(k)

n (σ) = {π | Pn,σ (π) = k} from Pn,σ .

2.5 πDD Vectors

In this thesis, we want to handle multisets of permutations. But πDDs cannot repre-
sent multisets. To overcome this problem, we use πDD vectors, which were proposed
in [12]. A πDD vector is a data structure for a multiset of permutations based on a binary
representation using multiple πDDs. A πDD vector consists of an array of πDDs. Let
M be the maximum multiplicity of a permutation in a given multiset. We denote a πDD
vector by P⃗ = (P0,P1, . . . ,Pm), where each Pi is a πDD and m = ⌊logM⌋. Let P⃗(π) be the
multiplicity of π in P⃗. If a permutation π is in Pi, the ith bit of the binary representation
of P⃗(π) is 1, and otherwise 0. In other words, P⃗(π) = ∑m

i=0 2i · [π ∈ Pi] holds, where [x]
equals 1 if x is true, and otherwise 0. Figure 2.6 shows an example of a πDD vector. In
actuality, πDDs in a πDD vector share common subgraphs as illustrated in [12]. Thus,
more efficient compression can be expected.

πDD vectors have multiset operations. Table 2.2 shows some πDD vector operations
which were used in this thesis. Most operations in Table 2.2 were proposed in [12]. Un-

Table 2.2. πDD operations on πDD vectors P⃗ and Q⃗.

P⃗⊎ Q⃗ Return multiset sum R⃗ such that R⃗(π) = P⃗(π)+ Q⃗(π) holds.
P⃗ · τx,y Return swap P⃗′ = (P0 · τx,y,P1 · τx,y, . . . ,Pm · τx,y).
P⃗.numberof(π) Return P⃗(π).
P⃗× Q⃗ Return Cartesian product R⃗ such that R⃗(α ·β) = P⃗(α) · Q⃗(β).

12

τ2,4

1

τ2,3
τ1,2

0

τ3,4

1

τ1,3
τ1,2

0

τ2,4

1

τ2,3

0

P0P1P2

Permutation Multiplicity
1342 (1,0,1) 5
2134 (0,1,1) 3
2143 (0,1,0) 2
4213 (0,1,0) 2
4132 (0,0,1) 1

{2134,4132,1342}{2134,2143,4213}{1342}

(P2,P1,P0)

0

0
00

0

0

00

1

1 11

1 1

11

Figure 2.6. An example of a πDD vector.

fortunately, however, the Cartesian product operation of πDD vectors has not ever been
proposed. We introduce the Cartesian product operation.

Cartesian product operation between two πDDs P and Q was defined as follows ([17]):

P×Q = (P×Ql)∪ ((P×Qr) · τx,y),

where Ql and Qr are the left and the right subgraphs of the root node of Q, respectively,
and τx,y is the transposition associated with the root node of Q.

We extend Cartesian product to πDD vectors as follows:

P⃗× Q⃗ = (P⃗× Q⃗L)⊎ ((P⃗× Q⃗R) · τx,y),

where multiset sum⊎ and swap τx,y are πDD vector operations which were already defined
in [12] as shown in Table 2.2. However, some Qi in the array of Q⃗ can have distinct
transpositions in their root nodes. We need to define Q⃗L and Q⃗R, and τx,y appropriately.

We use τxs,ys which is the smallest transposition in the root nodes of Q1,Q2, . . . ,Qm,
where the order of transpositions is introduced in Section 2.3.2. For example, for the
πDD vector illustrated in Figure 2.6, τxs,ys is τ2,4 because the transpositions on the root
nodes of P0, P1, and P2 are τ2,4, τ3,4, and τ2,4, respectively, and the smallest transposition
among them is τ2,4. Here, we define Q⃗L and Q⃗R as follows:

Q⃗L = (QL
0 ,Q

L
1 , . . .Q

L
m),where QL

i =

Qi if Qi.Top ̸= τxs,ys ,

Ql
i otherwise.

Q⃗R = (QR
0 ,Q

R
1 , . . .Q

R
m),where QR

i =

 /0 if Qi.Top ̸= τxs,ys ,

Qr
i otherwise.

If the root node in Qi is not labeled by τx,y, it is equivalent to the πDD whose root node
has the label τx,y, Qi as the left subgraph, and the 0-terminal node as the right subgraph.
This implies correctness of the above definition.

13

We must also define the base case of the above recursion. The base case means every
root node of Qi is not labeled by a transposition, that is, each Qi consists only of a ter-
minal node. Since each Qi consists only of the 0-terminal node or the 1-terminal node,
i.e. an empty set or a singleton of en, respectively, Q⃗(en) ≥ 0 and Q⃗(π) = 0 for the other
permutations π hold. Then, P⃗× Q⃗ equals the scalar multiplication Q⃗(en) · P⃗. Here, we de-
fine (klkl−1 . . .k0)2 as a binary representation of non-negative integer k, where l = ⌊logk⌋.
Algorithm 1 gives an algorithm for a scalar multiplication of a πDD vector based on the
multiset sum of 2i · P⃗ = (/0, . . . , /0︸ ︷︷ ︸

i

,P0, . . . ,Pm). In conclusion, Algorithm 2 shows how to

compute the Cartesian product of πDD vectors.

Algorithm 1 Scalar multiplication of a non-negative integer k =(klkl−1 . . .k0)2 and a πDD
vector P⃗ = (P0,P1, . . . ,Pm).

πDD vector R⃗← (/0)
for i = 0 to l do

if ki = 1 then
R⃗← R⃗⊎ P⃗

end if
P⃗← (/0,P0,P1, . . . ,Pm+i)

end for
return R⃗

14

Algorithm 2 Cartesian product of two πDD vectors P⃗ = (P0,P1, . . . ,Pm′) and Q⃗ =

(Q0,Q1, . . . ,Qm).
{Calculate the smallest transposition.}
{We suppose the 0-terminal node is labeled by τ0,0 and the 1-terminal node is labeled
by τ1,1 for convenience.}
transposition t← τ0,0

for i = 0 to m do
if Qi.Top < t then

t← Qi.Top
end if

end for

{Branch based on t.}
if t = τ0,0 then

{Every Qi consists only of the 0-terminal node.}
return (/0)

else if t = τ1,1 then
{Every Qi consists only of the 0-terminal node or the 1-terminal node.}
return Q⃗.numberof(en) · P⃗

else
{There is at least one Qi whose root node is not a terminal node.}
for i = 0 to m do

if Qi.Top = t then
QL

i ← Ql
i , QR

i ← Qr
i

else
QL

i ← Qi, QR
i ← /0

end if
end for
return (P⃗× Q⃗L)⊎ ((P⃗× Q⃗R) · t)

end if

15

Chapter 3

Main Results

In this chapter, we gives generation algorithms for pattern-containing permutations, pattern-
avoiding permutations, and permutations with pattern occurrence counts. We also present
the extension for some general patterns.

3.1 Generation of Classical Pattern-Containing Permutations

Hereafter, unless otherwise noted, l denotes the length of a given pattern σ and Cn(σ)

denotes the set of n-permutations that contain σ . The algorithm for generating Cn(σ) is
sketched as follows. First, we generate all numerical sequences satisfying the following
conditions:

• It is order isomorphic to σ .

• The elements in it are less than or equal to n.

The number of such numerical sequences is
(n

l

)
. For example, if we suppose that n = 5

and σ = 312, then there are ten such numerical sequences: 312,412, . . . ,534. Next, we
generate all n-permutations such that the above numerical sequences appear as a subse-
quence. In order to do this, it is sufficient to embed the numerical sequences in sequences
of length n without changing their order. For example, the numerical sequence 524 can
be embedded in the following ways: 524 ∗ ∗,52 ∗ 4∗, . . . ,∗ ∗ 524. Here, we assign other
positive integers to the ∗ positions in any order. Then, we obtain all n-permutations which
have 524 as their subsequence: 52413, 52431, 52143, 52341, . . ., 13524, 31524. Since all
order isomorphic sequences are embedded in all possible positions, this process generates
Cn(σ).

Replacing all numerical sequences in the above process by permutations, this process
is described as the three steps as follows:

A. Generate all permutations whose l-prefix is ordered in increasing order,

16

{1234, 1243, 1342, 2341}

n = 4, σ = 312, l = 3

Step A

{3124, 4123, 4132, 4231}Step B

{3124, 3142, 3412, 4312,
 4123, 4132, 4312, 3412,
 4132, 4123, 4213, 2413,
 4231, 4213, 4123, 1423 }

Step C {3124, 3142,
 3412, 4312,
 4123, 4132,
 4213, 2413,
 4231, 1423 }

Remove
duplications

= C4(312)
Figure 3.1. The process of generating C4(312).

B. Rearrange the l-prefix of each permutation which was generated in step A into the
order isomorphic to σ ,

C. Distribute the l-prefix of each permutation π which was generated in step B over
(n

l

)
possible positions in π .

Figure 3.1 shows the process of generating C4(312). Step A generates all
(n

l

)
combina-

tions in the l-prefix of the permutations. Step B rearranges the l-prefix of each permutation
into the numerical sequence order isomorphic to σ . All possible numerical sequences or-
der isomorphic to σ appear in the l-prefix of the permutations which are generated in step
B. The distribution by step C generates all permutations π such that at least one of

(n
l

)
subsequences in π exactly matches one of the numerical sequences order isomorphic to
σ . They may be some duplications. But we do not have to consider the duplications when
using πDDs because πDDs represent the set, not multiset.

Steps B and C involve the rearrangements of multiple permutations. This means that
this process can be done by Cartesian products of πDDs as shown in Section 2.3.2. Let A
denote the πDD for permutations which are generated in step A, and let B and C denote
the πDDs for the rearrangements which correspond to steps B and C, respectively. Note
that the permutations represented in B are not the permutations obtained after step B by
rearranging those in A. The permutations in B are the permutations as operations to apply
those in A. The same applies to C. Then, Cn(σ) can be obtained by computing C×B×A
(Figure 3.2). Note that the Cartesian products must be applied in the reverse order of the
three steps we execute, that is, we first apply B to A and then apply C to the result of the
first application.

We show the method for the construction of A last because it is similar to the construc-
tion of C but more complicated.

17

{1234, 1243,
 1342, 2341}

n = 4, σ = 312, l = 3

{3124}{1234, 1243,
 1423, 4123}

{3124, 3142,
 3412, 4312,
 4123, 4132,
 4213, 2413,
 4231, 1423 }

C4(312)

=

=

××

××

Figure 3.2. Cartesian product in generating C4(312).

3.1.1 Construction of B

In order to rearrange the l-prefix of all permutations in A into the order isomorphic to
σ , we define B to be the πDD consisting only of the permutation whose l-prefix is σ and
(n− l)-suffix is fixed. To construct this πDD, we first decompose σ into a product of trans-
positions as given in Section 2.1. The πDD forms one path based on this decomposition,
and can be easily constructed in a bottom-up fashion.

3.1.2 Construction of C

We define C to be the πDD for the set of n-permutations π such that there are l indixes
1≤ p1 < p2 < .. . < pl ≤ n with πpi = i. This means that each permutation in C must have
the numerical sequence 12 . . . l as a subsequence. There is a simple method to construct
C. First, for each n-permutation which satisfies the above condition, we construct one
πDD like the construction of B. And then, we take the union of the πDDs. This algorithm
is simple and easy to implement. However, this is not efficient because it must repeat
constructions and union operations

(n
l

)
times.

Our idea to reduce the number of operations is based on Pascal’s rule, which is the
combinatorial identity

(n
l

)
=

(n−1
l

)
+
(n−1

l−1

)
. Let Posi, j be the set of all n-permutations π

containing at least one subsequence πl1πl2 . . .πl j satisfying the following two conditions:

1. 1≤ l1 < l2 < .. . < l j ≤ i.

2. πl1πl2 . . .πl j = 12 . . . j,

It is obvious that C is the πDD for Posn,l . If we can calculate Posi, j using Posi−1, j and
Posi−1, j−1 as in the identity above, we can obtain C with only O(nl) operations. In order
to make this idea work, we restrict Posi, j with the additional condition as follows:

3. For each i+1≤ x≤ n, x is fixed, i.e., πx = x.

18

Here, we can partition Posi, j into the two sets: the set including π with πi ̸= j and the
other set. The former set equals Posi−1, j, and the latter one can be obtained by assigning j
to the ith position of permutations in Posi−1, j−1. Hence, if Pi, j denotes the πDD for Posi, j,
this is achieved by Pi−1, j−1 ·τi, j because the ith element is i from the third condition and j
is not assigned yet. Thus, Pi, j = Pi−1, j ∪Pi−1, j−1 · τi, j holds. The dynamic programming
for this recursion is encoded in Algorithm 3.

Algorithm 3 Construct C.
P0,0← πDD for {en}
for i = 1 to n do

for j = 0 to l do
if j > 0 then
Pi, j← Pi−1, j ∪Pi−1, j−1 · τi, j

else
Pi, j← Pi−1, j

end if
end for

end for
return Pn,l

3.1.3 Construction of A

As shown in Section 3.1, A is the πDD for the set of all n-permutations whose l-prefix
is ordered in increasing order. More precisely, a permutation π in A satisfies 1 ≤ π1 <

π2 < .. . < πl ≤ n.

We can obtain A by repeating assignments in a similar way to the construction of C.
However, this does not work if we assign elements in increasing order. In order to assign
v to pth position by τp,v, p must be fixed to pth position. But given that p ≤ v, other
transpositions could result in p being in another position. In the construction of Pp,v,
there is no such problem because after τp,v assigns v to pth position, there are no further
assignments to vth position due to v ≤ p. Therefore, we reverse the order of assignments
in order to fix the position of elements which will be used in the future. Let Inci, j be the
set of all n-permutations satisfying the following conditions:

1. i+1≤ π j+1 < π j+2 < .. . < πl ≤ n,

2. For each 1≤ x≤ j, x is fixed, i.e., πx = x.

These conditions mean that for each permutation π in Inci, j, the (l− j)-suffix of the l-
prefix of π is already used and the j-prefix of the l-prefix of π is fixed. We execute
the constructions from Incn,l = {en} to Inc0,0. If Ii, j denotes the πDD for Inci, j, then

19

Ii, j = Ii+1, j ∪ Ii+1, j+1 · τi+1, j+1 holds because Ii, j can be partitioned into the set including
π with π j+1 = i+1, which is Ii+1, j+1 · τi+1, j+1 and the other set, which is Ii+1, j, like Pi, j.

The construction of A is not completed yet because the (n− l)-suffix of each permuta-
tion in I0,0 is in one fixed order. We must generate all orders of the (n− l)-suffix of each
permutation in I0,0. This is realized by su fn,l × I0,0, where su fn,l is the πDD for the set
including the n-permutations π in which πi = i holds for 1 ≤ i ≤ l and the (n− l)-suffix
is in any order. We can obtain su fn,l by a construction like Algorithm 7, which will be
precisely described in Section 3.4.1. Algorithm 4 describes the entire process.

Algorithm 4 Construct A.
In,l ← πDD for {en}
for i = n−1 to 0 do

for j = l to 0 do
if j < l then
Ii, j← Ii+1, j ∪ Ii+1, j+1 · τi+1, j+1

else
Ii, j← Ii+1, j

end if
end for

end for

su fl,l ← πDD for {en}
for i = l +1 to n do

su fi,l = su fi−1,l

for j = l +1 to i−1 do
su fi,l ← su fi,l ∪ su fi−1,l · τi, j

end for
end for
return su fn,l× I0,0

3.2 Generation of Vincular Pattern-Containing Permutations

Recall that the additional restriction of vincular patterns is adjacency of positions.
Therefore, we can generate vincular pattern-containing permutations by a slight modi-
fication of step C from Section 3.1.2. We call the modified step C′. C′ denotes the πDD
which corresponds to step C′.

If the jth and the (j+1)th elements must be adjacent, j+1 is the right-hand neighbor
of j for all permutations in C′. In other words, if we assign j to ith position, we must
assign (j+ 1) to (i+ 1)th position. For C′, we define P′i, j = P′i−1, j−1 · τi, j if the jth and
the (j+1)th elements must be adjacent, and otherwise P′i, j = P′i−1, j∪P′i−1, j−1 ·τi, j as Pi, j.

20

As shown in Section 3.1.2, P′i−1, j consists only of permutations π such that πi ̸= j, and
P′i−1, j−1 ·τi, j consists only of π such that πi = j. Thus, if the jth and the (j+1)th elements
must be adjacent, P′i, j includes only permutations π such that πi = j, and P′i, j · τi+1, j+1

includes only permutations π such that πi = j and πi+1 = j + 1, that is, j and j + 1 are
adjacent. Therefore, P′i+1, j+1 = P′i, j+1 ∪P′i, j · τi+1, j+1 includes only the permutations in
which j and j + 1 are adjacent because P′i, j · τi+1, j+1 satisfies the adjacency as above,
and P′i, j+1 also satisfies the adjacency recursively. Therefore, we obtain C′ = P′n,l by
Algorithm 5, which is Algorithm 3 with one additional branch.

Algorithm 5 Construct C′.
P′0,0← πDD {en}
for i = 1 to n do

for j = 0 to l do
if j > 0 then

if jth and (j+1)th elements must be adjacent then
P′i, j← P′i−1, j−1 · τi, j

else
P′i, j← P′i−1, j ∪P′i−1, j−1 · τi, j

end if
else
P′i, j← P′i−1, j

end if
end for

end for
return P′n,l

3.3 Generation of Bivincular Pattern-Containing Permutations

Bivincular patterns have the three restrictions: a relative order, adjacencies of positions
and consecutiveness of values. Hence, we use step C′ as in Section 3.2 and change step
A to A′ in the same way as C was changed to C′. If the jth and the (j+1)th values must
be consecutive, we define I′i, j = I′i+1, j+1 · τi+1, j+1. Algorithm 6 gives the details of this
algorithm.

3.4 Generation of Pattern-Avoiding Permutations

In this section, we give an algorithm for generating all σ -avoiding n-permutations.
This algorithm makes use of the following fact: the set of σ -avoiding permutations is the
complement of the set of permutations that contain σ . Hereafter, Avn(σ) denotes the set of

21

Algorithm 6 Construct A′.
In,l ← πDD for {en}
for i = n−1 to 0 do

for j = l to 0 do
if j < l then

if jth and (j+1)th elements must be consecutive then
Ii, j← Ii+1, j+1 · τi+1, j+1

else
Ii, j← Ii+1, j ∪ Ii+1, j+1 · τi+1, j+1

end if
else
Ii, j← Ii+1, j

end if
end for

end for

su fl,l ← πDD for {en}
for i = l +1 to n do

su fi,l = su fi−1,l

for j = l +1 to i−1 do
su fi,l ← su fi,l ∪ su fi−1,l · τi, j

end for
end for
return su fn,l× I0,0

σ -avoiding n-permutations and Sn denotes the set of all n-permutations. As stated above,
Avn(σ) = Sn\Cn(σ) holds. The generation of the set of permutations which contain σ was
shown above in Sections 3.1 to 3.3 . In general, the time needed to compute set difference
depends on the cardinalities of the sets. On the other hand, the set difference operation of
πDD can be efficient because it depends on the size of the πDDs. We now introduce the
algorithm for generating Sn.

3.4.1 Generation Algorithm for all n-Permutations

Let Sn denote the πDD for Sn. We can recursively construct Sn. Suppose we ob-
tained Sn−1. We consider (n− 1)-permutations as n-permutations with πn = n. Thus,
Sn−1 ·τk,n consists of all n-permutations π such that πn = k. Therefore, Sn can be obtained
by computing Sn−1 · τ1,n∪Sn−1 · τ2,n∪ . . .∪Sn−1 · τn−1,n∪Sn−1. Algorithm 7 realizes this
procedure, using loops. Figure 3.3 shows S4. While the cardinality of Sn is n!, the size of
Sn is O(n2) as shown in Figure 3.3. This demonstrates a high compression ratio of πDDs.

22

1

τ1,4

τ2,3

τ3,4

τ1,2

τ2,4

τ1,3

0

0

0
0

0

0 1

11

1
1 1

Figure 3.3. The πDD for S4.

Algorithm 7 Construct Sn.
S0← πDD for {en}
for i = 1 to n do
Si← Si−1

for j = 1 to i−1 do
Si← Si∪ (Si−1 · τi, j)

end for
end for
return Sn

3.4.2 Summary of Generation Algorithm for Avn(σ)

Our algorithm for Avn(σ) can be summarized as follows. First, we construct the πDD
for Sn. Next, we construct the πDD for Cn(σ) by choosing the steps to take according to
the pattern to avoid. Finally, we calculate the set difference of Sn and Cn(σ), and hence
obtain Avn(σ). This procedure is illustrated in Figure 3.4.

classicalclassical vincular

vincular
bivincular bivincular

× ×

n,�input:

output:

1. Generate Sn

2. Generate Cn(�)

3. Calculate Sn \ Cn(�)

Avn(�)

Step C0

Step C
Step B

Step A

Step A0

Figure 3.4. The summary of our algorithms for Avn(σ).

23

3.5 Generation of Permutations with Pattern Occurrence Counts

In this section, we give an algorithm generating F(k)
n (σ). Our algorithm is divided

into two parts: first we generates Pn,σ , and then computes F(k)
n (σ) = {π | Pn,σ (π) = k}

from Pn,σ .

3.5.1 Generation Algorithm for Pn,σ

We gave a generation algorithm for non-weighted occurrence using πDD. Thus, in
order to construct the πDD vector for Pn,σ , we want to extend the generation algorithm
for Cn(σ) to handle multiplicities as the pattern occurrence counts of σ .

Here, note that some embeddings in the generation of Cn(σ) cause duplications. For
example, both 413 and 423, which are order isomorphic to 312, are embedded in 4213,
and there is no other numerical sequence order isomorphic to 312 which is embedded
in 4213. In other words, 312 occurs twice in 4213. The number of such duplications
is equal to the pattern occurrence count of a given pattern in a permutation. Since the
algorithm described in Section 3.1 uses πDD, such duplications are not counted. But by
using the Cartesian product of πDD vectors instead of πDDs, we can generate the multiset
of permutations whose multiplicity represents the pattern occurrence count, i.e. Pn,σ .

3.5.2 Generation Algorithm for F(k)
n (σ)

We can obtain Pn,σ by using Cartesian product of πDD vectors as described in the
previous subsection. However, in order to computationally check whether or not strong
Wilf-equivalence between σ1 and σ2 holds, we must calculate the cardinalities of F(k)

n (σ1)

and F(k)
n (σ2) for 0 ≤ k ≤M, where M denotes the maximum number of occurrences of a

given pattern. Note that M ≤
(n

l

)
holds, where l is the length of the pattern, because the

number of subsequences of length l in n-permutation is
(n

l

)
. In this subsection, we present

an algorithm constructing the πDDs for F(k)
n (σ) for 0 ≤ k ≤M from the πDD vector for

Pn,σ which was constructed by the algorithm in the previous subsection.

Let m be ⌊logM⌋. If k is fixed, it is easy to calculate F(k)
n (σ) from the πDD vector

P⃗ = (P0,P1, . . . ,Pm) as follows:

F(k)
n (σ) =

∩
0≤i≤m

{Pi | ki = 1}\
∪

0≤i≤m

{Pi | ki = 0},

where ki means the ith bit of the binary representation of k. This algorithm costs O(m)

πDD operations. Hence, computation of F(k)
n (σ) for 0≤ k ≤M costs O(mM) πDD oper-

ations.

We improve the number of πDD operations from O(mM) to O(M). Let Wk be the
πDD for the set of permutations whose multiplicity is k in the given πDD vector P⃗.

24

We introduce don’t care * to the binary representation of integers. Here, W(∗...∗0ki...k0)2 ∪
W(∗...∗1ki...k0)2 =W(∗...∗∗ki...k0)2 and W(∗...∗0ki...k0)2 ∩W(∗...∗1ki...k0)2 = /0 hold. Hence,

W(∗...∗1ki...k0)2 = W(∗...∗∗ki...k0)2 ∩Pi+1,

W(∗...∗0ki...k0)2 = W(∗...∗∗ki...k0)2 \W(∗...∗1ki...k0)2 .

Therefore, we can calculate Wk for 0≤ k≤M from W(∗...∗)2 = Sn by repeating calculations
of the above recursions. The number of valid binary representations whose prefix can
be consecutive “don’t care" symbols is 20 + 21 + . . .+ 2m = 2m+1−1 = O(M). For each
calculation of Wk, we use only one πDD operation. Therefore, we can generate F(k)

n (σ)

for 0 ≤ k ≤ M by O(M) πDD operations based on the recursions. Algorithm 8 gives a
pseudo code of this algorithm. This algorithm temporarily uses W(0...0ki...k0)2 to represent
W(∗...∗ki...k0)2 .

Algorithm 8 Generate Wk for all 0≤ k ≤M from P⃗ = (P0,P1, . . . ,Pm).
W0← πDD for Sn

for i = 0 to m do
for bin = 2i to 2i+1−1 do

Wbin←Wbin−2i ∩Pi

Wbin−2i ←Wbin−2i \Wbin

end for
end for

3.5.3 Summary of Generation Algorithm for F(k)
n (σ)

Our algorithm can be summarized as follows. First, we construct the πDDs for A, B,
and C by the algorithms described in Section 3.1. Second, we transform these πDDs into
the πDD vectors, that is, P⃗ = (C) and Q⃗ = (B×A). Third, we calculate the Cartesian
product P⃗× Q⃗, which is the πDD vector for Pn,σ . Finally, we calculate the πDDs for
F(k)

n (σ) from the πDD vector for Pn,σ using Algorithm 8. This process is illustrated in
Figure 3.5.

Algorithms 3 or 5
Algorithms 4 or 6

input: n,�

Transform into
πDD vector

~P , ~Q
Compute

Cartesian product

Pn,�

Algorithm 8

F (k)
n (�)output:

C,B⇥ A

Figure 3.5. The summary of our algorithm for F(k)
n (σ).

25

Chapter 4

Experimental Results

We implemented our algorithm in C++ and carried out computational experiments on
a 3.20 GHz Intel Core i7-3930K CPU machine with Ubuntu 12.04 LTS 64-bit OS and
64 GB memory. We compared the performance of our algorithm to that of the naive
method. The naive method generates all n-permutations and, for each n-permutation,
enumerates pattern occurrence count of σ by checking the order isomorphism between all
k-subsequences and σ .

Table 4.1. Computation time (sec) for generating classical pattern-avoiding permutations.

πDD Method Naive Method
n l l

2 3 4 5 2 3 4 5
best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 average 0.000 0.002 0.004 0.001 0.008 0.017 0.053 0.007
worst 0.000 0.008 0.012 0.008 0.016 0.020 0.064 0.080
best 0.000 0.000 0.004 0.004 0.052 0.116 0.468 0.880

9 average 0.004 0.005 0.009 0.009 0.056 0.119 0.499 0.926
worst 0.008 0.016 0.016 0.024 0.060 0.124 0.540 1.004
best 0.004 0.004 0.016 0.024 0.472 1.140 6.000 17.089

10 average 0.008 0.011 0.028 0.036 0.478 1.173 6.453 18.223
worst 0.012 0.020 0.044 0.060 0.484 1.200 6.932 19.697
best 0.000 0.012 0.044 0.092 5.240 13.053 89.494 417.958

11 average 0.008 0.029 0.101 0.174 5.290 13.216 95.727 435.211
worst 0.016 0.052 0.152 0.276 5.340 13.365 101.878 453.604
best 0.004 0.024 0.152 0.428 — — — —

12 average 0.014 0.087 0.444 0.921 — — — —
worst 0.024 0.156 0.780 1.392 — — — —-
best 0.016 0.048 0.568 1.824 — — — —

13 average 0.022 0.284 1.787 4.309 — — — —
worst 0.022 0.544 3.072 6.888 — — — —
best 0.008 0.116 1.960 6.448 — — — —

14 average 0.032 1.029 6.769 19.036 — — — —
worst 0.056 1.968 12.021 32.370 — — — —
best 0.016 0.300 5.688 23.814 — — — —

15 average 0.052 3.513 24.771 85.655 — — — —
worst 0.088 6.860 48.415 160.562 — — — —

26

Table 4.2. Memory consumption (kB) for generating classical pattern-avoiding permutations.

|Avn(σ)| πDD Method Naive Method
n l l l

2 3 4 5 2 3 4 5 2 3 4 5
best 1 1430 15485 33184 1600 1596 1596 1596 1068 1064 1064 1064

8 average 1 1430 15656 33277 1600 1598 1916 1599 1068 1067 1067 1067
worst 1 1430 15793 33325 1600 1600 1972 1600 1068 1068 1072 1072
best 1 4862 91245 258757 1600 1964 2748 2744 1072 1068 1068 1068

9 average 1 4862 93096 260742 1600 2233 2933 2768 1072 1071 1071 1071
worst 1 4862 94776 261863 1600 2768 4208 2792 1072 1072 1076 1076
best 1 16796 555662 2136978 1600 2760 4212 7156 1068 1068 1068 1068

10 average 1 16796 574150 2171460 1784 3509 6856 7376 1070 1071 1071 1071
worst 1 16796 591950 2192390 1968 4260 7444 7700 1072 1072 1076 1076
best 1 58786 3475090 18478134 1600 4208 7676 13720 1072 1072 1068 1068

11 average 1 58786 3648275 19011623 2186 5876 17641 25233 1072 1072 1071 1071
worst 1 58786 3824112 19358590 2772 6792 25084 27000 1072 1072 1072 1076
best 1 208012 22214707 165857600 1976 7112 25316 49108 — — — —

12 average 1 208012 23771768 173553425 3112 16106 48405 93525 — — — —
worst 1 208012 25431452 178904675 4248 25084 94788 102940 — — — —-
best 1 742900 144640291 1535336290 2764 12708 51436 188416 — — — —

13 average 1 742900 158260498 1641499314 4954 32130 168848 337123 — — — —
worst 1 742900 173453058 1720317763 7144 51084 201264 408460 — — — —
best 1 2674440 956560748 14584260700 2760 24440 187372 396432 — — — —

14 average 1 2674440 1073474327 16006197603 7754 111634 542621 1282547 — — — —
worst 1 2674440 1209639642 17132629082 12748 190460 779640 1587600 — — — —
best 1 9694845 6411521056 141603589300 4228 47620 389140 1543108 — — — —

15 average 1 9694845 7401901167 160274747099 9112 234836 1560720 4986352 — — — —
worst 1 9694845 8604450011 176055309619 13996 406440 3092572 6471388 — — — —

4.1 Results for Classical Pattern-Avoiding Permutations

Tables 4.1 and 4.2 show the results for generating permutations avoiding a classical
pattern. The tables show the best, the worst, and the average computation time and mem-
ory consumption over all patterns with length l = 2,3,4, and 5. Note that computation
time of our πDD method is time to construct Avn(σ), and computation time of the naive
method is time to output all pattern-avoiding permutations to /dev/null. Since output is not
required for our purpose as described in Section 1.3, computation time of πDD method
does not include output time.

For computation time, in almost all cases, our algorithm is faster than the naive method.
For example, in n = 11, our method requires only 0.3% of the time required by the naive
one. It should be noted that there are differences between the best and worst performance
for the same case in the results of our algorithm, while the naive method hardly shows
any differences. However, in almost all worst-case scenarios, the performance of our
algorithm is better than the best-case scenario of the naive one. Computation time of both
methods increase exponentially with respect to n, but our algorithm has a smaller growth
rate than the naive method.

Figures 4.1 and 4.2 also show the results for classical patterns. These results show
the average time and memory consumption for all patterns, where n is fixed at 10 and
l varies. Estimate represents the estimated memory consumption for storing all pattern-
avoiding permutation on memory, where we suppose that the representation of one number
costs one byte, i.e. n · |Avn(σ)|. Naive method hardly uses memory, because it stores no
information. Memory consumption of the πDD method is greater than naive method, but
it is very smaller than the estimate especially when l is near n. This shows that πDD can
achieve high compression when the cardinality of the set is near n!, such as in the case of
Sn. The results also show the computation time depends on the size of πDDs. In contrast,

27

Figure 4.1. Computation time when n = 10.

Figure 4.2. Memory usage when n = 10.

the computation time of the naive method is in proportion to
(n

l

)
, which is the number of

subsequences that must be checked.

4.2 Results for Vincular and Bivincular Patterns

Table 4.3 presents the results for vincular patterns. We only generated Baxter per-
mutations, because there are a huge number of vincular patterns for each l, namely l! ·
2l−1. Baxter permutations are defined as avoiding the two vincular patterns, 3142 and
2413, and appear in many mathematical problems [1, 8, 10]. Our algorithm generates
Avn(3142,2413) = Sn \ (Cn(3142)∪Cn(2413)). On the other hand, the naive method
checks the order isomorphism between all l-subsequences and the two patterns simul-
taneously. B(n) denotes the number of Baxter permutations of length n.

The performance of our algorithm for vincular patterns is as good as that for classical
patterns. Our algorithm is faster than the naive method.

28

Table 4.3. Experimental results for generating Baxter permutations.

n B(n)
πDD Method Naive Method

Time (s) Memory (kB) Time (s) Memory (kB)
8 10754 0.016 2760 0.052 3124
9 58202 0.028 4164 0.448 3128

10 326240 0.060 12984 5.792 3124
11 1882960 0.212 26828 79.405 3128
12 11140560 0.908 98924 1147.583 3124
13 67329992 3.678 383272 — —
14 414499438 13.419 824732 — —
15 2593341586 50.499 3151164 — —
16 16458756586 193.704 12403488 — —
17 105791986682 745.779 40788188 — —

Table 4.4. the πDD for Baxter permutations (n = 15).

#permutations #nodes in πDD
Sn 1307674368000 105

Cn(3142)∪Cn(2413) 1305081026414 4094585
Avn(3142,2413) 2593341586 2158472

When n= 15, the time for calculating the difference Sn\Cn(σ) is 1.110 seconds, which
is about 2% of the entire computation time. In general, calculating the set difference for
sets with large cardinality without πDDs is not efficient, but, πDD’s difference operation
is not a bottleneck in this problem. Most of the computation time is due to the Cartesian
product operations between three πDDs, which require 46.020 seconds.

The number of permutations and the size of the corresponding πDD are shown in
Table 4.4, where it is clear that πDD achieves a high compression ratio.

We show the results for bivincular patterns. Specifically, we generated Avn

(
123
231

)
,

which is known to be related with chord diagrams, (2+2)-free posets and ascent sequences [7].

Table 4.5 presents the result of generating Avn

(
123
231

)
. Both our algorithm and the naive

method show better performance than the result on Baxter permutations because the pat-

tern length, number of patterns, and the cardinality of Avn

(
123
231

)
are all decreasing. For

n = 13, the πDD method can generate the permutations in less than 1 second while the
naive one requires about 2 hours.

29

Table 4.5. Experimental results for bivincular pattern.

n
∣∣∣∣Avn

(
123
231

)∣∣∣∣ πDD Method Naive Method
Time (s) Memory (kB) Time (s) Memory (kB)

8 5335 0.004 3084 0.028 3128
9 31240 0.004 3084 0.208 3128

10 201608 0.020 4196 2.428 3128
11 1422074 0.052 12948 32.298 3128
12 10886503 0.184 26436 474.173 3128
13 89903100 0.916 98656 7458.270 3128
14 796713190 3.808 382712 — —
15 7541889195 15.357 1510640 — —
16 75955177642 62.408 3327380 — —
17 810925547354 254.896 12887884 — —
18 9148832109645 1016.132 50354060 — —

4.3 Results for Permutations with Pattern Occurrence Counts

Table 4.6 shows computation time for the entire process of generating F(k)
n (σ). The

table represents the best, the worst, and the average computation time over all patterns with
length l = 2,3,4, and 5, respectively. Note that computation time for our πDD method
only include the constructions of πDDs, meaning that we do not decompress πDDs and
thus do not output permutations explicitly. The naive method only counts |F(k)

n (σ)|, and
not explicitly outputs permutations too. For n = 10 and l = 5, our algorithm is about 20
times faster than the naive method. Our algorithm takes the maximum computation time
when l is near n/3, while the naive method takes the maximum time when l is near n/2.
We consider the reasons for the difference as follows. At first, the computation time of
πDD depends on the size of πDD, while that of the naive method depends on the number
of subsequences

(n
l

)
. In practical cases, the size of a πDD tends to become small when

the set of permutations is sparse or very dense. The longer the length of a pattern is, the
fewer the pattern occurrence counts of the pattern in each permutation is. This means that
F(k)

n (σ) tends to be dense for small k and to be sparse for large k when σ is a long pattern.
We imagine this is a reason why l on the peak of computation time of our algorithm is
smaller than l on the peak of the naive method.

Table 4.7 shows memory consumption and the size of πDDs for generating F(k)
n (σ).

We do not describe the memory consumption of the naive method because the naive
method does not store the permutations, and uses a small memory. Tables 4.6 and 4.7
suggest the computation time of πDDs is proportional to the size of πDDs. Memory con-
sumption of our algorithm grows exponentially with respect to n. We cannot calculate
F(k)

13 (σ) because of insufficient memory. However the total size of πDDs for F(k)
n (σ) is

smaller than the number of all n-permutations n!. Moreover, since some πDDs share their
equivalent subgraphs, the actual number of the total nodes of the πDDs on memory may
be smaller than the results in Table 4.7. This shows that πDDs achieve compact represen-
tations of F(k)

n (σ).

30

Table 4.6. Computation time (sec) for generating F(k)
n (σ).

πDD Method Naive Method
n l l

2 3 4 5 2 3 4 5
best 0.032 0.044 0.032 0.016 0.036 0.052 0.060 0.044

8 average 0.036 0.052 0.043 0.021 0.038 0.057 0.071 0.054
worst 0.040 0.064 0.056 0.028 0.040 0.064 0.080 0.072
best 0.076 0.212 0.232 0.068 0.316 0.676 1.012 0.968

9 average 0.078 0.295 0.274 0.087 0.322 0.714 1.088 1.037
worst 0.080 0.356 0.308 0.120 0.328 0.740 1.164 1.128
best 0.276 1.912 2.820 0.956 3.792 10.301 20.141 25.522

10 average 0.310 2.604 3.390 1.232 3.900 10.891 21.489 27.314
worst 0.344 3.288 3.908 1.524 4.008 11.393 23.013 29.482
best 1.436 14.165 30.190 11.673 51.595 169.331 467.185 750.307

11 average 1.642 18.943 38.814 15.683 53.673 179.724 488.088 774.683
worst 1.848 24.098 48.331 19.809 55.752 188.248 509.804 806.186
best 6.316 96.114 365.275 144.141 — — — —

12 average 7.064 136.343 494.926 231.141 — — — —
worst 7.812 180.711 655.829 301.135 — — — —-

Table 4.7. Memory consumption and the size of πDDs for generating F(k)
n (σ).

memory consumption (kB) ∑M
k=0{the size of πDDs for F(k)

n (σ)}
n l l

2 3 4 5 2 3 4 5
best 37548 37812 37808 37236

8 average 37548 38075 37819 37280 10535 20941 11501 4144
worst 37548 38340 38024 37288
best 38340 41528 41392 38604

9 average 38736 42542 42372 39076 42496 139315 86321 30843
worst 39132 43156 42940 39660
best 42480 152316 268348 78532

10 average 43272 212905 275364 141172 167368 962945 726510 262833
worst 44064 275604 279712 154728
best 152328 1032672 2064776 1031504

11 average 152484 1092093 2142647 1067605 658823 6684948 6807355 2548799
worst 152640 1160728 2224848 1128760
best 520216 4209304 16461940 8263752

12 average 527320 6863648 18459651 9723839 2585682 45156225 69564400 27639470
worst 534424 8232056 32355008 16375948

Table 4.8 provides candidates of strongly Wilf-equivalent classes. Two patterns σ1

and σ2 are placed in the same cell of the table if |F(k)
n (σ1)| = |F(k)

n (σ2)| was confirmed
for 1 ≤ n ≤ 12 and non-negative integers k. It is trivial that a pattern π and its reverse
πr are always strongly Wilf-equivalent. Note that a pattern π and its inverse π−1 are
not necessarily strong Wilf-equivalent, while these are always Wilf-equivalent. Table 4.8
shows many non-trivial and unproved candidates of strongly Wilf-equivalent classes.

31

Table 4.8. Candidates of strongly Wilf-equivalent classes according to the experimental results.

l candidates of strongly Wilf-equivalent classes
2 12,21
3 123,321 132,213,231,312

4

1234,4321 1243,2134,3421,4312
1324,4231 1342,1423,2314,2431,3124,3241,4132,4213
1432,2341,3214,4123 2143,3412
2413,3142

5

12345,54321 12354,21345,45321,54312
12435,13245,53421,54231 12453,12534,23145,31245,35421,43521,54132,54213
12543,32145,34521,54123 13524,14253,24135,31425,35241,42531,52413,53142
13425,14235,52431,53241 13452,15234,23415,25431,41235,43251,51432,53214
13254,21435,45231,53412 13542,15243,24531,32415,34251,42135,51423,53124
14325,52341 14352,15324,24315,25341,41325,42351,51342,52314
14523,32541,34125,52143 14532,15423,23541,32451,34215,43125,51243,52134
15342,24351,42315,51324 15432,23451,43215,51234
21354,45312 21453,21534,23154,31254,35412,43512,45132,45213
21543,32154,34512,45123 23514,25134,25413,31452,35214,41253,41532,43152
24153,31524,35142,42513 24513,25143,31542,32514,34152,35124,41523,42153
25314,41352

32

Chapter 5

Conclusion

In this thesis, we introduced algorithms for generating several pattern-avoiding permu-
tations using πDDs. Experimental results show that our algorithms are faster than the
naive method and cost less memory than the naive storing. In addition, our approaches
output πDDs on memory, which has rich operations. This means that we can submit addi-
tional queries such as membership test or random sampling for the set of pattern-avoiding
permutations efficiently and immediately.

Furthermore, we gave an algorithm implicitly generating Pn,σ for given n and σ using
πDD vectors, and an algorithm computing the πDDs representing F(k)

n (σ) for each k from
the πDD vector for Pn,σ . These algorithms was practically faster than a naive method, and
provided some candidates of strongly Wilf-equivalent classes.

Future work is to improve further the computation time and memory consumption of
our algorithms, and to compare our algorithms and other algorithms for some particular
patterns, for example Baxter permutations [4]. Moreover, we are also interested in analyz-
ing the relationship between pattern-avoiding permutations and floorplans. In future work,
we plan to develop several functions such as search by criteria and random sampling to
use πDDs as floorplan databases. For the algorithm generating F(k)

n (σ), experiments for
larger n and k, multiple patterns, and other general patterns are also interesting for us. We
wish that someone will prove some strong Wilf-equivalences which are described in this
paper as candidates.

33

Acknowledgements

I am indebted to my supervisor, Prof. Shin-ichi Minato, for his advise and help, which
improved both my research life and this thesis. I am grateful to Prof. Zeugmann Thomas
and Prof. Hiroki Arimura, who help me to suggest research ideas and improve my writing
skill. I am also indebted Dr. Takahisa Toda, Dr. Charles Harold Jordan, and all members
of JST ERATO Minato Project and Laboratory for Algorithmics, who help me with my
research and this thesis. Finally, I thank my family for their love and support.

34

Bibliography

[1] Eyal Ackerman, Gill Barequet, and Ron Y. Pinter. A bijection between permutations
and floorplans, and its applications. Discrete Applied Mathematics, 154(12):1674–
1684, 2006.

[2] Michael Albert. Permlab: Software for permutation patterns.
http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php, 2012.

[3] Eric Babson and Einar Steingrímsson. Generalized permutation patterns and a clas-
sification of the Mahonian statistics. Séminaire Lotharingien de Combinatoire, 44,
2000.

[4] Andrew M. Baxter and Lara K. Pudwell. Enumeration schemes for vincular patterns.
Discrete Mathematics, 312(10):1699–1712, 2012.

[5] Miklós Bóna. Exact enumeration of 1342-avoiding permutations: A close link
with labeled trees and planar maps. Journal of Combinatorial Theory, Series A,
80(2):257–272, 1997.

[6] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permuta-
tions. Information Processing Letters, 65(5):277–283, 1998.

[7] Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey Kitaev. (2+2)-
free posets, ascent sequences and pattern avoiding permutations. Journal of Combi-
natorial Theory, Series A, 117(7):884–909, Oct 2010.

[8] Hal Canary. Aztec diamonds and Baxter permutations. The Electronic Journal of
Combinatorics, 17(1), 2010.

[9] W.M.B. Dukes, M.F. Flanagan, T. Mansour, and V. Vajnovszki. Combinatorial Gray
codes for classes of pattern avoiding permutations. Theoretical Computer Science,
396(1-3):35–49, 2008.

[10] Éric Fusy. Bijective counting of involutive Baxter permutations. Fundamenta Infor-
maticae, 117(1-4):179–188, 2012.

[11] Anisse Kasraoui. New Wilf-equivalence results for vincular patterns. European
Journal of Combinatorics, 34(2):322–337, 2013.

35

[12] Jun Kawahara, Toshiki Saitoh, Ryo Yoshinaka, and Shin-ichi Minato. Counting
primitive sorting networks by πDDs. Technical Report TCS-TR-A-11-54, Division
of Computer Science, Hokkaido University, 2011.

[13] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Massachusetts, third edition, 1997.

[14] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Massachusetts, second edition, 1998.

[15] Darko Marinov and Radoš Radoičić. Counting 1324-avoiding permutations. The
Electronic Journal of Combinatorics, 9(2), 2003.

[16] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. Proc. of 30th ACM/IEEE Design Automation Conf. (DAC 1993), pages
272–277, 1993.

[17] Shin-ichi Minato. πDDs: A new decision diagram for efficient problem solving in
permutation space. Proc. of 14th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2011), pages 90–104, 2011.

[18] Vaughan R. Pratt. Computing permutations with double-ended queues, parallel
stacks and parallel queues. Proc. of the Fifth Annual ACM Symposium on Theory
of Computing (STOC 1973), pages 268–277, 1973.

[19] Nathan Reading. Generic rectangulations. European Journal of Combinatorics,
33(4):610–623, 2012.

[20] Zvezdelina E. Stankova. Forbidden subsequences. Discrete Mathematics, 132(1-
3):291–316, 1994.

[21] Einar Steingrímsson. Some open problems on permutation patterns. London Math-
ematical Society Lecture Note Series, pages 239–263, 2013.

[22] Julian West. Sorting twice through a stack. Theoretical Computer Science, 117:303–
313, 1993.

[23] Herbert S. Wilf. The patterns of permutations. Discrete Mathematics, 257(2):575–
583, 2002.

[24] Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald Graham. Floorplan repre-
sentations: Complexity and connections. ACM Trans. Des. Autom. Electron. Syst.,
8(1):55–80, 2003.

36

