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Summary

Although a mathematical formula for counting the number of Eulerian cycles in a di-
rected graph is already known [1, 2], no formula is yet known for enumerating such
cycles if the graph is an undirected one. In computer science, the latter problem is
known to be in #P-complete [3], enumerating the solutions of such problem is known to
be hard. In this thesis, an efficient algorithm to enumerate all the Eulerian cycles (paths)
of an undirected graph, both simple graph and multigraph, is proposed.



Chapter 1

Introduction

In graph theory, Eulerian path (or Eulerian trail) is a path in a graph that visits every
edge exactly once. If the path starts and ends on the same vertex, then it is called an
Eulerian cycle. Graph possessing an Eulerian path is called a Semi-Eulerian graph,
while the graph possessing an Eulerian cycle is called an Eulerian graph.

Eulerian cycle problem dates back to 1736, when for the first time Leonhard Euler
discuss in his paper [4] the famous Seven Bridges of Königsberg problem. He proved
the necessary condition for the existence of an Eulerian cycle that all vertices of the con-
nected graph must have an even degree, while the sufficient condition was proved later
by Carl Hierholzer [5] in 1873. Their proofs are extendable to show that the necessary
and the sufficient conditions for a graph having an Eulerian path is that there are exactly
two vertices with odd degree. As a result, removing one edge from an Eulerian graph
will make the graph being a Semi-Eulerian, and connecting the two vertices with odd
degree in a Semi-Eulerian graph will then form an Eulerian graph.

There are some algorithms for constructing an Eulerian path, one of them is called
Hierholzer’s algorithm, which takes linear time [6]. Thus, finding one Eulerian path is
considerably easy, but enumerating all of the Eulerian paths of a given graph remains
hard and proved to be in #P-complete [3], a complexity class in counting problems that
is as hard as NP-complete class in decision problems1.

In this thesis, we introduce our approach to solve the problem of Eulerian paths enu-
meration. We show that our proposed algorithm is efficient for practical use, and is able
to enumerate all Eulerian paths of many graphs which are otherwise will be impossible
to do using a naïve backtrack based algorithm. In our method we use a Multi-decision
Directed Acyclic Graph (Multi-decision DAG) to store all of the Eulerian paths. We
also show how to retrieve an Eulerian path from it which can be done in polynomial
time.

1In #P-complete class we ask how many solutions for a given problem, while in NP-complete class
we ask whether there is a solution for a given problem.
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1.1 Background
The most notable research in the past concerning Eulerian paths enumeration is prob-

ably due to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. They showed that for
a directed graph, the number of Eulerian cycles in it can be expressed using a simple
mathematical formula. The formula is called BEST theorem [1] [2], named after their
names (Bruijn, Ehrenfest, Smith, Tutte).

Theorem 1 (BEST theorem) Let D be a directed graph with vertices V = {v1,v2, · · · ,vm},
and suppose that the in-degree2 of a vertex vi is di. Let t(D) be the number of directed
spanning trees rooted at any fixed vertex v in D. The BEST theorem states that the
number of Eulerian cycles Eul(D) in D can be stated mathematically as:

Eul(D) = t(D)
m

∏
i=1

(di−1)! (1.1)

Despite the number of Eulerian cycles in a directed graph can be expressed in a sim-
ple mathematical equation, there is no any mathematical expression if the graph is undi-
rected. Some researchers have been able to find the approximate number of the Eulerian
paths in a specific kind of undirected graph. For example in [7], McKay and Robinson
show that the number of Eulerian cycles in a Complete graph3 is asymptotic.

Almost at the same time as the author proposed the method in this thesis, Hanada
et al. [8] tried to solve the same problem by converting the original graph into its line
graph4. Their method is based on the known fact that every Eulerian path of the original
graph is corresponding to a Hamiltonian path in its line graph. But since the converse is
not true, that some of the Hamiltonian paths of the line graph actually do not correspond
to any of the Eulerian path in the original graph, they have to label these Hamiltonian
paths and exclude them from the enumeration.

To count the Hamiltonian paths, Hanada et al. use an algorithm introduced by Knuth
which is called simpath [9] (exercise 225 in 7.1.4). Generally speaking, simpath is
an algorithm that constructs a binary decision graph which later can be transformed
efficiently into a Zero-suppressed Binary Decision Diagram (ZDD) [10], a kind of data
structure that can be used to compactly represent a set of all simple paths5 between two
given vertices of a given graph. Simpath is easily extendable to count the Hamiltonian
paths instead of simple paths by adding one restriction that only the simple paths those
visit all vertices of the graph are accepted.

Our approach to solve Eulerian paths enumeration is also based on simpath. But
unlike their method, we modify simpath further so that it can be used to count the

2In a directed Eulerian graph, the in-degree of each vertex must be equal to its out-degree.
3A Complete graph is a graph in which each pair of its vertices are connected by an edge.
4Line graph is a graph that represents adjacencies between edges of the original graph.
5Simple path is a path which does not pass through a vertex more than once.

2
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Eulerian paths instead of the simple paths. Our algorithm is different from simpath,
since we store the Eulerian paths in a multi-decision DAG instead of a binary decision
graph and we also do not use a ZDD. In simpath, each vertex is only able to be visited
by a path at most once, but in our method we eliminate this restriction and allow each
vertex to be visited multiple times.

1.2 Contributions
Our approach and algorithm has allowed us to confirm and extend the results of some

previous researches, including the number of Eulerian cycles in a Complete graph C(n)
[7] up to n = 9, the results from Audibert in his book Mathematics for Informatics
and Computer Science [11], and the results from Hanada et al. [8] for various types of
graphs.

Although in [7] McKay and Robinson are able to enumerate C(n) for n = 21, their
technique is only limited to a Complete graph. On the contrary, our method aims for a
more general graph, both simple graph and multigraph.

1.3 Thesis Structure
This thesis is organized as follows. Algorithm to enumerate simple paths (simpath)

and the data structure (ZDD) used in it are introduced in Chapter 2. The details of our
algorithm are discussed in Chapter 3. Next in Chapter 4, we present the experimental
results of this algorithm on several types of graphs. Lastly, we conclude the thesis in
Chapter 5.

3



Chapter 2

Preliminaries

This chapter is about simpath algorithm and the data structure used in it, which is called
Zero-suppressed Binary Decision Diagram (ZDD).

2.1 Zero-suppressed Binary Decision Diagram (ZDD)
Zero-suppressed Binary Decision Diagram (ZDD) [10] is a labeled directed acyclic

graph obtained by reducing a binary decision tree graph. Each node (drawn as circle) in
a ZDD is labeled by an input variable, and has two outgoing edges, namely 0-edge and
1-edge, which connect a node to its two child nodes, 0-child and 1-child, respectively.
0-edge (1-edge) of a node ei is denoted as ei = 0 (ei = 1), and represent a state after the
decision that 0 (1) is assigned to that variable. By traversing the nodes of a ZDD from
its root node (the node at the top of a ZDD), eventually we will reach either 0-terminal
or 1-terminal, which shows the output binary value of variables assignment in that path.

If a ZDD consists of n input variables, then it will have n+ 1 levels (height). Each
level consists of several nodes which have the same label, and it is common to regard
the two terminal nodes as being together in level n+ 1. In this thesis, we always refer
to an ordered ZDD, thus for the input variables e1,e2, · · · ,en, they will appear ordered
regardless of the path we traverse from the root to the terminal node (some variables
may be missing due to the ZDD reduction rules below).

A ZDD can be obtained from a binary decision tree graph by recursively applying
these two rules until no further reduction is possible.

1. Zero-suppression rule: eliminate all nodes whose 1-edge points to the 0-terminal
node. Then connect the edge coming from its parent node to the sub-graph previ-
ously pointed by 0-edge of the erased node. See the left figure of Fig. 2.1.

2. Merging rule: share all equivalent nodes which have the same label, 0-child, and
1-child. See the right figure of Fig. 2.1.
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Figure 2.1. ZDD reduction rules
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Figure 2.2. (a) A triangle graph, (b) a binary decision tree, (c) a binary decision graph (unreduced

ZDD), and (d) a ZDD. Here 0-edges are drawn as dashed-line.

ZDD is proved to be ideal for compactly expressing family of sets [10]. For example,
Figure 2.2 (d) shows how the family of sets F = {{e1,e3},{e2}} is expressed compactly
using a ZDD compared to its corresponding binary decision tree graph (b).

This family of sets F = {{e1,e3},{e2}} is also representing all simple paths between
the source vertex s and the target vertex t of the triangle graph in (a). In the binary
decision tree (b), the set {e1,e3} is represented by the path with e1 = 1,e2 = 0,e3 = 1,
which is called as 1-path because it is connected to 1-terminal. Furthermore, the path
with e1 = 0,e2 = 1,e3 = 0 which is representing {e2} is also connected to the 1-terminal.
Strictly speaking, ei = 1 means that edge ei is selected, and if the set of selected edges is
forming a simple path, then the corresponding branch in the binary decision tree will be
connected to 1-terminal. Thus, the number of simple paths of a given graph corresponds
to the number of 1-paths in the binary decision tree, which is also equivalent with the
number of 1-paths in the ZDD.

Next, the number of 1-paths of a ZDD can be enumerated as follows. At first, we
assign 0 to 0-terminal node and 1 to 1-terminal node. Then for the other nodes, the value
of a node is the same as the sum of values of its two child nodes. Finally, the value of the
ZDD’s root node is the same as the number of simple paths of the given graph. Thus, the
time needed for enumerating simple paths is proportional to the number of the nodes in
the constructed ZDD, not to the number of simple paths itself. If the compression rate
of the ZDD is high, the enumeration time can be very fast.

5
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2.2 Simpath
Let G = (V,E) be an undirected graph having vertices V = {v1,v2, · · · ,vm} and edges

E = {e1,e2, · · · ,en}. Let the source or the starting vertex of the paths be s and the target
of the paths be t, where s, t ∈ V . The goal of simpath is to enumerate all simple paths
between s and t and to store them in a ZDD.

A simple way to construct a ZDD is by recursively applying ZDD reduction rules
into a binary decision tree. The problem is, creating ZDD by this way is not only time
consuming, but also need a lot of memory because for n input variables, the size of
binary decision tree is already O(2n).

To speed up the process, simpath does not create a binary decision tree, instead it
creates a binary decision graph1 which then can be effectively reduced into a ZDD. The
construction of the binary decision graph is done in a breadth-first search manner, prun-
ing out the branch that will not produce any simple path in the early stage as possible.
For example in Figure 2.2 (a), if both edges e1 and e2 are not selected, then no simple
path is able to be constructed, so the branch when e1 = 0 and e2 = 0 can be directly
appointed to 0-terminal without having to concern about the assignment of e3. Simpath
also merges two nodes with the same label when it is known that the two branches will
produce the same output value for any combinations of the rest of the input variables.

A path from the root node to a certain node in a ZDD represents the selected edges
so far. These selected edges will form some path fragments, and each vertex will have
one of the following three states which need to be remembered by that particular node:

1. not included in any path fragments, or

2. intermediate point of a path fragment, or

3. endpoint of a path fragment.

Basically, simpath decides if a branch of the binary decision graph needs to be pruned
out and two nodes can be merged based on the state of the vertices.

In a computer memory, we can use an array to express the state of each vertex. In his
book, Knuth calls this array as mate array, which is a mapping from V to V ∪{0}.

mate[v] =


v if vertex v is untouched so far

0 if vertex v is touched by exactly two edges

u if vertex u(u ̸= v) and v are endpoints of a same path fragment

At first, each vertex is initialized to have a mate value equal to itself (mate[v] = v).
1This binary decision graph is different from a binary decision tree, since two different nodes in it

can have the same child node. A binary decision graph here can also be regarded as an unreduced ZDD,
which generally has the size between a binary decision tree and a ZDD.

6
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Figure 2.3. Changes in the state of the vertices when an edge p–q is added
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Figure 2.4. Two nodes which are considered to be identical, since both nodes have mate[v5] = v6,
mate[v6] = v5, and mate[v7] = v1

If an edge is selected, we need to update the mate value of some vertices2. Suppose
mate[p] = p̂ and mate[q] = q̂. If edge p–q is selected, we need to assign mate[p]← 0,
mate[q]← 0, mate[p̂]← q̂, mate[q̂]← p̂, in exactly this order. Figure 2.3 graphically
explains what this assignment is actually doing.

A set of selected edges is accepted when the source vertex s and the target vertex t
are connected and no other path fragment exists, and is rejected when:

1. an edge is added to an intermediate point of a path fragment, or

2. it is known that s and t cannot be connected by current edges selection, or

3. a path connecting s and t is formed and some other path fragments remain.

Actually, the node does not have to remember the state of all vertices. All it needs
is the information of the vertices which shall be called frontier, the set of vertices con-
tained in both processed and unprocessed edge. At the beginning when no edge is
processed, the frontier is empty. Next when the first edge, let say e1 = u–v, is being
processed, then the current frontier is {u,v}. Eventually when all edges connected to a
vertex in frontier are already processed, then that vertex will be removed from frontier.

In Figure 2.4, if we let the thin solid line be the unprocessed edges and the other lines
be the processed edges, then the current frontier is {v5,v6,v7} since they are contained
in both the processed edges and the unprocessed edges. Furthermore if we let the thick
solid line be the selected edges those will be included in the simple path, and dashed
line be the edges not selected, then further selection of the remaining unprocessed edges

2At most the mates of 4 vertices need to be updated when an edge is selected.

7
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that makes Figure 2.4 (a) has a simple path will also make (b) has a simple path. If we
look closer, then we will know that both (a) and (b) have the same mate values for each
vertex in the frontier. In this case, we do not need to process (b) further, instead we can
merge the node representing (b) to the node representing (a).

The Algorithm 1 below is the pseudocode for simpath. The CheckTerminal function
in line 6 is the part where the decision is made, whether we can proceed to the next
edge selection, or we have to appoint the current branch of the binary decision graph to
0-terminal, or we can appoint the branch to 1-terminal. The pseudocode for CheckTer-
minal function is shown in Algorithm 2. It uses GetDegree function which is shown in
Algorithm 3 to get the current degree of a vertex v. Line 10 of the code in Algorithm 1
is executed if there is already an equivalent node (node having the same mate configu-
rations) created in the binary decision graph, thus the node needs to be merged with this
already existing identical node.

Algorithm 1: Simpath [9]
input : An undirected graph, s, and t
output: ZDD representing all simple paths

1 N1←{noderoot};
2 Ni← /0 for i = 2, · · · ,n+1; // Ni holds nodes in level i
3 for i← 1 to n do // processing edge ei

4 foreach node ∈ Ni do // processing nodes in level i
5 foreach x ∈ {0,1} do // processing 0-edge and 1-edge

6 childnode← CheckTerminal(node,ei,x,s, t);
// CheckTerminal returns 0-terminal,

1-terminal, or nil

7 if childnode = nil then
8 Create a new node and set it to childnode;
9 if there exists childnode′ ∈ Ni+1 s.t. childnode′ is equivalent to

childnode then
10 childnode← childnode′

11 else
12 Ni+1← Ni+1∪{childnode}

13 Create x-edge to connect node and childnode.

14 Using ZDD reduction rule, reduce the binary decision graph into a ZDD;

8
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Algorithm 2: CheckTerminal(node,e,x,s, t)
input : node,e = p–q,x,s, t
output: 0-terminal, 1-terminal, or nil

1 if x = 1 then
2 if GetDegree(p) = 2 or GetDegree(q) = 2 then
3 return 0-terminal;

4 if (p = s or p = t) and GetDegree(p) = 1 then
5 return 0-terminal;

6 if (q = s or q = t) and GetDegree(q) = 1 then
7 return 0-terminal;

8 if mate[p] = q and mate[q] = p then
9 return 0-terminal;

10 if (mate[p] = s and mate[q] = t) or (mate[p] = t and mate[q] = s) then
11 foreach vertex v ∈ frontier do
12 if v ̸= s and v ̸= t and v ̸= p and v ̸= q then
13 if GetDegree(v) = 1 then
14 return 0-terminal;

15 return 1-terminal;

16 foreach v leaving frontier do
17 if v = s or v = t then
18 if GetDegree(v) = 0 then
19 return 0-terminal;

20 else
21 if GetDegree(v) = 1 then
22 return 0-terminal;

9
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Algorithm 3: GetDegree(v)
input : Vertex v
output: Current degree of v, which can be 0, 1 ,or 2

1 if mate[v] = v then // no path fragment is connected to v
2 return 0;

3 else if mate[v] = 0 then // vertex v is an intermediate point

4 return 2;

5 else // v is an endpoint of a path fragment

6 return 1;

10



Chapter 3

Enumerating Eulerian Paths

In this section, two algorithms for enumerating Eulerian paths are introduced. The
first algorithm is the basic version, which in many ways is similar to simpath, thus
hopefully can be understood easily. In contrast to this, the second algorithm, which
is the improved version, uses many modifications to simpath. The first algorithm is
intended as the introduction to make it easier to understand the improved algorithm. All
experiments in this thesis are done using the improved algorithm. In both algorithms,
we distinguish two similar Eulerian cycles having different direction. For example, the
Eulerian cycle v1→ v2→ v3→ v1 is counted separately from v1→ v3→ v2→ v1.

3.1 Basic Idea
Suppose there are xi edges connected to a vertex vi ∈ V = {v1,v2, · · · ,vm}. We want

to make pairing of edges in vertex vi, by at first disconnecting these xi edges and then
reconnecting them in a way such that every edge has a pair. The number of combinations
of such edge pairing1 is

f (xi) =

(
xi

2

)
·
(

xi−2
2

)
· · ·

(
2
2

)
· 1

xi
2 !

=
xi!

2
xi
2 · xi

2 !
=

n/2

∏
i=1

(2i−1). (3.1)

Using the counting rules in combinatorics, at first we choose 2 from the xi edges, then
choose 2 from the remaining xi−2 edges, and so on until no edge remains. But since a
pair of edges chosen in the first selection or second or third etc. are not differentiated,
the overall number must be divided by xi

2 !, which gives us the Equation 3.1.
Now, if we disconnect all edges of the input graph and then reconstruct it by com-

bining all of the possible edge pairing in the entire vertices of the graph, then the total

1We assign xi← xi +1 for vertex s and t if they have odd degree.
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Figure 3.1. Disconnecting the edges of a graph and relabelling its vertices

number of such constructions is
m

∏
i=1

f (xi). (3.2)

Clearly, this number consists of all Eulerian paths of the input graph plus additional
graph structures those have a cycle fragment. Our aim is to remove the latter kind of the
graphs.

3.2 The Basic Algorithm
In this algorithm, we start from disconnecting all of the edges and relabel the vertices

of the input graph such that no two edges have the same vertex. More precisely, let
G = (V,E) be the input graph with vertices V = {v1,v2, · · · ,vm} = {1,2, · · · ,m} and
edges E = {e1,e2, · · · ,en}. Let the starting vertex of the Eulerian paths be s and the
target be t, where s, t ∈ V . Then, the algorithm disconnects the edges of the input
graph such that no two edges is connected and also relabels the graph vertices such that
vertices V ′ = {1,2, · · · ,2n,start, target} and edges E ′ = {1–2,3–4, · · · ,(2n− 1)–2n},
where start← 2n+1, target← 2n+2, and they are being isolated vertices.

Let us define γi(1≤ i≤m) as a set of vertices in the new graph that correspond to the
vertex vi in the input graph2. For example, if the left part of Fig. 3.1 shows an input graph
with s= 1 and t = 6, and the right part shows the disconnected and relabeled graph, then
we have γ1 = {1,start}, γ2 = {2,3,5,7}, γ3 = {4,9}, γ4 = {6,11}, γ5 = {8,10,12,13},
and γ6 = {14, target}.

The mate initialization in the algorithm is done by considering the disconnected graph
as path fragments, thus mate[start]← start, mate[target]← target, mate[2i− 1]← 2i
and mate[2i]← 2i− 1 for (1 ≤ i ≤ n). Next if two vertices are going to be connected

2The vertex start is in the set that corresponds to the vertex s in the original graph, and the vertex
target is in the set that corresponds to the vertex t in the original graph.

12
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Figure 3.2. The DAG that stores all of the Eulerian paths of Fig. 3.1

(during the edge pairing), we need to update the mates of the corresponding vertices
using the exactly same rules as in simpath.

The algorithm makes a breadth-first search to find all of the Eulerian paths by trying
all possible edge pairings in γi(1 ≤ i ≤ m)3, while creating a multi-decision DAG that
stores all of the Eulerian paths. The DAG pruning and the node merging are carried out
with the similar manner as in simpath, that is by observing the state of the vertices in
frontier. For example, the process when the algorithm is used for finding the Eulerian
paths in the left figure of Fig. 3.1 is shown graphically in Fig. 3.2.

The Algorithm 4 below shows the pseudocode of the basic algorithm for enumerating

3For Eulerian cycles enumeration, vertex start and vertex target are not allowed to be paired.

13
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Eulerian paths. Actually, this algorithm is time consuming, because the number of the
possible edge pairing in γi as shown in line 7 of the algorithm, which is also equals to the
Equation 3.1, is growing fast as the size of γi grows bigger. Moreover, the algorithm is
also memory consuming since the node merging is expected to be done in an inefficient
way. For example, we cannot merge the node having mate[a] = x,mate[b] = y(a ̸=
b,x ̸= y) with the node having mate[a] = y,mate[b] = x even though vertex a and vertex
b are both representing the same vertex c in the original graph. The improved version
of this algorithm uses a different approach, it considers path fragments connected to a
vertex of the original graph as a set (more precisely, a weighted set). For example in
this scenario, the two nodes will have mate[c] = {x,y}, thus increasing the chance of
the two nodes being merged.

Algorithm 4: The basic algorithm for enumerating Eulerian paths
input : An undirected graph, s, and t
output: Multi-decision DAG that stores all Eulerian paths

1 Disconnect the graph edges and relabel its vertices;
2 Initialize the mate;
3 N1←{noderoot};
4 Ni← /0 for i = 2, · · · ,n+1; // Ni holds nodes in level i
5 for i← 1 to m do // processing γi

6 foreach node ∈ Ni do // processing nodes in level i
7 foreach posib ∈ possible edge pairing in γi do
8 childnode← CheckTerminal(node, posib);

// CheckTerminal returns 0-terminal if a

cycle fragment is formed, otherwise nil

9 if childnode=nil then
10 Create a new node and set it to childnode;
11 if there exists childnode′ ∈ Ni+1 s.t. childnode′ is equivalent to

childnode then
12 childnode← childnode′

13 else
14 Ni+1← Ni+1∪{childnode}

15 Create an arc to connect node and childnode in the DAG.

16 Connect the last node to the 1-terminal;

14



3.3 The Improved Algorithm 15

3.3 The Improved Algorithm
In this algorithm, we disconnect the input graph and reconstruct it by putting the

edges one by one while considering the edge pairing in the two vertices of each edge.
Every time we put an edge, generally we have two choices, whether to connect it to
one of the already existing unpaired edges or not. For example, let the edge p–q is
being processed and is going to be added to the reconstructed graph so far. If we see
at the vertex p, then the possibilities are whether the edge p–q is connected to one of
the already existing unpaired edges in p, or it is not connected to any of them. The
same condition also applies for vertex q, whether we connect the edge p–q to one of the
already existing unpaired edges in q or not. In the other words, at each step we have to
consider edge pairing in the two vertices of the currently being processed edge.

As in simpath, we keep track on the state of the vertices in frontier4 by using a mate
array. The difference is, since each vertex may appear in a simple path at most once,
each vertex in simpath has exactly one mate slot. In contrast to this, a vertex in an
Eulerian path can appear multiple times. Therefore, during the graph reconstruction
process we have to allow a vertex to hold multiple path fragments. This is done by
associating each vertex with a weighted set, and the mate array is now being an array of
weighted set instead of an array of integers which is used in simpath.

These are some reasons why we use a weighted set instead of the other data containers
such as a set, a linked list or an array of integers:

1. There will be some different path fragments those have the same two endpoints,
therefore using an ordinary set as mate is not possible since it cannot have multiple
identical elements.

2. The elements of a weighted set are sorted, which is very important because it
increases the probability of two nodes being merged. If we use a linked list or an
array of integers, then we have to re-sort its elements each time a change happens.

3. The weight of an element in the weighted set shows how many different path
fragments leading to the same other endpoint. We do not need to examine these
path fragments one by one when an edge is connected to them, since eventually
they will result in the same mate configurations. As the result, this will speed up
the algorithm.

The weighted set associated with a vertex vi needs to be a resizable container. Initially
when the edges connected to this vertex are not yet processed, the size of the weighted
set is zero. If an edge is processed and is connected to a path fragment already in

4The definition of frontier in this algorithm is exactly the same as in simpath, that is the set of vertices
contained in both processed and unprocessed edges.
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Figure 3.3. Edge matching on a vertex

the vertex, then the size of weighted set is not changed. If the processed edge is not
connected to any of the path fragments in the vertex, then the size of the weighted set is
incremented, for accommodating this newly added edge. Finally when all of the edges
connected to this vertex are processed, the size of the weighted set needs to be exactly5:

deg(vi)

2
. (3.3)

which is equal to the number of appearance of vi in the Eulerian path.
Summarizing the discussion, we have these two options when an edge is added to a

vertex vi:

1. connect to an unpaired edge in vi, or

2. do not connect to anything, thus creating a new unpaired edge. This choice is only
available if the number in Equation 3.3 is not reached yet.

For example, vertex v in Figure 3.3 (a) has four edges e1,e2,e3 and e4. Suppose we
process the edges in that order. In our algorithm, when adding an edge to the being
reconstructed graph we need to consider the edge pairing in its two vertices. But for
the sake of explanation, let us take attention only on vertex v. At first when e1 is being
processed, there is still nothing connected to vertex v, so we just put edge e1 as a new
unpaired edge as shown in node 1 of Fig. 3.3 (b). Next, when we are adding edge v2

we have two possibilities, whether to connect this edge to the already existing edge e1,
or we do not connect to any of the unpaired edges already in the vertex. In node 3,
we cannot make a new unpaired edge because the maximal number of Equation 3.3 is
already reached, so we just connect the edge e3 to the existing unpaired edges there.

In our algorithm, we do not necessarily process all of the edges connected to a vertex
at once. Sometimes we leave some edges unprocessed, and instead process another edge

5Again, we need to make deg(vi)← deg(vi)+1 for vertices s and t if they have odd degree.

16
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Figure 3.4. Enumerating Eulerian paths of the graph in Fig. 3.1 using the improved algorithm

not directly connected to this vertex. The actual example of edge pairing is shown in
Fig. 3.4, which shows what happen when the left figure of Fig. 3.1 is processed using
this algorithm.

3.4 Mate in the Improved Algorithm
The definition of mate in the improved algorithm is different from the mate in simpath

since we are using a weighted set. For a vertex p ∈ f rontier, we write mate[p] as
{α1,α2, · · · ,αg}, where α1 < α2 < · · · < αg (sorted) and each element αi(1 ≤ i ≤ g)
has its own weight. Since a frontier consists of several vertices, the actual mate of a
node in a computer memory can be described graphically using Fig. 3.5. In this figure,
the current frontier is { f1, f2, f3, f4, f5}, and each f ∈ f rontier has its own mate table
which shows the path fragments connected to f . In addition, since the elements of the
mate table need to be always sorted, in our experiment we use a multiset class provided
by the Standard Template Library (STL) in C++ instead of an array. If we use an array,
then we need to re-sort the mate table each time a change happens.

Similar to simpath, αi = 0 means an intermediate point of a path fragment, and αi = v
for an v∈V refers to a path fragment that has one endpoint at p and the other at v (in the
other words, p and v are connected by a path fragment). Different from simpath, in this

17
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Figure 3.5. The mate of a node having f rontier = { f1, f2, f3 = p, f4, f5}. The mate[ f ] for each

f ∈ f rontier is assumed to be sorted

algorithm αi = p does not mean that p is an untouched vertex, but it means that there is
a path fragment which has two endpoints at p. An untouched vertex in the algorithm is
known by its mate size which is equal to zero.

In the implementation, mate[p] is wrapped in a class which has several operators.

• The most basic operator is called get(αi), which return the actual address of the
element αi inside the computer memory (which is needed since the mate table of
a vertex is not necessarily an array, thus we assume that there is no such mate[p][i]
to call αi).

• new(α) will create and add a new element α with weight 1 into mate[p]. This
operator is guaranteed to be called only if no element in mate[p] equals α .

• delete(αi), to delete αi from mate[p].

• inc(αi), to increment the weight of αi if αi is already in mate[p], or to call new(αi)

otherwise.

• dec(αi), to decrement the weight of αi if the weight of αi is more than 1, or to
call delete(αi) otherwise.

• w(αi), that return the weight of αi.

• size(), that will return the current size of mate[p] (which is equal to the total
weight of αi(1≤ i≤ g)).

• The last operator is called replace(αi,α ′i ) which will call inc(α ′i ) and then call
dec(αi), in exactly this order.

Basically, all operators except new(α) will use operator get(αi) in order to get the ac-
tual address of αi inside the computer memory. Also, we assume that when a change
happens to mate[p], then its elements will be automatically re-sorted.

18
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Figure 3.6. Connecting α1 = q and β1 = p

3.5 Updating a Mate in the Improved Algorithm
Suppose there are k unpaired edges (path fragments) connected to vertex p and l un-

paired edges (path fragments) connected to vertex q. More formally, let we assume
mate[p] = {α1,α2, · · · ,αg} and mate[q] = {β1,β2, · · · ,βh} do not have any element
equals zero, and mate[p].size() = k and mate[q].size() = l. Then the k× l combina-
tions of possible edge pairing have to be considered if we add an edge p–q to the recon-
structed graph so far. In addition, if there is still a slot to add a new path fragment6 to the
vertex p and q, we have to consider in overall (k+1)× (l +1) possible edge pairings.

Similar to simpath, when an edge is added to the current constructed graph, we need
to update mates of some vertices. The difference is, since the mate of a vertex in our
algorithm is a weighted set, the updating rule now is a little different from simpath.
Furthermore, identifying a cycle fragment being formed is also a bit tricky. In simpath,
we could not connect vertex p and vertex q if mate[p] = q and mate[q] = p since they
will form a cycle fragment. But in our method, αi = q(1≤ i≤ g) and β j = p(1≤ j≤ h)
does not simply mean that connecting them will form a cycle fragment, since there is
a possibility that they are actually belong to two different path fragments. For example
in Fig. 3.6 (c) and (d), we can still safely connect αi to β j despite αi = q and β j = p.
In contrast, connecting αi = q and β j = p which come from the same path fragment as
shown in Fig. 3.6 (b) will cause a cycle fragment being formed, thus need to be avoided.

Since a mate only remembers the endpoints of a path fragment, the algorithm could
not differentiate which of αi = q and β j = p those belong to different path fragments
from the ones those belong the same path fragment. But fortunately, we know that
any possible edge pairing that does not form a cycle fragment will result in the same
mate configurations. For example in Fig. 3.6, connecting α1 which comes from path
fragment 1 to β1 which comes from path fragment 2 (as shown in Fig. 3.6 (c)) will have
the same identical result with connecting α1 which comes from path fragment 2 to β1

6When the size of mate[p] or mate[q] is still less than Equation 3.3.
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Figure 3.8. Connecting a path fragment in p to vertex q with edge p–q

which comes from path fragment 1 (as shown in Fig. 3.6 (d)), that is the weight of α1

and β1 are decreased by one, and the weight of 0s in the both vertices are increased by
one. Therefore, our problem can be solved by not examining the (k+1)× (l +1) cases
one by one, instead we need to examine just (g+1)× (h+1) cases, in which each case
has several identical results depending of the weight of αi and β j.

Generally, the number of identical results when αi and β j are connected by edge p–q
is equal to mate[p].w(αi)×mate[q].w(β j). The only exception is when a cycle fragment
is formed, which happens if αi = q and β j = p. Fortunately, we know that the number
of results having a cycle fragment is equal to the number of path fragments connecting
p and q, which is equal to the weight of αi, and which is also equal to the weight of β j.
Therefore in the case αi = q and β j = p, we need to subtract mate[p].w(αi) from the
general number of identical results.

If αi = r and β j = s, then the result when a path fragment having endpoints at r
and p is connected to a path fragment having endpoints at q and s by edge p–q is
obtained by calling mate[r].replace(p,s), mate[s].replace(q,r), mate[p].replace(r,0),
mate[q].replace(s,0). This procedure is very similar with mate update in simpath, and
can be interpreted graphically using Fig. 3.7.

Next, if edge p–q is added to connect a path fragment in p which has another endpoint
at αi = r to vertex q (hence we do not connect edge p–q to any of the path fragments
in q, instead we create a new unpaired edge in q), then the result is obtained by calling
mate[r].replace(p,q), mate[p].replace(r,0), mate[q].inc(r), which is described graphi-
cally in Fig. 3.8.

The opposite condition, if edge p–q is added to connect vertex p with a path fragment
in q which has another endpoint at β j = s (hence we do not connect edge p–q with any

20
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Figure 3.10. Adding edge p–q without connecting it to any of the existing path fragments

of the path fragments in p, instead we create a new unpaired edge in p), then the result is
obtained by calling mate[p].inc(s), mate[q].replace(s,0), mate[s].replace(q, p). These
procedures are described in Fig. 3.9.

Last, if edge p–q is added without neither connecting it to any of the path fragments
in p nor q, then the result is obtained by calling mate[p].inc(q), mate[q].inc(p), which
can be described using Fig. 3.10.

Node merging in this algorithm is done in the same way as in simpath, that is two
nodes having the same mate configurations can be merged. In our method, we use a
weighted set to express mate of a vertex to improve the possibility of nodes merging,
since the elements of a weighted set is always sorted. If the elements of a mate is not
sorted, for example a node having mate[v] = {2,1,3} will not be merged with a node
having mate[v] = {3,1,2}. The condition may be different if they are sorted, since
both nodes will have the same mate[v] = {1,2,3}, thus increasing the chance of the two
nodes being merged.

In our method, we do not use a 0-terminal to express a dead end during the graph con-
struction. A branch in the multi-decision DAG that needs to be pruned out will simply
be ignored without expanding it further, while a branch that corresponds to an Eulerian
path will be connected to 1-terminal. When the multi-decision DAG is completed, then
the number of Eulerian paths of the input graph is equal to the number of paths leading
from root node to 1-terminal in this DAG.
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3.6 The Pseudocode for the Improved Algorithm
The Algorithm 5 below is the pseudocode for the improved algorithm. In this al-

gorithm, Ni is a set of nodes in level i(1 ≤ i ≤ n+ 1) of the DAG. As shown in line
1 and line 2, N1 is initialized to contain the root node of the DAG, while for i > 1,
Ni is initialized to be an empty set, which later will be filled with nodes during the
program execution. Next in line 5, the MateForChildNodes function tries all possible
constructible graphs (the uncompleted Eulerian path) when the edge ei(1 ≤ i ≤ n) is
added to the reconstructed graph so far. The details of this function are then described
as Algorithm 6.

Algorithm 5: The improved algorithm for enumerating Eulerian paths
input : An undirected graph, s, and t
output: A multi-decision DAG storing all Eulerian paths

1 N1←{noderoot};
2 Ni← /0 for i = 2, · · · ,n+1; // Ni holds nodes in level i
3 for i← 1 to n do // processing edge ei

4 foreach node ∈ Ni do // processing nodes in level i
5 MateForChildNodes(node, ei, Ni+1);

Algorithm 6 shows how to connect vertex p with vertex q using an edge p–q. More
precisely, line 1 up to line 9 shows how to connect one of the existing path fragments
connected to p to one of the existing path fragments connected to q. Next, line 10 is to
confirm that the mate size of vertex q is still below the number in Equation 3.3, thus we
can add an edge to vertex q without connecting it to any of path fragment there. The
next 5 lines shows how to connect one of path fragments connected to p with vertex
q (which is already explained using Fig. 3.8). Line 16 to line 21 shows the opposite,
that is connecting a path fragment in q to vertex p, which is also already explained using
Fig. 3.9. The last part, line 22 to line 26 shows how to connect vertex p to vertex q using
edge p–q without connecting it to any of the existing path fragments. Since connecting
an edge to the intermediate point of a path fragment is not allowed, we assume that αi

and β j in the entire algorithm is not equal to 0.
Algorithm 7 is used for connecting the newly created child node to its parent node in

the multi-decision DAG using numO fChilds many arcs. Line 1 and line 2 are executed
when there is only one path fragment connecting vertex p with vertex q (for example in
Fig. 3.6 (a), there are two path fragments connecting p with q). Line 3 and line 4 are the
parts used for node merging, while line 5 and line 6 are used to add the newly created
node into the multi-decision DAG if there is no identical node in there.
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Algorithm 6: MateForChildNodes(node, e, Nnext)
input : node, e = p–q, and Nnext

output: –

// Suppose node has mate configurations parentmate, and

{α1,α2, · · ·αg} equals parentmate[p] with 0 element being

removed and {β1,β2, · · · ,βh} equals parentmate[q] with 0

element being removed

1 for i← 1 to g do // processing αi

2 for j← 1 to h do // processing β j

3 childnode← node; // for the child node. Let the

mate configurations of childnode being named mate
4 numO fChilds← mate[p].w(αi)×mate[q].w(β j);
5 if αi = q and β j = p then
6 numO fChilds = numO fChilds−mate[p].w(αi);

7 mate[αi].replace(p,β j); mate[β j].replace(q,αi);
8 mate[p].replace(αi,0); mate[q].replace(β j,0);
9 CreateChildNodes(node, childnode, numO fChilds, Nnext);

10 if parentmate[q].size()< deg(q)
2 then

11 for i← 1 to g do // processing αi

12 childnode← node;
13 numO fChilds← mate[p].w(αi)×1;
14 mate[αi].replace(p,q); mate[p].replace(αi,0); mate[q].inc(αi);
15 CreateChildNodes(node, childnode, numO fChilds, Nnext);

16 if parentmate[p].size()< deg(p)
2 then

17 for j← 1 to h do // processing β j

18 childnode← node;
19 numO fChilds← 1×mate[q].w(β j);
20 mate[β j].replace(q, p); mate[p].inc(β j); mate[q].replace(β j,0);
21 CreateChildNodes(node, childnode, numO fChilds, Nnext);

22 if parentmate[p].size()< deg(p)
2 and parentmate[q].size()< deg(q)

2 then
23 childnode← node;
24 numO fChilds← 1;
25 mate[p].inc(q); mate[q].inc(p);
26 CreateChildNodes(node, childnode, numO fChilds, Nnext);
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Algorithm 7: CreateChildNodes(node, childnode, numO fChilds, Nnext)
input : node, childnode, numO fChilds, Nnext

output: –

1 if numO fChilds = 0 then
2 return

3 if there exists childnode′ ∈ Nnext s.t. childnode′ is equivalent to childnode then
4 childnode← childnode′

5 else
6 Nnext ← Nnext ∪{childnode}

7 Connect node and childnode using numO fChilds many arcs.

3.7 Retrieving an Eulerian Path from the Constructed
Multi-decision DAG

To retrieve the number n’th Eulerian path from the constructed multi-decision DAG,
at first we need to give the nodes in the multi-decision DAG their values. The value of
a 1-terminal node is equal to 1, and the value of the other nodes are equal to the sum of
values of their children nodes. For example, the right figure of Fig. 3.4 shows a multi-
decision DAG with the value of each node being printed out next to the node. Once this
is done, we can determine the path in the multi-decision DAG that correspond to the
number n’th Eulerian path by comparing n with the value of the nodes while traversing
the multi-decision DAG from its root node to 1-terminal. Later, this path can be used as
guidance to reconstruct the Eulerian path. The complexity of reconstructing an Eulerian
path is O(|E| ·max(deg(v)

2 )2), since we are adding edges one by one, and each time an
edge is added we need to search the right path fragments need to be connected by this
edge.

However, there is a limitation in our method since we could not extract a set of Eule-
rian paths that satisfies a given condition from the constructed multi-decision DAG. For
example, we could not get a set of Eulerian paths that has the property that e1 must be
followed by e2 from the multi-decision DAG.
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Chapter 4

Experimental Results

In this section, we present the results of our experiments only for the improved algo-
rithm. In all experiments, the computational time is measured in second unit. The
algorithm was implemented using C++11 and run on a machine with 4 GB memory
Intel R⃝ CoreTMi3-2330M CPU @ 2.20GHz × 4.

In this thesis we present the results of our experiments with five different types of
graphs. At first, we show the results for graphs having multiple edges and compare
the results with the corresponding simple graph. Then, we also present the results for
Complete graph. For the Aztec diamond graph [11], we present the results up to n = 8.
Next, we also show the results for Congolese drawings. At last, we present the results
for Ring graph and confirm these results by comparing them with the number of Eulerian
paths derived from a mathematical equation.

4.1 Multigraph
The proposed algorithm in this thesis is relatively fast for processing both multigraph1

and its “corresponding” simple graph. Although processing a multigraph is slightly
faster, we could not distinguish some edges once an Eulerian path is retrieved from the
DAG, while in a simple graph we can easily distinguish the edges since there is no any
multiple edge. For example, let the left graph in Figure 4.1 be a(n) and the right one
be b(n). Starting from vertex 1, we want to enumerate all Eulerian paths if n is odd,
and all Eulerian cycles if n is even. The results for some n are summarized in Table 4.1.
For the same n, we can see in this table that the number of DAG nodes used to store
the Eulerian paths of a simple graph is more than the number of DAG nodes used for a
multigraph, which makes the processing time for a multigraph becomes faster.

Using a simple backtrack based algorithm to search the number of Eulerian paths
in both a(n) and b(n), we already running out of time for n = 12. In contrast, using

1Here, a multigraph is a graph with multiple edge, but without self-loop.
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Figure 4.1. Simple Graph vs Multigraph

Table 4.1. Simple Graph vs Multigraph

n
a(n) b(n)

solutionsproposed algorithm backtrack proposed algorithm backtrack
nodes time time nodes time time

1 5 0.000331 0.000138 4 0.000258 0.000159 1
2 8 0.000484 0.000392 6 0.000339 0.000195 2
3 14 0.005143 0.000822 8 0.003770 0.000385 6
4 19 0.008264 0.002060 11 0.004230 0.001214 24
5 33 0.014939 0.013594 16 0.008759 0.005399 120
6 42 0.015787 0.065717 21 0.012045 0.021279 720
7 67 0.025232 0.382385 30 0.018849 0.087972 5040
8 82 0.026160 3.187142 38 0.016174 0.650604 40320
9 112 0.028066 30.145249 52 0.025878 5.796462 362880
10 146 0.031964 320.352194 64 0.028012 58.130634 3628800
11 205 0.029756 3612.151051 85 0.023074 638.443941 39916800
12 241 0.036714 time out 102 0.034845 time out 479001600
13 324 0.036364 time out 131 0.025434 time out 6227020800

30 4236 0.191787 time out 1584 0.133952 time out 2.652529×1032

40 11434 0.599417 time out 4169 0.412097 time out 8.159153×1047

50 25276 1.554008 time out 9068 1.097576 time out 3.041409×1064

60 48949 4.022040 time out 17364 2.497769 time out 8.320987×1081

70 86267 8.368751 time out 30349 5.105830 time out 1.197857×10100

80 141674 16.148767 time out 49523 9.789022 time out 7.156946×10118

90 220258 27.067279 time out 76602 16.798351 time out 1.485716×10138

100 327603 44.423667 time out 113518 28.106356 time out 9.332622×10157
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Figure 4.2. Complete graph C(n) for n = 3,5,7, and 9

Table 4.2. The Results for Complete graph C(n)

n nodes time solutions
3 7 0.000442 2
5 50 0.020941 528
7 2168 0.100832 389928960
9 451162 33.361454 3646080228084940800

our proposed algorithm, we are still able to enumerate the Eulerian paths for n = 100
in considerably a little time. By comparing the number of nodes with the number of
the solutions, we also understand that the compression rate of the DAG in this case is
incredibly high. As example for n = 100, the number of Eulerian paths in both a(n)
and b(n) is 9.332622×10157, and they are stored in a DAG having merely 327603 and
113518 nodes, respectively.

In these kinds of graphs, it is easy to check the number of the Eulerian paths by hand.
Especially for graph b(n), the number of Eulerian paths is the same as the number of
permutation of the edges e1,e2, · · · ,en, which is n!.

4.2 Complete Graph
A Complete graph C(n) is a connected undirected graph having n vertices in which

each vertex is connected to the rest of the other vertices of the graph. Examples of such
graph are shown in Fig. 4.2. It is known that a Complete graph has an Eulerian cycle if
and only if the number of its vertices is odd (which means that the degree of each vertex
is even).

The results of our experiments on these graphs are shown in Table 4.2, which con-
firm the results from McKay and Robinson in [7] up to n = 9. Their technique for
enumerating Eulerian cycles is specialized only for a Complete graph, and they have
been succeeded in computing the Eulerian cycles for n = 21. Unfortunately, they did
not write the computation time, therefore we could not compare with the results from
our algorithm.
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Figure 4.3. Aztec Diamond for n = 1,2, and 3

Table 4.3. The Results for Aztec Diamond Using Proposed Algorithm

n nodes time solutions
1 8 0.000228 2
2 40 0.015503 80
3 286 0.032317 264320
4 2164 0.071024 67131225600
5 17271 0.500763 1282298454848135168
6 148224 6.153548 1823958835474044219224391680
7 1382302 73.527219 192178269775153104174170778660103782400
8 14083862 942.330957 1495157006436041186484738405257449073460914460033024

4.3 Aztec Diamond
The Aztec diamond in this thesis is a bit different from the usual2 Aztec diamond.

The Aztec diamond here as shown in Figure 4.3 is the same as the graph described by
Audibert in his book, Mathematics for Informatics and Computer Science [11]. Starting
from the lower vertex of the leftmost edge, i.e. vertex number 1, we want to count the
number of Eulerian cycles coming back to this vertex. Using backtrack algorithm, we
could only count the Eulerian cycles up to n = 3, which took 150.041790 seconds.
For n = 4, the running time is already more than 1 hour, so we stopped the program.
Audibert also only writes down in his book the number of Eulerian cycles up to n = 3.
On the contrary, using our proposed algorithm we could count the Eulerian paths up to
n = 8. The detailed results are presented in Table 4.3.

2The general term of Aztec diamond refers to a similar graph but with the leftmost, rightmost, upper-
most, and lowermost edges are 2.
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Figure 4.4. Congolese drawings P(n) for n = 2,3,4,5, and 6

Table 4.4. The Results for Congolese drawings P(n)

n nodes time number of Eulerian paths
2 6 0.000323 1
3 13 0.000662 4
4 58 0.013032 328
5 104 0.023173 111616
6 532 0.031281 632492400
7 769 0.036871 16551741353984
8 4586 0.137933 6727963389195631296
9 5691 0.184710 13207065216910433569559552

10 39989 1.377636 388372864607037921166706218127104
11 44497 1.709373 56689167098449242454996209658960741289984
12 366529 17.958141 121038673236052304885122859695720284551676364284416
13 376365 19.629299 1307909773783592726788040275308591958297845516834378345349120
14 3594666 231.981171 203169716673423007848573790043533223319371983390134005562204298549339136
15 3473985 236.014467 162097094762071097285740713589869499024657858875098611949364517836115641457617010688

4.4 Congolese drawings
The figures in Fig. 4.4 are a kind of Congolese drawings, a pattern that is found in

Africa. In page 826 of the same book, Audibert calls these graphs as P(N,2N) graph
(in this thesis, we will call this graph as P(n)), and writes down the number of Eulerian
paths up to N = 5. Using our proposed algorithm, we are able to enumerate the Eulerian
paths up to N = 15 (n = 15), which are shown in Table 4.4.

4.5 Ring graph
Ring graph R(n) belongs to multigraph, since there are multiple edges connecting

two same vertices in it. Some examples of Ring graph are shown in Fig. 4.5 for n = 1,2
and 3. It is named Ring graph, since there are n rings for an R(n). Ring graph has an
Eulerian path, since there are exactly two vertices with odd degree. The results of our
experiments on Ring graph are shown in Table 4.5.

Figure 4.5. Ring graph for n = 1,2 and 3
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Table 4.5. The Results for Ring graph R(n)

n nodes time number of Eulerian paths
1 9 0.002855 6
2 15 0.004163 36
3 21 0.005660 216
4 27 0.006528 1296
5 33 0.007305 7776
6 39 0.009961 46656
7 45 0.010719 279936
8 51 0.012109 1679616
9 57 0.013711 10077696

10 63 0.014786 60466176
20 123 0.019302 3656158440062976
30 183 0.022078 221073919720733357899776
40 243 0.025394 13367494538843734067838845976576
50 303 0.031448 808281277464764060643139600456536293376

100 603 0.045438 6.533186×1077

500 3003 0.450163 1.190214×10389

1000 6003 1.603632 1.416610×10778

5000 30003 37.794911 5.704951×103890

10000 60003 150.083619 3.254647×107781

…

R (n) R (n+1)

R (n)

Figure 4.6. Simplifying R(n+1) using R(n)

Using mathematical induction, one can prove that the number of Eulerian paths in
R(n) is equal to 6n. For the base case n = 1, it is clear that the number of Eulerian
paths in R(n) is 61 = 6. Assume for n > 1, R(n) has 6n Eulerian paths. To prove that
R(n+1) has 6n+1 Eulerian paths, at first we need to observe that every Eulerian path in
R(n) starts from the leftmost edge and ends at the rightmost edge. Therefore we may
replace the R(n) graph inside an R(n+ 1) graph as an edge, then we can simplify the
R(n+1) graph as R′(1), which is shown in Fig. 4.6. This simplified graph R′(1) has 6
Eulerian paths, in which one of its edge is actually R(n). Thus, in overall R(n+1) has
6×6n = 6n+1 Eulerian paths.
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Chapter 5

Conclusion

We have explained the algorithm for enumerating Eulerian paths in an undirected graph,
which can be used for both simple graph and multigraph. The algorithm is based on
simpath algorithm, which is introduced by Knuth in his book The Art of Computer
Programming [9] (exercise 225 in 7.1.4) and used for enumerating simple paths.

The proposed algorithm is much faster compared to a naive backtrack algorithm in
many cases, which is confirmed from our experiments. In our algorithm, we store the
Eulerian paths of the input graph in a multi-decision DAG, and once it is created, we
can retrieve any Eulerian paths in O(|E| ·max(deg(v)

2 )2).
When using a frontier based algorithm, it is preferred to process the edges of the

input graph in an order such that the frontier size during the graph execution is always
fairly small. The reason is because the domain of the possible mate values of a vertex
is {0,s, t, f rontier}, for a starting vertex s and target vertex t of the Eulerian paths. If
the frontier size is big, then this domain size also becomes big, which in turn makes
the possible combination of mate values become bigger, thus reducing the possibility
of two nodes being merged. Therefore, the order of edges (variable ordering) is very
important in a frontier based algorithm. Finding a good variable ordering to be used in
our algorithm is still an open problem1, and beyond the scope of this thesis.

In addition, one problem still remains. In our method we could not extract a set of
Eulerian paths satisfying a given condition from the constructed DAG, which we will
leave as future work.

1For a Binary Decision Diagram (BDD) [12], finding a good variable ordering is proved to be in
NP-Complete [13]
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