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Chapter 1

Introduction

1.1 Background

Compiling Bayesian Networks (BNs) [10] is a hot topic in probabilistic modeling and
processing. Minato et al. [1] have shown an efficient method of compiling BNs into fac-
tored forms of Multi-Linear Functions (MLFs) based on Zero-suppressed Binary Decision
Diagrams [2], which are a graph-based representation first used for VLSI logic design ap-
plications. In that method, they produce a set of ZDDs each of which represents MLF of
each BN node. This method is more effective than conventional approach of [6] in some
cases. However, the resulting ZDDs are still too large for the realistic of BNs. There is a
need for more compact representation of MLFs.

The method in [4] has shown that the Weak Division Algorithm [3], a technique of
logic synthesis and optimization, can be used to obtain a condensed representation of
MLFs. It can be more efficient if we use the ZDD operations. Nevertheless, as the size
of MLFs grows exponentially with the size of BNs, directly compressing MLFs with the
Weak Division Algorithm is quite time consuming.

1.2 Contribution

In this thesis, we present an improvement of the Weak Division Algorithm by utiliz-
ing d-separation which is used to check conditional independence between variables in
Bayesian Networks. First, we introduce the basic idea of representing MLFs using ZDDs
and the factorization of ZDDs with the Weak Division Algorithm. Then we show how to
improve the Weak Division Algorithm using d-separation structure.

1.3 Thesis Structure

The rest of this thesis is organized as follows. Section 2 introduces the Bayesian net-
works and MLFs, one of the most important ways of probability calculation based on
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BNs. In Section 3 we introduce BDDs and ZDDs and how to compile MLFs of BN using
ZDDs. Section 4 explains how to factor polynomials using the Weak Division Algorithm
to condense their size based on ZDDs and our method to improve the factorization using
d-separation structure of BNs. In Section 5 we show our experimental results comparing
with an existing method. Finally we provide conclusions of our work and the future work
in Section 6.
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Chapter 2

Bayesian Networks and
Multi-Linear Functions

In this chapter, we briefly introduce Bayesian networks and their Multi-linear Functions.

2.1 Bayesian Networks

A Bayesian Network is a directed acyclic graph which defines a joint distribution over
a set of random variables [10]. BNs are used for representing uncertain knowledge across
a number of fields. For a given BN and observed data, we calculate the probability dis-
tribution of the entire network by substituting the observed data into a portion of the BN.
Modeling tools based on BNs are frequently used in real-world applications including
diagnosis, forecasting, sensor fusion and manufacturing control [17].

Each BN node has a network variable X whose domain is a discrete set of values.
Each BN node also has a Conditional Probability Table (CPT) to describe the conditional
probabilities of the value of X given the values of its parent BN nodes. We can use the
CPT to represent the probability distribution of the random variable and to predict the
likelihood of uncertain events. Here we give a small example of a Bayesian network
shown in Fig. 2.2 for convenience. This Bayesian Network has four nodes resulting to 24
different variable instantiations. If want to know the probability of D = d1 given A = a1

(we call A = a1 as evidence). First we need to calculate the probability of all cases of
B and C. Then using the result to multiply the addition of items in CPT(D) that satisfies
D = d1.

Although we can use CPT to answer queries, it is usually prohibitive if a BN is as
huge as the example of an actual BN shown in Fig. 2.1 [8] since the size of CPT grows
exponentially with the number of variables.
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2.2 Inference in Bayesian Networks

For BNs have been applied to more and more complex real-world applications, the
development of fast and flexible inference methods becomes increasingly significant. In
the last decades, researchers have developed various kinds of algorithms for exact and
approximate inference. Two of these methods are particularly well-known [19].

One of them proposes to view a BN as a CNF model counting problem [18]. It encodes
the given BN into a CNF, and employs techniques used in the state-of-the-art SAT and
model counting engines to solve the problem. Another one suggests to regard a BN as
a Multi-Linear Function (MLF) [6], the so-called network polynomial. We can retrieve
the answers to probabilistic queries by differentiating the MLFs. The network polynomial
is exponential in size with a given BN, but it is possible to efficiently encode it. In this
article, we mainly pay attention to how to encoding the MLFs.

2.2.1 Multi-Linear Functions

Multi-Linear Functions (MLFs) [6] are a well-known way to calculate probability
based on BNs. An MLF consists of two types of variables, an indicator variable λx for
each value X = x, and a parameter variable θx|u for each CPT parameter P(x|u). The MLF
contains a term for each instantiation of the BN variables, and the term is the product of
all indicators and parameters that are consistent with the instantiation. For the example in
Fig. 2.2, the MLF has the following form:

λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1

+λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1

+λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1

. . .

+λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2 .

Once we have generated the MLF for a given BN, the probability of instantiation e can
be calculated by setting indicators that contradict e to 0 and other indicators to 1. Namely,
we can calculate the probability in time linear in the size of MLF.

2.2.2 Related Work

Obviously, the MLF has exponential time and space complexity, so the calculation is
quite time consuming. Darwiche et al. [6] have shown an efficient method for compiling
BNs into factored forms of MLFs. In their method, a given BN structure is first encoded
to a Conjunctive Normal Form (CNF) to be processed in the Boolean domain, and then the
CNFs are factored according to Boolean algebra. The compilation procedure generates a
kind of decision diagram representing a compact Arithmetic Circuit (AC) which subsumes
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the jointree (Fig. 2.3), one of the most influential methods based on tree-clustering for
inference in BN.

Minato et al. [1] proposed a new method for compiling BNs. They directly translate a
BN into a set of factored MLFs using a ZDD-based symbolic probability calculation. The
MLFs may have exponential computational complexity, but ZDD-based data structure can
provide a compact factored form of MLFs, and arithmetic operations can be executed in
a time almost linear with the ZDD size. In their method, it is not necessary to generate
the MLFs for the whole network, as we can extract MLFs for only part of the network
related to the query, avoiding unnecessary calculation of redundant MLF terms. In the
next chapter, we will explain how this method works.
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Figure 2.1. An example of an actual BN
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1 2{ , }c c
1 2 3{ , , }d d d

Figure 2.2. An example of BN

ABC BCDBC

Figure 2.3. A jointree of Fig.2.1
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Chapter 3

Compiling BNs Based on ZDDs

In this chapter, we first introduce Zero-suppressed BDDs (ZDDs) and then show how to
compile a BN using ZDDs.

3.1 BDDs

A Binary Decision Diagram (BDD) is a directed graph representation of a Boolean
function, as shown in Fig. 3.1(a). BDDs have two terminal nodes, which we call 0-
terminal node and 1-terminal node, and many decision nodes with two edges, called 0-
edge and 1-edge. A BDD is derived by reducing a binary tree graph as shown in Fig.
3.1(b). The reduction is based on the following two rules:

• Eliminate all the redundant nodes whose two edges point to the same node. (Fig.
3.2(a))

• Share all the equivalent sub-graphs. (Fig. 3.2(b))

We know that the reduction rules make BDDs compact and canonical for Boolean func-
tion under a suitable fixed variable ordering. BDDs are a powerful means for computer
processing of Boolean functions. In many cases, this data structure requires less mem-
ory for storing Boolean functions and calculates values of functions faster than with truth
tables or logic expressions.

BDDs were originally developed for handling Boolean function data, however, some
kind of applications use BDDs not simply for representing Boolean functions, but for
processing sets of combinations [12]. Sets of combinations often appear in solving com-
binatorial problems. The manipulations of sets of combinations are important techniques
for many applications.

A combinatorial item set consists of elements each of which is a combination of a
number of items. There are 2n possible combinations of n items, so we have 22n

possible
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Figure 3.1. BDD and Binary Decision Tree.

Figure 3.2. Reduction Rules on BDDs.

combinatorial item sets. For example, for a domain of five items a, b, c, d, and e, some
combinatorial item sets are:

{ab,e},{abc,cde,bd,acde,e},{1,cd}, /0.

Here“ 1”denotes a combination of no items, and /0 means the empty set.

A combinatorial item set can be mapped into a Boolean space of n input variables.
For example, Fig. 3.3 shows the truth table of the Boolean function F = (abc̄)∨ (b̄c),
but also represents the combinatorial item set S = {ab,ac,c}, which is the set of input
combinations for which F is 1. Using BDDs for the corresponding Boolean functions, we
can implicitly represent and manipulate combinatorial item sets. Due to the effect of node
sharing, BDDs compactly represent sets of a huge number of combinations.
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a b c F

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 0

As a Boolean function:

( , , )F a b c abc bc 

As a combinatorial item set:

( , , ) { , , }S a b c ab ac c

ab

c

ac

Figure 3.3. A Boolean function and a combinatorial item set.

3.2 ZDDs

Zero-suppressed BDDs (ZDDs) [2] are a variant of BDDs for efficient manipulation of
combinatorial item sets. An example of a ZDD is shown in Fig. 3.4 on the left. ZDDs are
based on the following special reduction rules.

• Delete all nodes whose 1-edge directly points to a 0-terminal node, and jump through
to the 0-edge’s destination, as shown in Fig. 3.4 on the right.

• Share equivalent nodes as in ordinary BDDs.

Notice that we do not delete nodes whose two edges point to the same node, which used
to be deleted by the original BDD rule. The Zero-suppressed deletion rule is asymmetric
for the two edges, as we do not delete the nodes whose 0-edges points to a terminal node.
It is proved that ZDDs also give canonical forms under a fixed variable ordering like
ordinary BDDs.

Here we summarize the features of ZDDs.

• In ZDDs, the nodes of irrelevant items are automatically deleted by ZDDs reduction
rule.

• ZDDs are especially effective for representing sparse combinations (Fig. 3.5). For
instance, sets of combinations selecting 10 out 1000 items can be represented by
ZDDs up to 100 times more compact than ordinary BDDs.
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Figure 3.4. An example of a ZDD and ZDD reduction rules

• Each path from the root node to the 1-terminal node corresponds to exactly one
combination in the set. Namely, the number of such paths in the ZDDs equals the
number of combinations in the set. In ordinary BDDs, this property does not always
hold.

• When no equivalent nodes exist in a ZDD, that is the worst case, the ZDDs structure
explicitly stores all items in all combinations, as well as using an explicit linear
linked list data structure. Namely, the size of ZDDs never exceeds the explicit
representation.

Figure 3.5. Comparing ZDD to BDD

Table 3.1 shows most of the primitive operations of ZDDs. In these operations, /0,111,P.top
are executed in constant time, and the others are almost linear in the size of the graph. We
can describe various processing on sets of combinations by composing these primitive
operations.
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Table 3.1. Primitive ZDD operations
“ϕ” Returns empty set. (0-terminal node)
“1” Returns the set with the null-combination. (1-terminal node)

P.top Returns the item-ID at the root node of P.
P.factor0(v) Subset of combinations not including item v.
P.factor1(v) Gets P-P.factor0(v) and then deletes v from each combination.
P.attach(v) Attaches v to all combinations in P.

P∪Q Returns union of P and Q.
P∩Q Returns intersection of P and Q.
P - Q Returns difference set. (in P but not in Q.)

P.count Counts the number of combinations

3.3 MLF Representation Using ZDD

An MLF is a polynomial in the indicator and parameter variables. It can be regarded
as a combinatorial item set. Since each term is simply a combination of variables, it can
be represented compactly by a ZDD [1]. For example, the MLF at node B in Fig. 2.2 can
be written as follows:

MLFB = λa1λb1θa1θb1|a1 +λa1λb2θa1θb2|a1

+λa2λb1θa2θb1|a2 +λa2λb2θa2θb2|a2 .

Here, we rename the parameter variables so that equal parameters share the same variable.

MLFB = λa1λb1θa(0.4)θb(0.2)+λa1λb2θa(0.4)θb(0.8)

+λa2λb1θa(0.6)θb(0.8)+λa2λb2θa(0.6)θb(0.2).

An example of the ZDD for MLFB is shown in Fig. 3.6. In this example, there are four
paths from the root node to the 1-terminal node, each of which corresponds to a term of
the MLF. It is an implicit representation of the MLF. At the same time, the structure of
ZDD also represents a compact factored form of MLF by sharing nodes. For the entire
BN in Fig. 2.2, as shown in Fig. 3.7, we first make MLFA, and then we generate MLFB

and MLFC using MLFA. Finally, we generate MLFD using MLFB and MLFC. After the
construction procedure, all MLFs for respective nodes are compactly represented by the
shared ZDDs (Fig. 3.8). For each BN node X , the MLF is calculated by the following
operations using the MLFs at the parent nodes of X .

MLFXi = λxi · ∑
uuu∈CPT (X)

(
θx(Puuu) · ∏

Yv∈uuu
MLFYv

)

Here MLFXi denotes the value of MLF for the node X when X has the value xi.
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1b


2b

(0.2)b
(0.2)b

(0.8)b (0.8)b

1a

2a

(0.4)a

(0.6)a

0 1

0 1

0 1

0
1

Figure 3.6. An example of a ZDD for the MLFB.

3.4 Variable Ordering of ZDDs for Representing Bayesian Net-
works

Although using shared ZDDs we can condense the size of ZDDs to some extent, in
some cases the size of ZDDs are still too large. Therefore we require more compact ZDDs
for representing BNs. One method for simplifying ZDDs is to determine a good order of
the initial variables since the size of ZDDs is sensitive to the order of nodes.

Techniques such as sequential improvement based on the exchange of the adjacent
variables [9] and annealing method [16] have been proposed. Isomatsu et al. [11] tried an
improvement of variable ordering method similar to these. In their method, they produce a
ZDD bottom-up according to the post-order appearance of nodes using depth-first search
(DFS). Then since λ variables and θ variables belonging to the same probability variable
hold strong correlation, they leave these variables close to each other and recognize them
as one block. Then they perform the replacement of blocks in the ZDD so the size of the
ZDD may be reduced (Fig. 3.10).

Kanesaki et al. [15] proposed a improvement of this method utilizing the data that BN
nodes have. In their method, they use the same algorithm to generate a ZDD as Isomatsu.
The difference is when performing the DFS, they compare the number of CPT items in
descending order while deciding which node to be traced. For the example in Fig. 3.9,
the same as the example shown in Fig. 3.11 we start the search from node C, among
nodes A, D, F adjacent to C, we proceed to node D which has the most number of items in
CPT. Then between node B and E adjacent to D, we choose node E for the same reason.
Repeating this process, we finally get the order of E, D, B, G, F, A, C.

Using the previous two methods, we can get a relatively better order of variables so the
size of ZDDs can be somewhat reduced. However, both methods have restrictions. For
the method of Isomatsu et al. [11], if a BN is too huge to be represented by ZDDs, this
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AMLF
BMLF

CMLF DMLF

Multi-rooted shared ZDDs
(ZDD package)

Input
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Figure 3.7. ZDD construction procedure for BN
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b b

0 1

F1 F2 F3 F4

1
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3
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F a b

F a b

F b

F a b

 

 



 

Figure 3.8. Shared ZDDs

approach can not be used. For the method of Kanesaki et al. [15], it can not work for all
BNs such as the data set of path f inder. Unfortunately, that approach increase the size of
ZDDs in the case of data set water. In this thesis, we present a radically different approach
to condense the size of ZDDs.

15



A

B

C

D

F

E

G ZDD

λ
θ

C
F
G
D
E
A
B

Figure 3.9. Variable Order

change? change?

. . . . . 

. . . . . 

ZDD ZDD
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Chapter 4

Factorization of ZDDs

For a huge polynomial function consists of literals, we can condense its size by factoring
it. For example, if we rewrite function F = abd + abe+ cd + ce+ acd as F = pq+ acd
where p = ab+ c and q = d + e, the number of literals of F is reduced from thirteen to
ten. For an MLF of a given BN, we want to condense its size through factorization.

As shown in section 3.3, MLFs can be regarded as combinatorial item sets and repre-
sented by ZDDs. In this chapter, we will discuss how to efficiently perform this factoriza-
tion of MLFs based on ZDDs manipulations using a Weak Division Algorithm, the most
successful and prevalent way in logic synthesis and optimization techniques. [9].

4.1 Weak Division Algorithm

Logic synthesis and optimization techniques have been used successfully for practical
design of VLSI circuits in recent years. The most successful and prevalent way to attain
this optimization is based on two-level logic (a form of the Boolean expressions with the
AND-OR two level structure) minimization and generates multi-level logic form two-level
logics by applying the Weak Division Algorithm [9].

In a two-level logic, each item is formed by a combination of literals for input variables.
In general, two-level logics can be factorized into more compact multi-level logics. As
illustrated in Fig. 4.1, the initial logics are represented with large two-level logics for
primary output functions. When we determine a good intermediate logic, we make a two-
level logic for it and reduce the other existing logics by using a new intermediate variable.
Eventually, we construct a multi-level logic that consists of a number of small two-level
logics.

Whenever we find a good intermediate logic, we can execute the Weak Division Algo-
rithm by computing the common part of quotients for respective items in the divisor. For
example, suppose the two expressions are :

f = abd +abe+abg+ cd + ce+ ch.

p = ab+ c.
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Figure 4.1. Factorization of two-level logics.

Then f can be rewritten as:

f = ab(d + e+g)+ c(d + e+h).

We regard ( f/p) as a quotient which can then be computed as :

( f/p) = ( f/(ab))∩ ( f/c)

= (d + e+g)∩ (d + e+h)

= d + e.

We refer to ( f %p) as remainder which is computed using the quotient as follows:

( f %p) = f − p ( f/p)

= abg+ ch.

Using the quotient and the remainder, we can reduce f :

f = p(p/ f )+( f %p)

= pd + pe+abg+ ch.

4.2 Factorization of ZDDs Based on the Weak Division Algo-
rithm

The Weak Division Algorithm is efficient for functions that can be expressed in a fea-
sible size of two-level logics, but we are sometimes faced with functions whose represen-
tations grow exponentially with the number of inputs. The use of BDDs provided a break
though for that problem. By mapping a two-level logic into the Boolean space, a two-level
logic can be represented as a Boolean function using a BDD. Using this method, we can
represent a huge number of logics implicitly in a small storage space.

However, since BDDs were originally designed to represent Boolean functions, it can
sometimes be inefficient. Minato et al. [3] used ZDDs to represent two-level logics more
efficiently. ZDDs are especially effective when we manipulate two-level logics using inter-
mediate variables to represent multi-level logic since ZDDs were adapted for representing
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sets of combinations. The multi-level logic consists of hundreds of two-level logics, each
of which is very small. This yields so sparse combinations that the use of ZDDs is quite
effective [3]. By using ZDDs, we can represent any two-level logic simply, efficiently, and
uniquely.

The Weak Division Algorithm requires an execution time that depends on the length of
expressions (or the number of literals in f and p) because we have to compute a number of
quotients for all cubes in the divisor. This method is therefore impracticable when we deal
with very large two-level logics. In Minato’s method, the Fast Weak Division Algorithm
has been proposed based on ZDD. The basic algorithm is described as follows:

procedure(P/Q) {

i f (Q = 1) return P;

i f (P = 0 or P = 1) return 0;

i f (P = Q) return 1;

R← cache(“P/Q”); i f (R exists) return R ;

v← Q.top; /∗ the highest variable in;Q∗/

(p0, p1)← f actors o f P by v;

(Q0,Q1)← f actors o f Q by v; /∗ (Q1 ̸= 0)∗/

R← P1/Q1;

i f (R ̸= 0) i f (Q0 ̸= 0) R← R ∩ P0/Q0;

cache(“P/Q”)← R;

return R;

}

The basic idea is that we do not compute quotients for respective logics in the cubes
in the divisor, but rather for subsets of cubes factored by an input variable. The quality of
the results of this algorithm greatly depends on the choice of divisors and Minato [3] has
developed a simple and fast method for finding divisors, which is shown as follows:

Divisor(F){

v← a literal that appears twice in F ;

i f (v exists) return Divisor(F/v);

else return F ;

}

If there is a literal that appears more than once in a two-level logic, we compute the
factor for the literal. Repeating this recursively, we eventually obtain a divisor.
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4.3 Factorization of MLFs

If we consider an MLF as a polynomial, all the variables appear more than once, so
we can repeatedly extract variables that appear more than once by using the Fast Weak
Division Algorithm to condense its size.

Divisor(MLF){

v← a literal appears twice in MLF ;

i f (v exist) return Divisor(MLF/v);

else return MLF ;

}

Here we use MLFB in Fig. 2.2 as an example of the algorithm. First we extract the
divisor in MLFB:

MLFB = λa1λb1θa1θb1|a1 +λa1λb2θa1θb2|a1+

λa2λb1θa2θb1|a2 +λa2λb2θa2θb2|a2

= λa1

(
λb1θa1θb1|a1 +λb2θa1θb2|a1

)
+

λa2λb1θa2θb1|a2 +λa2λb2θa2θb2|a2

= λa1θa1

(
λb1θb1|a1 +λb2θb2|a1

)
+

λa2λb1θa2θb1|a2 +λa2λb2θa2θb2|a2 .

Once we find divisor λb1θb1|a1 +λb2θb2|a1 , we can factor MLFB as follows:

MLFB/(λb1θb1|a1 +λb2θb2|a1)

= (MLFB/(λb1θb1|a1)∩ (MLFB/λb2θb2|a1)

= (λa1θa1)∩ (λa1θa1)

= λa1θa1 .

The example shows that the number of variables and terms of MLFB are reduced from
16 and 4 to 14 and 3 respectively, which means the size of the MLF has decreased so the
calculation of probability inference can be faster.

However, as there are still many identical variables remaining, we can make a further
factorization of the remainder which is obtained from this algorithm. In other words,
divisor extraction here is inadequate. Also, since the number of characters in an MLF
grows exponentially with the size of the BN, it costs too much time if we just extract
one single variable from the MLF every time. In the next chapter, we will introduce an
improvement of the factorization for MLF utilizing the d-separation structure of BN.
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4.4 Factorization of MLFs Based on d-Separation of BNs Struc-
ture

4.4.1 d-Separation of BN

The structure of d-separation is used to check conditional independence between vari-
ables in Bayesian Networks. d-separation can be defined as following three graph patterns
[7] in Fig. 4.2. In (a) is a tail-to-head or serial pattern. A affects B and B has an effect on
C. If B is instantiated, A and C become independent. In (b) is a tail-to-tail or diverging
pattern. If A is instantiated, all the children of A become independent. In (c) is a head-to-
head or converging pattern. As long as we do not know the state of A or its descendants,
B, C, ..., E can be regarded as independent sets.

The d-separation has an important property that if we substitute the observed values
to the d-separation node, nodes in both sides cut by the d-separation become independent
so the calculation of probability inference is simplified. Considering this advantage, we
propose an improvement of divisor extraction based on d-separation of serial pattern. In
our method, we use the Tarjan’s algorithm [13] to find a d-separation which consists of
one node in linear time with the size of the BN. However, it is not easy if we want to find
a d-separation that consists of more than one node. Here we manually find a d-separation
which consists of two nodes to improve the divisor extraction.

A B C

B C E

B C E

A

A

(a) serial pattern (b) diverging pattern (c) converging pattern 

Figure 4.2. An example of d-separation.

4.4.2 Factorization Based on d-Separation

For the node B in Fig. 2.2, MLFB contains information about node A. Here we refer
to this information with parameters a1 and a2. Also, if the number of parameters of node
A and B are given, we can forecast the size of MLFB and the frequency of characters λ
and θ . That is to say, the MLF of a node in a BN is based on its parents nodes. Therefore,
we consider factoring an MLF of a node with the MLF of its parents directly instead of
using the divisor extraction algorithm to extract repreated characters one at a time. But,
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this fails when we implement MLFB/MLFA. We give the details next.

MLFB/MLFA

= MLFB/(MLFa1 +MLFa2)

= (MLFB/(MLFa1)∩ (MLFB/(MLFa2)

= {(λa1λb1θa1θb1|a1 +λa1λb2θa1θb2|a1)/λa1θa1} ∩

{(λa1λb1θa1θb1|a1 +λa1λb2θa1θb2|a1)/λa2θa2}

=
(
λb1θb1|a1 +λb2θb2|a1

)
∩
(
λb1θb1|a2 +λb2θb2|a2

)
= /0.

We refer to the division of MLFB/MLFA as blotting out information about node A.
Why we get the empty set is that though we try to blot out a1 by MLFB/MLFa1 , a1 is still
left in θb1|a1 and θb2|a1 . The same applies to a2. When we intersect the quotients, which
are obtained by factoring MLFB with MLFa1 and MLFa2 , a1 and a2 are contrary, hence
we obtain the empty set. But, if we omit the intersection, which means we perform the
factorization as MLFB/MLFa1 , MLFB/MLFa2 , MLFB can be rewritten as

MLFB = MLFa1(λb1θb1|a1 +λb2θb2|a1) +

MLFa2(λb1θb1|a2 +λb2θb2|a2).

However, even this works only in the case of a node which has only one parent node
like node B. If it has more than one parent node, for example, node C in Fig. 2.2, the
representations of MLFb1 , MLFb2 are not capable of factoring MLFC.

MLFD/MLFb1

= (λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1+

λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1+

λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1+

. . .

λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2)

/(λa1λb1θa1θb1|a1 +λa2λb1θa2θb1|a2)

= (λc1λd1θc1|a1θd1|b1c1 + . . .+λc2λd3θc2|a1θd3|b1c2) ∩

(λc1λd1θc1|a2θd1|b1c1 + . . .+λc2λd3θc2|a2θd3|b1c2)

= /0
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MLFD/MLFb2

= (λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1+

λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1+

λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1+

. . .

λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2)

/(λa1λb2θa1θb2|a1 +λa2λb2θa2θb2|a2)

= (λc1λd1θc1|a1θd1|b2c1 + . . .+λc2λd3θc2|a1θd3|b2c2) ∩

(λc1λd1θc1|a2θd1|b2c1 + . . .+λc2λd3θc2|a2θd3|b2c2)

= /0.

The reason we get the empty set is since MLFB is based on node A, when we try to blot
out the information about MLFb1 by MLFC/MLFb1 , we are also blotting out information
about a1 and a2 contained in MLFD. The blotting out is inadequate because for a1 and
a2 are also contained in MLFC and they contradict to each other when we intersect the
quotients. Thus, this motivates us to find a node set that can separate node A and node D
as independent nodes so that after we factoring MLFD, the information about node A can
be cleared up thoroughly. According to the definition of d-separation, we know the set of
d-separation nodes satisfies our request.

We use the BN of Fig. 2.2 as an example of the factorization based on d-separation.
For nodes A and D, nodes B and C are the d-separation node set that separates them as
independent nodes. Since both node B and C have two values, there are four combinations
of their information b1c1, b1c2, b2c1 and b2c2. According to [1], we multiply their MLFs
as follows. There are two terms in each of these MLFs, so the number of terms after
multiplication should be 2 ∗ 2 = 4. But since the parameters λ are eliminated if they
contradict each other, only two of the four terms are left. Following shows the details of
the multiplication.
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MLFb1MLFc1

= (λb1λa1θa1θb1|a1 +λb1λa2θa2θb1|a2)

(λc1λa1θa1θc1|a1 +λc1λa2θa2θc1|a2)

= λb1λc1λa1θa1θb1|a1θc1|a1 +λb1λc1λa2θa1θb1|a2θc1|a2 .

MLFb1MLFc2

= (λb1λa1θa1θb1|a1 +λb1λa2θa2θb1|a2)

(λc2λa1θa1θc2|a1 +λc2λa2θa2θc2|a2)

= λb1λc2λa1θa1θb1|a1θc2|a1 +λb1λc2λa2θa1θb1|a2θc2|a2 .

MLFb2MLFc1

= (λb2λa1θa1θb2|a1 +λb2λa2θa2θb2|a2)

(λc1λa1θa1θc1|a1 +λc1λa2θa2θc1|a2)

= λb2λc1λa1θa1θb2|a1θc1|a1 +λb2λc1λa2θa1θb2|a2θc1|a2 .

MLFb2MLFc2

= (λb2λa1θa1θb2|a1 +λb2λa2θa2θb2|a2)

(λc2λa1θa1θc2|a1 +λc2λa2θa2θc2|a2)

= λb2λc2λa1θa1θb2|a1θc2|a1 +λb2λc2λa2θa1θb2|a2θc2|a2 .

After these multiplications, we factor MLFD with the four combinations respectively
as follows.

MLFD/MLFb1MLFc1

= MLFD/(λb1λc1λa1θa1θb1|a1θc1|a1+

λb1λc1λa2θa1θb1|a2θc1|a2)

= MLFD/(λb1λc1λa1θa1θb1|a1θc1|a1)∩

MLFD/(λb1λc1λa2θa1θb1|a2θc1|a2)

= λd1θd1|b1c1 +λd2θd2|b1c1 +λd3θd3|b1c1 .
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MLFD/MLFb1MLFc2

= MLFD/(λb1λc2λa1θa1θb1|a1θc2|a1+

λb1λc2λa2θa1θb1|a2θc2|a2)

= MLFD/(λb1λc2λa1θa1θb1|a1θc2|a1)∩

MLFD/(λb1λc2λa2θa1θb1|a2θc2|a2)

= λd1θd1|b1c2 +λd2θd2|b1c2 +λd3θd3|b1c2 .

MLFD/MLFb2MLFc1

= MLFD/(λb2λc1λa1θa1θb2|a1θc1|a1+

λb2λc1λa2θa1θb2|a2θc1|a2)

= MLFD/(λb2λc1λa1θa1θb2|a1θc1|a1)∩

MLFD/(λb2λc1λa2θa1θb2|a2θc1|a2)

= λd1θd1|b2c1 +λd2θd2|b2c1 +λd3θd3|b2c1 .

MLFD/MLFb2MLFc2

= MLFD/(λb2λc2λa1θa1θb2|a1θc2|a1+

λb2λc2λa2θa1θb2|a2θc2|a2)

= MLFD/(λb2λc2λa1θa1θb2|a1θc2|a1)∩

MLFD/(λb2λc2λa2θa1θb2|a2θc2|a2)

= λd1θd1|b2c2 +λd2θd2|b2c2 +λd3θd3|b2c2 .

Finally, we can rewrite MLFD as follows.

MLFD =MLFb1MLFc1(λd1θd1|b1c1 +λd2θd2|b1c1 +λd3θd3|b1c1)+

MLFb1MLFc2(λd1θd1|b1c2 +λd2θd2|b1c2 +λd3θd3|b1c2 .)+

MLFb2MLFc1(λd1θd1|b2c1 +λd2θd2|b2c1 +λd3θd3|b2c1 .)+

MLFb2MLFc2(λd1θd1|b2c2 +λd2θd2|b2c2 +λd3θd3|b2c1 .).

In this thesis, for a given BN, first we find a d-separation node set that consists of one
node using Tarjan’s algorithm and manually find a d-separation node set that consists of
tow nodes. Then we multiply their MLFs and consider the result of multiplications as a
divisor to factor MLFs represented by ZDD using the Weak Division Algorithm.

In the original method, they first factor each output of ZDDs with every other output.
This is for saving time of finding divisor literal by literal. Then they perform a further
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factorization of the results by using algorithm Divisor(). As we have shown in the fac-
torization of MLFB/MLFA, none output of ZDDs is able to factor other outputs, that is
to say there is no need to perform the first step in previous method. Therefore we re-
fine this algorithm by using d-separation node sets as divisors which can effectively avoid
finding divisor literal by literal. Then we perform a further factorization using algorithm
Divisor().
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Chapter 5

Experimental Results

We implemented our experiments using an Intel Core2 Quad CPU Q9550@2.83GHz run-
ning Ubuntu 12.04LTS with 3.8GiB of main memory. We manipulate up to 40,000,000
nodes of ZDDs. We use data set of BN Benchmark [8] alarm and hail f inder to implement
our experiment.

5.1 Experimental Results

Table 1 shows the original specifications of MLFs and ZDDs before factorization. The
experimental results are shown in Table 2 and Table 3. The nodes corresponding to the
label in alarm and hail f inder are shown in Fig. 5.1, Fig. 5.2, and Fig. 5.3 [8].

The number of nodes in alarm is 37 and there are 105 indicator λ and 187 parameter θ
variables. The number of nodes in hail f inder is 56 and the number of indicator λ and
parameter θ is 223 and 835, respectively.

Table 5.1. Original MLFs and ZDDs before factorization.

Dataset and node ID
Before factorization

ZDD size items total literals
time to generate ZDD

from MLF
alarmN35(n6) 4448 ≥ 210 million ≥ 1500 million 0.650
alarmN9(n34) 5803 ≥ 794 million ≥ 1537 million 0.730s

alarmN36(n14n33) 10116 ≥ 500 million ≥ 1000 million 0.647s
alarmN36(n20n32) 9541 ≥ 600 million ≥ 40 million 0.614s

hailfinderN12(n4n7) 2097 ≥ 2 million ≥ 50 million 0.633s
hailfinderN20(n4n12) 23980 ≥ 400 million ≥ 2100 million 0.666s

In Table 2, we show the results of factorization based on d-separation consisting of one
node. We find the one-node d-separation using Tarjan’s algorithm [13] which is used to
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Table 5.2. Experimental results of one-node d-separation.

Dataset and
node ID

Previous factorization method
Proposed factorization method

based on d-separation
ZDD
size

items
total

literals
factorization

time
ZDD
size

items
total

literals
factorization

time
alarmN35

(n6)
3771 1927 7330 135.765s 2934 1602 5686 78.923s

alarmN9
(n34)

8097 4136 16866 102.105s 5150 2694 10287 48.818s

Table 5.3. Experimental results of two-node d-separation.

Dataset and
node ID

Previous factorization method
Proposed factorization method

based on d-separation
ZDD
size

items
total

literals
factorization

time
ZDD
size

items
total

literals
factorization

time
alarmN36
(n14n33)

8007 4201 16004 2662.773s 5178 2662 9796 51.425s

alarmN36
(n20n32)

7477 3983 15139 2905.949s 4247 2423 8776 4.825s

hailfinderN12
(n4n7)

1149 859 2386 2.169s 1081 871 2358 0.304s

hailfinderN20
(n4n12)

4969 3465 11148 800.767s 4194 3187 9139 5.168s
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find out cut-off nodes in an undirected graph. We chose node 36 which has the biggest
ZDD in our data, but there is no one-node d-separation that can separate node 36, since
no one-node d-separation is precious few in an actual BN. So we use two other nodes
instead. (Fig. 5.1

In Table 3, we show the result of factorization based on d-separation consisting of two
nodes. This time we manually chose the two-node d-separation without any algorithm.
We choose node 36 in alarm because it has largest ZDD (Fig. 5.2). Since it would be too
time consuming to factor the entire BN for hailfinder, we select the nodes in hailfinder
which have ZDD size between 2,000 and 25,000 as experimental data (Fig. 5.3).

The first column in Table 2 and Table 3 shows the number of nodes and d-separation
set we choose in BN. For instance, ‘alarmN36(n14n33)’ means factoring the MLF of
node 36 with d-separation set node 14 and node 33. The two columns respectively show
the specifications, such as the size of ZDD, the number of items, which represents the
sum of the number of original λ , θ variables and intermediate variables representing the
factored divisor, and the number of total literals in the MLF.

According to Table 2 and Table 3, we could achieve somewhat smaller ZDDs and
condensed MLFs using our method. The most important property of our method is that
we have saved plenty of time when factoring MLFs based on d-separation. However, we
did not factor in the time of finding d-separation.
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Figure 5.1. One-node d-separation in alarm.
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Figure 5.2. Two-node d-separation in alarm.
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Figure 5.3. Two-node d-separation in hailfinder.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have developed an improvement of the Weak Division Algorithm which is used
in factorizing the MLF of a BN. In our method, we proposed to use the d-separation
structure in BN as divisors to factor MLFs into compact representations. Our method
effectively avoids finding divisor literal by literal and achieves somewhat more condensed
MLFs while using considerably less time than directly using the original Weak Division
Algorithm.

6.2 Future Work

As future work, we will consider not to generate the ZDD for the whole network but
just generating the ZDD for the newly-found divisor. For a large BN, generating its ZDD
is quite time consuming, so just generating the ZDD for the newfound divisor may reduce
time and memory cost for probability inference calculation because the ZDD nodes of
divisor can be shared. Also, we consider to use proper algorithms to find suitable d-
separation node sets rather than finding d-separation manually.
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