平成22年6月19日

提出期限:平成22年7月5日

中間テスト

- 1. Prove or disprove the following assertions.
 - (1.1) There is algorithm which on input any regular grammar \mathcal{G} decides whether or not $L(\mathcal{G}) = \emptyset$.
 - (1.2) There is algorithm which on input any regular grammars \mathcal{G}_1 , \mathcal{G}_2 decides whether or not $L(\mathcal{G}_1) \subseteq L(\mathcal{G}_2)$.
 - (1.3) There is algorithm which on input any regular grammars \mathcal{G}_1 , \mathcal{G}_2 decides whether or not $L(\mathcal{G}_1) = L(\mathcal{G}_2)$.
- 2. Let $\Sigma = \{a, b\}$ and let $L \subseteq \Sigma^*$ be the language defined by the following conditions: $w \in L$ if and only if $w \in \Sigma^*$ and
 - (i) 3 divides |w|;
 - (ii) w starts with a and ends with b;
 - (iii) for all strings $q, r \in \Sigma^*$ we have $w \neq qaaar$.

Prove or disprove L to be regular. If L is regular, construct a DFA \mathcal{A} such that $L = L(\mathcal{A})$.

- 3. Let $L = \{0^n \operatorname{bin}(\mathfrak{n}) \mid \mathfrak{n} \in \mathbb{N}^+\}$, where $\operatorname{bin}(\mathfrak{n})$ denotes the *binary representation* of \mathfrak{n} and the leftmost bit of it is 1.
 - (3.1) Prove or disprove L to be context-free.
 - (3.2) Provide a grammar \mathcal{G} such that $L = L(\mathcal{G})$ and show the correctness of your grammar.
- 4. Consider the following language $L = \{ww \mid w \in \{a, b\}^*\}$. Prove or disprove L to be context-free.