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Abstract

The paper provides a systematic study of incremental learning algorithms. The
general scenario is as follows. Let ¢ be any concept; then every infinite sequence
of elements exhausting c is called positive presentation of c¢. An algorithmic learner
takes as input one element of a positive presentation and its previously made hy-
pothesis at a time, and outputs a new hypothesis about the target concept. The
sequence of hypotheses has to converge to a hypothesis correctly describing the
target concept. This scenario is referred to as iterative learning.

We refine this scenario by defining and investigating bounded example memory
inference and feed-back identification. Bounded example memory and feed-back
learning generalizes iterative inference by allowing to store an a priori bounded
number of carefully chosen examples and asking whether or not a particular element
did already appear in the data provided so far, respectively.

We provide a sufficient condition for iterative learning allowing non-enumerative
learning. The learning power of our models is related to one another, and an infi-
nite hierarchy of bounded example memory inference is established. These results
nicely contrast previously made attempts to enlarge the learning capabilities of iter-
ative learners (cf. [8]). In particular, they provide strong evidence that incremental
learning is the art of knowing what to overlook. Finally, feed-back learning is more
powerful than iterative inference, and its learning power is incomparable to that
of bounded example memory inference. Hence, there is no unique way to design
superior incremental learning algorithms.
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1. Introduction

We consider general systems that map evidence on a concept into hypotheses about
it. We deal with scenarios in which the sequence of hypotheses stabilizes to an accurate
and finite description of the target concept. Thus, after having seen only finitely many
data of the possibly infinite target, the algorithm performing the mapping of the data to
hypotheses reaches its (generally unknown) point of convergence to a correct and finite
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description of the target concept. Clearly, then some form of learning must have taken
place. Formalizing the notions “evidence,” “stabilization,” and “accuracy” results in the
model of learning in the limit (cf. [3]). During the last three decades much has been
learned about the classes of formal languages and recursive functions that can be learned
within Gold’s [3] model and variations thereof (cf., e.g., [8, 12, 13, 16]). We continue along
these lines of research, i.e., we investigate the principal learning capabilities of learners
which perform incremental learning. Next, we introduce some notations.

A positive presentation of a concept ¢ is an infinite sequence of elements that even-
tually exhausts all and only the elements of ¢. An algorithmic learner called inductive
inference machine (abbr. IIM), takes as input initial segments of a positive presentation,
and outputs, from time to time, a hypothesis about the target concept. The set H of
all admissible hypotheses is called hypothesis space. The sequence of hypotheses has to
converge to a hypothesis correctly describing the target concept. If there is an IIM that
learns a concept ¢ from all positive presentations for it, then ¢ is said to be learnable in
the limit with respect to H (cf. Definition 1).

However, this model makes the unrealistic assumption that the learner has access to the
whole initial segment of a positive presentation provided so far. Clearly, each practical
learning system has to deal with the limitations of space. Thus, we formally define
and investigate variations of learning in the limit restricting the accessibility of input
data. We deal with iterative learning, bounded example memory inference, and feed-back
identification (cf. Definitions 3, 4, 5). All these models formalize incremental learning,
a topic attracting considerable attention in the machine learning community (cf., e.g. [2,
10]). An iterative learner is required to produce its actual guesses exclusively from its
previous one and the next element in the positive presentation. Results concerning this
learning model can be found in [5, 6, 8, 13]. Osherson et al. [8] also considered the variant
that the learners has access to the last k elements, where k is a priori fixed. Interestingly,
the latter approach does not increase the learning power. Alternatively, we study learners
that are allowed to store k carefully chosen examples, where k is a priori fixed (bounded
example memory inference). We obtain an infinite hierarchy of more and more powerful
learners (cf. Theorem 7). This result provides strong evidence that learning is the art
of knowing what to overlook. Finally, we study feed-back identification. In this setting,
the iterative learner is additionally allowed to ask whether or not a particular element
did already appear in the data provided so far. Again, the learning power considerably
increases but the supplementary learning power is incomparable to those of bounded
example memory inference (cf. Theorem 11). The latter result provides strong evidence
that there is no unique way to design superior space efficient inference procedures.

2. Formalizing Incremental Learning

By IN ={0,1,2,...} we denote the set of all natural numbers. We set IN* = IN \ {0}.
By (.,.) : N xIN — IN we denote Cantor’s pairing function. By m; and 7 we denote
the projection functions over IN x IN to the first and second component, respectively.

Any set X is called a learning domain. By p(X) we denote the power set of X.
Let C C p(X), and let ¢ € C; then we refer to C and ¢ as to a concept class and a
concept, respectively. Let ¢ be a concept, and let t = xg, 1, 22, ... an infinite sequence of
elements from ¢ such that range(t) = {zx| k € IN} = ¢. Then ¢ is said to be a positive



presentation for c. By pos(c) we denote the set of all positive presentations of ¢. Let ¢
be a positive presentation, and let y be a number. Then, ¢, denotes the initial segment
of t of length y + 1, and ¢} =4 {wx| k <y}

We deal with the learnability of indexable concept classes with uniformly decidable
membership defined as follows (cf. [1]). A class of non-empty concepts C is said to be an
indexable class with uniformly decidable membership provided there are an effective
enumeration (¢;);en of all and only the concepts in C and a recursive function f such that
for all j € IN and all € X we have f(j,z) =1, if z € ¢;, and f(j,x) = 0 otherwise.

In the following we refer to indexable classes with uniformly decidable membership as
to indexable classes for short. Next, we describe some well-known examples of indexable
classes. First, let X denote any fixed finite alphabet of symbols, and let ¥* be the free
monoid over 3. We set X7 = ¥* \ {e}, where ¢ denotes the empty string. Then X = X
serves as the learning domain. We refer to subsets L C X7 as to languages (instead of
concepts). Then, the set of all context sensitive languages, context free languages, regular
languages, and of all pattern languages form indexable classes (cf. [4, 1]).

Next, let X,, = {0,1}" be the set of all n-bit Boolean vectors. We consider X =
Un>1 X, as learning domain. Then, the set of all concepts expressible as a monomial, a
k-CNF, a k-DNF, and a k-decision list form indexable classes (cf. [11, 9]).

We define an inductive inference machine (abbr. IIM) to be an algorithmic device
working as follows: The IIM takes as its input larger and larger initial segments of a
positive presentation ¢ and it either requests the next input element, or it first outputs a
hypothesis, i.e., a number, and then it requests the next input element (cf. [3]).

The indices output by an IIM are interpreted with respect to a suitably chosen hy-
pothesis space H. Since we exclusively deal with indexable classes C we always take as a
hypothesis space an indexable class H = (h;);ew. When an IIM outputs a number j, we
interpret it to mean that the machine is hypothesizing h;. Note that H must be defined
over some learning domain Z comprising the learning domain X over which C is defined,
and, moreover, ‘H must comprise the target concept class C.

Let t be a positive presentation, and let y € IN. By M (t,) we denote the last hypothesis
produced by M when successively fed ¢,. The sequence (M(t,))yen is said to converge
in the limit to the number j iff either (M(¢,)),en is infinite and all but finitely many
terms of it are equal to j, or (M(t,))yen is non-empty and finite, and its last term is j.
Now we define some models of learning. We start with learning in the limit.

Definition 1 (cf. [3]). Let C be an indexable class, let ¢ be a concept, and let H =
(hj)jen be a hypothesis space. An IIM M LIM-learns c¢ w.r.t. 'H iff for every
t € pos(c), there exists a j € IN such that the sequence (M(t,))y,ew converges in the limit
to j and ¢ = h;.

M LIM -learns C w.r.t. H iff, for all c € C, M LIM -learns ¢ w.r.t. H.

Finally, let LIM denote the collection of all indexable classes C for which there are an
IIM M and a hypothesis space H such that M LIM-learns C w.r.t. H.

Next we consider the restriction that the IIM is not allowed to output guesses describing
proper supersets of the target concept. IIMs behaving thus are called conservative.

Definition 2 (cf. [1]). Let C be an indexable class, let ¢ be a concept, and let H =
(hj)jen be a hypothesis space. An IIM M CONSV-learns ¢ w.r.t. H iff



(1) M LIM-learns ¢ w.r.t. H,

(2) for everyt € pos(c) and for all y, k € IN, if M(t,) # M(t,+x) then t;rk < hay)-
Finally, M CONSV-learns C w.r.t. H iff, for each ¢ € C, M CONSV-learns ¢ w.r.t. H.
By CONSV we denote the collection of all indexable classes C for which there are an IIM
M and a hypothesis space H such that M CONSV-learns C w.r.t. H.

Looking at the definitions above, we see that, in order to compute its actual guess, M
is fed all examples seen so far. In contrast to that, next we define iterative IIMs and a
natural generalization of them called bounded example memory IIMs. An iterative
ITM is only allowed to use its last guess and the next element in the positive presentation
of the target concept for computing its actual guess. Conceptionally, an iterative IIM M
defines a sequence (M,,),en of machines each of which takes as its input the output of its
predecessor. Hence, the IIM M has always to produce a hypothesis.

Definition 3 (cf. [14]). Let C be an indexable class, let ¢ be a concept, and let
H = (hj)jen be a hypothesis space. An IIM M IT-learns c¢ w.r.t. H iff for every
t = (z;)jen € pos(c) the following conditions are satisfied:

(1) for all n € IN, M,(t) is defined, where My(t) =4 M(zxo) and for all n > 0:

Mn+1 (t) —df M(Mn(t)v xn-i-l);
(2) the sequence (M, (t))new converges in the limit to a number j such that ¢ = h;.

Finally, M IT-learns C w.r.t. H iff, for each ¢ € C, M IT-learns ¢ w.r.t. H.

The resulting learning type IT is analogously defined as above.

Next, we introduce a natural relaxation of iterative learning. Now, an [IM M is allowed
to memorize an a priori bounded number of the examples it already has had access to
during the learning process. Again, M defines a sequence (M, ),en of machines each of
which takes as input the output of its predecessor. Thus, a bounded example memory
IIM has to output a hypothesis as well as a subset of the set of examples seen so far.

Definition 4. Let k € INU {x}, let C be an indexable class, let ¢ be a concept, and let
H = (hj)jew be a hypothesis space. An IIM M BEMj-learns c w.r.t. H iff for every
t = (z;)jen € pos(c) the following conditions are satisfied:

(1) for alln € IN, M,(t) is defined, where My(t) =4 M (z0) = (jo, So) such that Sy C t§
and card(Sy) < k, and for all n > 0: M,11(t) =g M(M,(t), Zps1) = (Jnt1s Snt1)
such that Sypy1 C S, U{xp1} and card(S,41) < k, (k = % means finitely many.)

(2) the sequence (m1(jn, Sn))new converges in the limit to j such that ¢ = h;.

Finally, M BEMy-learns C w.r.t. H iff, for each ¢ € C, M BEMj-learns ¢ w.r.t. H.

For every k € IN U {x}, the resulting learning type BEMj, is analogously defined as
above. By definition, I'T' = BEM, as well as BEM, = LIM.

Finally, we define learning by feed-back IIMs. The idea of feed-back learning goes
back to Wiehagen [14] who considered it in the setting of inductive inference of recursive
functions. However, his definition cannot be directly applied to concept learning. A
feed-back IIM M is an iterative IIM that is additionally allowed to ask a particular type
of questions. In each learning stage n + 1, M has access to the actual input z,1, and
its previous guess j,, and M is additionally allowed to compute a query from x,,.; and

Jn- The query concerns the history of the learning process. That is, an element x and
a “YES/NO” answer A are computed such that A = 1 iff x € ¢} and A = 0, otherwise.



Thus, M can just ask whether or not a particular string has already been presented in
previous learning stages.
Definition 5. Let C be an indezable class, let ¢ be a concept, and let H = (h;)jen be
a hypothesis space. Moreover, let Q: X x IN — X, and A: X — {0, 1} be computable total
mappings. An IIM M FB-learns ¢ w.r.t. H iff for every t = (z;)jen € pos(c) the
following conditions are satisfied:
(1) for all n € IN, M,(t) is defined, where My(t) =4 M(xo) and for all n > 0:
M4 (t) —df M(Mn(t)v A(Q(Mn(t)a xn-l-l))a xn+1)7
(2) the sequence (M,(t))new converges in the limit to a number j such that ¢ = h;
provided that A truthfully answers the questions computed by Q.
Finally, M F B-learns C w.r.t. H iff there are computable mappings Q@ and A as described
above such that, for each ¢ € C, M F B-learns ¢ w.r.t. 'H.

3. Results

In this section we relate the learning power of all the models introduced to one another.
Moreover, we provide results showing that rich concepts classes are incrementally learn-
able. Due to the lack of space, no proofs are included. The interested reader is referred
to Lange and Zeugmann [7] for a full version of this extended abstract.

3.1. Iterative Learning

There are several well-known criteria that ensure learnability in the limit of indexable
classes from positive data, i.e., finite thickness and finite elasticity. Both conditions are
sufficient but not necessary. Hence, it is natural to ask whether or not these conditions
guarantee iterative learning, too. Unfortunately, the general answer is negative. However,
a natural sharpening of finite thickness directly yields a sufficient condition for iterative
learning.

Definition 6. Let C be an indexable class. C has finite thickness if and only if for
every x € X there are at most finitely many ¢ € C satisfying x € c.

Theorem 1. There is an indexable class C ¢ IT which has finite thickness.

Next, we define recursive finite thickness. Let X’ be any recursively enumerable learn-
ing domain, and let xg, x1, 2, ... be any effective enumeration of all elements in X.
Furthermore, assume an effective enumeration Ny, Ny, N, ... of all finite subsets of IN.

Definition 7. Let C be an indexable class. C has recursive finite thickness provided
there are an indexing cy, c1, C2, ... of C and a total recursive function g such that, for
allm, k € IN, x,, € cx if and only if k € Ny or there is a j € Ny with ¢; = cy.

It is easy to verify that the class of all concepts describable by a monomial, a k-
CNF, a k-DNF, a k-decision list, respectively, have recursive finite thickness. The pattern
languages provide another interesting example of a concept class having recursive finite
thickness. The following theorem establishes the iterative learnability of all these concept
classes.

Theorem 2. Let C be an indezxable class. If C has recursive finite thickness, then
Cell.

The proof of the latter theorem has some interesting features we want to point to.
First of all, the learning algorithm produces its hypotheses in a rather constructive man-
ner. This nicely contrasts the enumerative character of many inference procedures often



provided in abstract studies within Gold’s [3] model (cf., e.g., [3, 8]). In contrast, our
general learning algorithm immediately produces a finite subspace of hypotheses from
which it computes its actual guess. Subsequently, it deletes all nonrelevant hypotheses
from this subspace. Moreover, the algorithm learns by generalization, i.e., the sequence of
its guesses constitutes an augmenting chain of concepts. As a matter of fact, the converse
is also true. Whenever the learning process can be exclusively performed by generaliza-
tion, then one can learn iteratively, too (cf. [6]). However, the generality of the result
above does not always yield the most effective iterative learning algorithm. For exam-
ple, a straightforward application of Valiant’s [11] proof technique directly yields iterative
learning algorithms for the class of all concepts describable by a k-CNF and k-DNF, re-
spectively, that are much more efficient. Another example are the pattern languages. In
this case, Lange and Wiehagen’s [5] iterative learning algorithm is the better choice.

Nevertheless, the proof given above allows some further general insight. That is, every
indexable class possessing recursive finite thickness can be identified by a conservative
ITM. Moreover, Lange and Zeugmann [6] have shown that CONSV \ IT # (). Hence,
one may conjecture that IT" C CONSV. On the other hand, iterative learning is not
requested to realize the subset principle (cf. [12]). However, since conservative IIMs have
access to the whole initial segment of a positive presentation provided so far, they are
able to compensate this additional strength of iterative learning.

Theorem 3. [T C CONSV.

Note that the above theorem heavily depends on our assumption that an IIM may
select a hypothesis space that comprises the target class.

As our next result states, recursive finite thickness is only a sufficient criteria that
ensures learnability by iterative IIMs.

Theorem 4. There is an indexable class C € IT not having recursive finite thickness.

Next, we consider finite elasticity introduced by Wright [15].

Definition 8. Let C be an indexable class. C has infinite elasticity if and only
if there are an infinite sequence of elements xqy, x1, To, ... and an infinite sequence of
concepts ¢y, ¢1, Co, ... each in C such that, for all n € N, {xg,..., 2,1} C ¢, but
Tp & c,. C has finite elasticity provided that C does not have infinite elasticity.

Obviously, finite thickness implies finite elasticity. Therefore, we may easily conclude:

Corollary 5. There is an indexable class C ¢ I'T which has finite elasticity.

On the other hand, the indexable class C used in the demonstration of Theorem 4 does
not have finite elasticity as well. Consequently:

Corollary 6. There is an indexable class C € I'T which does not have finite elasticity.

3.2. Bounded Example Memory Inference

As it turns out, both IIMs with an a priori bounded example memory and feed-back
ITMs are more powerful than iterative ones. Interestingly enough, even the ability to store
exactly one distinguished example seriously increases the learning capabilities of iterative
ITMs.

Theorem 7.

(1) IT C BEM;,

(2) BEM, C BEMj1 for all k € IN.



The additional learning power of IIMs with an a priori bounded example memory
mainly comes from two sources. First of all, carefully chosen examples can be memorized.
A different version goes back to Osherson et al. [8] who associated with a learning device a
window allowing the IIM to inspect in every stage the last £ examples presented. However,
this approach does not enlarge the learning capabilities of iterative IIMs. Second, the
sequence of the stored examples is not required to converge. If it would, again, the
resulting learning power equates that of iterative machines.

Our next result states that bounded example memory IIMs are not able to capture the
whole learning power of conservative IIMs.

Theorem 8.
(1) cONSV\ Y BEM;, #o0.
2) Y BEM, c LIM.

3.3. Feed-Back Learning

Now we study to what extend, if ever, feed-back learning enlarges the learning capabil-
ities of iterative and bounded example memory IIMs, respectively. As the next theorem
shows, feed-back learning is more powerful than iterative inference, i.e., the ability to ask
whether or not a particular example did already appear seriously increases the learning
capabilities of iterative IIMs, too.

Theorem 9. [T C F'B

Next, we compare feed-back inference with conservative inference and learning in the
limit.
Theorem 10.
(1) CONSV \ FB # 0.
(2) FB C LIM.

Finally, the increase in the learning power obtained by bounded examples memories and
feed-back questions is incomparable. Consequently, there is no unique way to design
superior learning algorithms when space limitations are a serious concern.

Theorem 11.
(1) FB\ Y BEM, #9,
(2) BEM; \ FB # .

Corollary 12. BEM,; # FB for all k € IN*.

Parts of the latter theorem and corollary are obtained by comparing the learning
power of finite inference from positive and negative data (abbr. FIN—INF') with those of
bounded example memory learning and feed-back inference. Finite inference is similarly
defined as learning in the limit but the learner is restricted to a single output that must
be correct. As it turned out, feed-back learning from positive data can simulate finite
inference from positive and negative data while bounded example memory learning cannot
(cf. [7] for details). This is interesting, since it addresses the issue whether information



presentation can be traded versus memory limitations. The only known result in this
regard established FIN—INF C CONSV (cf. [16]).
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