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1. InTRODUCTION

The pregsent paper deals with the theory of inductive inference
which has attracted much attention of computer scientists (cf.,e.g.,
(5, 6, 10, 11]) and the references therein. Nowadays inductive
inference is widely considered as & form of machine liearning. Most of
the work having been done in this field within the last two decades
dealt with inference machines as passive recipients of date, i.e., the
teacher fed more and more information concerning the object to be
learned to the inference machine. Recently, angluin [1] has introduced
a learner and teacher paradigm in which the inference machine is
additionally allowed to ask a teacher questions. Subsequently, various
types of auestions have been proven to be very helpful in efficiently
learning appropriate concepts (¢f. [2, 3, 41). The recursion theoretic
version of Angluin’s teacher and learner paradigm has been introduced
and studied by Gasarch/Smith [9] very recently. In [9] learning by
asking questions is compared to learning by passively receiving data.
Thereby many interesting and surprising results have been pointed out.

In particular, Gasarch/ Smith [9] showed that the learning

+ The results were obtained during the author’s visit of the com-
puting centre of the Latvian State University.
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capabilities of inference machines asking aquestions are mainly
determined by the language which the inference mechanism uses to
phrase its aquestions. If the learner is allowed to ask first order
aquestions with plus and times, then every recursive function can be
learned by & single machine. 0On the other hand, allowing first order
questions with plus and less, then auestions containing a single
quantifier are sufficient to learn more than what is possible by
standard explanatory inference. But there is no longer a single
machine that learns the entire set of recursive functions.

However, in [9] several problems remained open. What we like to
present here is a refined comparison of learning wvia queries and
learning via passively reading data. Thereby we deal with the number
of allowed mind changes as well =as with the number of allowed
anomalies the final program may have. In order to achieve as sharp re-
sults as possible, we do not only consider the number of alternations
of aquantifiers, but even the number of quantifiers at all the posed

questions are allowed to involve.

2. Basic DEFINITIONS AND NOTATIONS

Unspecified notation follows Rogers [12]. In addition to or in
contrast with [12) we use the following:
N = {0, 1, 2,...} denotes the set of all natural numbers. The set of
all finite sequences of natural numbers is denoted by N*. The class of
all partial recursive and recursive functions of one variable is
denoted by P, R, respectively. By R(o,i) we denote the set of all
zero-one valued functions from R (recursive predicates). For f, g € P,
and x € N we write f(x) = g(x) if both f(x) and g{x) are defined and
equal. Let f, g € P, and let a € N, we write f = a @ and f = % 9 iff
card({x / f(x) # g(x)}) £a and card({x / f(x) # g(x)}) £ ®, respec-
tively. By ¢ we denote any fixed acceptable G8del numbering of P.
Instead of Ax@(i,x) we write ¢, Let f € P and 1et i € N such that
wi = f. Then i is said to be a program for f. For convenience it is
sometimes suitable to identify a function from R with the sequence of
its values; so Uilﬂm denotes the function f with f(i) = 1 and f(x) = 0
for all x # 1i.
We say that a sequence (jn)n€N of natural numbers converges to a num-
ber J iff jn = jJ for almost all n. By C we dencte a proper set

inclusion in contrast to €. Incomparability of sets is denoted by #.
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An (standard, passive} inductive inference machine (abbr. IIM) is a
total algorithmic device that successively takes as input the graph of
a recursive function and produces (from time to time) programs as
output.

Following Case/Smith [8] we define:

Definition 1 Let a € N U {*}, and let f € R. An IIM EX'— identifies f
iff the sequence of programs created by M converges to a number i such

that ¢ = _ f.

If M does EX'—identify f, we write f € EX (M). The collection of
ex’~inferrible sets is dencted by ex®. 1f convergence is achieved
after at most ¢ mind changes of M we write f € EXZ(M), for ¢ € N. By
Ex: we denote the collection of EX*~inferrible sets by IIMs restricted
to at most ¢ mind changes. For a = 00 we omit the upper index.

In the sequel we also deal with behaviorally correct inference which
has been introduced by Barzdin [7], and which has been intensively
studied in Case/Smith [8].

Definition 2 Let £ € R. An IIM BC-identifies f iff the seauence
(1k)

of programs creabted by M satisfies @i = f, for almost all k.
13

We write f € BC(M), if M does BC-identify f and set BC = {U € R / 3mM[u
€ BC(M)]}.

Following Gasarch/smith [9] we define aquery inference machines as

reN

follows:

A query inference machine (abbr. QIM) M is a total algorithmic device
taking as input a string of bits b and outputs ordered pairs (i,¥].
The bits of the string b correspond to the teacher’s answers to
previocus queries. Furthermore, the first component of M’s output
denotes @& program (possibly null) while the second component denotes
the new auestion of M to the teacher. The auestions are formulated in
some language L. MWithout loss of generality we assume that all
questions are in prenex normal form, i.e., quantifiers followed by a

quantifier-free formula.

Definition 3 Let L be & language, let f € R, and let a € N u {*}. A
QIM M EX®-identifies f iff, when the teacher truthfully answers M’s
questions (formulated in L)} about f, then the seauence of programs

created by M converaes to a number i such that @i = f.

1f M does EX'-identify f we write f € GEX'[LI(M}. For a fixed language
L. the collection of Exa—inferrible sets by some QIM is denoted by

@EX’[L]}. Again, if convergence is achieved after at most c¢ mind
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changes of M, we write f € @EXZ(L](M) and define QExz(L] = {ycR/
oM M [U s aﬁxz[L}(n)}}- Moreover, let f € GEX'[LI(M) for some QIM M
and some language L. If M’s guestions involve at most k quantifiers
and at most d 2 O alternations between blocks of existential and
universal aquantifiers, then we write f € QZEXEEL](N). Please note
that d = 0 means all questions are quantifier—free. The collections of
sets QZEXG{L} and G;EXEEL] are analogously defined as above. Again,
for a = 0 we omit the upper index.

Next we specify the languages that will be used. As in Gasarch/Smith
[9], the base language £ that will be used a&llows the use of =, A, =,
¥, 3, symbols for the natural numbers, variables ranging over N, and
a single function symbol J. The symbol ¥ will be used to represent the
function being inferred. The base language £ consists only of these
symbols. Furthermore, if £ is extended with additional symbols {e.g.,
a symbol for plus and a symbol for less), then we denote it just by
these symbols, and include the other symbols implicitely. That means,
instead of e.g. £ U {+,(} we shortly write [+,¢]. Furthermore,we use
the symbol [*] to denote an arbitrary extension of £

Finally in this section we generalize the notion of team inference,
originally introduced by Smith [13], to teams of QIMs. A team is a
finite ocollection of QIMs wusing the same language L. A team
[Mi,...,Mn) successfully QEX -infers a set UucR, if, for each f € U,
some team member M = successfully QEX [t ]~identifies f. We set
GEX°[L], _(n) = {U <R/ AM,,...,M ) [for every f € U there is some
M, 1 51 Sn, that GEX —infers fl}.

Now we are ready to present our results.

3. REsuLTs

First of all, we compare standard inference with an arbitrary but
fixed number of mind changes to learning via queries, also restricted
to at most a constant number of mind changes.

A careful analysis of the proof of Theorem 4 in [$] stating that
QOEX[*] = EX immediately yields the following result.

Theorem 1 Let a € N U {*}. Then for all ¢ € N we have QOEXa[*] = gx®
(o]

Cur next theorem shows that the situation considerably changes, if
questions involving 2 single quantifier are allowed, even in case that

only the base language £ is used.
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Theorem 2 lLet a € N u {*}. There is a U € G:EXOCQJ v Uex®y .
c20 ©

Proof. The wanted class U is taken from Wiehagen [15], and defined as

follows: U = {oip / 0o € N, i e N, i > 1, p € R, ,,» 0 = cip}.

First we show that U € G:EXO[Q}(N), for some QIM M. The machine M
successively asks Vx[¥(x} = 0 v §(x) = 1]

Vx[x # 0 > (3(x) =0 Vv 3(x) = 1)]

Yul(x # 0 A x #1) > (F(x) =0 Vv 8x) = 1)]
until the least k is found such that

Ye[(x # 0 A x 21 A ... Ax #Kk) ™ (B(x) =0 Vv 8(x) = 1)] is

answered affirmitively. Then find the wvalue f(k) by asking %(k) = 0,
By = 1, F(k) = 2.... Output fik].

It remains to show that U § U EXZ , for any a € N u {*}.
cz0

Suppose the converse, i.e., there is a ¢ € N such that U € EXZ(N)- We
shall construct a function f € U on which M fails, For the sake of
simplicity of presentation. we present the case ¢ = 2 ohly. The
generalization is then straightforward. Using Smullyan’s Recursion
Theorem [14], we define recursive functions 1‘2, 1 52z %6 of seven
variables. For short, let f, = lez(i,j,k,l,m.n,xJ, and set

fz(i,j,k,l,m,n,x) = z, if the numbers i, j, k, 1, m, n are not pair-

wise different, for 1 Sz $ 6. Now let i, i, k, 1, m, n be any pair-
wise different numbers. Define

fz = :i.t:lt for t = 1, 2, 3,... until the IIM M has produced its first
hypothesis on the function icm for 1 5z 5 6. Let to be the least

number such that M outputs its first hypothesis ho on the function
t
o [+
i0 . Set T = i0 .Then define for t = 1, 2, 3,

\‘,1 = ’!:Ut” and fz = 'L‘jlt until the IIM produces a second hypothesis on

® ®
i0 or on Ttil . Suspend defining fa’ f4, fs’ fs'

Suppose M does produce a second hypothesis h1 on orne of the functions
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ti or tjlm, and let ¢ be the extension of T on which M behaves thus.

[« 9} ©
Then define f3 = 10, f4 = TU, f1 = i0 , f2 = Tjl1 . Moreover, for
t =1, 2, 3,... define
fa = tGth and f4 = TOllt until the IIM M produces a third hypothesis

) ©
on TOkD or on T0ll . Suspend defining fs and fs‘

Suppose M produces a third hypothesis on ”CO’kD00 or on tollm, and 0 be
the extension of 10 on which M behaves thus. Then define

fg = 108, fs = tod, f, = tckDm, and f, = rollw. Moreover, set
fg = tooma” and fe = todn1”.

Now let i, j, k, 1, m, n be a tuple of fixed points due to Smullyan’s
Recursion Theorem {14]. It suffices to show that M does fail on a
function f,, for some z € {1,...,6}.

Case 1: M does not produce any hypothesis.

®
Then ¢ = i0 € i, a contradiction.

H
-
L}
L3
-

i 1 6

©

Case 2: M produces a hypothesis hG on i0O .
+
0

© ®
Then we have wi = f_ = i0 and wj = f_= 10 j1 . Consequently, f

1 2 1’

f2 € b, Since f1 is not a finite variant of fz’ M does either fail on

f1 or fz’ or it must produce a second hypothesis hi. Due to our

construction we get that f3, f, € U. Again, since f3 is not a finite

4

variante of f4 M either fails on f3 or on f4, or it produces a third

hypothesis. Remember that M produces st least 3 hypothesis on both, fa

and f4' in case it identifies them. In this case, M also produces at

least 3 hypotheses on fs and on fs' Moreover, fs and fs belong to U,

but fs is not a finite variante of fs‘ Hence M either fails on fs or

f or it has to produce a fourth hypothesis. Since only two mind

6’

changes are allowed, this yvields & contradiction.

g.e.d.
From the latter theorem it directly follows that inference via queries
is more powerful than standard inference, if both are restricted to at

most a fixed number of mind changes.
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Corollary 3 For all ¢ 2 0 we have;
(1) QEX[*]1\ EX_#8
O c
(2)  EX_c QEX [*]
I3 1 c

On the other hand, Gasarch/sSmith [9] have shown that G1Ex0£*} € EX.
Now, applying Corollary 3 we see that their result cannot be improved.
Allowing the query inference machine to make a single mind change
considerably enlarges the learning potential, i.e., even function
classes not contained in BC may become inferrible. Thus our next

result sharpens Gasarch’s and Smith’s [9] Theorem 6 stating that

olaxlt*] \ EX # &

Theorem 4 G:fixi["] \ BC # &

Proof. (Sketch) Let U be defined as follows:

Uu=4§{f / feER, ¢ = f} u {aom / « € Ny, Barzdin [7] has shown

£{0}
that U € BC. The QIM ] inferring U first asks Tor the value f{0). Then

it outputs T(0). Second it asks ¥Yx[J(x) = 0l, ¥x[x # o> $(x) = o],
etc., until eventually & k is found such that Yx[(x # 0 A x # 1 A ..
Ax # k) > B(x) = 0} is affirmatively answered. Next the GIM asks for
the wvalues f{(0),....f(k) and outputs an appropriate program for the
function f(ﬂ)...f(k)om.

g.e.d.
Keeping in mind that Q1Exo[*] € EX, one directly obtains the following

corollary.

Corollary 5 o:EXO[ﬂ c ozexl[*]

We believe that the latter corollary is the base of a hierarchy
defined in terms of mind changes. However, it is not known for which
query languages the hierarchy extends.

Our next theorem establishes a hierarchy in terms of the number of

quantifiers being all of the same type.

Theorem 6 For any k 2 1 and any fixed ¢ 2 0O we have

" 'EX (4,41 \ QTEX [+,¢] # 0
1 0 1 c
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It is an interesting open problem whether or not Theorem 6 remains
valid if the language [+,{] is replaced by [+,x], where x denoctes =
symbol for times. All that is known is that R € GiEX f+,x1 (cf. [91,
Theorem 9).

Looking at Theorem 2 and 4, the following problem arises naturally:
Does asking aquestions help to synthezise programs not having anomalies
for functions which can only be inferred with anomalies by standard
inference machines ? As we shall see, not even a single error can
always be corrected, if we restrict ourselves to a query language not

possessing the ability to ask undecidable gquestions.

1
Theorem 7  EX \ QEX[+,¢] # 4]
However, it remained open whether or not more alternations of
quantifiers could help. Nevertheless, we were able to generalize

Theorem 7 as follows:

Theorem 8 For all a € N we have
1
ex®C aiexa[+,<} £ 8
The proof uses a nontrivial extension of the proof techniques of [9].

The latter theorem again vields an infinite hierarchy.

0,EX[+, (] ¢ @ EX'[+,¢] ¢ ...c 2,EX*(+, () ¢ @ Ex**'+,¢] ¢

1 1

Moreover, in connection with Theorem 4 the following corollary

results.

s 0, EX [+, (1.

Corcllary 9 tet a € N, Then we have EXa+
et us now consider the case & = *, i.e., the program synthesized in
the limit is only required to compute a finite variant of the function
to be identified. As it turns out, there are function classes being
behaviorally correct identifiable, which cannot be Ex*—inferred by any

QIM, that uses the language [+,{] restricted to questions involving

only one type of quantifier.
Theorem 10  BC \ G EX'[+,¢] # 8
As an immediate consequence of Theorem 4 and 10 we get:

Corollary 11  BC # G EX'[+,(]
Next in this section we deal with questions involving more than one

alternation of blocks of quantifiers. First of all we could sharpen
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Theorem 12 of Gasarch/Smith [9] stating that ozﬁxots] \ EX # 9 as
follows:

Theorem 12 O§Ex0£53 \ BC # 8

The proof uses the same class U as the proof of Theorem 4 does.

Now let us have a closer look to the statement that QiEXG[*] £ EX
pointed out by Gasarch/Smith [{9] (cf. Theorem 5). This result actually
shows that the single blocks of quantifiers which the QIM uses to
phrase its questions can be eliminated, if one does not further insist
in restricting the inference machine to output & single guess only.
After having made this observation, it is natural to ask whether or
not such an elimination is alsc possible, if more than one alternation
of auantifiers is allowed. Our next theorem answers this question
affirmatively.
Theorem 13 For all d € N we have
F3 < *

9, EX [*] = @ EX[*]
Proof. (sketch) Let U € QG+QEX0{*](M), for some GIM M, and let f € U.
Then there is & finite sequence of questions such that, if bo’““’bn’
where bi € {0B,1}, O 5 i 2k, are the truth answers, then M on bo""’
bk produces its correct guess a, i.e., wa = f,
Furthermore, due to the assumption M poses questions involving at most
d+1 blocks of quantifiers. Since all questions are in prenex normal
form, these blocks of quantifiers are followed by a aquantifier—free
formula $. Any question involving at most d blocks of aquantifiers
remains unchanged. Let us now consider the questions exactly having
d+1 blocks of quantifiers. Then two cases are possible, i.e., the
first block (on the lefthand side) is either & block of universal
quantifiers or & block of existential qguantifiers. Let n be the length
of the first block, i.e., the first block looks like invxz.,.vxn in
the first case, or like 3113x2_..3xn in the second case. Each of these
questions is replaced by a potentially infinite sequence of auestions

as follows:

Case 1: ¥ = Vx1Vx2...Vxn3y1...3yz...¢(x1,...,xn,yi...)
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Let (611,321,...,an IR (aiz,a seeesB 1, (813’8 seeesd }Js... be any

1 22 2 23 3

fixed computable enumeration of all n-tuples of natural numbers. Then

Y is replaced by

w1 = 37,1---'372---¢(a11;321!---9an1171’---)5
v, = 3”1'“3”2"'¢(a1z’azz"“’anz’y1"")’
v, = 3y1‘..3y2--.¢(am,a23,.-.353,vi,..-),-..eto.

Case 2: 8 = 3x13x2...3anY1...Vyz..-¢(x1,..,,xn,y1,...)

Then €@ is replaced by

81 = Vy‘l"“vyz"-¢(al1’az‘l"..’anl’y‘l’.--),
82 = Vyi...Vyz...¢(a12,a22,...,an2,y1,...),
e3 = vy1“'Vyz'"¢(613’823""833’Y1"")’ ete.,

where the aij are defined as above.

At this point we make the folliowing important observation.

If Y = Vx1Vx2...Vxn3Y,1...3>'z..n¢(x1,---,xn,y,l...) is answered by "YES
then also every wi, Wf--- must be answered by "YES". If ¥ is answered
by "NO" then there is a tuple (a1w...,anm) such that ¢ has to be

answered by "NO". Moreover, such an m must occur after finitely many

steps.

Now let © = 3x13x2...3any1.ﬂ.Vyz...¢(x1,... 3X s¥,5-..) be answered by
"NO". Then also every question 91, 92,... must be answered by “NO“. If
8 is affirmatively answered then there is @ tuple (aim,...,anm) such

that Gm has to be affirmatively answered.

In both cases we have the following situation. Either we always get
the truth answer, i.e., the seauence of bits corresponding to the
answers to wi, wz,... or 81, 82,_._ is a constant one, or there is a
point at which it steps from 1 to 0O or from 0 to 1. Having eventually
reached this point, we stop asking questions from this sequence.

The wanted QIM M’ works as follows:

Replace the first question ¥ or 9 of M as described above, and pose

the question w1 or 81, respectively. Fed the result obtained to M.
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output M’s hypothesis, if any. and replace the new auestion ¥ or &
produced by M as described above. Now ask v, or 62, and W; or 8;,
respectively. Check if the answer to wz or 92 coincides with the
answer to wl or 61, respectively. In case it does, fed b0 and b1 to M,
where bo corresponds to the answer to wz or 82, and b1 corresponds to
the answer to w; or 8;, respectively.

In case it does not, fix the new obtained answer b0 and remove the
procedure generating Wl, wz""’ or 91,..., respectively. Fed b0 to M.
If M outputs a guess, output it. Otherwise fed again bB and t::‘l to M.
Then, if M produces a hypothesis, output it. Replace the next guestion
P or 9" as described above. Ask now ws or ©

v, or @

" 9"
2° and W1 or ¥,

3
respectively, if no replaced sequence has been removed yet. Otherwise
ask only the appropriate nonremoved questions. Proceed as described
above, i.e.. make the appropriate checks etc.

That means, in each stage of the work of M’ we look for the shortest
,...,b“ on which M produces a hypothesis. Applying the
observation made sbove, now it is clear that we will find the shortest

sequence bo’ b1

correct sequence on which M produces its correct guess. Consequently,
after having reached this point, M* only outputs the correct

hypothesis.

q.e.d.
If we allow the GQIMs wusing d+1 alternations of guantifiers to
formulate their questions to make a fixed number ¢ » O of mind changes
then the latter theorem does not seem to remain wvalid. However, all
that is known is that then a team of c+1 QIMs suffices to achieve the

desired elimination.
Theorem 14 Let d € N, and let ¢ » 0. Then

% *
Qd-l-lEXc[ 1< QdEx L ]teamIC+1)

It is an interesting open problem to find out for which languages no
team of ¢ QIMs is powerful enough.
Our last theorem shows that there may be a certain trade off between

the number of alternations of quantifiers and the number of



159

quantifiers allowed at all.
Theorem 15 QX [£] \ QEX(Z] # &

It seems hard to generalize the latter theorem.

4, CONCLUSIONS

We have examined, in some more detail, inference vis aueries
restricted to a fixed number of mind changes as well as inference via
queries where the finally synthesized programs may have anomalies.
Thereby we could show that even questions involving only one type of
qgquantifier may aid the learning process in two directions. First, the
number of mind changes can be reduced, and second, more function
classes become inferrible. On the other hand, the Theorems 6 and 15
show that the learning potential of QIMs does mainly depend on the
complexity of the allowed questions measured in the number of involved

quantifiers.

SUMMARY

Mind changes

ex? c  Eex° c < U ex® <  BC
0 1 c
c20

] | Il #
0 €x’[*1 c e EX’[*] ¢ < U @ EX[*] ¢ g.EX’ (]
4] 0 0 1 0 c 1 0

c20

Number of quantifiers

1 2 3
0EX (+,¢] € @EX [+,¢] c gEX [+,¢] ¢ ... < Q:Exc[+,<] c...

Number of allowed anomalies

0 EX[+,¢] < olEX1[+,<J c...c olsxa[+,<] c olaxa*’[+,<] <
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