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Abstract. Presented is an algorithm (for learning a subclass of erasing
regular pattern languages) which can be made to run with arbitrarily
high probability of success on extended regular languages generated by
patterns π of the form x0α1x1...αmxm for unknown m but known
c , from number of examples polynomial in m (and exponential in c ),
where x0, . . . , xm are variables and where α1, ..., αm are each strings
of constants or terminals of length c . This assumes that the algorithm
randomly draws samples with natural and plausible assumptions on the
distribution.
The more general looking case of extended regular patterns which alter-
nate between a variable and fixed length constant strings, beginning and
ending with either a variable or a constant string is similarly handled.

1 Introduction

The pattern languages were formally introduced by Angluin [1]. A pattern lan-
guage is (by definition) one generated by all the positive length substitution
instances in a pattern, such as, for example,

abxycbbzxa

— where the variables (for substitutions) are x, y, z and the constants/terminals
are a, b, c .
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Since then, much work has been done on pattern languages and extended
pattern languages which also allow empty substitutions as well as on various
special cases of the above (cf., e.g., [1, 6, 7, 10, 12, 21, 20, 22, 23, 26, 19, 29] and
the references therein). Furthermore, several authors have also studied finite
unions of pattern languages (or extended pattern languages), unbounded unions
thereof and also of important subclasses of (extended) pattern languages (see,
for example, [11, 5, 27, 3, 32]).

Nix [18] as well as Shinohara and Arikawa [28, 29] outline interesting appli-
cations of pattern inference algorithms. For example, pattern language learning
algorithms have been successfully applied toward some problems in molecular bi-
ology (see [25, 29]). Pattern languages and finite unions of pattern languages turn
out to be subclasses of Smullyan’s [30] Elementary Formal Systems (EFSs), and
Arikawa, Shinohara and Yamamoto [2] show that the EFSs can also be treated as
a logic programming language over strings. The investigations of the learnabil-
ity of subclasses of EFSs are interesting because they yield corresponding results
about the learnability of subclasses of logic programs. Hence, these results are
also of relevance for Inductive Logic Programming (ILP) [17, 13, 4, 15]. Miyano
et al. [16] intensively studied the polynomial-time learnability of EFSs.

In the following we explain the main philosophy behind our research as well
as the ideas by which it emerged. As far as learning theory is concerned, pattern
languages are a prominent example of non-regular languages that can be learned
in the limit from positive data (cf. [1]). Gold [9] has introduced the correspond-
ing learning model. Let L be any language; then a text for L is any infinite
sequence of strings containing eventually all strings of L , and nothing else. The
information given to the learner are successively growing initial segments of a
text. Processing these segments, the learner has to output hypotheses about L .
The hypotheses are chosen from a prespecified set called hypothesis space. The
sequence of hypotheses has to converge to a correct description of the target
language.

Angluin [1] provides a learner for the class of all pattern languages that is
based on the notion of descriptive patterns. Here a pattern π is said to be
descriptive (for the set S of strings contained in the input provided so far) if
π can generate all strings contained in S and no other pattern having this
property generates a proper subset of the language generated by π . But no
efficient algorithm is known for computing descriptive patterns. Thus, unless
such an algorithm is found, it is even infeasible to compute a single hypothesis
in practice by using this approach.

Therefore, one has considered restricted versions of pattern language learning
in which the number k of different variables is fixed, in particular the case of
a single variable. Angluin [1] gives a learner for one-variable pattern languages
with update time O(`4 log `) , where ` is the sum of the length of all examples
seen so far. Note that this algorithm is also computing descriptive patterns even
of maximum length.
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Another important special case extensively studied are the regular pattern
languages introduced by Shinohara [26]. These are generated by the regular pat-
terns, i.e., patterns in which each variable that appears, appears only once. The
learners designed by Shinohara [26] for regular pattern languages and extended
regular pattern languages are also computing descriptive patterns for the data
seen so far. These descriptive patterns are computable in time polynomial in the
length of all examples seen so far.

But when applying these algorithms in practice, another problem comes into
play, i.e., all the learners mentioned above are only known to converge in the
limit to a correct hypothesis for the target language. But the stage of convergence
is not decidable. Thus, a user never knows whether or not the learning process
is already finished. Such an uncertainty may not be tolerable in practice.

Consequently, one has tried to learn the pattern languages within Valiant’s
[31] PAC model. Shapire [24] could show that the whole class of pattern lan-
guages is not learnable within the PAC model unless P/poly = NP/poly for
any hypothesis space that allows a polynomially decidable membership problem.
Since membership is NP -complete for the pattern languages, his result does not
exclude the learnability of all pattern languages in an extended PAC model, i.e.,
a model in which one is allowed to use the set of all patterns as hypothesis space.

However, Kearns and Pitt [10] have established a PAC learning algorithm
for the class of all k -variable pattern languages, i.e., languages generated by
patterns in which at most k different variables occur. Positive examples are
generated with respect to arbitrary product distributions while negative exam-
ples are allowed to be generated with respect to any distribution. Additionally,
the length of substitution strings has been required to be polynomially related
to the length of the target pattern. Finally, their algorithm uses as hypothesis
space all unions of polynomially many patterns that have k or fewer variables5.
The overall learning time of their PAC learning algorithm is polynomial in the
length of the target pattern, the bound for the maximum length of substitution
strings, 1/ε , 1/δ , and |Σ| . The constant in the running time achieved depends
doubly exponential on k , and thus, their algorithm becomes rapidly impractical
when k increases.

As far as the class of extended regular pattern languages is concerned, Miyano
et al. [16] showed the consistency problem to be NP -complete. Thus, the class
of all extended regular pattern languages is not polynomial-time PAC learnable
unless RP = NP for any learner that uses the regular patterns as hypothesis
space.

This is even true for REGPAT1 , i.e., the set of all extended regular pattern
languages where the length of constant strings is 1 (see below for a formal

5 More precisely, the number of allowed unions is at most poly(|π|, s, 1/ε, 1/δ, |±|) ,
where π is the target pattern, s the bound on the length on substitution strings,
ε and δ are the usual error and confidence parameter, respectively, and ± is the
alphabet of constants over which the patterns are defined.
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definition). The latter result follows from [16] via an equivalence proof to the
common subsequence languages studied in [14].

In the present paper we also study the special cases of learning the extended
regular pattern languages. On the one hand, they already allow non-trivial appli-
cations. On the other hand, it is by no means easy to design an efficient learner
for these classes of languages as noted above. Therefore, we aim to design an
efficient learner for an interesting subclass of the extended regular pattern lan-
guages which we define next.

Let Lang(π) be the extended pattern language generated by pattern π . For
c > 0 , let REGPATc be the set of all Lang(π) such that π is a pattern of the
form x0α1x1α2x2 . . . αmxm , where each αi is a string of terminals of length c
and x0, x1, x2, . . . , xm are distinct variables.

We consider polynomial time learning of REGPATc for various data presen-
tations and for natural and plausible probability distributions on the input data.
As noted above, even REGPAT1 is not polynomial-time PAC learnable unless
RP = NP . Thus, one has to restrict the class of all probability distributions.
Then, the conceptional idea is as follows.

We explain it here for the case mainly studied in this paper, learning from
text (in our above notation). One looks again at the whole learning process as
learning in the limit. So, the data presented to the learner are growing initial
segments of a text. But now, we do not allow any text. Instead every text is
drawn according to some fixed probability distribution. Next, one determines
the expected number of examples needed by the learner until convergence. Let
E denote this expectation. Assuming prior knowledge about the underlying
probability distribution, E can be expressed in terms the learner may use con-
ceptionally to calculate E . Using Markov’s inequality, one easily sees that the
probability to exceed this expectation by a factor of t is bounded by 1/t . Thus,
we introduce, as in the PAC model, a confidence parameter δ . Given δ , one
needs roughly (1/δ) · E many examples to converge with probability at least
1 − δ . Knowing this, there is of course no need to compute any intermediate
hypotheses. Instead, now the learner firstly draws as many examples as needed
and then it computes just one hypothesis from it. This hypothesis is output, and
by construction we know it to be correct with probability at least 1− δ . Thus,
we arrive at a learning model which we call probabilistically exact learning (cf.
Definition 5 below). Clearly, in order to have an efficient learner one also has to
ensure that this hypothesis can be computed in time polynomial in the length
of all strings seen. For arriving at an overall polynomial-time learner, it must be
also ensured that E is polynomially bounded in a suitable parameter. We use
the number of variables occurring in the regular target pattern, c (the length
of substitution strings) and a term describing knowledge about the probability
distribution as such a parameter.

For REGPATc , we have results for three different models of data presenta-
tion. The data are drawn according to the distribution prob described below.
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The three models are as follows. Thanks to space limitations we present
herein the details and verification of our algorithm for the first model only. The
journal version of this paper will present more details. Σ is the terminal alpha-
bet. For natural numbers c > 0 , Σc is Σ∗ restricted to strings of length c .

(1) For drawing of examples according to prob for learning a pattern lan-
guage generated by π : one draws terminal string σ according to distribution
prob over Σ∗ until σ ∈ Lang(π) is obtained. Then σ is returned to the learner.

(2) One draws σ according to prob and gives (σ, χLang(π)(σ)) to the
learner.

(3) As in (2), but one gives σ to the learner in the case that σ ∈ Lang(π) ,
and gives a pause-symbol to the learner otherwise.

For this paper, the natural and plausible assumptions on prob are the fol-
lowing.

(i) prob(Σc) ≥ prob(Σc+1) for all c ;

(ii) prob(σ) = prob(Σc)
|Σc| , where σ ∈ Σc .

(iii) there is an increasing polynomial pol such that prob(Σc) ≥ 1
pol(c) for

all c .

Our algorithm is presented in detail in Section 3 below. The complexity
bounds are described more exactly there, but, basically, the algorithm can be
made to run with arbitrarily high probability of success on extended regular
languages generated by patterns π of the form x0α1x1...αmxm for unknown
m but known c , from number of examples polynomial in m (and exponential
in c ), where α1, ..., αm ∈ Σc .

N.B. Having our patterns defined as starting and ending with variables is not
crucial (since one can handle patterns starting or ending with constants easily by
just looking at the data and seeing if they have a common suffix or prefix). Our
results more generally hold for patterns alternating variables and fixed length
constant strings, where the variables are not repeated. Our statements above
and in Section 3 below involving variables at the front and end is more for ease
of presentation of proof.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the set of natural numbers, and let N+ = N \ {0} .
For any set S , we write |S| to denote the cardinality of S .

Let Σ be any non-empty finite set of constants such that |Σ| ≥ 2 and let V
be a countably infinite set of variables such that Σ ∩ V = ∅ . By Σ∗ we denote
the free monoid over Σ . The set of all finite non-null strings of symbols from
Σ is denoted by Σ+ , i.e., Σ+ = Σ∗ \ {λ} , where λ denotes the empty string.
As above, Σc denotes the set of strings over Σ with length c . We let a, b, . . .
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range over constant symbols. x, y, z, x1, x2, . . . range over variables. Following
Angluin [1], we define patterns and pattern languages as follows.

Definition 1. A term is an element of (Σ ∪ V )∗ . A ground term (or a word ,
or a string) is an element of Σ∗ . A pattern is a non-empty term.

A substitution is a homomorphism from terms to terms that maps each sym-
bol a ∈ Σ to itself. The image of a term π under a substitution θ is denoted
πθ . We next define the language generated by a pattern.

Definition 2. The language generated by a pattern π is defined as Lang(π) =
{πθ ∈ Σ∗ | θ is a substitution } .

We set PAT = {Lang(π) | π is a pattern} .

Note that we are considering extended (or erasing) pattern languages, i.e., a
variable may be substituted with the empty string λ . Though allowing empty
substitutions may seem a minor generalization, it is not. Learning erasing pat-
tern languages is more difficult for the case considered within this paper than
learning non-erasing ones. For the general case of arbitrary pattern languages,
already Angluin [1] showed the non-erasing pattern languages to be learnable
from positive data. However, the erasing pattern languages are not learnable
from positive data if |Σ| = 2 (cf. Reidenbach [19]).

Definition 3 (Shinohara[26]). A pattern π is said to be regular if it is of the
form x0α1x1α2x2 . . . αmxm , where αi ∈ Σ+ and xi is the i -th variable.

We set REGPAT = {Lang(π) | π is a regular pattern} .

Definition 4. Suppose c ∈ N+ . We define

(a) regm
c = {π | π = x0α1x1α2x2 . . . αmxm, where each αi ∈ Σc} .

(b) regc =
⋃

m regc .

(c) REGPATc = {Lang(π) | π ∈ regc} .

Next, we define the learning model considered in this paper. As already
explained in the Introduction, our model differs to a certain extent from the
PAC model introduced by Valiant [31] which is distribution independent. In our
model, a bit of background knowledge concerning the class of allowed probability
distributions is allowed. So, we have a stronger assumption, but also a stronger
requirement, i.e., instead of learning an approximation for the target concept,
our learner is required to learn it exactly. Moreover, the class of erasing regular
pattern languages is known not to be PAC learnable (cf. [16] and the discussion
within the Introduction).
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Definition 5. A learner M is said to probabilistically exactly learn a class
L of pattern languages according to probability distribution prob , if for all
δ , 0 < δ < 1 , for some polynomial q , when learning a Lang(π) ∈ L , with
probability at least 1− δ , M draws at most q(|π|, 1

δ ) examples according to
the probability distribution prob , and then outputs a pattern π′ , such that
Lang(π) = Lang(π′) .

As far as drawing of examples according to prob for learning a pattern
language generated by π is concerned, we assume the following model (the first
model discussed in the Introduction): one draws σ according to distribution
prob over Σ∗ , until σ ∈ Lang(π) is obtained. Then σ is returned to the
learner. (Note: prob is thus defined over Σ∗ .)

The other two models we mentioned in the Introduction are:

(2) There is a basic distribution prob and one draws σ according to prob
and gives (σ, χLang(π)(σ)) to the learner.

(3) As in (2), but one gives σ to the learner in the case that σ ∈ Lang(π) ,
and gives a pause-symbol to the learner otherwise.

We note that our proof works for models (2) and (3) above too.

For this paper, the assumptions on prob are (as in the Introduction) the
following.

(i) prob(Σc) ≥ prob(Σc+1) for all c ∈ N ;

(ii) prob(σ) = prob(Σc)
|Σc| , where σ ∈ Σc .

(iii) there is an increasing polynomial pol with prob(Σc) ≥ 1
pol(c) and

pol(c) 6= 0 for all c ∈ N .

3 Main Result

In this section we will show that REGPATc is probabilistically exactly learnable
according to probability distributions prob satisfying the constraints described
above.

Lemma 1. (based on Chernoff Bounds) Suppose X, Y ⊆ Σ∗ , δ, ε are properly
between 0 and 1/2 , and prob(X) ≥ prob(Y ) + ε . Let e be the base of natural
logarithm. Then, if one draws at least

2
ε2
∗ − log(δ)

log e

many examples from Σ∗ according to the probability distribution prob , then
with probability at least 1 − δ , more elements of X than of Y show up. The
number 2

ε2∗δ is an upper bound for this number.
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More generally, the following holds.

Lemma 2. One can define a function r(ε, δ, k) which is polynomial in k, 1
ε , 1

δ
such that for all sets X, Z, Y1, Y2, . . . , Yk ⊆ Σ∗ , the following holds.

If prob(X) − prob(Yi) ≥ ε , for i = 1, 2, . . . , k , and prob(Z) ≥ ε , and one
draws ≥ r(ε, δ, k) many examples from Σ∗ according to the distribution prob ,
then with probability at least 1− δ

(a) there is at least one example from Z .

(b) there are strictly more examples in X than in any of the sets Y1, ..., Yk .

Proposition 1. For every regular pattern π and all m ∈ N , Lang(π)∩Σm+1 ≥
|Σ| ∗ (Lang(π) ∩Σm) .

Proof. Since any regular pattern π has a variable at the end, the proposition
follows.

Proposition 2. For any fixed constant c ∈ N+ and any alphabet Σ , there is a
polynomial f such that for every π ∈ regm

c , at least half of the strings of length
f(m) are generated by π .

Proof. Suppose that π = x0α1x1α2x2 . . . αmxm , and α1, α2, ..., αm ∈ Σc .

Clearly, there is a length d ≥ c such that for every τ ∈ Σc , at least half of the
strings in Σd contain τ as a substring, that is, are in the set

⋃d−c
k=0 ΣkτΣd−k−c .

Now let f(m) = d ∗m2 . We show that given π as above, at least half of the
strings of length f(m) are generated by π .

In order to see this, draw a string σ ∈ Σd∗m2
according to a fair |Σ| -sided

coin such that all symbols are equally likely. Divide σ into m equal parts of
length d∗m . The i -th part contains αi with probability at least 1−2−m as a
substring, and thus the whole string is generated by π with probability at least
1 −m ∗ 2−m . Note that 1 −m ∗ 2−m ≥ 1/2 for all m , and thus f(m) meets
the specification.

We now present our algorithm for learning REGPATc . The algorithm has
prior knowledge about the function r from Lemma 2 and the function f from
Proposition 2. It takes as input c , δ and knowledge about the probability
distribution by getting pol .

Learner (c, δ, pol)
(1) Read examples until an n is found such that the shortest example is strictly

shorter than c ∗n and the total number of examples (including repetitions)
is at least

n ∗ r

(
1

2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n))
,
n

δ
, |Σ|c

)
.
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Let A be the set of all examples and Aj (j ∈ {1, 2, . . . , n}) , be the examples
whose index is j modulo n ; so the (k ∗ n + j) -th example from A goes to
Aj where k is an integer and j ∈ {1, 2, ..., n} .
Let i = 1 , π0 = x0 , X0 = {λ} and go to Step (2).

(2) For β ∈ Σc , let Yi,β = Xi−1βΣ∗ .
If A ∩Xi−1 6= ∅ , then let m = i− 1 and go to Step (3).
Choose αi as the β ∈ Σc , such that |Ai ∩ Yi,β | > |Ai ∩ Yi,β′ | , for β′ ∈
Σc − {β} (if there is no such β , then abort the algorithm).
Let Xi be the set of all strings σ such that σ is in Σ∗α1Σ

∗α2Σ
∗ . . . Σ∗αi ,

but no proper prefix τ of σ is in Σ∗α1Σ
∗α2Σ

∗ . . . Σ∗αi .
Let πi = πi−1αixi , let i = i + 1 and go to Step (2).

(3) Output the pattern πm = x0α1x1α2x2 . . . αmxm and halt.
End

Note that since the shortest example is strictly shorter than c ∗ n it holds
that n ≥ 1 . Furthermore, if π = x0 , then the probability that a string drawn is
λ is at least 1/pol(0) . A lower bound for this is 1/(2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n)) ,
whatever n is, due to the fact that pol is monotonically increasing. Thus λ
appears with probability 1− δ/n in the set An and thus in the set A . So the
algorithm is correct for the case that π = x0 .

It remains to consider the case where π is of the form x0α1x1α2x2 . . . amxm

for some m ≥ 1 where all αi are in Σc .

Claim. Suppose any pattern π = x0α1x1α2x2...αmxm ∈ regm
c . Furthermore, let

πi−1 = x0α1x1...αi−1xi−1 . Let the sets Yi,β , Xi be as defined in the algorithm
and let C(i, β, h) be the cardinality of Yi,β ∩ Lang(π) ∩Σh .

Then, for all h > 0 and all β ∈ Σc \ {αi} , we have C(i, β, h) ≤ |Σ| ∗
C(i, αi, h− 1) ≤ C(i, αi, h) .

Proof. Let σ ∈ Yi,β ∩ Lang(π) . Note that σ has a unique prefix σi ∈ Xi .
Furthermore, there exist s ∈ Σ , η, τ ∈ Σ∗ such that

(i) σ = σiβsητ and

(ii) βsη is the shortest possible string such that βsη ∈ Σ∗αi .

The existence of s is due to the fact that β 6= αi and β, αi have both
the length c . So the position of αi in σ must be at least one symbol behind
the one of β . If the difference is more than a symbol, η is used to take these
additional symbols.

Now consider the mapping t from Lang(π)∩Yi,β to Lang(π)∩Yi,αi which
replaces βs in the above representation of σ by αi – thus t(σ) = σiαiητ . The
mapping t is |Σ| -to- 1 since it replaces the constant β by αi and erases s
(the information is lost about which element from Σ the value s is).

Clearly, σi but no proper prefix of σi is in Xi . So σiαi is in Xiαi . The
position of αi+1, . . . , αm in σ are in the part covered by τ , since σiβsη



10 John Case et al.

is the shortest prefix of σ generated by πiαi . Since πi generates σi and
xiαi+1xi+1...αmxm generates ητ , it follows that π generates t(σ) . Hence,
t(σ) ∈ Lang(π) . Furthermore, t(σ) ∈ Σh−1 since the mapping t omits one
element. Also, clearly t(σ) ∈ XiαiΣ

∗ = Yi,αi
. Thus, for β 6= αi , β ∈ Σc , it

holds that C(i, β, h) ≤ |Σ| ∗ C(i, αi, h − 1) . By combining with Proposition 1,
C(i, αi, h) ≥ |Σ| ∗ C(i, αi, h− 1) ≥ C(i, β, h) .

Claim. If m > i then there is a length h ≤ f(m) such that

C(i, αi, h) ≥ C(i, β, h) +
|Σ|h

2 ∗ |Σ|c ∗ f(m)

for all β ∈ Σc \ {αi} . In particular,

prob(Yi,β ∩ Lang(π)) +
1

2 ∗ |Σ|c ∗ pol(f(m)) ∗ f(m)
≤ prob(Yi,αi

∩ Lang(π)).

Proof. Let D(i, β, h) = C(i,β,h)
|Σ|h , for all h and β ∈ Σc . Proposition 1 and

Claim 3 give that

D(i, β, h) ≤ D(i, αi, h− 1) ≤ D(i, αi, h).

Since every string in Lang(π) is in some set Yi,β , it holds that D(i, αi, f(m)) ≥
1

2∗|Σ|c . Furthermore, D(i, αi, h) = 0 for all h < c since m > 0 and π does
not generate the empty string. Thus there is an h ∈ {1, 2, ..., f(m)} with

D(i, αi, h)−D(i, αi, h− 1) ≥ 1
2 ∗ |Σ|c ∗ f(m)

.

For this h , it holds that

D(i, αi, h) ≥ D(i, β, h) +
1

2 ∗ |Σ|c ∗ f(m)
.

The second part of the claim follows, by noting that

prob(Σh) ≥ 1
pol(h)

≥ 1
pol(f(m))

.

We now show that the learner presented above indeed probabilistically ex-
actly learns Lang(π) , for π ∈ regc .

A loop (Step (2)) invariant is that with probability at least 1− δ∗(i−1)
n , the

pattern πi−1 is a prefix of the desired pattern π . This certainly holds before
entering Step (2) for the first time.

Case 1. i ∈ {1, 2, ...,m} .
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By assumption, i ≤ m and πi−1 is with probability 1 − δ∗(i−1)
n a

prefix of π , that is, α1, ..., αi−1 are selected correctly.
Since αi exists and every string generated by π is in XiΣ

∗αiΣ
∗ ,

no element of Lang(π) and thus no element of A is in Xi−1 and the
algorithm does not stop too early.

If β = αi and β′ 6= αi , then

prob(Yi,β ∩ Lang(π))

≥ prob(Yi,β′ ∩ Lang(π)) +
1

2 ∗ |Σ|c ∗ f(m) ∗ pol(f(m))
,

by Claim 3. By Lemma 2, αi is identified correctly with probability at
least 1− δ/n from the data in Ai . It follows that the body of the loop
in Step (2) is executed correctly with probability at least 1 − δ/n and
the loop-invariant is preserved.

Case 2. i = m + 1 .

By Step (1) of the algorithm, the shortest example is strictly shorter
than c ∗ n and at least c ∗m by construction. Thus, we already know
m < n .

With probability 1 − δ∗(n−1)
n the previous loops in Step (2) have

gone through successfully and πm = π . Consider the mapping t which
omits from every string the last symbol. Now σ ∈ Xm iff σ ∈ Lang(π)
and t(σ) /∈ Lang(π) . Let D(π, h) be the weighted number of strings

generated by π of length h , that is, D(π, h) = |Σh∩Lang(π)|
|Σ|h . Since

D(π, f(m)) ≥ 1
2 and D(π, 0) = 0 , there is a h ∈ {1, 2, . . . , f(m)} such

that
D(π, h)−D(π, h− 1) ≥ 1

2 ∗ f(m)
≥ 1

2 ∗ |Σ|c ∗ f(n)
.

Note that h ≤ f(n) since f is increasing. It follows that

prob(Xm) ≥ 1
2 ∗ |Σ|c ∗ (f(n) ∗ pol(f(n))

and thus with probability at least 1 − δ
n a string from Xm is in Am ,

and in particular in A (by Lemma 2). Thus the algorithm terminates
after going through the step (2) m times with the correct output with
probability at least 1− δ .

To get polynomial time bound for the learner, we note the following. It is
easy to show that there is a polynomial q(m, 1

δ′ ) which with sufficiently high
probability ( 1 − δ′ , for any fixed δ′ ) bounds the parameter n of the learning
algorithm. Thus, with probability at least 1 − δ′ − δ the whole algorithm is
successful in time and example-number polynomial in m, 1/δ, 1/δ′ . Thus, for
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any given δ′′ , by choosing δ′ = δ = δ′′/2 , one can get the desired polynomial
time algorithm.

We are hoping in the future (not as part of the present paper) to run our
algorithm on molecular biology data to see if it can quickly provide useful an-
swers.
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