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Abstract

The present paper deals with the learnability of indexed families of uniformly
recursive languages from positive data under various postulates of naturalness.
In particular, we consider set-driven and rearrangement-independent learners,
i.e., learning devices whose output exclusively depends on the range and on
the range and length of their input, respectively. The impact of set-drivenness
and rearrangement-independence on the behavior of learners to their learning
power is studied in dependence on the hypothesis space the learners may use.
Furthermore, we consider the influence of set-drivenness and rearrangement-
independence for learning devices that realize the subset principle to different
extents. Thereby we distinguish between strong-monotonic, monotonic and
weak-monotonic or conservative learning.

The results obtained are twofold. First, rearrangement-independent learning
does not constitute a restriction except the case of monotonic learning. Second,
we prove that for all but one of the considered learning models set-drivenness
is a severe restriction. However, set-driven conservative learning is exactly as
powerful as unrestricted conservative learning provided the hypothesis space is
appropriately chosen. These results considerably extend previous work done in

the field (cf. e.g. Schéfer-Richter (1984) and Fulk (1990)).
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1. Introduction

Gold-style formal language learning (cf. Gold (1967)) has attracted a lot of atten-
tion during the last decades (cf. e.g. Osherson, Stob and Weinstein (1986) and the
references therein). The general situation underlying Gold’s model can be described
as follows: Given more and more eventually incomplete information concerning a lan-
guage to be learned, an inference device (an IIM, for short) has to produce, from time
to time, a hypothesis about the phenomenon to be inferred. The sequence of hypothe-
ses has to converge to a hypothesis correctly describing the language to be learned.
Consequently, the inference process is an ongoing one. Within in the present paper
we study exclusively language learning from positive examples or, synonymously, from
text, i.e., exactly all strings belonging to the language which should be recognized will
be successively presented. The set of all admissible hypotheses is called space of
hypotheses or hypothesis space, for short.

In this paper we investigate the learning capabilities of learners that simultaneously
fulfill various combinations of desirable properties. A central question directly arising
when dealing with Gold’s-model of learning in the limit is whether or not the order
of information presentation does really influence the capabilities of [IMs. We distin-
guish between two degrees of order-independence. An IIM is said to be set-driven,
if its output does only depend on the range of its input. Schafer-Richter (1984) and
Fulk (1990) proved that set-driven IIMs are less powerful than unrestricted ones. A
natural weakening of set-drivenness is rearrangement-independence. An IIM is called
rearrangement-independent if its output does only depend on the range and length of
its input. As it turned out, any collection of languages that can be learned in the limit
may also be learned by a rearrangement-independent IIM (cf. Schafer-Richter (1984),
Fulk (1990)). However, the weakness of set-driven IIMs has been proved in a setting
allowing self-referential arguments. This might lead to the impression that this re-
sult is far beyond any practical relevance, since self-referential arguments are mainly
applicable in settings where the membership problem for languages is undecidable in
general.

Therefore, we study the power of set-driven and rearrangement-independent 1TMs
in a more realistic setting with respect to potential applications, i.e., we deal ex-
clusively with indexed families of non-empty and uniformly recursive languages. An
indexed family is a recursive enumeration of non-empty languages such that member-

ship is uniformly decidable (cf. Angluin (1980)).

A major problem, one has to deal with when learning from text, is to avoid or
to detect overgeneralization, i.e., hypotheses that describe proper supersets of the
target language. The impact of this problem results simply from the fact that a
text cannot supply counterexamples to such hypotheses. I[IMs that strictly avoid
overgeneralized hypotheses are called conservative (cf. Definition 6). Several authors
proposed the so-called subset principle to solve the problem of avoiding overgener-
alization (cf. e.g. Berwick (1985), Wexler (1992)). Informally, the subset principle
requires the learner to hypothesize the “least” language from the hypothesis space
with respect to set inclusion that fits with the data the IIM has read so far. In Lange
and Zeugmann (1993a) different notions of monotonic language learning has been in-
troduced. All these notions of monotonicity may be considered as formalizations of



learning realizing the subset principle to different extents. Moreover, the power of all
the monotonic learning models heavily depends on the choice of the hypothesis space

(cf. Lange and Zeugmann (1993b)).

In the sequel we study the impact of set-drivenness and rearrangement-indepen-
dence on all the models of monotonic learning in dependence on the hypothesis space.
The results obtained prove that rearrangement-independent learning does not consti-
tute a restriction in most cases. Note that neither Schafer-Richter’s (1984) nor Fulk’s
(1990) transformation of an arbitrary IIM into a rearrangement-independent one pre-
serves conservativeness or any other constraint implementing the subset principle.
Furthermore, we show that set-drivenness cannot be achieved in general. However,
conservative learning is exactly as powerful as set-driven conservative inference, if one
may carefully choose a hypotheses space that contains a description for every target
language, and, additionally, grammars that do not represent languages contained in
the target family of languages to be learned. We regard this result as a particular
answer to the question how a “natural” learning algorithm may be designed.

2. Preliminaries

By IN = {0, 1,2, ...} we denote the set of all natural numbers. We set IN* = IN\ {0}.
Let @0, 1, ©2,... denote any fixed programming system of all (and only all) partial
recursive functions over IN, and let ®q, ®;, ®,,... be any associated complexity
measure (cf. Machtey and Young (1978)). Then ¢y is the partial recursive function
computed by program £ in the programming system. Furthermore, let £,z € IN. If
or(z) is defined (abbr. ¢i(z) |) then we also say that ¢i(z) converges; otherwise,
or(z) diverges (abbr. pi(z) T). By (.,.) : N x IN — IN we denote Cantor’s pairing
functionie., (z,y) = ((z +y)* + 3z + y)/2 for all z,y € IN.

In the sequel we assume familiarity with formal language theory (cf. Hopcroft and
Ullman (1969)). By ¥ we denote any fixed finite alphabet of symbols. Let ¥* be the
free monoid over Y. Any subset L C ¥* is called a language. By co— L we denote
the complement of L. Let L be a language and ¢t = sg, 1, S2,... an infinite sequence
of strings from ¥* such that range(t) = {si|k € IN} = L. Then t is said to be a
text for L or, synonymously, a positive presentation. Let L be a language. By
text(L) we denote the set of all positive presentations of L. Moreover, let ¢ be a text
and let = be a number. Then, ¢, denotes the initial segment of ¢ of length z 4+ 1, and
tj; =df {Sklk S ZC}

Next, we introduce the notion of the canonical text that turned out to be very
helpful in proving several theorems. Let L be any non-empty recursive language, and
let sg,$1, S2,... be the lexicographically ordered text of ¥*. The canonical text of L is
obtained as follows. Test sequentially whether s, € L for z = 0,1, 2, ... until the first
z is found such that s, € L. Since L # ) there must be at least one z fulfilling the
test. Set tg = s,. We proceed inductively. For all z € IN we define:

tx *Szda41, if Sz4a+1 € L;
tz‘—}-l =

ty - s, otherwise, where s is the last string in ¢,.

In the sequel we deal with the learnability of indexed families of uniformly recursive



languages defined as follows (cf. Angluin (1980)). A sequence Lo, Ly, Lo, ... is said to
be an indexed family L of uniformly recursive languages provided all L; are non-
empty and there is a recursive function f such that for all numbers 7 and all strings

s € Y* we have
. _ 1, if s & L]‘,
1G:s) = { 0, otherwise.

In the following we refer to indexed families of uniformly recursive languages as
indexed families for short. Moreover, we often denote an indexed family and its range
by the same symbol £. The meaning will be clear from the context.

As in Gold (1967) we define an tnductive tnference machine (abbr. 1IM) to
be an algorithmic device which works as follows: The IIM takes as its input larger
and larger initial segments of a text ¢ and it either requests the next input string, or it
first outputs a hypothesis, i.e., a number encoding a certain computer program, and
then it requests the next input string.

At this point we specify the semantics of the hypotheses an IIM outputs. For
that purpose we have to clarify what hypothesis spaces we choose. We require the
inductive inference machines to output indices of grammars, since this learning goal
fits well with the intuitive idea of language learning. Furthermore, since we exclusively
deal with indexed families £ = (L;);ew we always take as space of hypotheses an
enumerable family of grammars (g, Gy, G2, ... over the terminal alphabet X satisfying
L C{L(G;)|j € IN}. Moreover, we require that membership in L((;) is uniformly
decidable for all j € IN and all strings s € ¥*. When an [IM outputs a number j, we
interpret it to mean that the machine is hypothesizing the grammar ;. Moreover, for
notational convenience we use £(G) to denote {L(G;)|;j € IN} for every hypothesis
space G = (G})jen.

Let ¢ be a text, and x € IN. Then we use M(t,) to denote the last hypothesis pro-
duced by M when successively fed ¢,. The sequence (M(t,)).cn is said to converge
tn the limit to the number j if and only if either (M (%,)).ew is infinite and all but
finitely many terms of it are equal to j, or (M(%;))sen is non-empty and finite, and
its last term is j. Now we define some concepts of learning. We start with learning
in the limit.

Definition 1. (Gold (1967)) Let £ be an indexed family, L € L, and let G =
(G;)jen~ be a hypothesis space. An IIM M CLIM-tdentifies L from text with
respect to G iff for every text t for L, there exists a 7 € IN such that the sequence
(M(t;))zen converges in the limit to j and L = L(G).

Furthermore, M C' LIM—identifies L with respect to G if and only if, for each L € L,
M CLIM—identifies L from text with respect to G.

Finally, let CLIM denote the collection of all indexed families L for which there
is an IIM M and a hypothesis space G such that M C'LIM—identifies L with respect
to G.

Suppose, an IIM identifies some language L. That means, after having seen only
finitely many data of L the IIM reached its (unknown) point of convergence and
it computed a correct and finite description of a generator for the target language.
Hence, some form of learning must have taken place. Therefore, we use the terms



infer and learn as synonyms for identify.

In the above Definition LIM stands for “limit.” Furthermore, the prefix C' is used
to indicate class comprising learning, i.e., the fact that £ may be learned with
respect to some hypothesis space comprising range(L). The restriction of CLIM to
class preserving inference is denoted by LIM. That means LIM is the collection
of all indexed families £ that can be learned in the limit with respect to a hypothesis
space G = ((;)jew such that range(L) = {L(G;)|; € IN}. Moreover, if a target
indexed family £ has to be inferred with respect to the hypothesis space £ itself, then
we replace the prefix C' by E, i.e., ELIM is the collection of indexed families that
can be exactly learned in the limit. Finally, we adopt this convention in defining all
the learning types below.

Moreover, an IIM is required to learn the target language from every text for
it. This might lead to the impression that an IIM mainly extracts the range of the
information fed to it, thereby neglecting the length and order of the data sequence it
reads. IIMs really behaving thus are called set-driven. More precisely, we define:

Definition 2. (Wexler and Culicover, Sec. 2.2 (1980)) An IIM s said
to be set-driven iff its output depends only on the range of its input; that is, iff
M(t,) = Af(tAy) for all x,y € IN, all textst, t provided t} = tA;

Schafer-Richter (1984) as well as Fulk (1990), later, and independently proved that
set-driven IIMs are less powerful than unrestricted ones. Fulk (1990) interpreted the
weakening in the learning power of set-driven [IMs by the need of IIMs for time to
“reflect” on the input. However, this time cannot be bounded by any a priorily fixed
computable function depending exclusively on the size of the range of the input, since
otherwise set-drivenness would not restrict the learning power. Indeed, Osherson,
Stob and Weinstein (1986) proved that any non-recursive IIM M may be replaced by
a non-recursive set-driven IIM M learning at least as much as M does. With the next
definition we consider a natural weakening of Definition 2.

Definition 3. (Schafer-Richter (1984), Osherson et al. (1986)) An IIM 1s
satd to be rearrangement-independent iff its output depends only on the range
and on the length of its input; that is, iff M(t,) = M(t,) for all x € IN, all texts t, i
provided tF = i,

We make the following convention. For all the learning models in this paper we
use the prefix s-, and r- to denote the learning model restricted to set-driven and
rearrangement-independent IIMs, respectively. For example, s— LIM denotes the
collection of all indexed families that are LM —inferable by some set-driven IIM. Next
we formalize the other inference models that we have mentioned in the introduction.

Definition 4. (Gold (1967)) Let L be an indexed family, L € L, and let G =
(G})jew be a hypothesis space. An IIM M CFIN-identifies L from text iff for
every text t for L, there exists a 37 € IN such that M, when successively fed t, outputs

the single hypothesis j, L = L(G}), and stops thereafter.

Furthermore, M C'FIN —identifies L with respect to G if and only if, for each L € L,
M CFIN -identifies L from text with respect to G.

The resulting learning type is denoted by CFIN.
Consequently, every hypothesis produced by a finitely working IIM has to be a



correct guess.

The next definition formalizes the different notions of monotonicity.

Definition 5. (Jantke (1991), Wiehagen (1991)) Let L be an indexed family
of languages, L € L and let G = (G});en be a space of hypotheses. An IIM M 1is
satd to identify a language L from text with respect to G

(A) strong-monotonically
(B) momnotonically

(C) weak-monotonically
uff
M LIM—-identifies L from text with respect to G and for any text t € text(L) as

well as for any two consecutive hypotheses j,, j.4r which M has produced when fed
tz and t,y) where k € INT the following conditions are satisfied:

(A) L(G},) € L(Gy,.)
(B) L(G;,)N L C L(G

Jz

N L

jz-{-k )

(C) if 7,y € L(Gy,) then L(Gj,) © L(Gj,,,)-

By CSMON, CMON, and CWMON, we denote the set of all indexed families £
for which there is an IIM M and a hypothesis space G such that M infers £ strong-
monotonically, monotonically, and weak-monotonically, respectively, with respect to
the hypothesis space G.

Definition 6. (Angluin (1980)) Let £ be an indexed family, L € L, and let G =
(G)je~ be a space of hypotheses. An IIM M CCONSERVATIVE—identifies
L from text with respect to G iff

(1) M CLIM-identifies L from text with respect to G,

(2) for every text t the following condition is satisfied:
if M on input t, makes the guess j, and then outputs the hypothesis joir # Jx
at some subsequent step, then t:_l_k Z L(Gy,).

Finally, M CCONSERVATIVE—identifies L with respect to G if and only if, for
each L € L, M CCONSERVATIVE-identifies L from text with respect to G.

The collection of sets CCONSERVATIVE is defined in an analogous manner as
above. Note that \AWMON = AXCONSERVATIVE for all A € {C,¢, E}, where ¢
denotes the empty string (cf. Lange and Zeugmann (1993b)).

3. Learning with Set-driven IIMs.

In this section we study the question under what circumstances set-drivennes does
restrict the power of the learning models defined above. We start with finite learning.
The next theorem in particular states that finite learning is invariant with respect



to the specific choice of the hypothesis space. Moreover, for every hypothesis space
comprising the target indexed family £ there is a set-driven IIM that finitely learns
L.

Theorem 1. EFIN = FIN = CFIN =s—FEFIN

As we have already mentioned, the examples of Schafer-Richter (1984) and Fulk
(1990) witnessing the restriction of set-driven learners are not indexed families. Hence,
we ask whether the uniform recursiveness of all target languages may compensate the
impact to learn with set-driven IIMs. The answer is no as the following theorem
impressively shows.

Theorem 2. s—CLIM C ELIM = LIM = CLIM

Proof. The part ELIM = LIM = CLIM is due to Lange and Zeugmann (1993b).
It remains to show that s—CLIM C ELIM.

The desired indexed family £ is defined as follows. For all £ € IN we set Loy =
{a*b"|n € IN*}. For all k € IN and all j € IN* we distinguish the following cases:
Case 1. = ®p(k) <y

Then we set Ly = Lk,0)-

Case 2. ®y(k) <
Let d = 2- ®4(k) — 5. Now, we set:
{abbm )1 <m < d}, ifd>1,
Lk =

{a*b}, otherwise.

L = (Lkj))jken is an indexed family of recursive languages, since the predicate
“®,(y) < 2”7 is uniformly decidable in ¢, y, and z.

Claim A. L & s—CLIM

Since the halting problem is undecidable, Claim A follows by contraposition of the
following Claim B.

Claim B. If there exists an [IM M witnessing £ € s—C' LIM , then one can effectively
construct an algorithm deciding for all £ € IN whether or not ¢i(k) converges.

Let M be any IIM that learns £ in the limit with respect to some hypothesis space
G comprising £. We define an algorithm A that solves the halting problem.

Algorithm A: “On input k execute (Al) and (A2).

(A1) For z = 0,1,2,... generate successively the canonical text ¢ of L gy until
M on input ¢, outputs for the first time a hypothesis j such that ¢} U
{a*b*+?} C L(G;).

(A2) Test whether @, (k) < z+ 1. In case it is, output “p;(k) converges.”
Otherwise output “pi(k) diverges.”

Since M has to infer L oy in particular from ¢, there has to be a least z such that
M on input t, computes a hypothesis j satisfying ¢t} U {a*b**?} C L(G;). More-
over, the test whether or not ¢t U {a*b**?} C L((G;) can be effectively performed,



since membership in L((G;) is uniformly decidable. By the definition of a complexity
measure, instruction (A2) is effectively executable. Hence, A is an algorithm.

It remains to show that ¢ (k) diverges, if = ®(k) < z+1. Suppose the converse;
then there exists a y > z+ 1 with ®,(k) = y. In accordance with the definition
of L, we obtain L = ¢} € L. Hence, t, is also an initial segment of a text { for L.
Due to the definition of A, we have L(G;) # L. Since M is a set-driven I1IM, L = ¢}
implies M(tAx_H) = j for all r € IN. Therefore, M fails to infer L from its text {. This
contradicts our assumption that M is a set-driven IIM which C'LIM infers £ with
respect to G. Hence, Claim B is proved.

The remaining part £ € ELIM is omitted. The reader is referred to Lange and
Zeugmann (1993d).

q.e.d.

As the latter theorem shows, sometimes there is no way to design a set-driven
[IM. However, with the following theorems we mainly intend to show that the careful
choice of the hypothesis space deserves special attention whenever set-drivenness is
desired.

Theorem 3. There is an indexed family L such that
(1) Ler—ESMON,
(2) L ¢s—LIM,

(3) there is a set-driven IIM M and a hypothesis space G such that M CSMON-
identifies L with respect to G.

As we have seen, set-drivenness constitutes a severe restriction. While this is true
in general as long as exact and class preserving learning is considered, the situation
looks differently in the class comprising case. On the one hand, learning in the limit
cannot always be achieved by set-driven IIMs (cf. Theorem 2). On the other hand,
conservative learners may always be designed to be set-driven, if the hypothesis space
is appropriately chosen.

Theorem 4. s—CCONSERVATIVE = CCONSERVATIVE

Proof. We only sketch the main ideas of the proof, and refer the interested reader
to Lange and Zeugmann (1993d) for any detail. The proof is partitioned into two
parts. The first part establishes the equality of class comprising conservative and
class comprising, rearrangement-independent conservative learning. The main ingre-
dients into this proof are the characterization of CCONSERVATIVE (cf. Lange and
Zeugmann (1993b)) as well as a technically simple, but powerful modification of the
corresponding tell-tale family.

Let £ € CCONSERVATIVE. Then there exists a space G = ((;)jen of hypotheses
and a recursively generable tell-tale family (7});ew of finite and non-empty sets such
that

(1) range(L) C L(G),
(2) for all y € N, T; C L(G),
(3) for all y,k € IN, if T; C L(Gy), then L(Gy) ¢ L(G;).



Using this tell-tale family, we define a new recursively generable family (Tj)je]N of
finite and non-empty sets that allows the design of a rearrangement-independent ITM
inferring £ conservatively with respect to G. But surprisingly enough, we can even
do better, namely, we can define an IIM witnessing £(G) € r— ECONSERVATIVE.
For all j € IN, we set Tj U T 0 L(G;). Note that the new tell-tale family fulfills
Properties (1) through (3) above

Now, the wanted IIM can be defined as follows: Let L € £(G), t € text(L), and
x € N.

M(t,) = “Generate Ty, for all k < z and test whether 7}, C tt C L(Gy). In case there
is one k fulfilling the test, output the minimal one, and request the next input.
Otherwise, output nothing and request the next input.”

Obviously, M is rearrangement-independent. We omit the proof that the [TM M
FECONSERVATIVE-identifies £(G).

The second part of the proof establishes set-drivenness. For that purpose, we define
a new hypothesis space G = (é]‘)je]]\] as well as a new IIM M. The basis for these
definitions are the hypothesis space G = (G})jen , and the IIM M described above.
The hypothesis space G is the canonical enumeration of all grammars from G and
all finite languages over the underlying alphabet ¥. Before defining the IIM M, we
introduce the notion of repetition free text rf(t). Let t = sg,s1,... be any text. We
set rf(ty) = sp and proceed inductively as follows: For all > 1, rf(t,41) = rf(tz),
if spp1 € rf(te)T, and v f(tyq1) = rf(tz), Sp41 otherwise. Obviously, given any initial
segment ¢, of a text ¢ one can effectively compute r f(t,). Now we are ready to present

the definition of M. Let L € L(G), t € text(L), and = € IN.

]\Nl(tx) = “Compute rf(t;). If M on input rf(t,) outputs a hypothesis, say j, then
output the canonical index of j in G and request the next input.
Otherwise, output the canonical index of ¢} in G and request the next input.”

Intuitively, it is clear that M is set-driven. The proof that M conservatively infers

L(G) with respect to G is omitted.
q.e.d.

The latter theorem allows a nice corollary that we present next.

_ Corollary 5. Let L € CCONSERVATIVE. Then, there is a hypothesis space
G = (G )jew comprising L such that ﬁ(g) € s—ECONSERVATIVE.

Proof. Let L € CCONSERVATIVE. Furthermore, due to the latter theorem, there
is a set-driven IIM M and a hypothesis space G such that M conservatively infers £
with respect to G.

Recall that G is a canonical enumeration of G = (G;)jen satisfying £ C £(G) and
of all finite languages over the underlying alphabet. Without loss of generality we
may assume that G fulfills the following property. If j is even, then L(éj) € L(G).
Hence, M infers L(é) from text. Otherwise, L(éj) is a finite langua,ge

We start with the definition of the desired hypothesis space G = ( i)jen If 7 is
even, then we set G = G Otherwise, we distinguish the following cases. If M



when fed the leX1cograph1cally ordered enumeration of all strings in L(Gj) outputs
the hypothesis j, then we set G = G In case it does not, we set C = G] 1

Now we are ready to define the desired IIM M which witnesses L:(g) € s—
ECONSERVATIVE. Let L € L(G), t € text(L), and 2 € IN.

M(t,) = “Simulate M on input t,. If M does not output any hypothesis, then output
nothing and request the next input.
Otherwise, let M(t,) = j. Output j and request the next input.”

Since M is a conservative and set-driven IIM, M behaves thus. It remains to
show that M learns L. Obviously, if L = L(Gyy) for some k € IN, then M infers L.

Therefore, since M simulates M, we are done.

Now, let us suppose, L # L(é%) for some k € IN. By definition of Q, we know that
L 1s finite. Moreover, since t is a text for L, there exists an x such that t+ = L for

all y > x. Recalling the definition of g and by assumption, we obtain the followmg
There is a number j such that ZW( ) =7, L =1tf = L(Gj) = L(C ). Hence,
M(t,) = j, too. Finally, since M is set-driven, we directly get M(¢,) = j for all y > j.

Consequently, M learns L.
q.e.d.

The next theorem gives some more evidence that set-drivenness is not that restric-
tive as it might seem.

Theorem 6.

(1) s=SMON \ EWMON # 0,
(2) s—=CSMON \ WMON # 0,
(3) s—EWMON \ MON # 0.

Proof. First of all, we show Assertion (1). Let us consider the following indexed
family Ly = (L(k;j))jken. For all k € IN, we set Loy = {a*b*|n € IN*}. For all
k € IN and all j € IN*, we distinguish the following cases:

Case 1. = ®p(k) <.
We set: L(k,j) = L(k’()).

Case 2. Py (k) < j.
Then, we set: Ly jy = {a*b™ |1 <m < & (k)}.

In Lange and Zeugmann (1993b) it was already shown that the family L, is
witnessing SMON \ EWMON # (. Hence, it remains to show the following claim.

Claim A. L,,, € s—SMON.

We have to show that there is a hypothesis space G = ((;);en which satisfies
range(Ls,,) = L(G) and a set-driven IIM M such that M does strong-monotonically
infer £ with respect to G.



First of all, we define the hypothesis space G. For all & € IN, we set L(Gq) =
jQNL(kJ) and L(G2k-1) = Lk,
Since L, is an indexed family, it is easy to verify that membership is uniformly

decidable for G. Moreover, we have range(Ls,,) = L(G).
Let L € L,,,, let t be any text for L, and let € IN. The desired I[IM M is defined

as follows.

M(t;) = “Determine the unique k such that ¢y = a®b™ for some m € IN. Test whether
or not tf € L(Gyy). In case it is, output 2k. Otherwise, output 2k — 1.7

Obviously, M changes its mind at most once. Since L(Gqx) C L(G2g—1), this mind
change satisfies the strong-monotonicity requirement. Furthermore, M converges to

a correct hypothesis for L. Accordingly to the definition, it is easy to see that M is
indeed a set-driven IIM. This proves Claim A, and therefore (1) follows.

In order to prove Assertion (2), we use the following indexed family L, =
(L(k,j))jken. For all k € IN we set Lo = {a*b"|n € INt}. For all k € IN and
all j € IN* we distinguish the following cases:

Case 1. =®y(k) >
We set: Ly = Lo

Case 2. @y (k) <
Let d = j — ®x(k). Then, we set:
Ly = {a® 0™ 1 <m < @y (k)} U {akp®eE+2Hm) 1y € INFY

By reducing the halting problem to Ly, € WMON, one may prove that L, ¢

WMON. An IIM M witnessing Lo, € s—CSMON can be easily designed, if one
choose the following space of hypotheses G = (G(rj));ren. For all k, j € IN, we set

L(Grpoy) = jQ]NL(kJ) and L(G(r,j41)) = Lxz)- We omit further details.

The remaining part can be easily shown. One has simply to choose the same
indexed family as used in Lange and Zeugmann (1993a) in order to separate WMON

and MON.
q.e.d.

4. Learning with Rearrangement-Independent
ITMs.

In this section we deal with rearrangement-independent learning. The first theorem
summarizes the known results.

Theorem 7. (Angluin (1980), Schafer-Richter (1984), Fulk (1990))
r—FELIM = ELIM = LIM = CLIM

A closer look to the proof of the latter theorem shows that neither Schafer-Richter’s
(1984) nor Fulk’s (1990) transformation of an arbitrary, unrestricted IIM into a



rearrangement-independent one preserves any of the monotonicity constraints defined.
And indeed, the situation is much more subtle as the following theorems show.

Theorem 8.
(1) r—=ESMON = ESMON,
(2) r=SMON = SMON.

Proof. First, we prove Assertion (2).

Let £ € SMON. Applying the characterization theorem for SMON (cf. Lange
and Zeugmann (1992)), we know that there exists a class preserving space of hypothe-
sis G = (G)jen as well as a recursively generable family (7});en of finite non-empty
sets such that

(i) for all j € IN, T; C L(Gy),
(ii) for all j,k € IN,if T; C L(GYy,), then L(G;) C L(Gy).

On the basis of this family (7}),en we define an IIM M witnessing £ € r—SMON.
Solet L € L, t € text(L), and 2 € IN.

M(t;) = “Search for the least j < z for which Ty, C ¢} C L(Gy). If it is found, output
7 and request the next input.
Otherwise, output nothing and request the next input.”

Obviously, M is a rearrangement-independent IIM. It remains to show that M
SMON-infers £ with respect to the hypothesis space G.

Claim 1. M infers L on text t.

Let j = pz[L(G,) = L]. Hence, there is a least x such that 7; C ¢}. Therefore, M
will output sometimes a hypothesis. For all £ < 7 with T, C L we may conclude that
L(Gy) C L. Otherwise, we obtain L(G;) = L(Gy) = L, because of T, C L(Gy) and
T; C L(Gj) (cf. (i1)). Hence, there exists a y such that ¢f € L(Gy) for all k < j with
Ty, C L. Therefore, M(t,4,) = j for all r € IN. This proves the claim.

Claim 2. M works strong-monotonically.

Let M(t,) = j and M(t,y,) = k for some z € IN and r € IN*. Due to the definition
of M, we have T; C t¥ C L(G}). Therefore, L(G;) C L(Gy) (cf. (ii)). This proves

the claim.
To sum up, M is witnessing £ € r—SMON. Thus, Assertion (2) is shown.
Next, we prove Assertion (1). Let £L € ESMON. Because of ESMON C SMON

as well as of Assertion (2), there exists a rearrangement-independent ITM M as well as
a class preserving hypothesis space G such that M SMO N-identifies £ with respect
to the hypothesis space G.

Applying Theorem 4 of Lange and Zeugmann (1993b), we know that there exists
some total recursive function f: IN x IN — IN satisfying



(i) for all 7 € IN, lim,_ f(j,2) = k exists and satisfies L(G;) = Ly,

(11) for all j, T € N, Lf(j@) C Lf(j,x+1)'

That means, f is a limiting recursive strong-monotonic compiler from G into L.

Given the 1IM AAI, the hypothesis space G as well as the limiting recursive strong-
monotonic compiler f, we define an I[IM M witnessing £L € r— ESMON. So, let
LeLl,te text(L), and z € IN.

M(t,;) = “Simulate M on input .. If M when successively fed t, does not output
any guess, then output nothing and request the next input.
Otherwise, let j = M(t,). If t¥ C L((;), then execute (Al). Otherwise, output
nothing and request the next input.

(A1) Find the least y € IN for which ¢} C Ly;,). Output f(j,y) and request
the next input.”

Since the membership problem for G is uniformly decidable, the test “t} C L(G;)”
can be effectively performed. Additionally, since £ is an indexed family, the test within
instruction (A1) can be effectively accomplished, too. Furthermore, by Property (i)
of f and since tf C L((G,), instruction (A1) has to terminate for every j € IN. Hence,
M is indeed an IIM. Due to its definition, M is a rearrangement-independent I1IM,
since the IIM M simulated by M is rearrangement-independent by assumption.

It remains to show that M strong-monotonically infers L from text ¢. Since M
infers L from text ¢ and by Property (i) of f, M converges to a correct hypothesis for
L. Finally, we show that M fulfills the strong-monotonicity constraint. Let f(j,y) and
f(k, z) denote two successively hypotheses generated by M. Hence, M(t,) = f(J,y)
and M(t,4,) = f(k,z) for some z € IN, r € IN*. We distinguish the following cases.

Case 1. j =k

Due to the definition of M, we may conclude y < z. Hence, Property (ii) guarantees
LiGw) € LiGo)-

Case 2. 7 # k

Since f satisfies (i) and (ii), we obtain Ly(;,) C L(G;). Furthermore, M’s definition
implies tf,, C Ly ). Hence, the given IIM M has generated the hypothesis 7 on

an initial segment of a text for Ly .) € £. Since M works strong-monotonically on
every text for every language L € £, we may conclude that L(G;) C Ly,z). Together
with Ly © L(G;), we get Lyiy) C Lir,z)-

Thus, M is rearrangement-independent and it works strong-monotonically. This

proves the theorem.
q.e.d.

Theorem 9.

(1) s—EMON C r—EMON C EMON,
(2) s=MON Cr—MON C MON.



Proof. First of all, we show r— EMON \ s—MON # (). By definition, this yields
immediately s—EMON Cr—FEMON as well as s—MON Cr—MON.

Lemma 1. r—EMON \ s—MON # )

By Theorem 3 we already know that r— ESMON \ s— LIM # (). Tt is easy to
verify that r— ESMON C r— EMON. By definition, s—MON C s— LIM. Hence,
we may conclude r— EMON \ s—MON # (). This proves the lemma.

It remains to show EMON \ r—MON # (. This statement directly implies
r— EMON C EMON and r— MON C MON, and hence, the theorem will be

proved.
Lemma 2. EMON\r—MON # )

We only present an indexed family £ = (Ly)rew which witnesses the desired sepa-
ration. A detailed proof can be found in Lange and Zeugmann (1993d). For all £ € IN
and all z € {0,...,3} we define:

{a*b} U Ay, if z=0,

I _ {a*c} U By, if z=1,
2 TN Lakb,dFe} U Ay, if 2 =2,
{a*b,a*c} U By, if z=3.

The remaining languages A, and By will be defined via their characteristic func-
tions fa, and fp,, respectively. For all k € IN and all strings s € {a,b, ¢}t we set:

1, if s =b%a™ and &y (k) = m,
Fanls) = { 0, otherwise.

1, if s =cfa™ and ®(k) = m,
0, otherwise.

o) = {

It is easy to see that £ is indeed an indexed family. d
q.e.d.
Finally, we consider rearrangement-independence in the context of exact and class
preserving conservative learning. Since conservative learning is exactly as powerful
as weak-monotonic one, by the latter theorem one might expect that rearrangement-
independence is a severe restriction under the weak-monotonic constraint, too. On
the other hand, looking at Theorem 4 we see that conservative learning has its pecu-
liarities. And indeed, exact and class preserving learning can always be performed by
rearrangement-independent ITMs.

Theorem 10.

(1) r— ECONSERVATIVE = ECONSERVATIVE,
(2) r—CONSERVATIVE = CONSERVATIVE.

The following figure summarizes the results obtained and points to the questions
that remain open.



exact class preserving class comprising
learning learning learning
FIN set set set
drivenness drivenness drivenness
rearrangement rearrangement
/ 7 ?
SMON independence independence )
. rearrangement | rearrangement o
MON independence independence )
rearrangement rearrangement set
CONSERVATIVE independence independence drivenness
IIM rearrangement rearrangement rearrangement
independence independence independence

For every mode of learning I D mentioned “rearrangement-independence +” indi-
cates r—ID = ID as well as s—ID C ID. “Rearrangement-independence =" implies
s—ID C r—ID C ID whereas “set-drivenness +” should be interpreted as s—I[D = ID

and, therefore, r—ID = ID, too.
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