Baltzer Journals July 19, 1996

Lange and Wiehagen’s Pattern Language Learning Algorithm:
An Average-Case Analysis with respect to its Total Learning
Time*

THOMAS ZEUGMANN

Department of Informatics, Kyushu University,
Kasuga 816-8580, Japan

E-mail: thomas@i.kyushu-u.ac.jp

The present paper deals with the best-case, worst-case and average-case behavior of Lange and
Wiehagen’s (1991) pattern language learning algorithm with respect to its total learning time.
Pattern languages have been introduced by Angluin (1980) and are defined as follows:

Let A = {0,1,...} be any non—empty finite alphabet containing at least two elements. Fur-
thermore, let X = {z;| i € IN} be an infinite set of variables such that AN X = . Patterns are
non—empty strings over AU X. L(w), the language generated by pattern 7 is the set of strings
which can be obtained by substituting non-null strings from 4™ for the variables of the pattern .

Lange and Wiehagen’s (1991) algorithm learns the class of all pattern languages in the limit
from text. We analyze this algorithm with respect to its total learning time behavior, i.e., the
overall time taken by the algorithm until convergence. For every pattern m containing k different
variables it is shown that the total learning time is O(|7r|210g|A‘(|.A| + k)) in the best-case and
unbounded in the worst-case. Furthermore, we estimate the expectation of the total learning
time. In particular, it is shown that Lange and Wiehagen’s algorithm possesses an expected total
learning time of O(2%k2|x|? log, 4 (k|A[)) with respect to the uniform distribution.

1. Introduction

The setting we want to deal with is the average-case analysis of pattern language learning
algorithms. The pattern languages have been formally introduced by Angluin [1], and have
been widely investigated recently (cf., e.g., Salomaa [20, 21|, and Shinohara and Arikawa [26]
for an overview). Moreover, Angluin [1] also proved that the class of all pattern languages is
learnable in the limit from positive data. Subsequently, Shinohara [24] dealt with polynomial
time learnability of subclasses of pattern languages. Nix [18] as well as Shinohara and Arikawa
[25] firstly outlined interesting applications of pattern inference algorithms. Recently, pattern
language learning algorithms have been successfully applied for solving problems in molecular
biology, too (cf., e.g. [23, 26]).

Additionally, the learnability of pattern languages has been considered in a variety of learn-
ing models. For example, Angluin [2] investigated the problem of using queries to learn the
class PAT of all pattern languages. Marron [17] refined this scenario by studying their learn-
ability from a single example and from queries. Subsequently, Lange and Wiehagen [12] showed
that PAT can be learned from disjointness queries, too; thus solving a problem that remained
open in [2]. Moreover, they also presented the first algorithm that iteratively learns all pattern
languages in the limit. Wiehagen and Zeugmann [28] dealt with consistent versus inconsistent
pattern language learning in the limit. Furthermore, Lange and Zeugmann [13] as well as Zeug-
mann, Lange and Kapur [29] investigated the learnability of pattern languages from positive
data under monotonicity constraints and with respect to different sets of allowed hypothesis
spaces, again considering learning in the limit.

*This work has been supported by the Grant-in-Aid for Scientific Research (C) from the Japanese Ministry
of Education, Science, Sports, and Culture under grant no. 07680403.

T. Zeugmann /Average-Case Analysis of Pattern Learning 2

Kearns and Pitt [9], Ko, Marron and Tzeng [11] and Schapire [22] intensively studied the
learnability of pattern languages in the PAC—learning model. In particular, Schapire [22] proved
that the class PAT is not PAC-learnable regardless of the representation used by the learning
algorithm, provided only that the learner is requested to output a polynomial-size hypothesis
that can be evaluated in polynomial time, unless P/, = NP /poly- However, the class Pat of
all patterns is not a polynomial time representation for PAT, since the membership problem
for PAT with respect to Pat is N'P-complete (cf. [1]). For further research along this line, the
reader is referred to [26].

Jiang et al. [8] proved that inclusion for pattern languages is undecidable. The latter result
has some implications to the learnability of all the pattern languages, too (cf. [29]). Finally,
Kilpelédinen et al. [10] studied the learnability of unions of simple patterns using the minimum
description length principle.

This continuous interest in the pattern languages and their applications motivated us to
initiate the analysis of pattern language learning algorithms with respect to their average-case
behavior. This is important for unifying the formal mathematical and the empirical approaches
to gain a better understanding of the behavior of machine learning algorithms. Moreover,
research along this line seems to be inevitable for obtaining results allowing assertions concerning
the efficiency of algorithms learning in the limit that are of major interest with respect to
potential applications.

The present paper deals with the algorithm proposed by Lange and Wiehagen [12]. In
particular, their algorithm learns the whole class of all pattern languages from positive data.
Lange and Wiehagen [12] showed that their algorithm has polynomial update time. However,
our goal is more ambitious. We analyze the best-case, worst-case and average-case complexity
of this algorithm with respect to the total learning time. The total learning time is the sum of
all update times taken by the algorithm until successful learning. In particular, we show that
the average-case complexity of Lange and Wiehagen’s [12] algorithm is O(2%k2|r|? log 4/ (k|Al))
with respect to the uniform distribution for any pattern 7 containing k different variables.

2. Preliminaries

Let IN ={0,1,2,...} be the set of all natural numbers, and let IN*T = IN'\ {0}. For all real
numbers x we define |x], the floor function, to be the greatest integer less than or equal to x.

Following Angluin [1] we define patterns and pattern languages as follows. Let A =
{0,1,...} be any non-empty finite alphabet containing at least two elements. By .4* we denote
the free monoid over A (cf. Hopcroft and Ullman [7]). The set of all finite non-null strings of
symbols from A is denoted by AT, i.e., AT = A*\{c}, where £ denotes the empty string. By | A
we denote the cardinality of .A. Furthermore, let X = {x;| i € IN} be an infinite set of variables
such that ANX = (). Patterns are non-empty strings over AUX, e.g., 01, 0xo111, 1zozo0z12270
are patterns. The length of a string w € A* and of a pattern 7 is denoted by |w| and |7|, respec-
tively. A pattern 7 is in canonical form provided that if k£ is the number of different variables
in 7 then the variables occurring in 7 are precisely zg,...,zx_1. Moreover, for every j with
0 < j <k —1, the leftmost occurrence of z; in 7 is left to the leftmost occurrence of ;. in 7.
The examples given above are patterns in canonical form. In the sequel we assume, without loss
of generality, that all patterns are in canonical form. By Pat we denote the set of all patterns
in canonical form.

Let # € Pat, 1 < i < |n|; we use 7(¢) to denote the i-th symbol in 7. If w(i) € A,
then we refer to 7(i) as to a constant; otherwise 7(i) € X, and we refer to 7(i) as to a
variable. By Ftvar(m) we denote the number of different variables occurring in 7, and by
#4,(m) we denote the number of occurrences of variable z; in 7. If #var(m) = k, then
we refer to m as to a k-variable pattern. Let k € IN, by Pat; we denote the set of all k-
variable patterns. Furthermore, let m € Paty, and let ug,...,uy_1 € AT; then we denote by

T. Zeugmann /Average-Case Analysis of Pattern Learning 3

m[xo: wo, . . ., Tk—1: ug—1] the string w € AT obtained by substituting u; for each occurrence of
xj, j =0,...,k —1, in the pattern 7. The tuple (ug,...,ur—1) is called substitution. Further-
more, if |ug| = --+ = |ug_1| = 1, then we refer to (ug,...,ur_1) as to a shortest substitution.
Now, let m € Patg, and let S = {(uo,...,ux—1)| uj € A*, j = 0,...,k — 1} be any fi-
nite set of substitutions. Then we set S(7) = {7[zo: ug, ...,z 1:ug_1]| (uo,...,ux_1) € S},
i.e., S(m) is the set of all strings obtained from pattern 7 by applying all the substitutions
from S to it. For every m € Paty we define the language generated by pattern w by L(w) =
{m[zo:uo, ..., Tp_1:ug_1]| wo,...,ux_1 € AT}. By PAT}) we denote the set of all k-variable
pattern languages. Finally, PAT = |J,c PAT}, denotes the set of all pattern languages over A.
Note that for every L € PAT there is precisely one pattern m € Pat such that L = L(w) (cf.
Angluin [1)).

In order to deal with the learnability of pattern languages we have to specify from what
information the learning algorithms should do their task. Following Gold [5] we may distinguish
between learning from positive data or both positive and negative data. However, the pattern
languages are a famous example for a non-trivial class of languages that can be learned from
positive data. Therefore, we consider in this paper learning from positive data, only. Formally,
let L C A*; then every mapping ¢ from IN onto L is called a text for L or, synonymously, a
positive presentation. By Text(L) we denote the set of all texts for L. Furthermore, let ¢ be a
text, and let n € IN. We set ¢, = ¢(0),...,t(n), and we refer to t, as to the initial segment of ¢
of length n + 1. Moreover, we define ¢, to denote the range of t,, i.e., t;7 = {t(i)| 0<i < n}.

Intuitively, a text for L generates the language L without any information concerning the
complement of L. Note that we allow a text to be non-effective.

As in Gold [5], we define an inductive inference machine (abbr. IIM) to be an algorithmic
device which works as follows: The IIM takes as its input larger and larger initial segments of a
text ¢ and on every input it first outputs a hypothesis, i.e., a pattern, and then it requests the
next input. Now we are ready to define learnability of pattern languages from positive data in
the limit.

DEFINITION 1

PAT is called learnable in the limit from text (abbr. PAT € LIM) iff there is an IIM M
such that for every L € PAT and every t € Text(L),

(1) for alln € IN, M(ty) is defined,

(2) there is a pattern w € Pat such that L(w) = L and for almost alln € IN, M(t,) = 7.

Whenever one deals with the average case analysis of algorithms one has to consider prob-
ability distributions over the relevant input domain. For learning from text, we have the fol-
lowing scenario. Every string of a particular pattern language is generated by a substitution.
Therefore, it is convenient to consider probability distributions over the set of all possible sub-
stitutions. That is, if 7 € Paty, then it suffices to consider any probability distribution D

over AT x ... x A*. For (ug,...,up_1) € AT x --- x AT we denote by D(ug,...,ux_1) the
k—times

probability that variable z(is substituted by ug, variable z; is substituted by w1, ..., and

variable xx_1 is substituted by uxz_1. Moreover, in order to arrive at admissible information

sequences, i.e., texts, we restrict ourselves to distributions D such that D(ug,...,u;_1) > 0 for

every (ug,...,ug_1) € AT x --- x AT. We refer to any such distribution as to an admissible

distribution for PATY,.

In particular, we mainly consider a special class of admissible distributions, i.e., product
distributions. Let k € INT, then the class of all product distributions for Patj is defined as
follows. For each variable z;, 0 < j < k—1, we assume an arbitrary probability distribution D;

T. Zeugmann /Average-Case Analysis of Pattern Learning 4

over AT on substitution strings. Then we call D = Dy x --- x Dj_1 product distribution over
AT x - x AT ie., D(ug,...,ur_1) = Hf;é Dj(u;). Moreover, we call a product distribution
regular if Dy = --- = Dj_1. As a special case of a regular product distribution we consider the
uniform distribution over A%, ie., D;(u) = 1/(2- |A|)¢ for all j € {0,---k — 1} and all strings
u € AT with |u| = £. Furthermore, with respect to potential applications it is also reasonable
to consider length biased uniform distributions over A™ defined as follows. Again, all strings
of length £, £ € INT, are defined to be equally likely but the “weight” factor for the length /£ is
not necessarily 1/2¢. Instead, we allow any sequence (1) tenv+ satisfying pg > 0 for all £ € INT,
and), pe =1 as “weight” factors.

Additionally, we assume familiarity with discrete probability theory. For the sake of com-
pleteness we recall some fundamental notions that are extensively used throughout the paper.
Let X be any random variable that takes natural numbers as its values. Then it is often
very convenient to study its probability generating function (abbr. pgf) Gx which is defined as
follows:

Gx(z) =) Pr(X =10)7* (1)

£>0

Note that all the coefficients in (1) are nonnegative, and that they sum to 1, i.e., Gx(1) = 1.
Thus, the power series (1) is absolutely convergent for all z with |z| < 1, where |z| denotes the
absolute value of z. Consequently, we may compute the first derivative of G x by differentiating
its summands, i.e.,

G(z) =) Pr(X=10)-£ 2" (2)
£>0

Moreover, G’y (z) is also absolutely convergent, and the radius of convergence of Gx and G's
coincide. Thus, the expectation and variance of X can be computed as follows:

B(X) = G%(1) (3)
V(X) = Gx(1) + Gx(1) - Gx(1)? (4)

provided the power series obtained still do converge for z = 1. Furthermore, if X is any random
variable that takes only nonnegative integer values, we can decompose its pgf into a sum of
conditional pgf’s with respect to any other discrete random variable Y as follows (cf. Graham,
Knuth, Patashnik [6]):

Gx(z)= 3 Pr(Y =y)gx,(2) (5)
yerg(Y)

Here rg(Y') denotes the range of Y, and gx, is the pgf for the random variable X|y, i.e., X under
the knowledge that Y = y. Hence gx|, just describes all the probabilities Pr(X =z |Y = y),
x € rg(X). For any further information concerning random variables and their probability
generating functions the reader is referred to Graham, Knuth and Patashnik [6].

Finally, our main goal consists in analyzing the average-case behavior of Lange and Wieha-
gen’s [12] pattern language learning algorithm with respect to its total learning time. Following
Daley and Smith [4] we define the total learning time as follows. Let M be any IIM that learns
all the pattern languages. Then, for every L € PAT and t € Text(L), let

Conv(M,t) =4 the least number m such that for all n > m, M(t,) = M (t,,)

denote the stage of convergence of M on t. Moreover, by Txs(t,) we denote the time to compute
M (ty). Finally, the total learning time taken by the IIM M on successive input ¢ is defined as

T. Zeugmann /Average-Case Analysis of Pattern Learning 5

TT(M,t) =g Zfiﬁ”(M’t) T (ty). Assuming any fixed probability distribution D as described
above, we aim to evaluate the ezpectation of TT(M,t) with respect to D which we refer to as
to the average total learning time.

Looking at the latter definition it is obvious that we have to analyze carefully the criterion
of convergence of the learning algorithm we are going to consider. This is best done by initially
studying the best-case as well as the worst-case behavior of the algorithm. Subsequently, our
strategy for determining the average total learning time is as follows. First, we present a
theorem that allows us to estimate the average total learning time in terms of the expected stage
of convergence (cf. Theorem 8). Next, we mainly reduce the estimation of the expected stage
of convergence to the estimation of the expected number of ezamples that are necessary to fulfil
the criterion of convergence and a term involving the average input length until convergence (cf.
Theorem 9). Then, we derive general formulae to determine the average input length. Finally,
we evaluate the resulting formulae for the uniform distribution and estimate E(TT(M,t)) for the
IIM realizing Lange and Wiehagen’s [12] pattern language learning algorithm (cf. Theorem 11).

The model of computation as well as the representation of patterns we assume is the same
as in Angluin [1]. In particular, we assume a random access machine that performs a reasonable
menu of operations each in unit time on registers of length O(log n) bits, where n is the input
length.

3. Lange and Wiehagen’s Algorithm

In this section we analyze the pattern language learning algorithm by Lange and Wiehagen
[12] (abbr. LWA) with respect to its worst-case and best-case behavior. For the sake of presen-
tation, let us first recall the LWA. The main operation executed by the algorithm is the union
of a pattern and a string defined as follows:

Let m € Pat, w € AT with |r| = |w|. The union of 7 and w, denoted by m U w, is the
following pattern 7. Fori =1,... |7, let

(1), if 7(i) = w(i)

(i) = zj, if (i) £Aw(i) &Ik <i:
[7(k) = 2j, w(k) = w(i), w(k) = n(i)]
T, otherwise, where m = #var(r(1)...7(i — 1))

where 7(0) = ¢ for notational convenience.

Now, the IIM M realizing the LWA can be defined as follows. Let m € Pat, and let
t = wo,wy, we, ... be any text for L(w). Set h_; = . Then,

M(h—lawO) = M(€7w0) = wWo,

and for all n > 1,

hn—l, if |hn_1| < |wn|
M(hnflawn) =h, = Wn, if |hn—1| > |wn|
hn—1Uwp, if [hn_1| = wn|

Note that the LWA exclusively uses its last guess h,_1 and the new string w, for comput-
ing its actual hypothesis h,. Algorithms behaving thus are called iterative. Iterative learning
algorithms are of special interest with respect to potential applications, since they allow incre-
mental learning, and they are clearly more efficient with respect to space than arbitrary IIMs.
However, in general incremental learning constitutes a severe restriction of the learning power

T. Zeugmann /Average-Case Analysis of Pattern Learning 6

(cf. Lange and Zeugmann [13,16]). Moreover, note that the LIWA outputs exclusively canonical
patterns (cf. Lange and Wiehagen [12]).

In the following, we mainly study the time complexity of the LWA. However, this analysis
will also provide insight into its space complexity.

3.1. BEST-CASE AND WORST-CASE ANALYSIS OF THE LWA

As already mentioned, we have to analyze the criterion of convergence for the LWA. We
assume input/output operations to be performed in unit time. Due to the choice of our model of
computation, the comparison of |k, _1| and |wy,| can be performed in time O(min{|h,_1|, |w,|})-
Moreover, it is convenient to perform the desired analysis in dependence on the number of
different variables the target pattern 7 possesses. If this number is zero, then everything is
trivial, i.e., the LWA immediately converges. Therefore, in the following let ¥ € INT, and let
m € Paty. Taking into account that |w| > |7| for every w € L(w), it is obvious that the LWA
can only converge if it has been fed sufficiently many strings from L(7) having minimal length.
Furthermore, as a closer look to the LWA immediately shows, after having seen one string from
L(7) having minimal length the LWA exclusively uses shortest strings from L(7) to possibly
change its actual hypothesis. Therefore, let

L(7)min = {w| w € L(n), |w| = ||}

As pointed out by Marron [17] (cf. Lemma 2.1., pp. 348) k+1 examples from L(7)pp are suf-
ficient to achieve convergence, e.g., one may take 7[zo:0,..., 25 1:0], w[zo: 1,21:0,...,25_1:0],
mlxo:0,21:1,29:0,. .., 2,-1:0], ..., w[xo:0,21:0,...,2,_1:1]. However, this bound is by no
means the best possible one as we shall show. For that purpose, first we make the following
important observation.

LEMMA 1

Let k € INT, and let m € Paty,. Then we have:
Every string from L(7)min s uniquely generated by a shortest substitution.

Proof
Let wi,ws € L(T)min, and let 4 = (uf,...,uj_;) as well as 4y = (u},...,uj_;) such
that w; = 7r[:v0:u(1), ... ,:ck_l:u}c_l] and we = ﬂ[xozu%, .. .,mk_l:ui_l]. Now, it suffices to show

that wy; = we implies 41 = u2. Suppose the converse, i.e., #; # 4. Then there exists a
j € {0,...,k — 1} such that ujl # u? Let £ € {1,...,|n|} be the least number such that
1

n(€) = zj. Since |uj| =+ =|uj_;| = |ud| =+ =|ui_,| =1, we directly obtain w;({) = uj as

well as wa(f) = u? Hence, we have wi(£) # wa({), a contradiction. O

Next, we introduce the notion of a good sample that will be very helpful for our intended
analysis.

DEFINITION 2

Let k € INT, let m € Paty, and let S = {wo, ..., wm—1} C L(T)min- S is said to be a good
sample of size m if the LWA, when successively fed wy, . .., wm,_1, converges to .

Clearly, the latter definition requires some justification, since the notion of a good sample of
size m may depend on the order in which the strings wy, ..., w,,—1 are presented to the learner.
However, it does not, since the LWA possesses another favorable property, i.e., it is set-driven

T. Zeugmann /Average-Case Analysis of Pattern Learning 7

(cf. Theorem 2 below). Set-drivenness has been introduced by Wexler and Culicover [27], and
is defined as follows.

DEFINITION 3

An IIM is said to be set-driven with respect to PAT iff its output depends only on the range
of its input; that is, iff M(tz) = M(ty) for all z,y € IN, and all tests t, t € U cpar Text(L)
provided t} =t} .

Note that in general one cannot expect to learn set-drivenly. For more information con-
cerning this subject the reader is referred to Lange and Zeugmann [15]. Now we are ready to
present the announced theorem.

THEOREM 2

The LWA 1is set-driven with respect to PAT.

Proof

Let 71, m € Pat, let t € Text(L(m)), t € Text(L(m)), and let 2,y € IN such that t} = &
We have to show that the IIM M realizing the LWA, when successively fed ¢, and fy, respectively,
outputs the same hypothesis, say «.

Let £ = min{|w|| w € t]}. Because of t} =}, we get £ = min{|w|| w € £}, too. Taking
M’s definition into account, it obviously suffices to consider M’s behavior when successively fed
0 = Wp,...,Wn, and & = Wy, ..., Wy, respectively, where w;, 0 < j7 < m and w;, 0 < j < n, are
all strings of length ¢ enumerated in ¢, and fy, respectively. Moreover, it is not hard to see that
o and & can be assumed to be repetition free, too, i.e., m = n. Note that range(o) = range(d),
since ¢ = tf.

Now, assume that 7 and 7 are output by M when successively fed ¢ and &, respectively.
Then, obviously we have || = |&|. If 7 = &, we are done. Thus, suppose 7 # 7. Furthermore,
let i € {1,...,|m|} be the least 7 such that 7(7) # (7).

Casel. m(i) € A

By the transitivity of the equality relation we may conclude that 7(i) € A can happen if
and only if 7(¢) = w;(i) for all j = 0, ..., m. However, if (i) # 7(¢) then there must be a string
W € range(d) such that w(i) # 7(i). Consequently, w(¢) # w;(¢) for all 7 = 0,...,m. But this
is a contradiction to range(o) = range(5).

Hence, we already know that 7 (i) = 7(¢) provided i is such that 7 (i) € A or 7(¢) € A, since
the same argument applies to 7.

Case 2. n(i) € X

Taking the latter remark into account we directly get 7 (i) € X, too. Hence, w(i) # #(i)
implies that there are x;, z,, j # z such that n(i) = z; and 7(i) = z,. Without loss of
generality, we may assume j < z. Then there exists a position p < ¢ such that 7(p) = z;,
since the LWA exclusively outputs canonical patterns. Therefore, by the choice of ¢ we can
conclude 7(p) = z;, too. Furthermore, let 7, ..., 7, be the sequence of hypotheses produced
by the LWA when successively fed o. Then we denote by r the least 7 € {0,...,m} such that
m7—1(p) # x; and 77(p) = x;. Consequently, 7,.(i¢) = x;, too. This is an immediate consequence
of the definition of the union operation, since it directly shows that variables distinguished once
remain distinguished. Thus, we immediately obtain w,41(p) = wry1(7),..., wy(p) = wp(i),

T. Zeugmann /Average-Case Analysis of Pattern Learning 8

since otherwise 7(p) # m(z). Hence, it remains to consider wy, ..., w;.

Case2.1. m_1(p) =a € A

In this case we can further conclude that wg(p) = --- = wy_1(p) = a. Moreover, we also
have m,_1(i) = b € A, since otherwise m,(p) # m.(¢). Consequently, wy(i) =--- = w,_1(i) = b.

Moreover, w,(p) # a and w,(i) # b, since m,(p) € X. On the other hand, m,(p) = 7(7), and
thus a = b. To see this, suppose the converse, i.e., a # b. As we have seen w,(p), w,(i) ¢ {a,b}.
But then m.(p) # 7 (i), by the definition of the union operation. Finally, a = b immediately
implies wy(p) = wy(i) # a, since otherwise again m,(p) # (7). This proves w(p) = w(i) for all
w € range(o). Now, an easy inductive argument directly yields #(p) = 7 (), a contradiction.

Case2.2. m,_1(p) =2 € X

Again, one easily verifies m,_1(i) = Z. Analogously as above one can go back to the first
hypothesis ' < r that contains for the first time at position p the variable Z. Therefore,
the same arguments apply. In case m/(p) € A we are done as above. Otherwise, we iterate
the argument mutatis mutandis. Since my(p) € A, the modified Subcase 2.1. must eventually
happen. O

The proof of the latter theorem directly implies the following corollary.

COROLLARY 3

Let k € INT, let m € Paty be arbitrarily fized, and let S C L(7)min be any good sample of
size m. Furthermore, let t € Text(L(m)) and x € IN such that S C t}. Then the LWA converges
to m when successively fed t,.

Next, we present a lemma that helps to keep the subsequent proofs technically simpler.

LEMMA 4

Let k € INT, let m € Paty, be arbitrarily fized, and let p = xg...T1_1. Moreover, let
S = {(uoy.--,ug-1)| u; € A i=0,...,k—1} be any set of shortest substitutions. Then we
have: The LWA converges on S(p) to p if and only if it converges on S(m) to .

Proof

First of all note that any set S of shortest substitutions contains at most |.4|*¥ many elements,
ie., S is finite. Moreover, by Lemma 1 we additionally know that |S| = |S(7)| for every
7 € Paty. Furthermore, it is easy to see that S(p) = S. By Theorem 2 we know that the LIWA
is set-driven. Hence, the union operation defined above canonically extends to sets of strings.
Now, assume US = p. We have to show that US(7w) = w. Let # = US(w); then |7| = |«|,
since S is a set of shortest substitutions. Suppose there exists an n € {1,...,|n|} such that
w(n) # m(n). Let i be the least number n satisfying 7(n) # m(n). Taking into account that
w(i) = w(2) for all w € S(7) provided 7 () is a constant, by the definition of the union operation,
we may directly conclude that 7 (i) # m(¢) can only happen if 7(i) ¢ A.

Claim 1. 7(i) ¢ A

Suppose the converse, i.e., 7(i) = a € A. By the definition of the union operation this can

happen if and ouly if a = 7[zg: ug, ..., Tx_1:ux_1](7) for all substitutions (ug,...,ux_1) € S.
Furthermore, since 7(i) € X, say n(i) = z; for some j € {0,...,k — 1}, we may immediately
conclude that u; = a for all substitutions (uo,...,ux—1) € S. Thus, US(j) = a in accordance

with the definition of the union operation; a contradiction to US = p. This proves Claim 1.
Consequently, 7(i) € X, too. Moreover, by Lemma 2 of Lange and Wiehagen [12], we
furthermore know that

T. Zeugmann /Average-Case Analysis of Pattern Learning 9

() 7 is a canonical pattern, and

(B) #var(7) < #var(m).

Let 7(i) = y, and 7(i) = ;. Then, (a) and (B) imply m < j, since 7 is also a canonical
pattern. Moreover, there must be an £ < ¢ such that #(¢) = z;,, too. Furthermore, since 4
is the least number n satisfying 7(n) # m(n), we additionally have 7(¢) = z,,,. Again, taking
the definition of the union operation into account, one can easily prove that w,, = u; for
all substitutions (ug,...,ux—1) € S. However, this would directly imply US(m) = US(j); a
contradiction to US = p.

The converse direction can be proved mutatis mutandis, and is thus omitted. O

By Lemma 4, whenever dealing with the number of strings from L(7)min, ™ € Paty, that are
necessary and sufficient, respectively, for the LWA to converge, it suffices to consider exclusively
the pattern p = x¢...x%x—1. The next theorem establishes a lower bound for the number of
examples from L(7)mi, needed by the LWA to converge. This number exclusively depends the
number £ of different variables occurring in the target pattern 7 and on the alphabet size |.A|.

THEOREM 5

Let k € INT, let m € Paty, and let |A| > 2. Then, at least |log| 4 (|A| +k —1)] + 1 ezamples
from L(7)min are necessary in order to achieve convergence of the LWA.

Proof

By Lemma 4 it suffices to consider the target pattern p = zg...zx_1, only. Now, given m
shortest substitutions (ug, ... ,u,lcfl), ooy (ugty ... ugt 1), we may write them in a table having
m rows and k columns as follows:

o cee Th—1

1 u(l) u,lﬂ_l
2 2

2 |uy ... oup
m m

mo | U U1

As the proof of Lemma 4 shows, in order to achieve convergence it is necessary that all
columns are pairwise different and that there is no constant column, i.e., no column j such that
uj = ... =ul". Now, there are N = (|A|™ — |A|)(JA|™ — (JA| + 1)) -...- (A" = (A + k - 1))
possibilities for k¥ such columns of length m. Hence, the minimal m is determined by the
condition N # 0. This condition is equivalent to |A|™ — (|A| + £k — 1) > 0. Thus, we obtain
m > [log| 4/(|A|+k—1)]. Consequently, at least [log 4 (| A|+%—1)|+1 examples from L(7)min
are necessary in order to achieve convergence of the LWA. O

At this point, it is only natural to ask whether or not the lower bound established by Theo-
rem 5 is tight. The answer to this question is also of particular importance for the average-case
analysis to be performed later. The affirmative answer is provided by our next theorem, and
we thus establish the announced improvement compared with Marron’s [17] bound of k£ + 1.

THEOREM 6

Letk € N, let m € Paty, and let | A] > 2. Then, there always exists a set S of |log| 4 (|A| +
k—1)] +1 examples from L(7)min such that US = .

T. Zeugmann /Average-Case Analysis of Pattern Learning 10

Proof

Let k € IN*, m € Paty, let |A] > 2, and set m = |log4(|A| +k —1)] + 1. We have to
construct a set S of m examples from L(7)min such that US = 7. Again, by Lemma 4 it suffices
to construct a set S of shortest substitutions having cardinality m such that US = p*, where
p* =xo...25_1. Moreover, by Theorem 2 we are done, if we could prove that the IIM realizing
the LWA converges to p* when fed the examples of S in a particular order.

Let n = |A| > 2, and let ag,...,ap—1 denote the elements of A. Clearly, the hardest cases
occur for £k = |A|™ — |A|, m = 2,3,.... Next, we inductively describe how the wanted m
examples can be constructed.

We start with m = 2. Hence, k = |A|> — |A| = |A|(J]A|] — 1). The first example u; =
(ug,--->up_y) is obtained by setting uj = ajmodjq) for j = 0,...,k — 1. The second example
uz = (ud,...,uj_;) is constructed as follows. We just take the |A| — 1 many cyclical shifts
of ag,...,a,_1 that are different from ag,...,a,_1 and write them one behind the other, i.e.,
U2 = (@1, Qp—1,805--,0p—1,00,---,dn—2). Now, it is easy to see that in the computation
of uy U uy always the “otherwise” case happens, i.e., u; Uuy = xp,...,z5_1 = p* (cf. Figure 1
for the A = {0,1, 2,3} case).

U1 6o 1 2 3 0 1 2 3 0 1 2 3
U9 12 3 0 2 3 0 1 3 0 1 2

up U ug ‘l‘o Ty Ty T3 Ty Ts Tg Ty T§ Tg Tip T11

Figure 1

We proceed inductively over m. Hence, we assume that for £ = |A|™ — |A| there is a set
Sm = {u1,...,un} of m shortest substitutions such that US = p*. Now, let k;,,q = | A|™ 1! —|AJ.
The desired m + 1 examples are constructed as follows. First, we take into account that
JA™ — A = JA[JA™ = [A] = (JA] = DIA™ + JA™ = JA] = (JA] = DA™ + k. In order
to simplify notation, we set £ = (|A| — 1)|.A|™. The first example v' is again defined to be
vjl- = @jmod|4| for j =0,..., king — 1. However, for the remaining m examples we clearly aim to
apply the induction hypothesis. Therefore, we distinguish between the first ¢ positions of the

shortest substitutions to be defined and the remaining k ones. The k rightmost positions of

V9, ...,Um+1 are defined to be uq, ..., un,, respectively. Furthermore, the leftmost £ positions of
V9, ...,Um+1 are defined as follows:

Observing that £ = (|A| —1)|.4]|.A|™ !, we define the leftmost |.4|(|.A| — 1) positions of vy to
be the |A| — 1 many cyclical shifts of ag,...,a,_1 that are different from ay,...,a, 1 written

one behind the other. Furthermore, the remaining positions are just defined by repeating the
block of the leftmost |.A|(|.A| — 1) positions of vy just [A|™~! — 1 many times. That is,

Vo =
(al, ey Ap—1,QA0y5---9Qp—1,a0y---,An—2,Q1 5.+, Ap—15A055+--5Qp—1,00y-..,an—2,
- ~ - N ~ A N ~ - N ~ -
the first the (] A|—1)th the first the (|A|—1)th
cyclical shift cyclical shift cyclical shift cyclical shift
A\ ~ A ~ 7
the leftmost block of length |A4|(].4]—1) the second block of length |A|(|.A|—1)
1 1
ey @1y 1,00,y Gp1,00, -« Gp—2,Ugy - -, Up_1)
- -\ 7/
" -~
the |A|™—1th repetition the k rightmost
of the block of all cyclical shifts positions

Next, we define v3 as follows. The leftmost |.A|(].4| — 1) positions of v3 are set to be equal to
ap, the next block of length |A|(|A| — 1) is set to be equal to ay, ..., the |A|th block of length

T. Zeugmann /Average-Case Analysis of Pattern Learning 11

|A|(JA] — 1) is set to be equal to a,—1. This defines a block of length (|.A| — 1)|A||A|, i.e., if
m = 2 we are done. If m > 2, we fill the remaining £ — (|.A| — 1)|.A|? positions by just repeating
this block |A|™ 2 — 1 times. That is, let z = | A|(].A| — 1), then

V3 =
2 2
(go,...,aol...,an,l,...,an,l,...,ao,...,ao,...,an,l,...,an,l,uo,...,uk_l))
~ ~ -~ J (N -~ 7\ ~)
the first the | A|th block the |A|™—2 block the k rightmost
z positions of length 2 of length (|.A|—1)|.A|2 positions
the first block of length (|.A|—1)].4]2
Subsequently, v4, ..., Upmy1 are analogously defined as vs. The only difference consists in
augmenting the number of repetitions of ayg, ..., a,_9, and a,_1, respectively, each time by the

factor A. Figure 2 displays the corresponding examples and hypotheses for the case A = {0,1},
k = 30, and m = 5. The vertical line in the table at position £ = 16 has been drawn to clearly
separate the recursively handled part.

nwo0101010101010101,01010101010101
»w10101010101 01010, 010101010101°01
T LOX1XQT1XOL1XT1TXQT1 Ty 1 T 1 Ty T1 01 0101O01TO01O0T1O01
vy 00110011001 10011, 1010101001 O01O0T1
T9| LOX1L2L3LYL1L2L3TOL] X2 3 Ty L1 L9 3| 5 Tg Iy g Ty Tg Ty Te 010101
wm/o0o000111100001111,0011001110100O0°1
T3] LOT1T2L3TAT5L6LTLOT] T2 T3 T4 Ts T T7| Tg T9 T10T11 T8 T9 T10Z11T12213%12213 0 1
vwf00000000111 111110000111 1001110
T4 LOX1XL2LILAL5LELTLILYLI0L11L12L13L14L15) L16L17L18L19L20L21X22L23L24X25L26L27L28L 29

Figure 2

Finally, in accordance with our construction it is easy to verify that the first two examples
force the LWA to introduce |A|(|A| — 1) variables. Subsequently, each example augments the
number of variables occurring in the £ leftmost positions by the factor |.4|. Moreover, by the
definition of our examples, one easily verifies that the variables introduced in the k rightmost
positions must have different names than those ones introduced in the / leftmost positions.
Hence, applying the induction hypothesis we are done. This proves the theorem for the hardest
cases.

The remaining cases are handled mutatis mutandis. Suppose |A|™ ™1 —|A| < k < |A|™—]|A.
Then, we perform the same construction as in the k& = |A|™ — |A| case, except that in the
rightmost part of the examples the positions not needed are deleted. |

Now we are ready to characterize the best-case and worst-case behavior of the LWA. This
is done by the next theorem.

THEOREM 7
Let k € INT, and let |A| > 2. Then we have:

(1) For every pattern m € Paty the LWA needs in the best-case simultaneously total learning
time O(|x|* log| 4/(lA| + k)) and space O(|x|) in order to infer the language L().

(2) For every pattern m € Paty and every n € IN there exists a text t € Text(L(w)) such that
simultaneously TT(M,t) > n and the space needed by the LWA to learn the language L(r)

exceeds m, i.e., the worst-case total learning time and the worst-case space complexity of
the LWA are unbounded.

T. Zeugmann /Average-Case Analysis of Pattern Learning 12

Proof

As we have seen, at least |log) 4/(|A|+k—1)]+1 examples are always necessary and in the best
case sufficient to learn every pattern m € Pat;. Hence, in the best-case the LWA has to perform
[log 4 (| A| +&—1)] +1 union operations over strings from L(7)mn. Each of them costs at most
O(|7|?) time. Therefore, for every text ¢ € Text(L(w)) starting with strings obtained by the
substitutions presented in the proof of Theorem 6 we have TT(L(r),t) = O(|r|* log 4/(| Al +k))-
Moreover, the algorithm has to store exclusively its last hypothesis and the new string fed in
order to compute its actual guess. Thus, the overall space complexity is O(|r|). This proves (1).

Let n € IN be arbitrarily fixed. Then, for every text ¢ € Text(L(w)) starting with a string
wo € L(m) such that |s| > n we already exceed the space bound n. Moreover, if ¢ continues
with a string w; satisfying |wy| = |wi|, then the LWA has to compute wy U w;. Hence, this
computation already exceeds the time bound n. Consequently, TT(L(7),t) > n. O

The latter theorem offers already some insight into the complexity behavior of the LWA
with respect to the total learning time and the amount of space needed by the LWA. However,
there is a giant gap between the best-case and worst-case behavior. Therefore, it is of particular
interest to analyze the average-case behavior of the LWA. This is done in the next section.

4. Average-Case Analysis of the LIWA

In this section we study the average case behavior of the LWA. Since we want to compute
the average total learning time, we start with a closer look at it. Let k € INT, m € Paty be
any pattern, and let ¢ = (wy,)pemw range over all randomly generated texts with respect to some
admissible distribution for Pat;. Then we want to compute E(TT (M, (wy))). By definition,
TT(M, (wy)) = Zfigv(M’t) Trr(hp—1,wy), since the LWA is iterative. However, the expectation
of TT(M, (wy)) is not just the sum of E(Ty(hy—1,wy)), since Conv(M,t) is itself a random
variable. Therefore, we first derive a formula to estimate E(TT(M,(wy))). For simplifying
notation, we use C' to denote the random variable Conv(M,t). Clearly, C' takes only natural
numbers as its values.

THEOREM 8

Let k € INT, let m € Paty be any pattern, and let t = (wp)new range over all randomly
generated texts t € Text(L(m)) with respect to some admissible distribution for Paty. Then the

expectation of TT (M, (wy)) can be estimated as follows:
E(TT(M, (w O(B(C)(V(|wol) + E*(|wol))) (6)
Proof

For the sake of presentation, we set X = TT(M, (wy)). Next we apply Formula (5) to
deduce the pgf for X. Hence, we may write

j{:}%" ng()

c>0
where

ng j{:}%“}(k Z _'EZJPT(ZE:th n— hqﬂn)——V)

v>0 v>0

T. Zeugmann /Average-Case Analysis of Pattern Learning 13

Moreover, in accordance with (3) we know that E(X) = G’y (1) provided G’y (z) converges for
z = 1. Furthermore,

ZPT gX|c(1)

c>0

Thus, we next compute g’X|c(1).

gX|c Zl/ Pr(X|c=wv)z"

v>0

and hence
93(|c(1) = ZV'PT(X|C=V ZV P’I‘(ZTM n—1,Wn) —l/>
v>0 v>0
Cc
= E(D Tulhn 1, wn)) = ZE(Tan,l,wn))
n=0 n=0

which is obviously convergent provided E(T;(hp—1,wy)) exists for all n = 0,...,n. A closer
look at the LWA immediately shows that Tps(h_1,wg) = |wg|. Furthermore, we may use

the following obvious worst-case bound: Tas(hy_1,w,) = O(min{|h, 1|, |wy,|}?) for all n > 0.
Therefore, we can easily estimate

E(Ty(hn-1,wn)) = O(E(Jwo|*)) = O(V (Jwo|) + E*(Jwol)) (7)

If this term is infinite, we are already done, since the statement of the theorem becomes trivial.
Assuming E(Th(hp—1,wy)) to be finite, we can put it all together, and we get:

B(X) = G'X(l):ZPT(Czc)-c-%ZE(TM(hn_l,wn))
n=0

c>0

IN

E(C)- Tfé‘{% Z E(Ty(hp-1, wn))}
n=0

Next, we estimate the term maxcso{% >.¢_ BE(Tam(hn-1,wn))}. Using the Estimate (7), we
obviously have

c>0

max{% ;)E(TM(hn_l,wn))} = O(V (lwo|) + E*(Jwo|))

and hence the theorem is proved. O

Now, Theorem 8 tells us what we have to compute in order to estimate the average total
learning time. Namely, we have to determine E(C), i.e., the expectation of the stage of conver-
gence as well as E(|wg|) and V' (Jwp|). This is done distribution independent as long as possible.
Subsequently, we consider in particular the uniform distribution and evaluate the derived terms.

In order to analyze E(|wp|) and V (Jwy|), one can proceed as follows. Let u = (ug,...,ux 1)
be any substitution. Because of

k-1 k-1

w0z uo, -y v upa]| = Im + D #a(m)(Juil = 1) < |l + |7 D (Jwil = 1),

=0 =0

T. Zeugmann /Average-Case Analysis of Pattern Learning 14

we additionally have

k-1
B(|nfzo: vo, ..ok vupa])) <l + ol B(Y (jwl) - 1)
1=0
k-1
V(Inlwo: wo, o i 1])) < o2V (Y (il - 1)
=0

For the particular interesting case of product distributions the latter formulae further simplify
as follows.

IN

|W|+|W|Z (fui]) = 1) (8)

E(|n[zo: uo, .., Tp—1:up-1]])

IN

V(|r[zo: uo, - -, Th—1: uk—1]]) |7T|2ZV(|W|) (9)
i=0
Consequently, for the application of (8) and (9) it suffices to study the pgfs G|,,| for the
random variables |u;| ranging over all possible lengths. That is, we have to study

Glus|(2) =D Pr(|us] = £)z (10)

>1

However, this study requires additional assumptions concerning the relevant probability
distributions. Therefore, we postpone this task until Subsection 4.2.

4.1. ESTIMATING E(C)

We continue with the estimation of E(C). By Theorem 5 we already know that for every
m € Paty at least [log) 4(]A| + & —1)] + 1 examples from L(7)psn are necessary in order to
achieve convergence of the LWA. Furthermore, Theorem 6 shows that this number is sometimes
sufficient, too. On the other hand, one can construct samples S C L(7) iy of size |.A|¥ ! that
are not good. This can be seen as follows. By Lemma 4 it suffices to consider p = z¢,...,Tx_1.
As the proof of Theorem 5 shows, in order to achieve convergence it is in particular necessary
that the sample S of shortest substitutions does not contain a constant column. However, we
may fix the first component of all shortest substitutions in S to be equal to ag. Since there
are precisely |.A|*~! shortest substitutions for 21,...,zx_1, the resulting sample of | A[*~! many
shortest substitutions is not good for p = zg, ..., Tx_1.

Finally, it is easy to see that every sample of elements from L(7)mi, that has at least
size |A*~1 41 is good. Consequently, the number of elements from L(7) i, needed to achieve
convergence of the LWA may considerably vary. Therefore, it is convenient to introduce another
random variable N for this number. As we have seen, N may take as values natural numbers
from {|log 4 (JA| +k = 1) +1, ..., |AF 1 +1}.

Hence, we may write the pgf for C' as follows:

|A[F 41

Go(z) = > Pr(N =n) - gcojn(2) (11)

where
Pr(N = n) denotes the probability that precisely n elements from L(7)p, are needed

gcin(2) denotes the cpgf for C|n, i.e., the pgf for C under the knowledge that N = n.

T. Zeugmann /Average-Case Analysis of Pattern Learning 15

Now, it turned out to be convenient to express the cpgf gc,(2) as follows:

gom(z) = Y g1 (2) (12)

where the functions g7, have the following meaning:

gr, describes the probabilities for the appearance of the first string wy from L(7)pin in a
randomly generated text.

g1, describes the conditional probabilities in dependence on the possible w; for the ap-
pearance of the second string wy from L(7)pin in a randomly generated text that fulfills
w1 # wa.

gr, describes the conditional probabilities in dependence on the possible wy,...w,—1 for
the appearance of the nth string w,, from L(7)nyi, in a randomly generated text that fulfills
Wy # Wy forallm =1,...,n — 1.

The random variables T, themselves refer to the lengths of the corresponding segments in
a randomly generated text. That is, 77 describes the possible lengths of initial segments of a
randomly generated text ¢ until the appearance of the first element w; from L(7)pin. Moreover,
T, expresses the possible lengths of the next segment in ¢ until the appearance of an element
wy from L(7)m, that is different from w;. In general T, describes the possible lengths of the
mth segment. The starting point of this segment is determined by the event that already m — 1
pairwise different strings from L(7), appeared. The end point of the mth segment is defined
by the appearance of the mth shortest string wy, from L(7)pi, in the randomly generated text
t that is pairwise different to all other strings from L(7), seen so far.

The next theorem shows why the approach undertaken turns out to be useful. In particular,
it reduces the estimate of E(C) to the computation of the expected number of elements from
L(7) min necessary for the LWA to converge and to the computation of the expectations for the
random variables T;,, introduced above.

THEOREM 9

Let k € INT, © € Paty be any pattern, and let t = (wy)new range over all randomly
generated texts with respect to some admissible distribution for Paty. Then the expectation of
the stage of convergence can be estimated as follows:

12 1 |A[F =141
E(C) < E(N)'maX{E(Tl)a §ZE(TJ)7 o AR T > E(Tm)}
j=1 m=1

Proof
In accordance with Formula (3) we obtain from (11)

|AF—141

E(C) = Gp(1) = > Pr(N=n))_gf,(1)
m=1

n=|log| 4 (|A|+k—1)]+1

T. Zeugmann /Average-Case Analysis of Pattern Learning 16

Taking into account that g7, (1) = E(Tm), and setting Pr(N = n) = 0 for all n = 1,...
[log 4 (|A] + & — 1), we obtain:

A1 41 n
B(C) = > Pr(N=n))_ E(Tn)
n=1 m=1
_ |A|§+1PT(N —n)em-t zn: E(T,)
n=1 n?n:l
|AF=141 1 |AJF=141
< n; Pr(Nzn).n.max{E(Tl), o AT mzﬂ E(Tm)}
A 41
_ E(N).max{E(Tl),. AT 1+1 Z B(T,

a

Next, we are going to derive formulae for the cpgf g7,,. Again, we perform the wanted
derivation in dependence on the number k of different variables in the target pattern =. More-
over, by Lemma 1 it suffices to deal with the probabilities of the shortest substitutions. Let
A={0,1,...,a — 1}. Then, we use b; to denote the shortest substitution (8},..., bf_l), where
bg €A j=0,....,k—1,and i =1 ... bffl. That is, ¢ is expressed as a—ary number including
leading zeros. For example, for A = {0,1,...,9} and £ = 4 we have by = (0 0,0,0), and

AlF—1
boggg = (9,9,9,9). Now, let D be any fixed probability distribution. Then, p = |Z D(b;) is

clearly the probability of success for the first shortest substitution. Hence, we obtaln

gri(z) = Y Pr(Ti=v)z" =Y (1-p)" 'pz

v>0 v>1
b
1-(1-p)=
Consequently, by Formula (3)
1
E(T1) = g7, (1) = ’ (13)

This was quiet easily done. However, the derivation of expressions for the remaining g7,
again involves conditional probabilities. For the sake of presentation, we first handle the case
m = 2, and show subsequently how to generalize it. We use Formula (5) and express the pgf
for T, as follows:

gr,(2) = Y Pr(Y =b)gnp,(2) (14)
b;eAk
where
-1
g (z) = Y (L=p+D0:)" (p— D(b:)z" (15)
UZI failure probability success prob.
increases decreases
(p— D(bi))z

T= (= p+ D)) (19

It remains to compute Pr(Y = b;). This is done by Bayes’ Theorem. Let H; = {b;}, i.e., H; is
the hypothesis that the first shortest element wy from L(7), seen so far has been generated by

T. Zeugmann /Average-Case Analysis of Pattern Learning 17

k_
the shortest substitution b;. Setting B = U'fi'o ! Hj the probability Pr(Y = b;) is clearly equal

to Pr(H;|B). Furthermore, the a posteriori probabilities Pr(H;|B) are obtained as follows:
Pr(B|H;)Pr(H;)

Pr(Y =b;) = Pr(H;|B) = A1 (17)
ZO Pr(B|H;)Pr(H;)
J:
Pr(BnNH;
Now, taking into account that Pr(H;) = D(b;) and that Pr(B|H;) = % =1 for all
(114
i €{0,...,|A|* — 1}, Equation (17) simplifies to
D(b; D(b;
Pr(y =by) = 20 _ D) (18)
[Al*x -1 P
> D(by)
Jj=0
Incorporating (16) and (18) into (14) and applying again (3) we obtain:
1 D(b;)
E(D)=gp()=~- Y ——i= (19)
PP~ Do)

Now, it is not hard to see how to generalize the latter derivation. Let b;,,...,b;, _, denote
the shortest substitutions that generated the m — 1 pairwise different strings wy, ..., wm,_1 from
L(7) min already seen. Then, Equations (14), (15) and (16) generalize as follows:

91, (2) = > Pr(Y = (biyys -+ s i1)90 |01y b, 1) (%) (20)
(Big seenibiy, g JECAR)M=1
bil-',ébij , LF#g
where
m—1 v_1 m—1
Il @) = Do(1=p+ 3 D)) (=D D(b;)) (21)
v>1 j=1 j=1
failure p;gbability success prob.
increases decreases
m—1
(»— -21 D(bi;))z
— J=
= — (22)
1-(1—-p+ 3 D(b;))z
i=1

For computing the probabilities Pr(Y = (bi,,...,b;, ,)) we again apply Bayes’ Theorem.
We set H, i1y = {(bigs -, by, ;) } for all tuples (b;y,...,bi,_,) € (AFYm—1 satisfying b;, #
bi; forall £,j € {1,...,m—1}, £ # j. The set B is again the union of all hypotheses H;, ;. _,).
Furthermore, Pr(Hg, . ;.) = H;":_ll D(b;;), since all substitutions are drawn independently.
Finally, taking into account that Pr(B|H;, . ;. ,)) =1, we obtain

77.11:[117(171,4)
7=1

PT(H(11,...,im_1)|B) = (23)

m—1
> [T D(b;.)
(Bjqensbj,, _)EAR)M—T 2=1
bjl;ébjl,,l;éi

T. Zeugmann /Average-Case Analysis of Pattern Learning 18

Finally, incorporating (22) and (23) into (20) and applying again (3) we obtain:

m—1
1 11 D(by)
‘7:
E(Tm) - m—1 ’ Z m—1 (24)
> [T D(b.) iyetiy, pecabmt p— S D(by)
(bjq eeibj,, VE(AR)M—1 z=1 bip#bij» £#7 j=1

The latter formula directly allows the derivation of lower and upper bounds for E(T,).
Let bmin, »- - -, bminy, denote the shortest substitutions that satisfy D(bmin,) = min{D(b;)| b; €
ARY, oL D(bming,) = min{D(b;)| b; € A*\ {bmin, .-, bmin,,_; }, respectively. Furthermore, we
analogously define by4z, 5 - - - 5 bmag, by replacing “min” by “max.” Then we have the following
corollary.

COROLLARY 10

For allm € IN, m > 2, the expectation of T, can be estimated as follows:

1 1

m—1 E(Tm) S m—1
p— D(bminj) p— D(bma:vj)
j=1 j=1

Proof
By (24) we have:

E(T,) = 1 — . Z]:ml_—

m 1
> I[I D(bj,) (iyobip,_pecatym=t p— 57 D(b;;)
(bjl bjm—l)e(Ak)m_l z=1 bilyébij’é#j Jj=1
bjl7ébji’l7éi
m—1
) _H1 D(by;)
‘7:
> m—1 ’ Z m—1
> I[I D(bj.) iyodin,_pecatym=t p— 37 D(bmin,)
(bjl bjm—l)e(Ak)m_l z=1 bilyébij’é#j Jj=1
bjl7ébji’l7éi
m—1
> IT D(b;;)
(biq senibiy, _ 1)EAR)M—T j=1
1 bip#bij o FJ
= m—1 ' m—1
p— E D(bminj) > I1 D(bjz)
j=1 (Bjy s 1’1'7;1—1)‘5(“419)m_1 7=1
bjf#bj’i’l#i
_ 1
- m—1
p— Z D(bminj)
j=1

The stated upper bound can be analogously proved. a

T. Zeugmann /Average-Case Analysis of Pattern Learning 19

This finishes the distribution independent estimate of E(C'). Clearly, in order to arrive at
better interpretable estimates of E(C) one has to evaluate E(T1),..., E(T,) as well as E(N)
for particular distributions. This is done in the next subsection.

4.2. RESULTS CONCERNING THE UNIFORM DISTRIBUTION

In this subsection we apply the Theorems 8 and 9 to the uniform distribution. The following
theorem expresses the average-case behavior of the LWA for this particular case.

THEOREM 11

Let k € INT, let |A| > 2, let 1 € Paty be any pattern, and let t = (wp)new Tange over
all randomly generated texts t € Text(L(m)) with respect to the uniform distribution. Then, we
have:

E(TT(M, (wy)) = O(2"k*|x|* log| 4/ (k|- A]))

Proof

First of all, we deal with the pgfs G|,;- Since the distribution under consideration is the
uniform one, the pgfs G|, are the same for all ¢ = 0,...,k — 1. Taking into account that
Pr(lu;] = £) = |A|*/(24 A% = 1/2¢ for all i € {0,...,k — 1} and £ € INt, we may rewrite
Equation (10) as follows

_ 2t 2
Gl (2) =D _ 57 = 5= |
>1
Hence, by Equations (3) and (4) we obtain:
E(Jlu;|) = 2 foralli=0,...,k—1
V(lui|) = 2 foralli=0,...,k—1

Now, applying (8) and (9) we have E(|wg|) < (k + 1)|x| and V(Jwo|) < 2k|m|?, respectively.
Therefore, we get:

O(V (lwo]) + E*(Jwo|)) = O(k*|7*) (25)

Next, we can directly apply Corollary 10 in order to compute the E(T},)s, since the lower
and upper bound stated there clearly match for the uniform distribution.

Since p = Ziﬁlg_l 1/(2JADF = 1/2F, by (13) we have E(T;) = 2*. Furthermore, an easy
calculation yields

E(Tpn) = 2LAD*/(JA]® = m +1). (26)
1< L
We continue with the evaluation of max{)s 3 J:ZlE AT mz_l E(Tm)}
in order to apply Theorem 9.
M A1
Claim 1. maX{E(T]_), ceey m Z E(Tm)} |A|k 1 1 Z E

m=1

n+1 n
Obviously, it suffices to show that n%_l > BE(Tn) > 2 3 E(T,) for all n > 1. Since
m=1

m=1

T. Zeugmann /Average-Case Analysis of Pattern Learning 20

n
E(Tyhy1) > E(T),) for all m =1,...,n, we know that n- E(T,11) > > E(T};,). Therefore,

m=1

n

n- Y BE(Tw)+n-ETwn) > n-Y E(Tn)+ Y E(Ty)
m=1 m=1

m=1
and hence
n+1 n
n-> B(Ty) > (n+1)) E(Tn)
m=1 m=1
This proves Claim 1.
|1 +1
Now, it is not hard to estimate the term ARl mg_:l E(T,,). Looking at (26) we see

that the biggest summand equals (2|.4])*/(JA[¥ — |.A|*~!). Thus, we estimate the maximum by
replacing all summands by the maximal one. Thus we obtain:

[A*F—141 [AF-14+1

A X PO = et X pen
JAF-L+1 4= AT 41 A= AR —m+1
m=1 m=1
<« 1 S LT
AFTHT 2o AR AT
1 k-1 2k AL
L —). 2
A D
2MAL _
— < gkl 2
A-1= 0

where the latter estimate is due to |A| > 2.
We finish the proof by estimating the expectation of the number of elements from L(7)min
needed by the LWA to converge, i.e., we deal with E(N).

LEMMA 12

Let k € INT, and let m € Paty, be any pattern. Then, the average number of examples from
L(7) min needed by the LWA to converge is of order log| 4 (k-|A|), i.e., E(N) = O(log) 4/(k-|Al)).

First of all, by Corollary 3 we know that Pr(N = n) equals the ratio of all good samples of
size n and all samples S C L(7)i, of size n. Moreover, by Lemma 4 it again suffices to deal
with p =z ...2;_1. Hence, we have to study the probabilities that a randomly chosen subset
of n pairwise different shortest substitutions constitutes a good sample of size n. This is done
by applying the principle of inclusion and exclusion (cf., e.g., Pélya, Tarjan and Woods [19]).
Now, the proof of Lemma 4 shows how to chose the relevant properties. As we have seen, a
sample of size n is not good if and only if it contains a constant column or at least two columns
of it are identical. Hence, we may define the following properties.

(a) x; = const fori =0,...,k—1,

(B) s =xj for all 4,5 € {0,...,k — 1} with ¢ # j.

Therefore, in total we have z = k + (];) many properties. By N; we denote the number of
samples fulfilling property ¢ = 0,...,2, by N;, ;, we denote the number of samples satisfying

T. Zeugmann /Average-Case Analysis of Pattern Learning 21

simultaneously the properties ¢; and 2, 41 # 42, and so on. Then, the number of good samples
of size n is obtained by

v= (1) - ZN+Z S Nim X 5 N et (DN

11=122=21+1 i1=1142=191+123=t2+1

k
Note that (V}J) refers to the number of all possible samples of size n. However, the precise
computation of all those numbers Nil,_“ij is quite complicated. Therefore, we restrict ourselves

z
to calculate the rather rough estimate N* > ('“ilk) — >° N;. In order to simplify notation we
i=0

set a = |A|.

We continue with the calculation of V; for¢ = 0,...k—1. If z; = const, then there are (a:l)
possibilities to choose the remaining free positions in the shortest substitutions. Moreover, each
resulting sample of shortest substltutlons can be varied by choosing a different constant for z;.

Therefore, there we have IV; = a() Since there are k possible choices for i, we obtain:

HNZ- — k- a<"“k_1) (28)

n
=0

Next, we consider N; for i = k,...,z — 1. Let z;,x; with ¢ # j be arbitrarily fixed. Then there
are a*~! many possibilities to choose the values of all zo,...,z;_1 except zj. Clearly, x; is

already defined by specifying z;. Hence, there are (a’: 1) samples of size n fulfilling z; = ;.
Finally, since there are (’2“) many choices for pairs z;, x; we have:

Sa- ()(%)

Putting (28) and (29) together and taking into account that Pr(N < n) > N*/(%) we obtain
the following estimate:

k—1 k ak—l ak—l k ak—l
—k-a — k-a —
prv <z B)kaC) = O ket -)
(%) (%)
Now, it suffices to estimate the rightmost term in the latter equation. Applying the definition
of the Binomial coefficients and reducing the resulting fraction, we get:

k- a(a’*n—l) _ (l;) (a’“n—l) B (k ca+ (];)) (ch_1 - 1) e (ak_1 —-n+ 1)
(a’“) - (aF —1)...(aF —n+1)
k-a+ (’;)

an

The latter inequality is easily obtained by applying (a*~! — £)/(a* — £) < 1/a for all £ =

1, ..., n— 1. Summarizing, we already know that
kea+ (5
Pr(N<n)>1- a—n(:’)
a

Therefore, we directly obtain:

k - a—l—()

Pr(N >n)=1-Pr(N<n)< -
a

T. Zeugmann /Average-Case Analysis of Pattern Learning 22

This is nice, since E(N) = Y o Pr(N > n) (cf., e.g., [6]). However, in order to derive the
desired bound we have to be careful. That means, as long as the term in (30) is worse than

the trivial estimate Pr(N > n) = 1, we better sum the 1s. Obviously, (k-a+ (§)) /a» < 1 iff

n > |log,(k-a+ (];))] + 1. In order to simplify notion, we set m = [loga (ls; “a+ (’;))J + 1.
Then, we have:

E(N) = Y Pr(N>n)

n>0
m
< Y 14 > Pr(N>n)
n=0 n>m+1
1
< m—l—l—l—(k-a—l— k)) Z —

— O(log, (k-))

This proves Lemma 12.

Finally, incorporating Lemma 12 and the Estimation (27) into Theorem 9 as well as (25)
into Theorem 8 we directly obtain E(TT(M, (wy)) = O(2%k?|x|? log) 4/(k|A])) and hence the
theorem is proved. O

5. Conclusions and Open Problems

The present paper dealt with the best-case, worst-case and average-case analysis of Lange
and Wiehagen’s [12] pattern language learning algorithm with respect to its total learning time.
As far as we know, this is the first paper that completely analyzes a concrete algorithm that
learns a non-trivial class of objects in the limit.

In particular, we proved the matching upper and lower bound of [log) 4 (Al +% —1)] +1
many examples that are necessary and sufficient for the LWA to learn any pattern m € Paty
in the best-case. Note that this number decreases if the alphabet size increases. Moreover, for
the uniform distribution the expected number of O(log) 4(k|-A[)) many examples needed by the
LWA for converging is not too far from the best-case bound (cf. Lemma 12). Thus, despite the
fact that the LWA may behave arbitrarily complex in the worst-case, we could establish the
bound O(2%k?|7|? log| 4(k|A|)) for its expected total learning time with respect to the uniform
distribution. However, this required some effort, and hence the question arises whether or not
the work invested has been worth the trouble.

Tt has been suggested that a reasonable bound on the average-case behavior of the LWA can
be obtained by using Theorem 6. Assuming again the uniform distribution, one could expect to

T. Zeugmann /Average-Case Analysis of Pattern Learning 23

see the first element of S roughly within the first | A|¥ inputs. Hence, all the elements of S can be
expected to have been in the text roughly within the first |S|-|.A|* inputs. Consequently, the the
average-case complexity could be estimated by O(|wo|?|A[¥|S|) = O(|W|2|A|klog|A|(|A| + k)).
This is a nice heuristic argument, and filling in all the remaining details may result in an
easier proof. However, the bound obtainable along this line of reasoning is not only worse
than the one established in Theorem 11, it is also qualitatively quit different. In particular,
the bound O(|r|?|A|*log|4 (| A| + k)) considerably increases if |A| increases. In contrast, the
bound established in Theorem 11 clearly decreases if the alphabet A gets larger. Additionally,
our average-case analysis has been to a large extent distribution independent, and can thus be
easily extended to other interesting distributions.

We continue with a short analysis of the average-case bound obtained. First, if the number of
different variables in the target patterns one wants to learn is upper bounded by some constant,
then the average-case behavior of the LWA is quadratically bounded in |7| and logarithmically in
the alphabet size |.A|. The latter result remains clearly true, if we replace “uniform distribution”
by “length biased uniform distribution.” As an easy inspection of the proof presented above
shows, the only term changing is 2* to ,ufk. Therefore, it would be desirable to compare the
average-case behavior of the LWA to the average-case behavior of other algorithms that learn
PATY.

Nevertheless, when applied to learn the class of all pattern languages, the expected total
learning time is in both cases exponential in the reciprocal value of the relevant weight factor
1o assigned to all shortest strings over A. Thus, if k¥ becomes larger the expected total learning
time of the LWA fastly becomes impractical.

Finally, we discuss further applications of the results obtained. Lange and Wiehagen [12]
also considered pattern inference from good examples. In this setting, the teacher provides sets
of good examples. However, in order to avoid simple coding tricks, the learner is required to
learn from every superset of every set of good examples. Our results apply to this setting as
well. Our best-case analysis drastically improves the corresponding assertion concerning the
minimal size of sets of good examples (cf. [12], Theorem 3, Assertion (1)).

Moreover, the established tight bound for the size of good samples improves the complexity
estimates of other algorithms as well. For example, the number of queries needed in Mar-
ron’s [17] Algorithm 2.2. also considerably reduces from k + 1 to [log 4 (|A] + % —1)] +1. The
construction outlined in the proof of Theorem 6 has been also successfully applied in Arimura
et al. [3] to drastically decrease the number of membership queries in an algorithm that learns
unions of tree patterns.

Acknowledgement

The author is very grateful to Takeo Okazaki and Peter Rossmanith for many helpful and
enlightening discussions. In particular, I would like to thank Peter Rossmanith for a suggestion
in refining the estimate outlined in Theorem 11.

Finally, I heartily thank the anonymous referees for their careful reading and for many
valuable comments on the preparation of this paper.

6. References

[1] D. Angluin, Finding patterns common to a set of strings, Journal of Computer and System
Sciences 21 (1980) 46 — 62.

[2] D. Angluin, Queries and concept learning, Machine Learning 2 (1988) 319 — 342.

[3] H. Arimura, H. Ishizaka and T. Shinohara, Learning unions of tree patterns using queries,
Theoretical Computer Science 185 (1997) 47 — 62.

T. Zeugmann /Average-Case Analysis of Pattern Learning 24

[4] R. Daley and C.H. Smith, On the complexity of inductive inference, Information and
Control 69 (1986) 12 — 40.

[5] E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447 —
474.

[6] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley,
Reading, Massachusetts, 1989).

[7] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata (Ad-
dison-Wesley, Reading, Massachusetts, 1969).

[8] T. Jiang, A. Salomaa, K. Salomaa and S. Yu, (1993), Inclusion is undecidable for pattern
languages, in: Proc. 20th International Colloguium on Automata, Languages and Program-

ming, eds. A. Lingas, R. Karlsson and S. Carlsson (Springer, Lecture Notes in Computer
Science 700, 1993) pp. 301 — 312.

[9] M. Kearns and L. Pitt (1989), A polynomial-time algorithm for learning k—variable pat-
tern languages from examples, in: Proc. 2nd Annual ACM Workshop on Computational
Learning Theory, eds. R. Rivest, D. Haussler and M.K. Warmuth (Morgan Kaufmann
Publishers Inc., San Mateo, 1989) pp. 57 — 71.

[10] P. Kilpeldinen, H. Mannila and E. Ukkonen, (1995), MDL Learning of unions of simple
pattern languages from positive examples, in: Proc. 2nd European Conference on Com-

putational Learning Theory — EuroCOLT’95, ed. P. Vitanyi, (Springer, Lecture Notes in
Artificial Intelligence 904, 1995) pp. 252 — 260.

[11] Ker-I Ko, A. Marron and W.G. Tzeng, Learning string patterns and tree patterns from ex-
amples, in: Proc. 7th Conference on Machine Learning, eds. B.W. Porter and R.J. Mooney
(Morgan Kaufmann Publishers Inc., San Mateo, 1990) pp. 384 — 391.

[12] S. Lange and R. Wiehagen, Polynomial-time inference of arbitrary pattern languages, New
Generation Computing 8 (1991) 361 — 370.

[13] S. Lange and T. Zeugmann, Types of monotonic language learning and their character-
ization, in: Proc. 5th Annual ACM Workshop on Computational Learning Theory, ed.
D. Haussler (ACM Press, New York, 1992) pp. 377 — 390.

[14] S. Lange and T. Zeugmann, Monotonic versus non-monotonic language learning, in: Proc.
2nd International Workshop on Nonmonotonic and Inductive Logic, eds. G. Brewka, K.P.
Jantke and P.H. Schmitt (Springer, Lecture Notes in Artificial Intelligence 659, 1993) pp.
254 - 269.

[15] S. Lange and T. Zeugmann, Set-driven and rearrangement-independent learning of recur-
sive languages, Mathematical Systems Theory 29, No. 6, 1996, 599 — 634.

[16] S. Lange and T. Zeugmann, Incremental learning from positive data, Journal of Computer
and System Sciences 53, No. 1, 1996, 88 — 103.

[17] A. Marron, Learning pattern languages from a single initial example and from queries, in:
Proc. 1st Annual ACM Workshop on Computational Learning Theory, eds. D. Haussler
and L. Pitt (Morgan Kaufmann Publishers Inc., San Mateo, 1988) pp. 345 — 358.

[18] R.P. Nix, Editing by examples, Technical Report 280, Department of Computer Science,
Yale University, New Haven, USA (1983).

T. Zeugmann /Average-Case Analysis of Pattern Learning 25

[19] G. Pélya, R.E. Tarjan and D.R. Woods, Notes on Introductory Combinatorics, (Birkhéu-
ser, Basel-Boston-Stuttgart, 1983).

[20] A. Salomaa, Patterns (The Formal Language Theory Column), EATCS Bulletin 54 (1994),
46 - 62.

[21] A. Salomaa, Return to patterns (The Formal Language Theory Column), EATCS Bulletin
55 (1994), 144 — 157.

[22] R.E. Schapire, Pattern languages are not learnable, in: Proc. 3rd Annual ACM Work-
shop on Computational Learning Theory, eds. M.A. Fulk and J. Case (Morgan Kaufmann
Publishers Inc., San Mateo, 1990) pp. 122 — 129.

[23] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa. Knowl-
edge acquisition from amino acid sequences by machine learning system BONSAI, Trans.
Information Processing Society of Japan 35 (1994), 2009 — 2018.

[24] T. Shinohara, Polynomial time inference of extended regular pattern languages, in: Proc.
RIMS Symposia on Software Science and Engineering, eds. E. Goto, K. Furukawa, R. Naka-
jima, I. Nakata, and A. Yonezawa, (Springer, Lecture Notes in Computer Science 147,
1983) pp. 115 — 127.

[25] T. Shinohara and S. Arikawa, Learning data entry systems: An application of inductive
inference of pattern languages, Research Report 102, Research Institute of Fundamental
Information Science, Kyushu University, Fukuoka, Japan (1983).

[26] T. Shinohara and S. Arikawa, Pattern inference, in “Algorithmic Learning for Knowledge-
Based Systems” eds. K.P. Jantke and S. Lange, (Springer, Lecture Notes in Artificial
Intelligence 961, 1995) pp. 259 — 291.

[27] K. Wexler and P. Culicover, Formal Principles of Language Acquisition, (MIT Press, Cam-
bridge, Massachusetts, 1980).

[28] R. Wiehagen and T. Zeugmann, Ignoring data may be the only way to learn efficiently,
Journal of Experimental and Theoretical Artificial Intelligence 6 (1994), 131 — 144.

[29] T. Zeugmann, S. Lange and S. Kapur, Characterizations of monotonic and dual monotonic
language learning, Information and Computation 120 (1995), 155 — 173.

