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Abstract

The present paper deals with the average-
case complexity of various algorithms for learn-
ing univariate polynomials. For this purpose
an appropriate framework is introduced. Bas-
ed on it, the learnability of univariate polyno-
mials evaluated over the natural numbers and
of univariate polynomials defined over finite
fields is analyzed.

Our results are manifold. In the first case,
convergence is measured not relative to the de-
gree of a polynomial but with respect to a mea-
sure that takes the degree and the size of the
coefficients into account. Then standard inter-
polation is proved not to be the best possible
algorithm with respect to the average number
of examples needed.

In general, polynomials over finite fields are
not uniquely specified by their input-output-
behavior. Thus, as a new form of data repre-
sentation the remainders modulo other poly-
nomials is proposed and the expected example
complexity is analyzed for a rather rich class
of probability distributions.

1 Introduction

Learning concepts efficiently has attracted consider-
able attention during the last decade. However, within
the field of inductive inference traditionally the main
emphasis has been put on analyzing the update time,
i.e., the effort to compute a single new hypothesis. On
the other hand, starting with Valiant’s [21] pioneer-
ing paper, the total amount of examples and/or time
needed to solve a given learning problem has become
quite popular. Nevertheless, the complexity bounds
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proved within the PAC model are usually worst-case
bounds.

Since experimental studies have shown quite often a
large gap between the worst-case bounds proved and the
actual runtime observed, several authors advocated to
analyze the average-case behavior of learning algorithms
(cf., e.g., [7, 10, 12, 14, 15, 16, 17, 18]). We continue
along this line of research.

Within this paper we deal with the problem to learn
efficiently univariate integer valued polynomials as well
as univariate polynomials over finite fields from two dif-
ferent sources of information. The underlying model is
Gold [9]-style learning in the limit, i.e., the learner has
to produce a sequence of hypotheses that stabilizes to a
correct and finite description of the target polynomial.
We always choose the target class of all relevant poly-
nomials as hypothesis space.

Classically, the source of information are incremen-
tally growing sequences of pairs argument–value. An-
gluin and Smith [2] describe two methods for learning
integer valued polynomials in this setting. The first
method is identification by enumeration (cf. Gold [9]).
Here, a canonical enumeration of all target polynomials
is assumed and the learner searches on every input for
the first polynomial in the enumeration that matches
the data. Clearly, it then converges to the first enumer-
ated polynomial that equals the target.

The second method is learning by interpolation, i.e.,
the learner always computes the interpolation polyno-
mial from the data given. Polynomial interpolation
is a widely studied and well understood problem (cf.,
e.g., Bini and Pan [4]). So in the general case, there
are algorithms which synthesize a formula for a desired
polynomial over the rational or real numbers from n+1
pairs (x, g(x)) where g is the desired polynomial and
n is its degree.

We aim to compare these methods with respect to
their average-case example and time complexity. Part
of our motivation is a result obtained by Gold [9] and
generalized by Jantke and Beick [13] stating that iden-
tification by enumeration is an optimally data efficient
method. Here, the data efficiency of a learner is mea-
sured by the quantity of data it needs to converge to a



correct hypothesis. If L1 and L2 are two learning algo-
rithms, then L1 is as data efficient as L2 iff, for every
admissible information presentation and every target,
L1 does not need more data than L2 to converge. L1

is strictly more data efficient than L2 if L1 is as data
efficient as L2 but there is a target and a data presenta-
tion for it such that L1 needs strictly less data than L2

until convergence. Finally, a learning method is called
optimally data efficient if there is no other learner that
is strictly more data efficient.

While these investigations have been undertaken in
a setting where learning is required from every infor-
mation presentation, our goal is to analyze the average-
case complexity of these two methods. We define our
average-case model by specifying a rather rich class of
probability distributions over the natural numbers (cf.
Section 2). Then, every datum x will be drawn inde-
pendently at random with a certain probability. Thus,
one obtains randomly generated sequences ((x, g(x)))
and the learner is fed incrementally growing initial seg-
ments of the sequence generated.

Then we consider the problem of learning polynomi-
als over a finite field. For seeing the main two differ-
ences, let us assume that we have to learn polynomials
defined over the finite field IF2 .

(1) Now, the polynomials considered are defined only
for two inputs, i.e., input 0 and input 1 . Therefore
they are not fully described by the mapping x → g(x)
for x ∈ {0, 1} and one has to look for other ways to
describe them. The way chosen in the present paper is
to supply the data as a random sequence of pairs (a, b)
where b is the remainder polynomial obtained when
the target polynomial g is divided by polynomial a .
This generalization reintroduces a mode to describe the
whole polynomial. We refer to this model as to learning
from remainder sequences.

(2) In the standard case, all data fed to the learner
are of the form (x, g(x)) and have the same information
content. Thus, n + 1 different data items — whatever
they are — describe exactly the target polynomial g
while n do not do it. This beautiful property is lost in
the model considered here, i.e., when learning from re-
mainder sequences. Taking for example a product g1g2 ;
then all pairs (a, b) where a is dividing g1 do not con-
tribute any knowledge about g2 , but there might be 2n

divisors for some polynomial g1 of degree n2 — for ex-
ample obtained by multiplying n coprime polynomials
of length n . So the degree is not an upper bound on
the number of data-items needed to learn a polynomial.
On the other hand, a single data-item can give a full
description of the polynomial: if deg(a) > n then the
b in the pair (a, b) is already the correct polynomial
wanted.

For defining our average-case model, we have to in-
troduce a class of probability distributions over the set
IFq[x] of all relevant polynomials (where IFq is a finite
field of order q ). Clearly, this class should be chosen in-

dependently of the target polynomial. That is, we first
fix the class of admissible probability distributions D
and then analyze the expected complexity of learning
from remainder sequences drawn with respect to some
distribution from the class D .

For defining D , all polynomials from IFq[x] should
have a non-zero probability except the zero polynomial.
Since IFq[x] is infinite, the limit superior (as n tends to
infinite) of the probability to show up for a polynomial
of degree n has to be zero. That is, high degree poly-
nomials have low probability and the higher the degree
the smaller is the relevant probability. On the other
hand, there is no reasonable cause to assume different
probabilities for polynomials of the same degree. Thus,
the distributions in D considered in the present work
are all of a quasi uniform type.

The complexity of our learning algorithms is ana-
lyzed with respect to two average measures: The exam-
ple complexity is the average number of examples used
by the learning algorithm until it comes up with the
correct hypothesis. The time complexity is the average
number of computation steps until the correct polyno-
mial g is found. Naturally, the example complexity is
also a lower bound for the time complexity.

Next, we introduce some notions and notations used
within the present paper.

By IN = {0, 1, 2, . . .} we denote the set of all natural
numbers, and we set IN+ = IN \ {0} . The symbol ZZ
is used for the set of all integers. Any finite field is
denoted by IF . If IF is a finite field, we write p for its
characteristic and q for its order. Note that p is always
a prime and q = p` for some ` ∈ IN+ . Therefore, we
usually write IFq for the, up to isomorphism, unique
field of order q . For more information concerning finite
fields the reader is referred to Berlekamp [3].

If g is any polynomial; then we use deg(g) to de-
note its degree.

Finally, we recall the following important proposi-
tion from probability theory that will be used frequently.

Proposition 1 (Feller [8]). Assume that there is
a source of examples such that every example has with
probability r > 0 a certain property u . Then the aver-
age number of examples to be drawn until some example
satisfying u comes up is just 1

r . The average number
of examples necessary to draw n such examples is n

r .

This paper is organized as follows. In Section 2
we present a new algorithm for learning integer valued
polynomials from sequences argument-value and ana-
lyze its average-case complexity with respect to a rather
large class of probability distributions. The average-
case complexity of learning polynomials over finite fields
from remainder sequences is studied in Section 3. Fi-
nally, we outline conclusions.



2 Learning Polynomials on Natural
Numbers

Throughout this section, the target class is the set
of all integer-valued polynomials. For learning a target
polynomial g , the source of information given to the
learner are pairs (x, g(x)) , where x ∈ IN . Next, we
have to specify the class of admissible probability dis-
tributions D over IN . That is, a datum x will then be
drawn with probability p({x}) , and the learner is fed
(x, g(x)) . For defining a rather rich class of probability
distributions, we make only the following two assump-
tions about p . First, p({x}) > 0 for all x ∈ IN , since
we have no reason to distinguish any x ∈ IN by assign-
ing probability 0 to it. Second, p({x}) ≥ p({y}) for
all x, y ∈ IN with x ≤ y . The motivation for the sec-
ond assumption is as follows. Since IN is infinite, the
limit superior of p({x}) (as x tends to infinite) has
to be zero. That means, large numbers must have low
probability and the larger x is the lower is the relevant
probability.

As we shall see later, it will be more convenient to
deal with the probability that some datum from the
set {x, x + 1, x + 2, . . .} has been drawn rather than a
particular one. Therefore, we specify the class D via
functions f defined by f(x) = p({x, x + 1, . . .}) , i.e.,
f describes the probability to draw some datum from
{x, x + 1, x + 2, . . .} . Now, one easily verifies that f is
decreasing, and the following properties are fulfilled:

(1) f(0) = 1 ,

(2) lim
x→∞

f(x) = 0 ,

(3) f(x) > 0 for all x ∈ IN , and

(4) f(x)− f(x + 1) ≥ f(x + 1)− f(x + 2) .

So f is very parallel to the parameter function f
used in the next section. D is now the set of all prob-
ability distributions generated by a decreasing function
f satisfying (1) through (4) above.

Interpolation is the best known method for learning
polynomials. It returns to all data-items a hypothesis
in polynomial time and its average-case complexity is a
bit below 1

f(0)·f(1)·...·f(n) (cf. [20]):

• There are polynomial time algorithms to compute
a formula for a polynomial g of least degree inter-
polating given data (x0, y0), (x1, y1), (x2, y2), . . . ,
(xn, yn) .

• It needs n + 1 different examples for identifying a
polynomial of degree n ; the average example com-
plexity is just the number of draws necessary un-
til n + 1 different values are obtained. An upper
bound of the expected example complexity of learn-
ing polynomials by interpolation is then

1
f(0) · f(1) · . . . · f(n)

.

Gold [9] as well as Jantke and Beick [13] showed that
learning by enumeration is optimally data-efficient. The
same is true also for interpolation.

Proposition 2. Interpolation is optimally data-
efficient.

Proof. Interpolation returns to any n + 1 different
data-items a polynomial of degree n and keeps that
hypothesis until some data comes up showing that it
is incorrect. Assume by way of contradiction that some
other algorithm M would be strictly more data-efficient
than interpolation. Then M learns some polynomial g
before it is interpolated, that is, M outputs a correct
hypothesis for g on some data (x0, y0), (x1, y1), . . . ,
(xn, yn) although deg(g) > n . As a consequence, M
does not identify the polynomial g′ interpolating this
sequence from these n + 1 data-items, which contra-
dicts the fact that M is at least as data-efficient as
interpolation.

So alternatives to interpolation are more incompa-
rable to it than better on all possible polynomials and
data-sequences. The main axiom of interpolation is that
the easiest way to describe a set of data is to take the
polynomial of least degree interpolating it. That is, in-
terpolation is based on the assumption that a data-item
of the form

(10000, 100020001)
is more likely to describe the polynomial

g(x) = 100020001

than the polynomial

h(x) = x2 + 2x + 1 ;

so the size of the coefficients is totally ignored. The
subsequent model therefore tries to find for given data
rather a polynomial having small absolute values of the
coefficients rather than being of small degree. This ap-
proach leads us to a definition of the size of a polynomial
that takes into account not only the degree but also the
absolute value of the coefficients. Integer valued poly-
nomials may have rational coefficients, for example the
clearly integer-valued polynomial

x → 0 + 1 + . . . + x

has the formula
1
2
x2 +

1
2
x .

Every integer-valued polynomial of degree k is of the
form

g(x) = a0

(
x

0

)
+ a1

(
x

1

)
+ . . . + ak

(
x

k

)
,

where all ai ∈ ZZ , ak 6= 0 and(
x

h

)
=

x · (x− 1) · . . . · (x− h + 1)
1 · 2 · . . . · h

is the binomial coefficient for x and h . Note that(
x

h

)
= 0 for all x < h .



For example,

g(x) =
1
2
x2 +

1
2
x

has then the form

g(x) =
(

x

1

)
+

(
x

2

)
,

i.e., a0 = 0 , a1 = a2 = 1 .

Using this general form, a natural definition of the
size of a polynomial g is

size(g) = max{1,deg(g), |a0|, |a1|, . . . , |ak|}.
Here deg(g) ≤ k , and equality holds in the case that
ak 6= 0 . The next theorem shows that — with high
probability — every polynomial of size n can be learned
within polynomial time from logarithmically many ex-
amples.

Theorem 3. Let g be any target polynomial whose
size is unknown to the learner. Then, an optimal al-
gorithm learning g from data-items drawn at random
with respect to f needs

(1) at least (f(size(g)))−1 and

(2) at most (f(5 · (size(g))2))−1 many examples until
convergence.

Proof. For proving Assertion (1), consider the two
polynomials x →

(
x
n

)
and x → −

(
x
n

)
. They have size

n and do not differ at the places 0, 1 . . . , n− 1 . Thus,
the learner has to see some pair (x, g(x)) with x ≥ n
to make up its mind. So, the expected number to draw
examples until such a pair comes up is 1

f(size(g)) .

For proving Assertion (2), consider the following al-
gorithm:

Let (x, g(x)) be the data-item with the largest
x seen so far.
Let n be the largest natural number such that
5n2 ≤ x .
Initialize a0, a1, . . . , an with the value −n .
For m = n, n − 1, . . . , 0 increment am until
either am = n or g′(x) +

(
x
m

)
> g(x) for the

polynomial g′ defined by the current values of
the coefficients a0, a1, . . . , an .

Output g(x) = a0 + a1

(
x
1

)
+ . . . + an

(
x
n

)
.

It is easy to see, that this algorithm converges. Since
each am is increased at most 2n times and since there
are only n variables, the whole algorithm needs to com-
pute the current values of g′(x) +

(
x
m

)
at most 2n2

times.

Next, it is shown that the output is correct under
the assumption that size(g) ≤ n .

Assume now by way of contradiction, that the algo-
rithm terminates with some g′′ such that g′′ 6= g . Let

b0, b1, . . . , bn be the coefficients of g and a0, a1, . . . , an

those of g′′ . There is a largest m such that bm 6= am .

If am < bm , then the algorithm stops at the m -
th loop before incrementing am to bm , in particu-
lar, −n

(
x
0

)
− n

(
x
1

)
− . . . − n

(
x

m−1

)
+ (am + 1)

(
x
m

)
+

am+1

(
x

m+1

)
+ . . . + an

(
x
n

)
> g(x) . This implies by

ak = bk for k > m that −n
(

x
0

)
−n

(
x
1

)
−. . .−n

(
x

m−1

)
+

(am + 1)
(

x
m

)
> b0

(
x
0

)
+ b1

(
x
1

)
+ . . . + bm−1

(
x

m−1

)
+

bm

(
x
m

)
. This assumption contradicts to the fact that

the am + 1 ≤ bm and −n ≤ bk for all k . So this case
does not occur.

Otherwise am > bm . This implies that −n
(

x
0

)
−

n
(

x
1

)
− . . .−n

(
x

m−1

)
+ (bm + 1)

(
x
m

)
≤ b0

(
x
0

)
+ b1

(
x
1

)
+

. . . + bm−1

(
x

m−1

)
+ bm

(
x
m

)
since otherwise am could

never been incremented to a value greater than bm .
So one gets that

(
x
m

)
≤ (b0 + n)

(
x
0

)
+ (b1 + n)

(
x
1

)
+

. . . + (bm−1 + n)
(

x
m−1

)
. Using bk ≤ n , m ≤ x

5 and
that, for k < x

5 ,
(

x
k

)
< 1

2

(
x

k+1

)
one gets that

(
x
m

)
≤

2n · (21−m + 22−m + . . . + 20)
(

x
m−1

)
≤ 4n ·

(
x

m−1

)
. In

particular x + 1 − m ≤ 4nm which contradicts the
requirements m ≤ n and x ≥ 5n2 from the choice of
m and n . Thus, am > bm is impossible either.

So, it follows from the case-distinction that g′′ = g
whenever the parameter n is an upper bound for the
size of g . In particular the example complexity of the
algorithm is (f(5 · (size(g))2))−1 .

Before discussing further consequences of our Theo-
rem 3, we shortly illustrate the learner described in the
proof above.

Example 4. Let g with g(x) = 1 for all x be
the target polynomial to be learned by the algorithm
given in the proof above. Thus, size(g) = 1 and we
therefore consider the data item (5, 1) which has the
smallest possible x .

Now, first the algorithm computes n = 1 , and there-
fore g′1(x) = −x−1 . During the first loop, i.e., m = 1 ,
only the coefficient a1 is possibly changed while the ac-
tual a0 = −1 remains unchanged.

Since a1 = −1 6= 1 = n , the algorithm then tests
−5− 1 + 5 > 1 which is false. Therefore, g′2(x) = −1 .
Since 0 6= 1 , it tests −1 + 5 > 1 which is true. This
finishes the loop for a1 with a1 = 0 , and the second
loop, i.e., m = 0 , is started with g′2(x) = −1 . Now,
the condition to be checked is −1 = 1 or −1 + 1 > 1
which returns false. Thus, g′3(x) = 0 . Since 0 6= 1 , it
tests 0 + 1 > 1 which is false. Finally, g′4(x) = 1 , and
the algorithm terminates, since 1 = 1 . Hence, it has
correctly learned the target g .

Note that the time-complexity of the algorithm pre-
sented in the proof of Theorem 3 could be improved by
searching the am via interval search; the main reason
for giving the algorithm as above was to get an eas-
ier verification. The following example gives concrete



bounds for the case that the distribution is given by

f(n) =
1

log(n + 2)
.

Example 5. There is an algorithm which learns
polynomials with example complexity

log(2 + 5 · (size(g))2)

where the distribution is given by f(n) = 1
log(n+2) .

Next, we compare the latter result to learning by in-
terpolation. Let n > 1 ; there are (2n + 1) · (2n + 1)n

many polynomials having size at most n . Among these
polynomials, there are 2n · (2n+1)n many polynomials
that have degree n . For these polynomials of degree n
the standard interpolation procedure requires n+1 dif-
ferent data-items. On the other hand, for the distribu-
tion described by f(n) = 1

log(n+2) , our algorithm needs
for all polynomials of size at most n only log(5n + 2)2
many examples. So the example complexity of the al-
gorithm presented above is for the great majority of
the polynomials of size at most n better than standard
interpolation when measured with respect to the dis-
tribution described by f(n) = 1

log(n+2) and taking the
size instead of the degree as a key parameter.

On the other hand, interpolation beats this algo-
rithm if the underlying probability distribution is given
by f(n) = 2−n . Then the example complexity to get
all values g(0), g(1), . . . , g(n) is 2n(n+1)/2 while the ex-
ample complexity to get one value g(x) with x ≥ 5n2

is 25n2
.

Next, we turn our attention to the problem that an-
alyzing only the expected number of examples needed
until convergence is not so interesting. As often criti-
cized by statisticians, expected values alone are not so
informative. Thus, we are interested in knowing on how
often the example complexity exceeds the average sub-
stantially.

For that purpose, we first note that the learner pre-
sented in Theorem 3 has two important properties, i.e.,
it is conservative and set-driven. A learner is set-driven,
if its output depends only on the range of its input (cf.
Wexler and Culicover [22]), while conservative learners
maintain their actual hypotheses at least as long as they
have not seen data contradicting them (cf. Angluin [1]).
Now, let X be a random variable standing for the ex-
ample complexity of the algorithm in the proof of The-
orem 3, and let E[X] denote the expectation of X .
Then, using a result by Rossmanith and Zeugmann [19],
we directly obtain the following corollary.

Corollary 6. Pr(X ≥ 2tE[X]) ≤ 2−t for all
t ∈ IN .

Consequently, our learner additionally possesses ex-
ponentially shrinking tail bounds for the example com-
plexity. We can therefore transform the above algorithm
into one that probably exactly identifies every target

polynomial of size at most n provided a computable
upper bound f̂ for f is available to the learner. Prob-
ably exact learning is defined in the same way as PAC
learning, except that the hypothesis output has to be
correct rather than approximately correct. Addition-
ally, it assumes a bit knowledge concerning the under-
lying distributions.

Theorem 7. Let n ∈ IN , and let f̂ be a computable
upper bound for f . Then there is an algorithm probably
exactly learning every target polynomial of size at most
n for every distribution f ∈ D with f(x) ≤ f̂(x) for
all x ∈ IN using (2f̂(5n2))−1 log 1

δ many examples.

Proof. The desired learner takes any δ ∈ (0, 1) as
additional input. Now, using the algorithm defined in
the proof of Theorem 3, the learner performs log(1/δ)
many rounds.

In each round it requests (2f̂(5n2))−1 many exam-
ples. During the first round, it computes a hypothesis
by using the learner from Theorem 3. By Corollary 6,
this hypothesis is already correct with probability at
least 1/2 . In the remaining rounds, a new hypothesis
is only computed if a data item (x, g(x)) is received
such that x > y for all y in the data items (y, g(y))
received so far. The last hypothesis computed is then
output.

Therefore, the probability that none of the computed
hypotheses is correct can be bounded by δ , i.e., with
probability 1− δ the learner outputs a correct hypoth-
esis after having processed (2f̂(5n2))−1 log(1/δ) many
examples. Since f̂ is an upper bound for f , the theo-
rem follows.

We finish this section by comparing the latter result
to PAC learning. Clearly, the PAC model is distribution
free, and therefore, the best one can hope for is to get
better bounds on the number of examples needed for
special classes of distributions. This is indeed the case
as we shall see.

Assuming n to be again a bound on the size of all
target polynomials, one can easily determine the VC
dimension of the class of all these polynomials to be n .
Thus, a PAC learner needs at least O( 1

ε log 1
δ + n

ε ) many
examples. Compared to the bound in Theorem 7, this
bound is worse provided f̂(n) < 1√

n+1
.

Further generalizations are possible by removing the
parameter n for the upper bound of the size. For the
PAC model, this has been shown in [11]. Their tech-
nique can be generalized to the setting considered in
Theorem 7.

3 Learning from Remainder Sequences

Next, we turn our attention to learning univariate
polynomials over finite fields. As already mentioned in



the introduction, now the situation is slightly different
from that studied in the previous subsection, since even
complete sequences of pairs argument-value do not pro-
vide enough information to learn the target polynomial.

Therefore, we propose a new source of information,
i.e., learning from remainder sequences. That is, now
the learner has access to pairs (a, b) , where a is any
polynomial and b is the remainder of the target polyno-
mial when divided by a . Again, we require the learner
to infer the target in the limit from any such sequence.

This information shares some nice properties with
the standard source of information given by sequences
of argument-value. First, it is also easy to compute
(only a bit more complicated than polynomial evalua-
tion). Second, it contains enough information to learn
the target polynomial. Third, though one can learn the
target from this information, learning does not become
easier in the sense that learning in the limit could be
replaced by finite learning. Here, finite learning means
that the learner can decide whether or not it has already
successfully finished its learning task (cf. Gold [9]).

In some sense, learning even becomes harder. As
we have already said, in the standard case it is always
sufficient to have n + 1 data items argument-value to
learn any polynomial of degree n . This nice property
is lost in our new model. Taking into consideration
that there are (q− 1)qm different polynomials in IFq[x]
of degree precisely m , it is easy to see that it may
take exponentially many examples (in the degree n of
the target polynomial) until convergence. On the other
hand, a single data item is sufficient in the best-case (if
deg(a) > deg(g) , where g is the target polynomial).

Consequently, in the new setting the best-case and
worst-case are overly optimistic and pessimistic, respec-
tively. Therefore, we study the average-case complexity
of this learning task. This requires the introduction of
a class of probability distributions over the whole set
IFq[x] of polynomials. Since IFq[x] is infinite, there is
no uniform distribution. We therefore consider a rather
rich class of quasi uniform distributions over IFq[x] de-
fined as follows.

Definition 8. For every finite field IFq we define
the class D of quasi uniform distributions over IFq[x]
to be the set of all probability distributions generated
by any decreasing function f satisfying

(1) f(0) = 1 ,

(2) lim
n→∞

f(n) = 0 ,

(3) f(n) 6= 0 for all n ≥ 1 , and

(4) f(n)− f(n + 1) ≥ f(n + 1)− f(n + 2) .

The probability of a non-zero polynomial a is then
just

(f(deg(a))− f(deg(a) + 1)) · 1
(q − 1) · qdeg(a)

Conditions (1) and (2) in Definition 8 are necessary
to obtain a probability distribution. For seeing this,
note that there are precisely (q− 1) · qm many polyno-
mials of degree m . Thus, the probability to draw some
polynomial a of degree d is (f(deg(a)) − f(deg(a) +
1)) . Now, looking at the sequence (Sm)m∈IN of partial
sums, we get that

Sm =
m∑

d=0

(f(d)− f(d + 1)) = f(0)− f(d + 1) ,

and hence limm→∞ Sm = f(0) = 1 .

Furthermore, Condition (3) ensures that all polyno-
mials have a non-zero probability. Finally, Condition
(4) formalizes the requirement that all polynomials of
degree n + 1 have a lower probability than those of
degree n .

First, we establish lower and upper bounds for learn-
ing from remainder sequences. In the following, when-
ever talking about learning algorithms for polynomials
from IFq[x] , it is assumed that all these algorithms infer
to whole target class IFq[x] .

Theorem 9. Let g ∈ IFq be any target polynomial
of degree n ( where n is unknown to the learner ) .
Then we have:

(1) Every algorithm learning the target polynomial g
from remainder sequences drawn at random with
respect to f needs at least

(f(logq(n)− 2 logq logq(n)))−1

many examples until convergence.

(2) There exists an algorithm learning g from remain-
der sequences drawn at random with respect to f
that needs at most (f(n + 1))−1 many examples
until convergence.

Proof. For proving Assertion (1), choose the unique
m such that mqm+1 < n ≤ (m + 1)qm+2 . Let g1 be
the product of all polynomials of degree up to m . There
are precisely (q−1) ·qd many polynomials of degree d ;
thus the degree of g1 can be upper bounded by

m · (q − 1) ·
m∑

d=1

qd ≤ m · qm+1 .

Let g2 be any polynomial of degree n − deg(g1) .
Now the lower bound is obtained by analyzing the ex-
pected number of examples necessary for learning the
polynomial g = g1g2 . Any polynomial of degree up
to m is a divisor of g1 . Therefore, no data (a, b)
with deg(a) ≤ m gives any information on the par-
ticular form of g2 . Hence, the learner cannot suc-
ceed before seeing at least one data item (a, b) with
deg(a) > m . Such a polynomial a occurs with prob-
ability at most f(m + 1) and therefore, the example
complexity is at least (f(m + 1))−1 which is an upper
bound for (f(logq(n)− 2 logq logq(n)))−1 .



For proving Assertion (2) consider the learning al-
gorithm that always conjectures b for the pair (a, b)
seen so far where a has the highest degree. Note that
b = p whenever deg(a) > deg(p) . Since such an a
has to be drawn up eventually, the algorithm converges.
It remains to show the example bound given by this
algorithm matches the bound given in (2). The event
that deg(a) > n has probability f(n + 1) and thus,
by Proposition 1, the expected number of examples is
(f(n + 1))−1 until such a polynomial a shows up.

Next, we discuss the bounds obtained in Theorem 9
by looking at very slowly and very rapidly decreasing
functions f . For the former, let f(2n) = 1

2f(n) and
require f to be uniformly decreasing for all arguments
inbetween two consecutive powers of 2 . That is, f(0) =
1 by Condition (1) in Definition 8, f(1) = 1/2 , f(2) =
1/4 f(3) = 3/16 , f(4) = 1/8 , f(5) = 15/128 , f(6) =
14/128 , f(7) = 13/128 , f(8) = 3/32 , . . . , f(16) =
1/16 , . . . , and so on. Now, it is easy to see that the
difference between the bounds given in Theorem 9 is
only a constant factor.

But for distributions given by other functions f like
f(n) = q−n the gap is large. Now, the upper bound

qn+1

and the lower bound

qlog(n)−2 log log(n) = n · (log(n))−2

differ exponentially.

Consequently, while the gap between lower and up-
per bound in Theorem 9 can be large for some distri-
bution in D , one can expect better bounds for partic-
ular distributions. So the next two results improve the
bounds for the distribution given by f(n) = q−n .

Theorem 10. Let g ∈ IFq[x] be any target polyno-
mial of degree n ( n again unknown to the learner ) .
Then every algorithm learning g from remainder se-
quences drawn at random with respect to the distribution
generated by f(n) = q−n has at least example complex-
ity q−4 · n2

log(n) for sufficiently large n .

Proof. (Sketch) This lower bound is obtained by
adapting the previous proof and by exploiting special
knowledge on the distribution. Let m be the unique
number with (q + m + 1)qm+1 < n ≤ (q + m + 2)qm+2 .
As in the proof of Theorem 9 let g1 be the product of
all monic polynomials of degree less than or equal to m
and g2 is some polynomial of degree n−deg(g1) . Since
the degree of g1 is at most mqm+1 , the degree of g2

is at least qm+2 . As in the previous lower bound proof,
again only polynomials whose degree is at least m + 1
contribute to some knowledge on g2 . The expected
degree of these polynomials can be upper bounded by
m+3 . In order to reconstruct g2 the sum of the degrees
of these polynomials must be qm+2 and so at least qm+2

m+3

examples are needed to do the job. Also only one out of
qm examples qualifies to have at least degree m , so a

lower bound for the example complexity is q2m+2

m+3 . Since
n ≤ (q+m+2)qm+2 and log(n) ≥ m , one can estimate
q2m+2

m+3 ≥ n2 · q−3 · (q + m + 2)−1 ≥ q−4 · n2

log(n) and get

that, for sufficiently large n , q−4 · n2

log(n) examples are

necessary to learn any given polynomial of degree n .

Theorem 9 gives for f(n) = (n + 1)−k , k ∈ IN+ ,
directly an algorithm which learns every polynomial g
of degree n with average example complexity (n+2)k .
Considering that every example has to be read through
once, the time complexity of the algorithm is (n+2)k+1 .

This does not longer work for distributions like f(n)
= q−n . Here the lower bound is polynomial, but the
upper bound is exponential. Therefore, the next theo-
rem shows how to improve the upper bound from ex-
ponential to polynomial time. So both bounds are un-
der this particular distribution quadratic modulo some
poly-logarithmic term.

Theorem 11. There is an algorithm that learns ev-
ery polynomial from IFq[x] from remainder sequences
drawn at random with respect to the probability distri-
bution generated by f(n) = q−n that needs on average
at most q7n2 many examples and time O(n2 log(n))
until convergence on target polynomials of degree n .

Proof. The learner does not use all data-items (a, b)
but only those which belong to irreducible polynomi-
als a . Furthermore, one can divide the polynomial a
by its leading coefficient. Note that this division does
not change the remainder b . Thus, we can assume a
to be monic without changing the remainder b . This
normization enforces that equivalent irreducible polyno-
mials like x2 + 1 and 2x2 + 2 occur only in the form
x2 + 1 . So one makes the polynomials monic and per-
forms a test for irreducibility before further processing.
As a consequence the learning algorithm avoids factor-
ing and similar work. Furthermore before updating its
hypothesis, the learner first checks whether it has al-
ready seen the data coming in. This check allows to
process each irreducible polynomial at most once and to
establish the low time complexity of the learning pro-
cess. All data, which pass these two checks, are then
used in order to construct a hypothesis about the poly-
nomial to be learned by applying the Chinese Remain-
der Theorem. As soon as the learner has accumulated a
sufficient large basis of coprime (even irreducible) poly-
nomials, the target is fully described by its correspond-
ing remainders. We continue with a formal description.

Within the algorithm, (a, b) denotes the current in-
put data, h is a variable standing for the hypothesis
about the polynomial to be learned, L is just the set of
all irreducible polynomials for which the corresponding
remainder of the target is known and d is the product
of all polynomials in L . The variable d just keeps this
product in order to avoid doing the same multiplication
several times. Now the formal algorithm is presented.
Note that this algorithm outputs only finitely many hy-



potheses the last of which will correctly describe the
target to be learned.

Initialize h = 0 , d = 1 and L = ∅ and do
the following for ever:

Read (a, b) .
Make a monic, that is, divide a by its leading
coefficient.
If a is irreducible and a /∈ L then

Compute the remainder c of h mod-
ulo a .
Let L = L ∪ {a} .
If b 6= c then

Compute the smallest e such
that e · d has the remainder
b− c modulo a .
Let h = h + e · d .
Output the new hypothesis h .

Let d = a · d .

Continue the loop with reading the next data-
items.

First note that the polynomials in L are all monic
and irreducible and thus co-prime. Furthermore, d is
always the product of these polynomials and h satisfies
(∃q) [h = aq + b] for all irreducible polynomials a and
the corresponding b seen so far. This can be proved,
for every a ∈ L and the corresponding b , as follows:
At some step, the algorithm processes (a, b) in the loop
and the innermost loop guarantees that the new h has
the correct remainder by choosing e such that e ·d has
the remainder b−c ; then the sum h+e ·d , which gives
the new h , has the remainder c + (b − c) = b modulo
a . In all later steps, a divides d and only terms having
the remainder 0 modulo a are added to h so that the
correct remainder modulo a is preserved.

Second, it is an invariant of the construction that
deg(h) < deg(d) : It holds at the initialization (by defin-
ing deg(0) < 0 ) and whenever the values of h and d
are updated to h + ed and ad , respectively, then the
property is preserved since deg(h+ed) < deg(ad) . This
can be seen as follows: The degree of ad is the sum
deg(a) + deg(d) . Furthermore, the degree of h + ed
is bounded by max{deg(h),deg(ed)} where deg(h) <
deg(d) < deg(a) + deg(d) and deg(ed) = deg(e) +
deg(d) < deg(a) + deg(d) . This last relation is based
on the fact that deg(e) < deg(a) and this fact is the
consequence of the observations, that a is irreducible
and so e can be chosen as the smallest representative of
the quotient (b− c)/d in the field of polynomials mod-
ulo a ; this quotient is well-defined since a and d are
co-prime. Note that e = 0 is the solution for the case
b−c = 0 , therefore one can abstain from processing the
inner-most loop in this case.

Third, if h′ is the target polynomial and deg(d) >
deg(h′) , that is, deg(d) > n , then h = h′ since, by the
Chinese Remainder Theorem, h and h′ are both the

unique polynomial of degree below deg(d) which has,
for all a ∈ L , the corresponding remainder b when
divided by a .

Fourth, there are infinitely many irreducible monic
polynomials a and each a is eventually presented to-
gether with the corresponding remainder b . So the
event deg(d) > n must happen eventually and the al-
gorithm converges to the correct hypothesis.

It remains to verify the time bound given and to es-
timate the expected number of examples necessary until
convergence.

First, we compute the number of examples necessary.
For that purpose it suffices to ask how many examples
are necessary until d has reached some degree greater
than n . To get such an estimation, let m be the least
degree such that there are 2n

m irreducible polynomials
of degree m in IFq[x] . Using the lower bound

Im >
qm − qm/2+1

m

on the number Im of monic irreducible polynomials
of degree m in IFq[x] (cf. Berlekamp [3]), we obtain
that 2n is near to qm , more precisely, that qm−2 <
2n < qm+2 . As long as less than n of the irreducible
polynomials of degree m have occurred in the data
seen so far, the probability of getting one further one
of them is n

m · q−2m−1 where q−m−1 is the probabil-
ity of getting a polynomial of degree at least m and
n
mq−m is a lower bound for the probability that this
polynomial is among the still unseen irreducible poly-
nomials of degree at least m . The expected number of
examples necessary to receive n

m different irreducible
polynomials of degree at least m can therefore be es-
timated by the upper bound q2m+1 . The degree of
their product is n so that after q2m+1 many examples
the size of d is n . Note that 2n > qm−2 and thus
q2m+1 ≤ 4n2 · q5 ≤ q7n2 . So q7n2 is an upper bound
on the expected number of examples needed until con-
vergence.

Now the complexity of each step is analyzed. There
are two parts, which have to be dealt separately with:

(a) the part which is done for every data-item, and

(b) the part within the first “if”-statement after the
“then” which is not executed for most of the data-
items.

The part (a) consists of reading the hypothesis of
(a, b) , the check whether a is irreducible and the test
whether a ∈ L . The test whether a ∈ L has the time
complexity deg(a) log(|L|) by keeping L as an ordered
list. The size of L does not exceed n . So for each data-
item, the computations of type (a) need with probabil-
ity q−k−1 the time p(k) log(n) for some polynomial p .
Since the sum over q−k−1p(k) converges to some con-
stant r , the step has time complexity r log(n) for each



single data item and time complexity rq7n2 log(n) in
total.

In part (b) let k denote the degree of a . The degree
of d and the size of L do not exceed n when entering
this part of the algorithm. Now computing the remain-
der c needs O(nk) time steps and gives a polynomial of
degree below k . b−c is computed in O(k) time steps,
e is computed in O(nk) steps where e is obtained by
taking the smallest representative of the quotient b−c

d
in the field generated by the irreducible polynomial a ,
the multiplication e · d needs O(nk) time steps, the
addition to and update of h needs O(n) steps, the
product ad is computed within O(nk) time steps, the
update of d to ad needs O(n) time steps and the up-
date of L needs O(n) time steps (cf. [4]). So a single
run through part (b) needs r′nk time steps where r′

is some constant. During the whole time, the degrees of
the polynomials summed up satisfy k1+k2+. . .+klast ≤
n + klast . Hereby it can be estimated that klast does
not exceed n with reasonable probability. So one has
that all runs through part (b) together have time com-
plexity r′(k1 + k2 + . . . + klast)n ≤ 2r′n2 .

The total example complexity of the algorithm has
the upper bound q7n2 and the time complexity has up-
per bound (rq7 log(n)+2r′)n2 , that is, O(n2 log(n)) .

The next example illustrates the learning algorithm
of Theorem 11 for a concrete polynomial over the finite
field with three elements.

Example 12. Assume that the polynomial x3 in
IF3[x] should be learned; note that −1 = 2 in IF3 .
Consider some data-sequence starting with (x2, 0) ,
(x2 + 2, 2x) , (x+1, 2) , (x+2, 1) , (x2+1, 2x) , (x+1,
2) , (x, 0) , (a(x), b(x)) would be the initial part of the
data-sequence where a(x) is an irreducible and monic
polynomial not seen before. From these data-items,
(x2, 0) and (x2 + 2, 2x) do not qualify since x2 and
x2 +2 are not irreducible in IF3 . Furthermore, the sec-
ond occurrence of (x+1, 2) also does not qualify, since
x + 1 ∈ L after the first occurrence of (x + 1, 2) . The
following table gives now an overview on the values of
the other variables of the algorithm after executing the
interior loop where data, which did not qualify, is omit-
ted. The current value of h is also always the current
hypothesis.

data-item c e d h
− − − 1 0
(x + 1, 2) 0 2 x + 1 2
(x + 2, 1) 2 1 x2 + 2 x
(x2 + 1, 2x) x x x4 + 2 x3

(x, 0) 0 0 x5 + 2x x3

(a(x), b(x)) b(x) 0 (x5 + 2x)b(x) x3

If d′ and h′ are the values of d and h from the pre-
vious row, then the update rule for these two variables
is d = a·d′ and h = h′+e·d′ . So, the updates of h are
from 0 to 0+2·1 = 2 , then from 2 to 2+1·(x+1) = x

and finally from x to (x+1)+x · (x2 +2) = x3 . From
then on, b − c and thus also e are always 0 and no
further updates are done, that is, the learner has sta-
bilized on the correct hypothesis x3 . After processing
some data-item, L contains all monic and irreducible
polynomials processed from the beginning up to the cur-
rent data-item, so after processing (a(x), b(x)) , the con-
tent of L are the polynomials x + 1 , x + 2 , x2 + 1 ,
x and a(x) .

Since q = 3 and n = 3 , the average number of
examples needed until successful learning has the up-
per bound 39 = 19683 . On the one hand, this bound
is not optimal, but on the other hand, the above sam-
ple sequence was also a bit unrealistic in the sense that
it contained much more useful data than a randomly
distributed sequence of this length would give.

4 Conclusions

The learnability of univariate integer valued polyno-
mials over the natural numbers and univariate polyno-
mials over finite fields has been investigated. For both
cases, we gave lower and upper bounds of the average
example complexity. Measuring the convergence not rel-
ative to the degree of a polynomial but relative to a
measure which takes into account also the size of the
coefficients, standard interpolation is not any more the
best possible algorithm. We found a quite natural distri-
bution where the new learning algorithm gives a speed-
up from polynomial to logarithmic example complexity
on polynomials with small coefficients. Nevertheless,
we show that interpolation is an optimally data-efficient
strategy; so no other learning algorithm behaves on all
input-sequences better than interpolation.

Since polynomials over IFq are not uniquely speci-
fied by their input-output-behavior, we chose as data-
representation the remainder modulo other polynomi-
als. In this model, the general gap between lower and
upper bound of the example complexity obtained by
optimal learning still is large for many distributions —
we hope that future work might narrow this gap. But
we could obtain much tighter results for the concrete
distribution on the remainders induced by f(n) = q−n .
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