
Consistency Conditions for Inductive Inference
of Recursive Functions

Yohji Akama1 and Thomas Zeugmann2

1 Mathematical Institute, Tohoku University,
Sendai Miyagi Japan, 980-8578
akama@math.tohoku.ac.jp

2 Division of Computer Science
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

thomas@ist.hokudai.ac.jp

Abstract. A consistent learner is required to correctly and completely
reflect in its actual hypothesis all data received so far. Though this de-
mand sounds quite plausible, it may lead to the unsolvability of the
learning problem.
Therefore, in the present paper several variations of consistent learning
are introduced and studied. These variations allow a so-called δ–delay
relaxing the consistency demand to all but the last δ data.
Additionally, we introduce the notion of coherent learning (again with
δ–delay) requiring the learner to correctly reflect only the last datum
(only the n− δth datum) seen.
Our results are threefold. First, it is shown that all models of coher-
ent learning with δ–delay are exactly as powerful as their corresponding
consistent learning models with δ–delay. Second, we provide characteri-
zations for consistent learning with δ–delay in terms of complexity. Fi-
nally, we establish strict hierarchies for all consistent learning models
with δ–delay in dependence on δ.

1 Introduction

Algorithmic learning has attracted much attention of researchers in various fields
of computer science. Inductive inference addresses the question whether or not
learning problems may be solved algorithmically at all. There has been huge
progress since the pioneering paper of Gold [8] but several questions still deserve
attention, in particular from the viewpoint of potential applications.

A main problem of algorithmic learning theory is to synthesize “global de-
scriptions” for the objects to be learned from examples. Thus, one goal is the
following. Let f be any computable function from N into N. Given more and
more examples f(0), f(1), ..., f(n), . . . a learning strategy is required to com-
pute a sequence of hypotheses h0, h1, . . . , hn, . . . the limit of which is a correct
global description of the function f , i.e., a program that computes f . Since at
any stage n of this learning process the strategy knows exclusively the examples
f(0), f(1), ..., f(n), one may be tempted to require the strategy to produce only



252 Y. Akama and T. Zeugmann

hypotheses hn such that for any x ≤ n the “hypothesis function” g described
by hn is defined and computes the value f(x). Such a hypothesis is called con-
sistent. If a hypothesis does not completely and correctly encode all information
obtained so far about the unknown object it is called inconsistent. A learner
exclusively outputting consistent hypotheses is called consistent. Requiring a
consistent learner looks quite natural at first glance. Why a strategy should
output a conjecture that is falsified by the data in hand?

But this is a misleading impression. One of the surprising phenomena discov-
ered in inductive inference is the inconsistency phenomenon (cf., e.g., Barzdin [2],
Blum and Blum [4], Wiehagen and Liepe [21], Jantke and Beick [12] as well as
Osherson, Stob and Weinstein [17] and the references therein). That is, there are
classes of recursive functions that can only be learned by inconsistent strategies.

Naturally, the inconsistency phenomenon has been studied subsequently by
many researchers. The reader is encouraged to consult e.g., Jain et al. [11],
Fulk [7], Freivalds, Kinber and Wiehagen [6] and Wiehagen and Zeugmann [22,
23] for further investigations concerning consistent and inconsistent learning.

In the present paper we introduce and study several variations of consistent
learning that have not been considered in the literature. First, we introduce
the notion of coherent learning. A learner is said to be coherent if it correctly
reflects the last datum received (say f(xn)), i.e., if every hn output satisfies the
requirement that the “hypothesis function” g described by hn is defined on input
xn and g(xn) = f(xn). Furthermore, we introduce the notion of δ–delay, where
δ ∈ N. Then, coherent learning with δ–delay means that every hn output satisfies
that g(xn −· δ) is defined and g(xn −· δ) = f(xn −· δ) (cf. Definition 5).

Furthermore, we adopt the notion of δ–delay to the consistent learning types
mainly studied so far, i.e., to CONS (defined by Barzdin [2]), R- CONS (in-
troduced by Jantke and Beick [12]) and T - CONS (defined by Wiehagen and
Liepe [21]) (cf. Definitions 2, 3 and 4, respectively).

Our results are threefold. First, it is shown that all models of coherent learn-
ing with δ–delay are exactly as powerful as their corresponding consistent learn-
ing models with δ–delay, see Theorem 1. Second, we provide characterizations for
consistent learning with δ–delay in terms of complexity (cf. Theorems 2 and 3).
Finally, we establish strict hierarchies for all consistent learning models with
δ–delay in dependence on δ, see Theorem 5 and Corollary 6.

The paper is structured as follows. Section 2 presents notation and defini-
tions. Then we show the equivalence of coherent and consistent learning for all
variants defined (cf. Section 3). The announced characterizations are shown in
Section 4. In Section 5 we prove three new infinite hierarchies for consistent
learning with δ–delay. In Section 6 we discuss the results obtained and present
open problems. The bibliography is provided in the References.



Consistency Conditions for Inductive Inference of Recursive Functions 253

2 Preliminaries

Unspecified notations follow Rogers [18]. N = {0, 1, 2, ...} denotes the set of all
natural numbers. The set of all finite sequences of natural numbers is denoted
by N∗. For a, b ∈ N we define a −· b to be a− b if a ≥ b and 0, otherwise.

By P and T we denote the set of all partial and total functions of one variable
over N, respectively. The classes of all partial recursive and recursive functions of
one, and two arguments over N are denoted by P, P2, R, and R2, respectively.
R0,1 denotes the set of all 0−1 valued recursive functions (recursive predicates).
Sometimes it will be suitable to identify a recursive function with the sequence
of its values, e.g., let α = (a0, ..., ak) ∈ N∗, j ∈ N, and p ∈ R0,1; then we write
αjp to denote the function f for which f(x) = ax, if x ≤ k, f(k + 1) = j, and
f(x) = p(x− k − 2), if x ≥ k + 2.

Every function ψ ∈ P2 is said to be a numbering. Furthermore, let ψ ∈ P2,
then we write ψi instead of λxψ(i, x) and set Pψ = {ψi i ∈ N} as well as
Rψ = Pψ ∩ R. Consequently, if f ∈ Pψ, then there is a number i such that
f = ψi. If f ∈ P and i ∈ N are such that ψi = f , then i is called a ψ–program
for f . A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [18]) iff
Pϕ = P, and for any numbering ψ ∈ P2, there is a c ∈ R such that ψi = ϕc(i)
for all i ∈ N. Göd denotes the set of all Gödel numberings. Furthermore, we
write (ϕ,Φ) to denote any complexity measure as defined in Blum [5]. That is,
ϕ ∈ Göd, Φ ∈ P2 and (1) dom(ϕi) = dom(Φi) for all i ∈ N and (2) the predicate
Φi(x) = y is uniformly recursive for all i, x, y ∈ N.

Furthermore, let NUM = {U (∃ψ ∈ R2) [U ⊆ Pψ]} denote the family of
all subsets of all recursively enumerable classes of recursive functions.

Moreover, using a fixed encoding 〈...〉 of N∗ onto N we write fn instead of
〈(f(0), ..., f(n))〉, for any n ∈ N, f ∈ R.

The quantifier
∞
∀ stands for “almost everywhere” and means “all but finitely

many.” Finally, a sequence (jn)j∈N of natural numbers is said to converge to the
number j iff all but finitely many numbers of it are equal to j. Next we define
some concepts of learning.

Definition 1 (Gold [8]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be
learnable in the limit with respect to ψ iff there is a strategy S ∈ P such that
for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N converges to j.

If U is learnable in the limit with respect to ψ by a strategy S, we write U ∈
LIMψ(S). Let LIMψ = {U U is learnable in the limit w.r.t. ψ}, and let
LIM =

⋃
ψ∈P2 LIMψ.

As far as the semantics of the hypotheses produced by a strategy S is con-
cerned, whenever S is defined on input fn, then we always interpret the number
S(fn) as a ψ–number. This convention is adopted to all the definitions below.
Furthermore, note that LIMϕ = LIM for any Gödel numbering ϕ. In the above



254 Y. Akama and T. Zeugmann

definition LIM stands for “limit.” Note that within Definition 1 no requirement
is made concerning the intermediate hypotheses output by the strategy S.

Definition 2. Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
consistently learnable in the limit with δ–delay with respect to ψ iff there is a
strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ U , n ∈ N and x ≤ n −· δ.

CONSδψ(S), CONSδψ and CONSδ are defined analogously as above.

Note that for δ = 0 we get Barzdin’s [2] original definition of CONS. We
therefore usually omit the upper index δ if δ = 0. This is also done for all
other versions of consistent learning defined below. Moreover, we use the term
δ–delay, since a consistent strategy with δ–delay correctly reflects all but at most
the last δ data seen so far. If a strategy does not always works consistently with
δ–delay we call it δ–delay inconsistent.

Next, we modify CONSδ in the same way Jantke and Beick [12] changed
CONS, i.e., we add the requirement that the strategy is defined on every input.

Definition 3. Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
R–consistently learnable in the limit with δ–delay with respect to ψ iff there is
a strategy S ∈ R such that U ∈ CONSδψ(S).
R- CONSδψ(S), R- CONSδψ and R- CONSδ are defined analogously as above.

Note that in the latter definition consistency with δ–delay is only demanded
for inputs that correspond to some function f from the target class. Therefore,
in the following definition we incorporate Wiehagen and Liepe’s [21] requirement
to a strategy to work consistently on all inputs into our scenario of consistency
with δ–delay.

Definition 4. Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
T –consistently learnable in the limit with δ–delay with respect to ψ iff there is
a strategy S ∈ R such that

(1) U ∈ CONSδψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ R, n ∈ N and x ≤ n −· δ.

T - CONSδψ(S), T - CONSδψ and T - CONSδ are defined in the same way as
above.

Next, we introduce coherent learning (again with δ-delay). While our consis-
tency with δ-delay demand requires a strategy to correctly reflect all but at most
the last δ data seen so far, the coherence requirement only demands to correctly
reflect the value f(n −· δ) on input fn.

Definition 5. Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
coherently learnable in the limit with δ–delay with respect to ψ iff there is a
strategy S ∈ P such that



Consistency Conditions for Inductive Inference of Recursive Functions 255

(1) U ∈ LIMψ(S),
(2) ψS(fn)(n −· δ) = f(n −· δ) for all f ∈ U and all n ∈ N.

COHδ
ψ(S), COHδ

ψ and COHδ are defined analogously as above.

Now, performing the same modifications to coherent learning with δ–delay
as we did in Definitions 3 and 4 to consistent learning with δ–delay results in
the learning types R- COHδ and T - COHδ, respectively. We therefore omit the
formal definitions of these learning types here.

Using standard techniques one can show that for all δ ∈ N and all learning
types LT ∈ {CONSδ, R- CONSδ, T - CONSδ, COHδ, R- COHδ, T - COHδ}
we have LTϕ = LT for every Gödel numbering ϕ.

Note that in the following ⊆ denotes subset and ⊂ denotes proper subset.
Finally, incomparability of sets is denoted by #.

3 Coherence and Consistency of Learning Strategies

In this section we study the problem whether or not the relaxation to learn
coherently with δ–delay instead of demanding consistency with δ–delay does
enhance the learning power of the corresponding learning types introduced in
Section 2. The negative answer is provided by the following theorem.

Theorem 1. Let δ ∈ N be arbitrarily fixed. Then we have

(1) CONSδ = COHδ,
(2) R- CONSδ = R- COHδ,
(3) T - CONSδ = T - COHδ.

Proof. By definition, we obviously have CONSδ ⊆ COHδ, R- CONSδ ⊆
R- COHδ and T - CONSδ ⊆ T - COHδ.

For showing the opposite directions we can essentially use in all three cases
the same idea. Let δ ∈ N, ϕ ∈ Göd, U ⊆ R and any strategy Ŝ be arbitrarily
fixed such that U ∈ LTϕ(Ŝ), where LT ∈ {COHδ, R- COHδ, T - COHδ}. Next,
we define a strategy S as follows. Let f ∈ R and let n ∈ N. On input fn do the
following.

1. Compute Ŝ(f0), . . . , Ŝ(fn) and determine the largest number n∗ such that
Ŝ(fn

∗−1) 6= Ŝ(fn
∗
).

2. Output the canonical ϕ–program i computing the following function g:
g(x) = f(x) for all x ≤ n∗, and
g(x) = ϕŜ(fn∗ )(x) for all x > n∗.

First, we show that S learns U consistently with δ–delay.
By construction, we have ϕS(fn)(x) = f(x) for all x ≤ n∗, and thus S

is consistent on all data f(0), . . . , f(n∗). If n − n∗ ≤ δ, we are already done.
Finally, if n − n∗ > δ, then we exploit the fact that Ŝ works coherently with



256 Y. Akama and T. Zeugmann

δ–delay and that Ŝ(fn
∗+k) = Ŝ(fn

∗
) for all k = 1, . . . , n − n∗. Thus, for all

k ∈ {1, . . . , n− n∗ − δ} we get

ϕS(fn)(n∗ + k) = ϕŜ(fn∗ )(n
∗ + k) = ϕŜ(fn∗+δ+k)(n

∗ + k) = f(n∗ + k) . (i)

Since in this case Ŝ(fn) is defined for all f ∈ U and all n ∈ N, we can directly
conclude that S(fn) is defined for all f ∈ U and all n ∈ N, too. This proves
Assertion (1).

If Ŝ ∈ R, then so is S and thus Assertion (2) follows.
Finally, if Ŝ ∈ R and Ŝ works T –coherently, then we directly get S ∈ R

and S is T –consistent, since now (i) is true for all f ∈ R. This completes the
proof. ut

4 Characterizations

Within this section, we characterize consistent learning with δ–delay in terms of
complexity.

First, we recall the definitions of recursive and general recursive operator.
Let (Fx)x∈N be the canonical enumeration of all finite functions.

Definition 6 (Rogers [18]). A mapping O : P 7→ P from partial functions to
partial functions is called a partial recursive operator iff there is a recursively
enumerable set W ⊂ N3 such that for any y, z ∈ N it holds that O(f)(y) = z iff
there is x ∈ N such that (x, y, z) ∈W and f extends the finite function Fx.

Furthermore, O is called a general recursive operator iff T ⊆ dom(O), and
f ∈ T implies O(f) ∈ T.

A mapping O : P 7→ P is called an effective operator iff there is a function
g ∈ R such that O(ϕi) = ϕg(i) for all i ∈ N. An effective operator O is said to
be total effective provided that R ⊆ dom(O), and ϕi ∈ R implies O(ϕi) ∈ R.

For more information about general recursive operators and effective opera-
tors the reader is referred to [10, 15, 24]. If O is an operator which maps functions
to functions, we write O(f, x) to denote the value of the function O(f) at the
argument x. Any computable operator can be realized by a 3-tape Turing ma-
chine T which works as follows: If for an arbitrary function f ∈ dom(O), all
pairs (x, f(x)), x ∈ dom(f) are written down on the input tape of T (repetitions
are allowed), then T will write exactly all pairs (x,O(f, x)) on the output tape
of T (under unlimited working time).

Let O be a general recursive or total effective operator. Then, for f ∈ dom(O),
m ∈ N we set: ∆O(f,m) =“the least n such that, for all x ≤ n, f(x) is defined
and, for the computation of O(f,m), the Turing machine T only uses the pairs
(x, f(x)) with x ≤ n; if such an n does not exist, we set ∆O(f,m) = ∞.”

For u ∈ R we define Ωu to be the set of all partial recursive operators O
satisfying ∆O(f,m) ≤ u(m) for all f ∈ dom(O). For the sake of notation, below
we shall use id+ δ, δ ∈ N, to denote the function u(x) = x+ δ for all x ∈ N.



Consistency Conditions for Inductive Inference of Recursive Functions 257

Note that in the following we use mainly ideas and techniques from Wieha-
gen [20] who proved theses theorems for the case δ = 0. Variants of these char-
acterizations for δ = 0 can also be found in Wiehagen and Liepe [21] as well as
in Odifreddi [16].

Furthermore, in the following we always assume that learning is done with
respect to any fixed ϕ ∈ Göd.

As in Blum and Blum [4] we define operator complexity classes as follows.
Let O be any computable operator; then we set

RO = {f ∃i[ϕi = f ∧
∞
∀x[Φi(x) ≤ O(f, x)]]} ∩ R .

First, we characterize T - CONSδ.

Theorem 2. Let U ⊆ R and let δ ∈ N; then we have: U ∈ T - CONSδ if and
only if there exists a general recursive operator O ∈ Ωid+δ such that O(R) ⊆ R
and U ⊆ RO.

Proof. Necessity. Let U ∈ CONSδ(S), S ∈ R. Then for all f ∈ R and all
n ∈ N we define O(f, n) = ΦS(fn+δ)(n).

Since ϕS(fn+δ)(n) is defined for all f ∈ R and all n ∈ N, by Condition (2) of
Definition 4, we directly get from Condition (1) of the definition of a complexity
measure that ΦS(fn+δ)(n) is defined for all f ∈ R and all n ∈ N, too. Moreover,
for every t ∈ T and n ∈ N there is an f ∈ R such that tn = fn. Hence, we have
O(T) ⊆ R ⊆ T. Moreover, in order to compute O(f, n) the operator O reads
only the values f(0), . . . , f(n+ δ). Thus, we have O ∈ Ωid+δ.

Now, let f ∈ U . Then the sequence (S(fn))n∈N converges to a correct ϕ–
program i for f . Consequently, O(f, n) = Φi(n) for almost all n ∈ N. Therefore,
we conclude U ⊆ RO.

Sufficiency. Let O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ RO. We have
to define a strategy S ∈ R such that U ∈ T - CONSδ(S). By the definition
of RO we know that for every f ∈ U there exist i and k such that ϕi = f
and Φi(x) ≤ max{k, O(f, x)} for all x. Thus, the desired strategy S searches
for the first pair (i, k) in the canonical enumeration c2 of N × N and converges
to i provided it has been found. Until this pair (i, k) is found, the strategy S
outputs auxiliary consistent hypotheses. For doing this, we choose g ∈ R such
that ϕg(〈α〉)(x) = yx for every tuple α ∈ N∗, α = (y0, . . . , yn) and all x ≤ n.

S(fn) = “Compute O(f, x) for all x ≤ n −· δ. Search for the least z ≤ n such
that for c2(z) = (i, k) the conditions
(A) Φi(x) ≤ max{k, O(f, x)} for all x ≤ n −· δ, and
(B) ϕi(x) = f(x) for all x ≤ n −· δ
are fulfilled. If such a z is found, set S(fn) = i.
Otherwise, set S(fn) = g(fn).”

Since O ∈ Ωid+δ, the strategy can compute O(f, x) for all x ≤ n −· δ and
since c2 ∈ R, it also can perform the desired search effectively. By Condition (2)
of the definition of a complexity measure, the test in (A) can be performed
effectively, too. If this test has succeeded, then Test (B) can also be effectively



258 Y. Akama and T. Zeugmann

executed by Condition (1) of the definition of a complexity measure. Thus, we
get S ∈ R. Finally, by construction S is always consistent with δ-delay, and if
f ∈ U it converges to a correct ϕ–program for f . ut

Theorem 3. Let U ⊆ R and let δ ∈ N; then we have: U ∈ CONSδ if and
only if there exists a partial recursive operator O ∈ Ωid+δ such that O(U) ⊆ R
and U ⊆ RO.

Proof. The necessity is proved mutatis mutandis as in the proof of Theorem 2
with the only modification that O(f, x) is now defined for all f ∈ U instead of
f ∈ R. This directly yields O ∈ Ωid+δ, O(U) ⊆ R and U ⊆ RO.

The only modification for the sufficiency part is to leave S(fn) undefined if
O(f, x) is not defined for f /∈ U . We omit the details. ut

We finish this section by using Theorem 2 to show that T - CONSδ is closed
under enumerable unions. Looking at applications this is a favorable property,
since it provides a tool to build more powerful learners from simpler ones.

Theorem 4. Let δ ∈ N and let (Si)i∈N be a recursive enumeration of strate-
gies working T -consistently with δ-delay. Then there exists a strategy S ∈ R
such that

⋃
i∈N T - CONS(Si)δ ⊆ T - CONS(S)δ.

Proof. The proof of the necessity of Theorem 2 shows that the construction
of the operator O is effective provided a program for the strategy is given. Thus,
we effectively obtain a recursive enumeration (Oi)i∈N of operators Oi ∈ Ωid+δ
such that Oi(R) ⊆ R and T - CONS(Si)δ ⊆ ROi .

Now, we define an operator O as follows. Let f ∈ R and x ∈ N. We set
O(f, x) = max{Oi(f, x) i ≤ x}.

Thus, we directly get O ∈ Ωid+δ, O(R) ⊆ R and
⋃
i∈N T - CONS(Si)δ ⊆ RO.

Thus, by Theorem 2 we can conclude
⋃
i∈N T - CONS(Si)δ ⊆ T - CONS(S)δ. ut

On the other hand, CONSδ and R- CONSδ are not even closed under finite
union. This is a direct consequence of a more general result Barzdin [1] showed,
i.e., there are classes U = {f f ∈ R, ϕf(0) = f} and V = {α0∞ α ∈ N∗}
such that U ∪ V /∈ LIM. Now, it is easy to verify U, V ∈ R- CONSδ and
thus U, V ∈ CONSδ for every δ ∈ N, but since U ∪ V /∈ LIM we clearly have
U ∪ V /∈ R- CONSδ and U ∪ V /∈ CONSδ for all δ ∈ N.

5 Hierarchy Results

Within this section we study the problem whether or not the introduction of
δ–delay to consistent learning yields an advantage with respect to the learning
power of the defined learning types.

For answering this problem it is advantageous to recall the definition of reli-
able learning introduced by Blum and Blum [4] and Minicozzi [14]. Intuitively,
a learner M is reliable provided it converges if and only if it learns.

Definition 7 (Blum and Blum [4], Minicozzi [14]). Let U ⊆ R, let M⊆ T
and let ϕ ∈ Göd; then U is said to be reliably learnable on M if there is a
strategy S ∈ R such that



Consistency Conditions for Inductive Inference of Recursive Functions 259

(1) U ∈ LIMϕ(S), and
(2) for all functions f ∈M, if the sequence (S(fn))n∈N converges, say to j, then

ϕj = f .

By M-REL we denote the family of all function classes that are reliably learnable
on M.

In particular, we shall consider the cases where M = T and M = R, i.e.,
reliable learnability on the set of all total functions and all recursive functions,
respectively. Furthermore, in the following, for any setM , we use ℘(M) to denote
the power set of M .

Theorem 5. The following statements hold for all δ ∈ N:

(1) T - CONSδ ⊂ T - CONSδ+1 ⊂ T-REL,
(2) NUM ∩ ℘(R0,1) = T - CONSδ ∩ ℘(R0,1) = T - CONSδ+1 ∩ ℘(R0,1) =

T-REL ∩ ℘(R0,1),
(3) T - CONSδ ∩ ℘(R0,1) ⊂ R-REL ∩ ℘(R0,1).

Proof. Let δ ∈ N be arbitrarily fixed. Then by Definition 4 we obviously have
T - CONSδ ⊆ T - CONSδ+1. For showing T - CONSδ+1 \ T - CONSδ 6= ∅ we use
the following class. Let (ϕ,Φ) be any complexity measure; we set

U
(ϕ,Φ)
δ+1 = {f f ∈ R, ϕf(0) = f, ∀x[Φf(0)(x) ≤ f(x+ δ + 1)]} .

Claim 1. U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1.

The desired strategy S is defined as follows. Let g ∈ R be the function defined
in the sufficiency proof of Theorem 2. For all f ∈ R and all n ∈ N we set

S(fn) =

f(0), if n ≤ δ or n > δ and Φf(0)(y) ≤ f(y + δ + 1)
and ϕf(0)(y) = f(y) for all y ≤ n −· δ −· 1

g(fn), otherwise.

Now, by construction one easily verifies U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1(S). This proves

Claim 1.
Claim 2. U (ϕ,Φ)

δ+1 /∈ T - CONSδ.
Suppose the converse. Then there must be a strategy S ∈ R such that

U
(ϕ,Φ)
δ+1 ∈ T - CONSδ(S). We continue by constructing a function ϕi∗ belong-

ing to U (ϕ,Φ)
δ+1 but on which S fails.

Furthermore, let r ∈ R be such that Φi = ϕr(i) for all i ∈ N and r is strongly
monotone growing, i.e., r(i) < r(i + 1) for all i ∈ N. Then range(r) is recursive
(cf. Rogers [18]). Choose s ∈ R such that for all j ∈ N we have for all x ≤ δ

ϕs(j)(x) =
{
i, if there is an i with r(i) = j ,
0, otherwise.



260 Y. Akama and T. Zeugmann

For the further definition of ϕs(j) we also use in every step δ+ 1 arguments. For
x = 0, δ + 1, 2δ + 2, 3δ + 3, . . . we set

ϕs(j)(x+ δ + 1) = ϕj(x) + 1
·
·
·

ϕs(j)(x+ 2δ + 1) = ϕj(x+ δ) + 1

provided ϕj(x), ϕj(x+ 1), . . . , ϕj(x+ δ) are all defined, ϕx+δs(j) is defined and

S
(
ϕx+δs(j)

)
= S

(
〈(ϕs(j)(0), . . . , ϕs(j)(x+ δ), ϕj(x), . . . , ϕj(x+ δ))〉

)
and

ϕs(j)(x+ δ + 1) = ϕj(x)
·
·
·

ϕs(j)(x+ 2δ + 1) = ϕj(x+ δ)

provided ϕj(x), ϕj(x+ 1), . . . , ϕj(x+ δ) are all defined, ϕx+δs(j) is defined and

S
(
ϕx+δs(j)

)
6= S

(
〈(ϕs(j)(0), . . . , ϕs(j)(x+ δ), ϕj(x), . . . , ϕj(x+ δ))〉

)
.

Otherwise, ϕs(j)(x+ δ + 1), . . . , ϕs(j)(x+ 2δ + 1) remain undefined.
By the Fixpoint Theorem (cf. Rogers [18]) there exists a number i∗ such that

ϕs(r(i∗)) = ϕi∗ .
Next, we show that ϕi∗ ∈ U

(ϕ,Φ)
δ+1 . This is done inductively. For the in-

duction base, by construction we have ϕi∗(0) = · · · = ϕi∗(δ) = i∗. Hence,
Φi∗(0), . . . , Φi∗(δ) are all defined, too. Therefore, we know that ϕδs(r(i∗)) is de-
fined and so either ϕs(r(i∗))(δ+1) = Φi∗(0)+1, . . . , ϕs(r(i∗))(2δ+1) = Φi∗(δ)+1
provided

S
(
ϕδs(r(i∗))

)
= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ), Φi∗(0), . . . , Φi∗(δ))〉

)
or ϕs(r(i∗))(δ + 1) = Φi∗(0), . . . , ϕs(r(i∗))(2δ + 1) = Φi∗(δ) if

S
(
ϕδs(r(i∗))

)
6= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ), Φi∗(0), . . . , Φi∗(δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be
T -consistent with δ–delay.

Hence, Φi∗(0) ≤ ϕi∗(δ + 1), . . . , Φi∗(δ) ≤ ϕi∗(2δ + 1), since ϕs(r(i∗)) = ϕi∗ .
So we know that ϕi∗(δ+1), . . . , ϕi∗(2δ+1) as well as Φi∗(δ+1), . . . , Φi∗(2δ+1)
are all defined. This completes the induction base.



Consistency Conditions for Inductive Inference of Recursive Functions 261

Consequently, we have the induction hypothesis that for some x = 0, δ +
1, 2δ+2, 3δ+3, . . . the values ϕi∗(z) are defined and Φi∗(z) ≤ ϕi∗(z+ δ+1) for
all z ≤ x+ δ. This of course implies ϕx+δs(r(i∗)) is defined, too. The induction step
is done from x to x+δ+1. First, we either have ϕs(r(i∗))(x+δ+1) = Φi∗(x)+1,
. . . , ϕs(r(i∗))(x+ 2δ + 1) = Φi∗(x+ δ) + 1 provided

S
(
ϕx+δs(r(i∗))

)
= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x+ δ), Φi∗(x), . . . , Φi∗(x+ δ))〉

)
or ϕs(r(i∗))(x+ δ + 1) = Φi∗(x), . . . , ϕs(r(i∗))(x+ 2δ + 1) = Φi∗(x+ δ) if

S
(
ϕx+δs(r(i∗))

)
6= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x+ δ), Φi∗(x), . . . , Φi∗(x+ δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be
T -consistent with δ–delay.

Therefore, ϕi∗(x + δ + 1), . . . , ϕi∗(x + 2δ + 1) are all defined and Φi∗(x) ≤
ϕi∗(x+ δ + 1), . . . , Φi∗(x+ δ) ≤ ϕi∗(x+ 2δ + 1).

Now, we also know that Φi∗(x+ δ + 1), . . . , Φi∗(x+ 2δ + 1) are all defined.
Therefore, we have shown that ϕi∗ ∈ U (ϕ,Φ)

δ+1 . Finally, by construction we directly
obtain that S performs infinitely mind changes when successively fed ϕi∗ , a
contradiction to U (ϕ,Φ)

δ+1 ∈ T - CONSδ(S). This proves Claim 2.
Taking into account that a strategy working T -consistently with δ–delay

converges when successively fed any function f iff it learns f , we directly get
T - CONSδ ⊆ T-REL for every δ ∈ N. Furthermore, as shown in Minicozzi [14],
T-REL is closed under recursively enumerable union. Therefore, setting U =⋃
δ∈N U

(ϕ,Φ)
δ+1 we can conclude U ∈ T-REL. But obviously U /∈ T - CONSδ for

any δ. This proves Assertion (1).
Using Theorem 2 one easily sees that for every operator O ∈ Ωid+δ there

is a monotone operator Ô ∈ Ωid+δ such that O(f, x) ≤ Ô(f, x) for all f ∈ R
and all x ∈ N. Here, we call an operator monotone if for all f, g ∈ R and
∞
∀x[f(x) ≤ g(x)] implies

∞
∀x[O(f, x) ≤ O(g, x)].

When restricted to learn classes U of recursive predicates this directly implies
that for every function f ∈ U there is a ϕ–program i such that ϕi = f and
∞
∀x[Φi(x) ≤ Ô(1∞, x)]. Thus, by the Extrapolation Theorem we can conclude
U ∈ NUM (cf. Barzdin and Freivalds [3]).

The same ideas can be used to show the remaining part for T-REL (cf.
Grabowski [9]). Hence, Assertion (2) is shown.

Finally, Assertion (3) is an immediate consequence of Assertion (2) and The-
orems 2 and 3 from Stephan and Zeugmann [19] which together show that
NUM∩ ℘(R0,1) ⊂ R-REL ∩ ℘(R0,1). This completes the proof. ut

Together with Theorem 4 the latter proof allows a nice corollary.

Corollary 6. For all δ ∈ N we have:

(1) CONSδ ⊂ CONSδ+1,
(2) R- CONSδ ⊂ R- CONSδ+1.



262 Y. Akama and T. Zeugmann

Proof. We use U (ϕ,Φ)
δ+1 from the proof of Theorem 5 and V = {α0∞ α ∈ N∗}.

Clearly, U (ϕ,Φ)
δ+1 , V ∈ T - CONSδ+1 and hence, by Theorem 4 we also have

U
(ϕ,Φ)
δ+1 ∪ V ∈ T - CONSδ+1. Consequently, U (ϕ,Φ)

δ+1 ∪ V ∈ R- CONSδ+1 and

U
(ϕ,Φ)
δ+1 ∪ V ∈ CONSδ+1. It remains to argue that U (ϕ,Φ)

δ+1 ∪ V /∈ CONSδ. This
will suffice, since R- CONSδ ⊆ CONSδ.

Suppose the converse, i.e., there is a strategy S ∈ P such that U (ϕ,Φ)
δ+1 ∪ V ∈

CONSδ(S). By the choice of V we can directly conclude that then S ∈ R
and that S has to work consistently with δ–delay on every fn, f ∈ R and
n ∈ N. But this would imply U

(ϕ,Φ)
δ+1 ∪ V ∈ T - CONSδ(S), a contradiction to

U
(ϕ,Φ)
δ+1 /∈ T - CONSδ. ut

A closer look at the latter proof shows that we have even proved the following
corollary shedding some light on the power of our notion of δ–delay.

Corollary 7. T - CONSδ+1 \ CONSδ 6= ∅ for all δ ∈ N.

The situation is comparable to Lange-Zeugmann’s [13] bounded example
memory learnability BEM k of languages from positive data, where BEM k yields
an infinite hierarchy such that

⋃
k∈N BEM k is a proper subclass of the class of

all indexed families that can be conservatively learned.
On the one hand, the latter corollary shows the strength of δ–delay. On

the other hand, the δ–delay cannot compensate all the learning power that is
provided by the different consistency demands on the domain of the strategies.

Theorem 8. R- CONS \ T - CONSδ 6= ∅ for all δ ∈ N.

Proof. The proof can be done by using the class U = {f f ∈ R, ϕf(0) = f}
of self-describing functions. Obviously, U ∈ R- CONS(S) as witnessed by the
strategy S(fn) = f(0) for all f ∈ R and all n ∈ N. Now, assuming U ∈
T - CONSδ for some δ ∈ N would directly imply that U ∪V ∈ T - CONSδ for the
same δ (here V is the class defined in the proof of Corollary 6) by Theorem 4.
But this is a contradiction to U ∪ V /∈ LIM as shown in Barzdin [1]. ut

Finally, putting Corollary 7 and Theorem 8 together, we get the following
incomparabilities.

Corollary 9. T - CONSδ # CONSµ and T - CONSδ # R- CONSµ for all
δ, µ ∈ N provided δ > µ.

6 Conclusions and Future Work

Looking for possible relaxations for the demand to learn consistently we have
introduced the notions of coherent learning and of δ-delay. As our results show,
coherent learning with δ-delay has the same learning power as consistent learning
with δ-delay for all versions considered. Thus, coherence is in fact no weakening
of the consistency demand.

On the other hand, we could establish three new infinite hierarchies of con-
sistent learning in dependence on the delay δ.



Consistency Conditions for Inductive Inference of Recursive Functions 263

The figure below summarizes the achieved separations and coincidences of the
various coherent and consistent learning models investigated within this paper.

T - COH ⊂ T - COH1 ⊂ · · · ⊂ T - COHδ ⊂ T - COHδ+1 ⊂ · · · ⊂ T-REL

T - CONS ⊂ T - CONS1 ⊂ · · · ⊂ T - CONSδ ⊂ T - CONSδ+1 ⊂ · · · ⊂ T-REL
∩ ∩ ∩ ∩ ∩

R- COH ⊂ R- COH1 ⊂ · · · ⊂ R- COHδ ⊂ R- COHδ+1 ⊂ · · · # R-REL

R- CONS ⊂ R- CONS1 ⊂ · · · ⊂ R- CONSδ ⊂ R- CONSδ+1 ⊂ · · · # R-REL
∩ ∩ ∩ ∩ ∩

COH ⊂ COH1 ⊂ · · · ⊂ COHδ ⊂ COHδ+1 ⊂ · · · ⊂ LIM

CONS ⊂ CONS1 ⊂ · · · ⊂ CONSδ ⊂ CONSδ+1 ⊂ · · · ⊂ LIM

Fig. 1. Hierarchies of consistent learning with δ-delay

Moreover, we showed characterization theorems for CONSδ and T - CONSδ
in terms of complexity. These theorems provide a first explanation for the in-
crease in learning power caused by the δ-delay. On the other hand, the char-
acterization for T - CONSδ proved to be very useful for showing the closure of
T - CONSδ under recursively enumerable unions. Thus, it would be nice to find
also a characterization for R- CONSδ in terms of complexity. This seems to be
a challenging problem.

Finally, further work should solve the problem whether or not CONS \
R- CONSδ 6= ∅ for all δ ∈ N. We conjecture the affirmative answer.

Acknowledgments. The authors are very grateful to Kouichi Hirata, Ken
Satoh, and Akihiro Yamamoto for their help and support during the editing
process of these proceedings and to the anonymous referees for their careful
reading.

References

[1] J. M. Barzdin. Dve teoremy o predel~nom sinteze funkciĭ. In J. M. Barzdin,
editor, Teori� Algoritmov i Programm, volume I, pages 82 – 88. Latvian State
University, 1974.

[2] J. M. Barzdin. Inductive inference of automata, functions and programs. In Proc.
of the 20-th International Congress of Mathematicians, Vancouver, Canada, pages
455–460, 1974. (republished in Amer. Math. Soc. Transl. (2) 109, 1977, pp.107-
112).

[3] J. M. Barzdin and R. V. Freivalds. On the prediction of general recursive functions.
Soviet Math. Dokl., 13:1224–1228, 1972.

[4] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Inform. Control, 28(2):125–155, June 1975.



264 Y. Akama and T. Zeugmann

[5] M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the ACM, 14(2):322–336, 1967.

[6] R. Freivalds, E. B. Kinber, and R. Wiehagen. How inductive inference strategies
discover their errors. Inform. Comput., 118(2):208–226, 1995.

[7] M. A. Fulk. Saving the phenomenon: Requirements that inductive inference ma-
chines not contradict known data. Inform. Comput., 79(3):193–209, 1988.

[8] E. M. Gold. Language identification in the limit. Inform. Control, 10(5):447–474,
1967.

[9] J. Grabowski. Starke Erkennung. In R. Linder and H. Thiele, editors, Struktur-
erkennung diskreter kybernetischer Systeme, volume 82, pages 168–184. Seminar-
berichte der Sektion Mathematik der Humboldt-Universität zu Berlin, 1986.

[10] J. Helm. On effectively computable operators. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik (ZML), 17:231–244, 1971.

[11] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory, second edition. MIT Press, Cambridge, Mas-
sachusetts, 1999.

[12] K. P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive
inference. Elektronische Informationsverarbeitung und Kybernetik, 17(8/9):465–
484, 1981.

[13] S. Lange and T. Zeugmann. Incremental learning from positive data. J. of Com-
put. Syst. Sci., 53(1):88–103, 1996.

[14] E. Minicozzi. Some natural properties of strong identification in inductive infer-
ence. Theoret. Comput. Sci., 2:345–360, 1976.

[15] P. Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, 1989.
[16] P. Odifreddi. Classical Recursion Theory, Vol. II. North Holland, Amsterdam,

1999.
[17] D. N. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction

to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cam-
bridge, Massachusetts, 1986.

[18] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted, MIT Press 1987.

[19] F. Stephan and T. Zeugmann. Learning classes of approximations to non-recursive
functions. Theoret. Comput. Sci., 288(2):309–341, 2002.

[20] R. Wiehagen. Zur Theorie der Algorithmischen Erkennung. Dissertation B,
Humboldt-Universität zu Berlin, 1978.

[21] R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Elektronische Informationsverarbeitung und Ky-
bernetik, 12(8/9):421–438, 1976.

[22] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to learn
efficiently. J. of Experimental and Theoret. Artif. Intell., 6(1):131–144, 1994.

[23] R. Wiehagen and T. Zeugmann. Learning and consistency. In Algorithmic Learn-
ing for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial In-
telligence, pages 1–24. Springer, 1995.

[24] T. Zeugmann. On the nonboundability of total effective operators. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik (ZML), 30:169–172, 1984.


