DOI-TR-145

DOI Technical Report

Learning k-Variable Pattern Languages
Efficiently Stochastically Finite on Average from
Positive Data

by

PETER ROSSMANITH AND THOMAS ZEUGMANN

January 17, 1998

Department of Informatics
Kyushu University
Fukuoka 812-81, Japan

Email: thomas@i.kyushu-u.ac.jp  Phone: +81-92-543-7640






Learning k-Variable Pattern Languages
Efficiently Stochastically Finite on
Average from Positive Data

PETER ROSSMANITH THOMAS ZEUGMANN
Institut fir Informatik Department of Informatics
Technische Universitat Munchen Kyushu University
D-80290 Minchen Kasuga 816
GERMANY JAPAN
rossmani@informatik.tu-muenchen.de thomas@i.kyushu-u.ac.jp
Abstract

The present paper deals with the average-case analysis of the Lange—Wie-
hagen (1991) algorithm learning the class of all pattern languages in the limit
from positive data.

Let A = {0,1,...} be any non—empty finite alphabet containing at least
two elements. Furthermore, let X = {x;| i € N} be an infinite set of variables
such that ANX = 0. Patterns are non-empty strings over AU X . L(7), the
language generated by pattern 7 is the set of strings which can be obtained by
substituting non-null strings from A* for the variables of the pattern = .

The Lange-Wiehagen (1991) algorithm is analyzed with respect to its total
learning time, i.e., the overall time taken by the algorithm until convergence.
The expectation of the total learning time is carefully analyzed and ezponen-
tially shrinking tail bounds for it are established for a large class of probability
distributions. For every pattern m containing k different variables it is shown
that Lange and Wiehagen’s algorithm possesses an expected total learning time
of O(&k(logl/ﬂ(k) + 2)E[A]), where & and 8 are two easy computable pa-
rameters arising naturally from the underlying probability distributions, and
E[A] is the expected example string length. In particular, for the uniform dis-
tribution the expected total learning time is O(2*|7| log| 4/(k)) which is a slight
improvement over previously known results.

Finally, we show how the improved analysis can be used to arrive at a new
learning model. In this model, learning in the limit is transformed into finite
learning with high confidence.



2 PETER ROSSMANITH AND THOMAS ZEUGMANN

1. Introduction

The present paper deals with the average-case analysis of the Lange—Wiehagen [10]
algorithm (LWA for short) that learns the class of all pattern languages in the limit
from positive data. That means the learner is fed successively example strings and
its previously made hypothesis, and it computes from these input data a new pattern
as its hypothesis. The sequence of all pattern output stabilized to a single pattern
which generates the target pattern language.

Our goal is twofold. On the one hand, we generalize and improve the average-
case analysis of the same algorithm performed by Zeugmann [19] for its expected
total learning time. The time taken by a learner for computing a single hypothesis
from its input data is usually called update time. The total learning time is the
time taken by the learner until convergence, i.e., the sum of all update times until
successful learning. Note that it is a highly non-trivial task to define an appropriate
complexity measure for learning in the limit (cf. [12]). The total learning time has
been introduced by Daley and Smith [3]. As Pitt [12] pointed out, allowing the total
learning time to depend on the length of the examples seen so far is unsatisfactory,
since the learner may delay convergence until a sufficiently long example appears
so that the algorithm may meet the wanted polynomial time bound. We therefore
measure the total learning time only in dependence on the length of the target pattern.
As shown in Zeugmann [19], then the total learning time is unbounded in the worst-
case. Thus analyzing the total learning in such a worst-case setting does yield much
insight. Moreover, such a worst-case scenario is too pessimistic for many applications.
Zeugmann [19] therefore initialized the average-case analysis of limit learners with
respect to their total learning time. We continue along this line.

On the other hand, we show how the improved analysis can be used to arrive at
a new learning model. In this model, learning in the limit is transformed into finite
learning with high confidence. Since this transformation requires a certain amount
of knowledge concerning the underlying class of admissible probability distributions
we refer to the new learning model as stochastically finite learning. The basic idea
can be described as follows. Based on exponentially shrinking tail bounds obtained
from our average case analysis for the expected total learning time, the new learner
takes as input a text and a confidence parameter 6. It then computes internally
hypotheses until the time bound established is met for the first time. Intuitively,
now the algorithm has already learned on average. However, in order to establish
the wanted confidence the learner proceeds until the probability to have missed the
successful learning is smaller than or equal to the desired confidence. It then outputs
its last internally computed guess and stops thereafter (cf. Section 4, Definition 2).

Our research derives its motivation from the fact that the pattern languages (PAT
for short) are a prominent and important concept class that can be learned from posi-
tive data (cf., e.g., Salomaa [14, 15], and Shinohara and Arikawa [17] for an overview).
Nevertheless, despite its importance there is still a bottleneck concerning efficient
learning algorithms. Kearns and Pitt [8], Ko, Marron and Tzeng [9]] and Schapire S90
intensively studied the learnability of pattern languages in the PAC-learning model.
In particular, Schapire [16] proved that the class PAT is not PAC-learnable regardless
of the representation used by the learning algorithm, provided only that the learner



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 3

is requested to output a polynomial-size hypothesis that can be evaluated in polyno-
mial time, unless Pjpo = N P /poty - However, the class Pat of all patterns is not a
polynomial time representation for PAT, since the membership problem for PAT with
respect to Pat is NP -complete (cf. [1]). On the other hand, Kearns and Pitt [8] de-
signed a polynomial-time PAC-learner for the set of all k-variable pattern languages
(k arbitrarily fixed) under the assumption the only product distributions are allowed.
Unfortunately, the constant in the running time achieved depends doubly exponential
on k, and thus, their algorithm becomes rapidly impractical when % increases.

In contrast, our stochastically finite learner achieves a running time whose constant
depends only exponentially on the number £ of different variables occurring in the
target pattern and is otherwise linearly bounded in the expected length of sample
strings fed to the learner (cf. Theorem 2). The price paid is rather small. We restrict
the class of all probability distributions to a subclass that has an arbitrary but fixed
bound on two parameters arising naturally. In essence, that means at least two
letters from the underlying probability distribution have a known lower bound on
their probability.

Finally, we shortly summarize the improvements obtained concerning the average-
case analysis compared to the analysis undertaken in [19].

(1) Let A be the length of random positive example according to some distribution.
Zeugmann’s [19] estimate of the expected total learning time contains the variance
of A as a factor. While this variance is small for many distribution it is sometimes
infinity and sometimes very big. The new analysis does not use variances or other
higher moments of A at all. Thus it turns out that the expected total learning time
is bounded iff the expectation of A is bounded.

(2) We present exponentially fast shrinking tail bounds for the expected total
learning time. Previous work did not study tail bounds at all.

(3) The new analysis presents the bound on the expected total learning time as a
simple formula that contains only three parameters: «, #, and E[A]. The parame-
ters a and [ are very simple to compute for each probability distribution.

(4) The new analysis is slightly tighter: For the “uniform” distribution, e.g., the
upper bound is by a factor of k?|w| smaller, where || is the length of the pattern and
k again the number of different variables occurring in 7. We also give all bounds as
exact formulas without hiding constant factors in a big O . These constants, however,
are not the best possible in order to keep the proofs simple.

(5) Besides the total learning time we give separate estimates on the number of
iterations until convergence, the number of union operations performed by the LWA,
and the time spent in union operations. The union operation is the most difficult
part in the LWA. On the one hand, we provide a new algorithm for computing the
union operation that achieves linear time, while all previously known algorithms take
quadratic time. Nevertheless, our algorithm needs quadratic space. Thus, these extra
estimates help to judge whether this optimization is worthwhile. It turns out that
except for rather pathological distributions the time spent for union operations is
quite small even when each union operation takes quadratic time. Hence, if space is
a serious matter of concern, one can still stick to the naive implementation without
worsening the overall time bound too much.



4 PETER ROSSMANITH AND THOMAS ZEUGMANN

2. Preliminaries

Let N = {0,1,2,...} be the set of all natural numbers, and let N* = N\ {0}.
For all real numbers = we define |z], the floor function, to be the greatest integer
less than or equal to z. Furthermore, by [x] we denote the ceiling function, i.e., the
least integer greater than or equal to x.

Following Angluin [1] we define patterns and pattern languages as follows. Let A =
{0,1,...} be any non-empty finite alphabet containing at least two elements. By .A*
we denote the free monoid over A (cf. Hopcroft and Ullman [7]). The set of all finite
non-null strings of symbols from A is denoted by A™, ie., AT = A*\ {¢}, where ¢
denotes the empty string. By |A| we denote the cardinality of A. Furthermore, let
X = {x;| i € N} be an infinite set of variables such that AN X = (). Patterns are
non-empty strings over AU X | e.g., 01, 0xol1l, lxoxo0x1z92¢ are patterns. The
length of a string s € A* and of a pattern 7 is denoted by |s| and ||, respectively.
A pattern 7 isin canonical form provided that if £ is the number of different variables
in 7 then the variables occurring in 7 are precisely xg, ...,z 1. Moreover, for every
Jj with 0 < j <k —1, the leftmost occurrence of z; in 7 is left to the leftmost
occurrence of z;;; in m. The examples given above are patterns in canonical form.
In the sequel we assume, without loss of generality, that all patterns are in canonical
form. By Pat we denote the set of all patterns in canonical form.

Let m € Pat, 1 <i <|r|; we use 7(i) to denote the i-th symbol in 7. If 7(i) €
A, then we refer to 7(i) as to a constant; otherwise 7(i) € X , and we refer to 7(7)
as to a variable. Analogously, by s(i) we denote the i-th symbol in s for every string
s€ AT and all 1 =1, ..., |s|. By #var(r) we denote the number of different vari-
ables occurring in 7, and by #,,(7) we denote the number of occurrences of variable
x; in 7. If #var(n) =k, then we refer to 7 as to a k-variable pattern. Let k € N,
by Pat; we denote the set of all k-variable patterns. Furthermore, let 7 € Pat; , and
let ug,...,ux_1 € A" ; then we denote by w[xg/ug, ..., Tr 1/ug 1] the string w € A
obtained by substituting u; for each occurrence of z;, j=0,...,k—1, in the pat-
tern m. For example, let m = Oxplzyzy. Then w[zy/10,2,/01] = 01010110. The
tuple (uo,...,ux—1) is called substitution. Furthermore, if |ug| = -+ = |up—1| =1,
then we refer to (ug,...,ur—1) as to a shortest substitution. Now, let = € Paty,, and
let S = {(uo,-..,up—1)l uj € A", j =0,...,k — 1} be any finite set of substitu-
tions. Then we set S(m) = {7w[zo/ug, ...,k 1/ux 1]l (wo,...,ux_1) € S}, ie., S(n)
is the set of all strings obtained from pattern 7 by applying all the substitutions
from S to it. For every m € Pat; we define the language generated by pattern m by
L(m) = {w|xo/uo, - - -, Tx—1/ug_1]| wo,...,ux_1 € AT}. By PAT}) we denote the set
of all k-variable pattern languages. Finally, PAT = |J,. PAT denotes the set of
all pattern languages over A. Note that for every L € PAT there is precisely one
pattern 7 € Pat such that L = L(w) (cf. Angluin [1]).

We are interested in inductive inference, which means to gradually learn a concept
from successively growing sequences of examples. If L is a language to be identified,
a sequence (sy, Sg, S3, ...) is called a text for L if L = {si, s9, s3, ...} (cf. [5]).
However, in practical applications, the requirement to exhaust the language to be
learned will be hardly fulfilled. We therefore omst this assumption here. Instead, we
generalize the notion of text to the case that the sequence ¢t = sy, s9, s3, ... contains
“enough” information to recognize the target pattern. As for the LWA, “enough”



Learning k -Variable Pattern Languages Efficiently Stochastically Finite )

can be made precise by requesting that sufficiently many shortest strings appear in
the text. We shall come back to this point when defining admissible probability
distributions.

As introduced by Gold [5] an inductive inference machine is an algorithm that takes
as input larger and larger initial segments of a text and outputs, after each input, a
hypothesis from a prespecified hypothesis space. In the case of pattern languages the
hypothesis space is Pat .

DEFINITION 1. PAT is called learnable in the limit from text iff there is an IIM
M such that for every L € PAT and every text t for L,

(1) for all n € NT, M(t,) is defined,

(2) there is a pattern m € Pat such that L(r) = L and for almost all n € Nt
M(t,) =m.

It is well known that pattern languages are learnable in the limit from text (cf. [1]).

Whenever one deals with the average case analysis of algorithms one has to consider
probability distributions over the relevant input domain. For learning from text, we
have the following scenario. Every string of a particular pattern language is generated
by a substitution. Therefore, it is convenient to consider probability distributions over
the set of all possible substitutions. That is, if # € Paty, then it suffices to consider
any probability distribution D over A" x --- x A" . For (ug,...,u51) € ATx---x

-~

k—times
AT we denote by D(ug,...,ur_1) the probability that variable z, is substituted by
ug , variable x is substituted by wq, ..., and variable z;_; is substituted by wuz_1 .

In particular, we mainly consider a special class of distributions, i.e., product distri-
butions. Let k € N1 then the class of all product distributions for Pat;, is defined as
follows. For each variable z;, 0 < j < k—1, we assume an arbitrary probability distri-
bution D; over A* on substitution strings. Then we call D = Dy x - -+ x Dj_; prod-
uct distribution over At x -+ x AT ie., D(ug,...,ux 1) = H?;é Dj(u;). Moreover,
we call a product distribution regular if Dy = .-+ = Dy, . Throughout this paper,
we restrict ourselves to deal with reqular distributions. We therefore use d to denote
the distribution over A" on substitution strings, i.e, D(ug,...,ux_1) = Hf;é d(u;) -
Note, however, that most of our results can be generalized to larger classes of dis-
tributions. Finally, we can provide the announced specification of what is meant by
“enough” information. We call a regular distribution admissible provided d(a) > 0
for at least two different elements a € A.

Following Daley and Smith [3] we define the total learning time as follows. Let
M be any IIM that learns all the pattern languages. Then, for every L € PAT and
every text ¢t for L, let

Conv(M,t) =4 the least number m € N* such that for all n > m, M(t,) = M(t,)

denote the stage of convergence of M on t. Moreover, by Ty (t,) we denote the time
to compute M(t,). We measure this time as a function of the length of the input



6 PETER ROSSMANITH AND THOMAS ZEUGMANN

and refer to it as to the update time. Finally, the total learning time taken by the ITM
M on successive input ¢ is defined as

Conv(M,t)

TT(M,t) =g Y Tul(ta).

n=1

Assuming any fixed admissible probability distribution D as described above, we aim
to evaluate the expectation of TT(M,t) with respect to D which we refer to as to
the total average learning time.

The model of computation as well as the representation of patterns we assume is
the same as in Angluin [1]. In particular, we assume a random access machine that
performs a reasonable menu of operations each in unit time on registers of length
O(logn) bits, where n is the input length.

Finally, we recall the LWA. The LWA works as follows. Let h, be the hypothesis

computed after reading si, ..., S, , i.e., hy = M(s1, ..., S,). Then h; = s; and for
all n > 1:
hnfla if |h"n71| < |3n|
hy =1 $n, if |hp_1| > |snl
hn—l U sp, if |hn—1| = |3n|

The algorithm computes the new hypothesis only from the latest example and the
old hypothesis. If the latest example is longer than the old hypothesis, the example is
ignored, i.e., the hypothesis does not change. If the latest example is shorter than the
old hypothesis, the old hypothesis is ignored and the new example becomes the new
hypothesis. Hence, the LWA is quite simple and the update time will be very fast for
these two possibilities.

If, however, |h,—1| = |s,| the new hypothesis is the union of h,_; and s,. The
union ¢ = wUs of a canonical pattern 7 and a string s of the same length is defined
as

(1), if (i) = s(1)

(i) = x;, if m(3) # s(i) & Ik < i :
o lo(k) = x5, s(k) = (i), m(k) = 7(0)
T, otherwise, where m = #var(p(1)...0(i — 1))

where ¢(0) = e for notational convenience. Note that the resulting pattern is
again canonical.

Obviously, the union operation can be computed in quadratic time. We fin-
ish the section by providing a linear-time algorithm computing the union opera-
tion. The only crucial part is to determine whether or not there is some k£ < %
with o(k) = z;, s(k) = s(i), and wn(k) = w(¢). The new algorithm uses an ar-
ray I = {1,...,|s|}A*A02x1}) for finding the correct k, if any, in constant
time. The array I is partially initialized by writing the first position into it at which
s(1), m(1) occurs. Then, for each position i, the algorithm checks whether or not



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 7

Is(i),m(i) = i. Suppose it is, thus s(i),7(i) did not occur left to 7. Hence, it
remains to check whether or not 7(i) = s(i) and p(i) can be immediately output.

If Isiyry # 4, then s(é), () did occur left to 7. Hence, in this case it suffices to
output o(j) where j = I xq)-

THEOREM 1. The union operation can be computed in linear time.

Proof. The following algorithm constructs ¢ = 7 U s in linear time.

Algorithm 1

Input: A pattern 7 and a string s € A" such that |7|=|s|.
Output: 7Us

Method:
for i = 1, ceey |S| do Is(i),ﬂ'(i) =0 od
for i=1,...,|s| do

if IS(i),ﬂ'(i) =0 then Is(i),ﬂ(i) —1 fi
m «— 0;
for i=1,...,|s| do

J — Lsiyx(i)

if i =4 then

if 7(7) = s(i) then p(i) = 7 ()
else o(i) — z,,, m«—m+1 fi
else o() = o(j)

fi
od
The correctness of this algorithm can be easily proved inductively by formalizing
the argument given above. We omit the details. |

We continue with a summary of the results obtained.

3. Results

Following [19] we perform the desired analysis in dependence on the number &
of different variables occurring in the target pattern =. If & = 0, then the LWA
immediately converges. Therefore, in the following we assume k& € N*, and 7 € Paty, .
Taking into account that |w| > |r| for every w € L(r), it is obvious that the LWA can
only converge if it has been fed sufficiently many strings from L(7) having minimal
length. Therefore let

L(T)min = {w| w € L(r), |w| = |r|}.

Zeugmann [19] found an exact formula for the minimum number of examples that
the LWA needs to converge:

PROPOSITION 1 (Zeugmann [19]). To learn a pattern m € Paty the LWA needs
exactly |log 4 (Al +k —1)] +1 eramples in the best case.

Clearly, in order to match this bound all examples must have been drawn from
L(7)min - In the worst case there is no upper bound on the number of examples.



8 PETER ROSSMANITH AND THOMAS ZEUGMANN

For analyzing the average-case behavior of the LWA, in the following we let ¢ =
S1, So, S3, ... range over all randomly generated texts with respect to some arbitrarily
fixed admissible probability distribution D . Then the stage of convergence is a ran-
dom variable which we denote by C'. Note that the distribution of C' depends on 7
and on D . We introduce several more random variables. By A; we denote the length
of the example string s;, i.e., A; = |s;|. Since all A; are independent and identically
distributed, we can assume that the random variable has the same distribution as A.
We will use A when talking about the length of an example when the number of the
example is not important. Particularly, we will often use the expected length of a
random example E[A].

Let T be the total length of examples processed until convergence, i.e.,
T:A1+A1++AC

Whether the LWA converges on sq, ..., s, depends only on those examples s; with
$; € L(m)min. Let 7 € NT; by M, we denote the number of minimum length
examples among the first r strings, i.e.,

M,=|{il1<i<rand A; = |n|}|

In particular, M¢ is the number of minimum length examples read until convergence.
We assume that reading and processing one character takes exactly one time step in
the LWA unless union operations are performed. Disregarding the union operations,
the total learning time is then 7'. The number of union operations until convergence
is denoted by U. The time spent in union operations until convergence is V. The
total learning time is therefore 77" =T +V . We assume that computing poUs takes
at most c- |p| steps, where ¢ is a constant that depends on the implementation of
the union operation.

We will express all estimates with the help of the following parameters: E[A], ¢,
a and (3. To get concrete bounds for a concrete implementation one has to obtain
¢ from the algorithm and has to compute E[A], a, and 3 from the admissible
probability distribution D . Let wug,...,u;_1 be independent random variables with
distribution d for substitution strings. Whenever the index ¢ of u; does not matter,
we simply write u or u'.

The two parameters « and [ are now defined via d. First, « is simply the
probability that u has length 1, i.e.,

a=Pr(jul=1) = Zd(a).
acA

Second, [ is the conditional probability that two random words that get substituted
into 7w are identical under the condition that both their length are 1, i.e.,

f=Prlu=u |Jul= || =1) = da /(Y d(a)) "
acA

acA

The parameter o and [ are therefore quite easy to compute even for complicated
distribution since they depend only on |.A| point probabilities. We can also compute
E[A] for a pattern 7 from d quite easily.



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 9

Let u = (up,...,ur_1) be any substitution. Because of

k—1
[/ o, -, whr funa]l = |m] + Y Fay (m)(fui] = 1),

i=0
we have

EA] = |7 + v(Ellul] = 1)

k=1
where v is the total number of variable occurrences in 7, i.e., v =) #,,(7)
i=0

In our analysis we will use often the median of a random variable. If X is a
random variable then pX is a median of X iff

Pr(X > puX) <1/2 and Pr(X < pX) <1/2.

A nonempty set of medians exists for each random variable and consists either of a
single real number or of a closed real interval. We will denote the smallest median of
X by pX, since this choice gives the best upper bounds.

Next, we present the main results and compare them to Zeugmann’s [19] analysis.
His distribution independent results read as follows in our notation:
PROPOSITION 2 (Zeugmann [19], Theorem 8). E[TT] = O(E[C]-(V[A]+E?*A])).

The variance of A is herein denoted by V[A]. The parameters V[A] and E[A]
have to be computed for a given distribution. For E[C] he gives an estimate with the
help of E[M¢] and E[T;], which is the expected time to receive the first j pairwise
different elements from L(7) iy

PROPOSITION 3 (Zeugmann [19], Theorem 8).

1 2 1 [AJF~1+1
E[C] < E[Mc] 'maX{E[Tl]a §ZE[Tj]a o AT R T Z E[Tj]}

He then proceeds to estimate these parameters for the uniform distribution, where
d(u) = 27| A| 714l Here his estimate is as follows:

PROPOSITION 4 (Zeugmann [19], Theorem 11). E[TT] = O(2*|r|*log 4 (k|.A]))
for the uniform distribution.

The main difference to our analysis are the parameters that have to be evaluated
for a given distribution. Instead of E[A], VI[A], E[Cn|, E[1}], and |A| we use «,
B3, and E[A], which are easier to obtain. Setting & = 1/, we can estimate the total
learning time as follows:

THEOREM 2. E[TT] = O(&*(log, (k) + 2)E[A]) .

At first sight Theorem 2 looks complicated, but it is rather simple to evaluate.
One further advantage is that the variance of A is not used at all. Take for example
some distribution with Pr(ju] = 2°) = 3.4 and Pr(Jul = n) = 0 if n is not
a power of 2. Then E[A] < 3|r|, but V[A] = co. Hence, Proposition 2 just says
E[TT] < o©o. Since @ = 4/3, Theorem 2 yields a very good upper bound, i.e.,



10 PETER ROSSMANITH AND THOMAS ZEUGMANN

E[TT] = O((4/3)*(log, /5(k)+2)|n) . Even if V[A] exists it can be much bigger than
E?[A].

Next, we insert the parameter for the uniform distribution into Theorem 2. For
the uniform distribution we get & =2, 3 =1/|A|, and E[A] < 2|n].

THEOREM 3. E[TT] = O(2*|r|log 4 (k)) for the uniform distribution.
This estimate is slightly better than Proposition 4.

We continue by investigating other expected values of interest. Often time is
the most precious resource and then we have to minimize the total learning time.
The number of examples until convergence can also be interesting, if the gathering of
examples is expensive. Then the average number of examples is the critical parameter
and we are interested in E[C].

THEOREM 4. E[C] = O(&* - log, /5(k)) .

If we compare Theorems 2 and 4 it turns out that in many cases the total learning
time is by a factor of about FE[A] larger than the number of examples read until
convergence. This is about the same time an algorithm uses that just reads E[C]
random positive examples.

We can even get a better understanding of the behavior if we examine the union
operations by themselves. Is it worthwhile to optimize the computation of w U 7 ?
It turns out that union operations are responsible only for a small part of the overall
computation time. Remember that U is the number of union operations and V is
the time spent in union operations.

THEOREM 5.

(1) E[U] = O(ak +log1/ﬁ(k))

(2) E[U] = O(@kE[A] +1logy,4(k)|m|) provided the union operation is performed by
Algorithm 1,

(3) E[V] = O(GkE?[A] +log, 5(k)|7|*) if the union operation is performed by the
naive algorithm.

Consequently, if space is a serious matter of concern, e.g., if the patterns to be
learned are very long, one may easily trade a bit more time by using the naive,
quadratic time algorithm instead of Algorithm 1 above. We shall come back to this
point in Section 5.

3.1. Tail Bounds

Finally we have to ask whether the average total learning time is sufficient for
judging the LWA. The expected value of a random variable is only one aspect of
its distribution. In general we might also be interested on how often the learning
time exceeds the average substantially. Again this is a question motivated mainly
by practical considerations. Equivalently we can ask, how good the distribution is
concentrated around its expected value. Often this question is answered by estimating



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 11

the wariance, which enables the use of Chebyshev’s inequality. If the variance is not
available, Markov’s inequality provides us with (worse) tail bounds:

Pr(X > t- E[X]) <

S

The Markov inequality is quite general but produces only weak bounds. The next
theorem gives better tail bounds for a large class of learning algorithms including the
LWA. The point here is, that the LWA possesses two additional desirable properties,
i.e., it is set-driven (cf. Zeugmann [19]) and conservative. A learner is said to be set-
driven, if its outputs depends only on the range of its input (cf. [18]). Conservative
learners maintain their actual hypotheses at least as long as they have not seen data
contradicting them (cf. Angluin [2]).

THEOREM 6. Let X be the sample complexity of a conservative and set-driven
learning algorithm. Then Pr(X >t -uX) < 27" forall t € N.

Proof. We divide the text (s1, S2,...) into blocks of length uC'. The probability that
the algorithm converges after reading any of the blocks is then at least 1/2. Since
the algorithm is set-driven the order of the blocks does not matter and since the
algorithm is conservative it does not change its hypothesis after computing once the
right pattern. |

COROLLARY 7. Let X be the sample complexity of a conservative and set-driven
learning algorithm. Then Pr(X > 2t- E[X]) < 27" for all t € N.

Proof. Since pX < 2E[X] for every positive random variable X by the Markov
inequality, we get immediately that Pr(X > 2t- E[X]) < 27" for every ¢ € N. |

Theorem 6 and Corollary 7 put the importance of conservative and set-driven
learners into the right perspective. Moreover, both results remain true for conserva-
tive and rearrangement-independent learners. A learner is said to be rearrangement-
independent if its outputs depends exclusively of the range and length of its input.
Thus, Theorem 6 and Corollary 7 have wide range of potential applications as long as
the learnability of indexed families is concerned, since every conservative learner can be
transformed into a learner that is both conservative and rearrangement-independent
provided the hypothesis space is appropriately chosen (cf. Lange and Zeugmann [11]).

Since the distribution of X decreases geometrically, all higher moments of X
exist. The next two theorems estimate the expected value and the variance of X in
terms of the median. Similar results hold for higher moments.

THEOREM 8. Let X be the sample complexity of a conservative and set-driven
learning algorithm. Then E[X]| < 2uX .

Proof.

wX +J J

= iPr(X > i) < i 2 l/mXl <
=1 =1

pX 270 =2uX |

f;



12 PETER ROSSMANITH AND THOMAS ZEUGMANN

THEOREM 9. Let X be the sample complexity of a conservative and set-driven
learning algorithm. Then V[X] < 2uX(3uX — E[X]) < 5(uX)?.
Proof.

V[X]= E[X? - E}X] = Z 2 - Pr(X =1i) — B}[X]

= if - (Pr(X > 1) = Pr(X > i+1)) — B*[X]

= ) PPr(X >i) =) (i+1)°Pr(X >i+1)
=0 1=0

-

-~

=0

(2i +1)Pr(X > i+1) — E*[X]

+
M

B
Il
o

I
‘Mg

~
Il
—

(2i — 1) - Pr(X > i) — E[X] iPr(X > i)

(2i — 1 — E[X]) Pr(X > )

|
‘Mg

~
Il
—_

(2i — 1 — E[X]) - 2 1¥/#X] (by Theorem 6)

M

~
Il
—

> lux + ) -1 - Bx) -2 L5

j:

o

Il
o
S

K3

pX 200+ 1)pX — E[X]—2)-27"

I
M]3

pX(BuX — E[X]-2)
2uX (3pX — E[X]) < 5(uX)

.
[e=)

IN

3.2. The Sample Complexity

In this section we estimate the sample complexity. While being of interest itself,
whenever acquiring examples is expensive, F[C] is also an important ingredient in
the estimation of the total learning time. In estimating E[C], we first need E[M¢],
which we get from tail bounds of Mg given in the following lemma.

LEMMA 1. Pr(Mg > m) = Pr(C > r| M, = m) < (5)p™ + kB™? for all
m, T € NT with r > m.
Proof. Without loss of generality, let S, = {s1, ..., s}, i.e., m = r. Additionally,

we can make the assumption that all strings s; € S, have length k, since we need to
consider only shortest words for Mc and we can assume that m = zozy... 25 1 (cf.



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 13

[19]). For 1 < j <k let ¢; = s50(j)s1(j)...Sm-1(j) be the jth column of a matrix
whose rows are sq, ..., Sy, .

The algorithms computes the hypothesis # on input S, iff no column is constant
and there are no identical columns. The probability that c; is constant is at most
™% since m/2 pairs have to be identical. But this short argument works only for
even m.

The probability that a column is constant, i.e., the probability that m independent
random words are identical under the condition that each length is exactly 1, is

a;d(a)m / (;4 d(a))m.

In the following we show that this quantity is at most #™/2. We start with the
following inequality obtained by the multinomial theorem.

dodl@m™ =) d()*% < (Zd@f)mﬂ

acA acA acA
Dividing both sides by (Zae M d(a)) vields

(zaeAdm)?)m/z
(Suest@)) "

N
(;W / (a;dw) ) = g

The probability that at least one of the k£ columns is constant is then at most
kpm/2

The probability that ¢; = ¢; is 8™ if ¢ # j. The probability that some columns
are equal is therefore at most ('2“) B™ . The probability that there is a constant column
or that there are identical columns is at most (g)ﬂm + kpm/? |

ZaeA d(a)mm
(ZaeA d(a))

IN

Inserting the above tail bounds into the definition of the expected value yields an
upper bound on E[Mc].
2In(k) + 3
LEMMA 2. E[M¢] < % +2 < Tlogy (k) +2 = O(logy /5(k)) -
Proof. Mg is the number of shortest words read until convergence. By Lemma 1 we
have Pr(Me > m) < (’;)ﬁm + kB2,

E[Mc] = ) Pr(Mc>m)

IA

~

+

(]
/\
—
o o
<_=
=X

3

_|_

o~

X

2
~




14 PETER ROSSMANITH AND THOMAS ZEUGMANN

for each natural number ¢. We choose
€= [2log, (k)] +1,
which yields when inserted in above inequality

BMe] < oL VP

1-5 1-VB

The lemma now follows from the inequality

p VB 3

-5 1-vF = M@/p)’

which can be proved by standard methods from calculus. |

Now, we already know the expectation for the number of strings from L(7)nin)
the LWA has to read until convergence. Our next major goal is to establish an upper
bound on the overall number of examples to be read on average by the LWA until
convergence. This is done by the next theorem.

THEOREM 10. E[C] = *E[M¢] < @(Tlog;4(k) +2) = O(d*log, /5(k)) .

Proof. The LWA converges after reading exactly C' example strings. Among these
examples are My many of minimum length. Prior to these minimum length words
come M¢ possibly empty blocks of words whose length is bigger than |r|. Let us call
the numbers of those words in the 7 th block G;. Then C = G1+Gy+- - -+G . +Mc .
It is easy to compute the distribution of G;:

Pr(G; = m) = Pr(A > |7|)™" Pr(A = |7]) = (1 — o*)™aF (1)

Of course, all G; are identically distributed and independent. The expected value of
C' is therefore

E[C] = E[Mc]+E[G1+ +GMC]

= E[Mc]—FiE[Gl-I—--'-f—Gm|Mc=m]~Pl“(Mc=m)

m=0

= FE[M¢|+ E[M¢] - E|G4] (2)
The expected value of G; is

G =Y m-Pr(A > a))™  Pr(A = a]) = eon 211D _1=a0

Pr(A = |x|) ak

Combining (2) and (3) with E[M¢] < Tlog; 4(k) + 2 from Lemma 2 proves the
theorem. 1



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 15

3.3. The Length of the Text until Convergence

Now, we are almost done. For establishing the main theorem, i.e., the expected
total learning time, it suffices to calculate the expected length of a randomly generated
text until the LWA converges.

LEMMA 3. Let m > 1. Then E[A; | G, = m] = (E[A] — a*)/(1 — a*).

Proof. This proof is based on Pr(A; =i | G = m) = Pr(A; | Ay > |«|), which
intuitively holds because for A; the condition G; = m means that the first block
of non-minimum length strings is not empty and this holds iff A; has not minimum
length. More formally note that G; = m is equivalent to A; > |7| for 1 <7< m
and A,,41 = |7| and therefore

EM|Gi=m]=E[A | Ay > 7| A ANy > 7| AAppyr = 7],
but since all A; are independent it boils down to E[A; | G =m| = E[A; | Ay > |7]].
Now it is easy to compute E[A; | G; = m]:

i=|m|+1

= Y P A )= Y et =
i=|mw|+1 i=|m|+1

_ E[Al] . PI'(Al = |7T|)
Pr(A; > |n])  Pr(A; > |n|)

_ E[A]-oF

B 1—ak

THEOREM 11.
E[T] = E[Mc] - (jr| + & (E[A] - 1)
< (Tlog, 5(k) + 2) (7| + 6*(E[A] = 1)) = O(d*(log, /5(k) + 2) E[A]) .

Proof. We can write the length of text read until convergence as 7' =T, + 15+ -+ +
Tmg + |m|Mc . Exactly M strings of length |7| are read; all other strings are longer
and are contained in blocks in front of those minimum length strings. The ¢ th blocks
contains G; strings and we denote the total length of these G; strings by 7;. In
order to get E[T] we start by computing E[T7].

E[T)] = }:Em+ -+ Ap | G1 = m] - Pr(Gy = m)
= Zm EA1|G1 ]Pr(Glzm)
m=1
S o kym &
= mzjlm - ak (1 =a")"a” (by Lemma 3 and (1))
= (E[A] - oF)aF Z m(1 — aF)m1
m=1

= &"E[A] -1



16 PETER ROSSMANITH AND THOMAS ZEUGMANN

Now it is easy to estimate F[T]. We use that 7} and M are independent.

E[T) - |x|E[M¢] = E[Ti+ -+ Tw)
= f: m - E[T}] - Pr(M¢c = m) = E[M¢] - E[T}]
and thus

E[T] = BIMc](|n| + a*E[A] - 1).

Finally insert the estimation of E[M¢] from Lemma 2. i

4. Learning Stochastically Finite with High Confidence

Now we are ready to introduce the new learning model mentioned in the Introduc-
tion.

DEFINITION 2. Let D be an admissible probability distribution. PAT is called
stochastically finite learnable with high confidence from text iff there is an IIM M
such that for every L € PAT , every randomly generated text ¢ with respect to D
for L, and every number 6 € (0,1) there exists a pattern 7m € Pat such that M,
when successively fed ¢, outputs the single hypothesis 7, L(7) = L with probability
at least ¢, and stops thereafter.

Note that the learner in the definition above takes ¢ as additional input.

Next, we show how the LWA can be transformed into a stochastically finite learner
that identifies all the pattern languages with high confidence provided we have a bit
of prior knowledge about the class of admissible distributions that may actually be
used to generate the information sequences.

THEOREM 12. Let ., [« € (0,1). Assume D to be a class of admissible
probability distributions over AT such that a > ., (0 > (. and E(d) finite for
all distributions d € D. Then PAT 1is stochastically finitely learnable with high
confidence for all admissible probability distributions D generated by any d € D
from text.

Proof. Let d € D and ¢ € (0,1) be arbitrarily fixed. Note that d induces an
admissible probability distribution D . Furthermore, let t = sq, s9, s3,... be any
randomly generated text with respect to D for the target pattern language. The
wanted learner M uses the the LWA as a subroutine. Additionally, it has a counter
for memorizing the number of examples already seen. Now, we exploit the fact that
the LWA produces a sequence (7,), .+ of hypotheses such that |7,| > |7,,41| for all
n e Nt.

The learner runs the LWA until for the first time C' many examples have been
processed, where

C = 0(a."ogy 45, (I71)) (4)

and 7 is the actual output made by the LWA. The precise constants hidden in the
expression given in (A) can be readily computed as soon as the precise machine is
known on which we want to run the algorithm.



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 17

Finally, in order to achieve the desired confidence, the learner computes the least
t € N* such that 1—27t > §. It then continues running the LWA for 2¢-C additional
inputs. This is the reason we need the counter for the numer of examples processed.
Now, it outputs the last hypothesis 7 produced by the LWA, and stops thereafter.

Clearly, the learner described above is finite. Let L be the target language and
let m € Paty, be the unique pattern such that L = L(w). It remains to argue that
L(m) = L(r) with probability at least 6. First, the bound in (A) upper bounds
the expected number of examples needed for convergence by the LWA that has been
established in Theorem 10. This follows from our assumptions about the allowed
a and [ as well as from the fact that |7| > |r| for every hypothesis output and
because of #wvar(w) < |r|. Therefore, after having processed C' many examples the
LWA has already converged on average. The desired confidence is then an immediate
consequence of Corollary 7. |

The latter theorem allows a nice corollary which we state next. Making the same
assumption as done by Kearns and Pitt [8], i.e., assuming the additional prior knowl-
edge that the target pattern belongs to Paty, we arrive at a stochastically finite
linear-time learner for PAT) . This is a major improvement, since the constant de-
pending on k grows only exponentially in £ in contrast to the doubly exponentially
growing constant in Kearns and Pitt’s [8] algorithm.

COROLLARY 13. Let a, B« € (0,1). Assume D to be a class of admissible
probability distributions over A" such that o > a,, > . and E(d) finite for all
distributions d € D. Furthermore, let k € N be arbitrarily fivred. Then there exist
a learner M such that

(1) M learns PAT} stochastically finitely with high confidence from text for all
admissible probability distributions D generated by any d € D, and

(2) The running time of M is bounded by O(dk(logl/ﬂ(k) + 2)E[A]) , where the
constants hidden depend exponentially on k and linearly on log(1/6) .

Proof. The learner works precisely as in the proof of Theorem 12 except that (A)
is replaced by

C =0(ar log; /5. (k)) (A")

The correctness follows as above by Theorem 10 and Corollary 7, since the target
belongs to Pat; . The running time is a direct consequence of Theorem 11 and the
choice of t. |

One more remark is mandatory here. The learners described above can be made
more efficiently by using even better tail bounds. We therefore continue to establish
some more tail bounds. Note that each of these bounds has a special range where it
outperforms the other ones. Hence, the concrete choice in an actual implementation
of the algorithm above depends on the precise values of & and (. Since these values
are usually not known precisely, it is advantageous to take the minimum of all three.

LEMMA 4. Pr(M, > era®) <e ™" and Pr(M, < jra¥) < (e/2) /2.



18 PETER ROSSMANITH AND THOMAS ZEUGMANN

Proof. The expected value of M, is 7a¥, since Pr(A = k) = o*. Chernoff bounds
6, (12)] yield
k

era

rTo k k k

Pr(M, > era®) < - ey Y =T
era

and

TOék rak/Z k k &
Pr(ﬂ/[r < %TOék) < (W) e’® [2—ral _ (6/2)*7'01 /2

THEOREM 14. Pr(C > r) < k23i7" + (¢/2) 7"/
Proof. We split Pr(C > r) into a sum of conditional probabilities according to the
conditions M, > m and M, < m for a well chosen parameter m. We use the fact
that
Pr(C >7r|C>m)>Pr(C>r| M =m), (4)

which is quite obvious.

Pr(C > r) Pr(C >r | M, > m)Pr(M, > m)
Pr(C > r | M, < m)Pr(M, < m)
Pr(C > r | M, =m) + Pr(M, <m)

Pr(M¢ > m) + Pr(M, <m) (by the first part of Lemma 1)

IN +

We choose m = 3ra¥ and get

Pr(C > r) < k233" 4 (e/2)7"" /2
by Lemma 1 and 4. 1

THEOREM 15. Pr(C > r) < k% (-0)r
Proof. Using Pr(C > r | M, =m) = Pr(M¢c > m | M, = m) = Pr(M¢c > m) we can
write Pr(C > r) as a sum of products:

Pr(C >r) = ET: Pr(Mc > m) - Pr(M, = m).

m=0

Now Pr(M¢ > m) < k*3™? by Lemma 1 and Pr(M, = m) = (|)a*™(1 — o*)r™,
since M, has a binomial distribution with parameters of and 1 — o . Using these
estimates we get immediately

T

Pr(C>r) < Z (;) k22 akm(1 — of)r—m

= kz(fa +1-— )
)

2(1) ak(1- f)r

(&

< k&

and the theorem is proved. |



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 19

5. A closer Look at the Union Operations

Until now we have assumed that the union operations are performed by our new
linear time algorithm. While this algorithm optimizes the running time needed to
perform the union operations it does not simultaneously optimize the space needed.
Implementing it naively will result in using quadratic space. More sophisticated tech-
niques like hashing may reduce this space bound on average. But is it really worthwhile
to do this? For answering this question we continue with a closer look at both the
number of union operations performed and the total time spent for performing union
operations.

5.1. The Number of Union Operations

LEMMA 5. If m > |r| then Pr(A =m)/Pr(A <m) < a.
Proof. Remember that A is the length of a random string w[z,/uy, ..., 2x/ux] , where
the u;’s are random strings from A" according to the probability distribution d.
Whether A = m depends only on the lengths of the substituted strings and we will
work only with |ui], ..., |ux| and with length vectors from N¥. Let M be the set of
length vectors that lead to A =m, i.e.,
M ={(vil,--,|vx]) | v: € AT and |7[z1/v1, ..., 56 /v]| = m }.
Let n = (ny,...,n;) € N* and [n] = min{i | n; # 1} ([n] is well defined for n € M
since m > |r|). Define u = (Juy|,...,|ug|) and
f(n) = (n1,n2, ce ,n[n],l, 1, n[n]+1, cee nl) and M’ = {f(n) | neM }

Of course, Pr(u = n) = d(A™)d(A™)---d(A™) and in the same way Pr(u =
f(n)) = d(A™)d(A™)---d(A™) - d(A')/d(A"m)) and therefore

Pr(u=mn)  d(A"m) d(A"m)

Pr(u= f(n)) d(A)  « s
and consequently Pr(u € M)/Pr(u € f(M)) < &. Now note that Pr(u € M) =
Pr(A =m) and Pr(u € f(M)) < Pr(A <m). |

LEMMA 6. Let 0 < z; < @& for 1<7:<m and s=2;+ 29+ -+ 2, . Then
(1+ @)Y < (14 2)(1+2) - (1 + 2m)- (5)

Proof. Since (1 + 1/x)* grows monotonically for z > 0 (with limit e), (1 + z)Y/*
decreases monotonically and for 0 < z; < & we get

(14+ @)% < (14 2)Y=,
Raising both sides to the power z; yields
(1+a)5/% <1+

and forming the product for 1 <7 < m on both sides gives finally

m

[T+ ay=/e < ﬁ(l +2),

i=1 i=1

which is exactly the claim made by the lemma. |



20 PETER ROSSMANITH AND THOMAS ZEUGMANN

) pr(A = 4)

i=|m|+1
Pr(A =14)

Proof. Let z; = . Then

Pr(A < 1)
Pr(A = |r]) - (1 + 2 02) (1 + 2pmpe2) - - (1 + 201)

Pr(A = |7]) + Pr(A = |7| + 1)

| Pr(A = |r)

Pr(A = |n|) + Pr(A = |7| +1) + Pr(A = |7| + 2)

Pr(A = |7]) + Pr(A = |7| + 1)
Pr(A = |n]) + Pr(A = |n|+ 1)+ -+ Pr(A = puL)

Pr(A = |r|) + Pr(A = |n[+ 1)+ -+ Pr(A = uL — 1)
= Pr(A=|n]) +Pr(A=|r|+ 1)+ - +Pr(A=pL) =Pr(A<puL) <1
1 k

= Q)0+ ) (4 50) € o = 6 )

By Lemma 5 we know 0 < z; < & for |n|+1 < ¢ < puL. We can therefore apply
Lemma 6 to (6) and get

G > (14 2nfa1) (14 Zepy2) -+ (L4 20) > (1+a)*/, (7)

B(A) .
Pr(A =1)

h = E S
WHere s Pr(A < 4

i=|7|+1
It remains to be shown that s < @k. In order to do so we start with (7) and solve
for s:

= Pr(A=la)

aF>(14a)p > e = k>s/la = s<ak
i

If & is very small, then Lemma 7 is quite pessimistic. Solving &* > (1 + @&)*/@
exactly, yields s < &-k-In(&)/In(1 + &). We will not use this better approximation,
since it is more complicated. A small & or, equivalently, an « near 1 means that
the random strings according to « have length 1 with high probability. If this is the
case, the above better approximation might be useful. Because then & ~ In(1 + &),
thus we get s < kln(a).

Let U = Up +U' +U" with

L 00
U = i U and U"= Z U,.

I=|7|+1 I=pL+1

We introduce a new random variable to be used in the next three lemmata. By N,
we denote the number of examples generated until a string with length smaller than
[ occurs, i.e.,

Ny =min{i | A; <1}.
LEMMA 8. If [ > |«|, then E[N] =1/Pr(N <1).

Proof. Trivial, since the expected number for carrying out identical experiments until
a chosen result occurs is 1/p, where p is the probability of the result. |



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 21

LEMMA 9. E[U'] <24k.
Proof. Let || <1< uL.

E[U | Ny = n] (n—1)-Pr(Ay =1| Ny=n)
= (n—1)-Pr(A=10)/Pr(A>1)
< 2n-1)Pr(A=1) (8)
To get (8) we used Pr(A;1=1|N;=n)=Pr(A=1|A; >1) and Pr(A; >1) > 1/2
Now
E[U] = ) E[U/|N =n] Pr(N,=n)

< 2Pr(Ay=10)-) (n=1)Pr(N;=n) (by (8))

< 2Pr(A =1) -;?[Nl]

= 2 %igﬁ z g (by Lemma 8) (9)

Lemma 7 together with (9) yields the desired bound on U’:

uL

U'= Y E[U]< 22 ﬁ<l;<2ak

I=|7|+1 I=|r|+1

LEMMA 10. E[U"] <1.

Proof. A union operation belonging to U” is performed on a string longer than uL .
Only the first N,z41 —1 strings are longer than puL . So clearly U” < N, —1 and
consequently E[U"] < E[N,4+1] —1. Lemma 8 yields E[N,z11] =1/Pr(A < pL) <
2.

Combining Lemmata 9, 10, and 2 and the fact that Cy = U + 1 we get the
following estimate of the average number of union operations.

THEOREM 16. E[U] < 24k + E[Cy] < 24k + Tlog; 5(k) + 2.

5.2. The Time Spent for Union Operations

THEOREM 17. E[V] <c- (2ak(pL)? + E[Cy]|r|* + 12E*[A]) .

Proof. We estimate E[V] = E[V' 4+ V" + V|g| by looking at V', V", and Vi
separately. In the case of V' the union operation is performed on patterns and strings
whose length is at most pL. Therefore V' < ¢(uL)?-U’. In the case of Vj; unions
are performed on patterns and strings of length exactly |r| and thus Vg < ¢|7|*Upy -
Hence, E[V'] < 2cak(uL)® (Lemma 9) and E[Vig] < (3clog, /4y +1)|7|* (Lemma 2
and U|7r| = CN — 1).



22 PETER ROSSMANITH AND THOMAS ZEUGMANN

To estimate E[V"] is more complicated. Let [ > pL . We will need the following
inequality

IN

(10)

|/\ ||

Pr(A=10) _1

Pr(A <1) = 2
which follows easily from Pr(A <1) > Pr(A < pu
and Pr(A=1) <1

Now let U; be the number of union operations performed on patterns of length [.
Then U; =t iff exactly ¢+ 1 positive examples of length ¢ precede the first example
of length shorter than ¢. In between there are t+2 possibly empty blocks of examples
whose length is more than ¢. From this observation we can compute the probability
of Uy =t:

r(

IN

L)+Pr(A=1)>1/24+Pr(A =1)

+2

Pr(U;=t) = Pr(A=1)"". (ZPrA>l> -Pr(A < 1)

Pr(A = [)t+!
(1 —Pr(A > 1))t+2
Pr(A=0"1 Pr(A<l)
Pr(A < 1)1 Pr(A <1)?
27D . 4. Pr(A =1)?
= 273 . pr(A = 1)

-Pr(A <)

IN

- Pr(A = 1)

IN

Next we estimate the expected value of Uj.

=Y t-PrUi=t)< Y t-279 . Pr(A=1)’ =12 Pr(A = 1)’

t=2
The expectation of V" is then at most

EV"| =Y d*-E[U}) <) _ 12 - Pr(A =1)’

I>pL I>pL
00 2
<12¢- <Zl-Pr(A = z)) = 12¢ - E?[A]
=1

Note that the above estimate is rather pessimistic unless the distribution of L above
uL is nearly concentrated at one point. |

We finish this subsection by restating the bounds given in Theorem 2 and refuni-

formTT for the case that the union operations are performed by the naive algorithm.

THEOREM 18. E[TT] = O(log,s(k) - (&*E[A] + |7|*) + k&E*[A]) provided the
union operations are performed by the naive quadratic-time algorithm.

Proof. The proof is a direct consequence of Theorems 17 and 11. |
THEOREM 19. E[TT] = O(2*|r|log 4 (k) + k|x|*) for the uniform distribution
provided the union operations are performed by the naive quadratic-time algorithm.

A comparison of the latter two theorems and their counterparts, i.e., Theorem 2
and refuniformTT show that, if space is a serious matter of concern, one may easily



Learning k -Variable Pattern Languages Efficiently Stochastically Finite 23

trade a bit more time by using the naive, quadratic time algorithm instead of Algo-
rithm 1. The difference between the established bounds helps to make this decision.

6. Conclusions

The present paper dealt with the average-case analysis of Lange and Wiehagen’s
pattern language learning algorithm with respect to its total learning time. The re-
sults presented considerably improved the analysis made by Zeugmann [19]. Clearly,
the question arises whether the improvement is worth the effort undertaken to obtain
it. This question has been naturally answered by the introduction of our new model
of stochastically finite learnability with high confidence. Thus, the present paper pro-
vides evidence that analyzing the average-case behavior of limit learners with respect
to their total learning time may be considered as a promising path towards a the-
ory of efficient algorithmic learning. Recently obtained results along the same path
as outlined in Erlebach et al. [4] as well as in Reischuk and Zeugmann [13] provide
further support for the fruitfulness of this approach.

Moreover, the approach undertaken may also provide the necessary tools to perform
the average-case analysis of a wider variety of learning algorithms. In particular, the
new approach undertaken to estimate the average-case behavior via showing very
useful tail bounds seems to be generalizable to the large class of conservative and
rearrangement-independent learning algorithms.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21(1):46-62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control, 45:117-135, 1980.

[3] R. Daley and C.H. Smith. On the complexity of inductive inference. Information
and Control, 69:12-40, 1986.

[4] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, and T. Zeugmann. Efficient
learning of one-variable pattern languages from positive examples. DOI Technical
Report DOI-TR-128, Department of Informatics, Kyushu University, December
1996.

[5] E.M. Gold. Language identification in the limit. Information and Control, 10:447—
474, 1967.

[6] T. Hagerup and C. Riib. A guided tour of Chernoff bounds. Information Process-
wng Letters, 33:305-308, 1990.

[7] J.E. Hopcroft and J.D. Ullman. Formal Languages and their Relation to Au-
tomata. Addison-Wesley, Reading, Massachusetts, 1969.



24

8]

[13]

[18]

[19]

PETER ROSSMANITH AND THOMAS ZEUGMANN

M. Kearns and L. Pitt. A polynomial-time algorithm for learning k —variable
pattern languages from examples. In R. Rivest, D. Haussler and M.K. Warmuth,
editors, Proc. 2nd Annual ACM Workshop on Computational Learning Theory
pp. 57-71, 1991, Morgan Kaufmann Publishers Inc., San Mateo.

Ker-I Ko, A. Marron and W.G. Tzeng. Learning string patterns and tree patterns
from examples. In B.W. Porter and R.J. Mooney, editors, Proc. 7th Interna-
tional Conference on Machine Learning, pp. 384-391, 1990, Morgan-Kaufmann
Publishers Inc., San Mateo.

S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-
guages. New Generation Computing, 8:361-370, 1991.

S. Lange and T. Zeugmann. Set-driven and rearrangement-independent learning
of recursive languages. Mathematical Systems Theory, 29:599-634, 1996.

L. Pitt. Inductive inference, DFAs and computational complexity. In K.P. Jan-
tke, editor, Proc. Analogical and Inductive Inference, Lecture Notes in Artificial
Intelligence 397, pp. 18-44, Berlin, 1989, Springer-Verlag.

R. Reischuk and T. Zeugmann. Learning One-Variable Pattern Languages in
Linear Average Time DOI Technical Report DOI-TR-140, Department of Infor-
matics, Kyushu University, September 1997.

A. Salomaa. Patterns. (The Formal Language Theory Column). EATCS Bulletin,
54:46-62, 1994.

A. Salomaa. Return to patterns. (The Formal Language Theory Column).
EATCS Bulletin, 55:144-157, 1994.

R.E. Schapire. Pattern languages are not learnable. In M.A. Fulk and J. Case,
editors, Proc. 3rd Annual ACM Workshop on Computational Learning Theory,
pp. 122-129, 1990. Morgan Kaufmann Publishers Inc., San Mateo.

T. Shinohara and S. Arikawa. Pattern inference. In “Algorithmic Learning
for Knowledge-Based Systems” K. P. Jantke and S. Lange, editors, Algorithmic
Learning for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence
961, pp. 259291, Berlin, 1995. Springer-Verlag.

K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, Cambridge, MA, 1980.

T. Zeugmann. Lange and Wiehagen’s pattern learning algorithm: An average-
case analysis with respect to its total learning time. Annals of Mathematics and
Artificial Intelligence 23(1,2):117-145, 1998.



