
Clustering Pairwise Distances with Missing
Data: Maximum Cuts versus Normalized Cuts?

Jan Poland and Thomas Zeugmann

Division of Computer Science
Hokkaido University, Sapporo 060-0814, Japan

{jan,thomas}@ist.hokudai.ac.jp
http://www-alg.ist.hokudai.ac.jp/∼{jan,thomas}

Abstract. Clustering algorithms based on a matrix of pairwise simi-
larities (kernel matrix) for the data are widely known and used, a par-
ticularly popular class being spectral clustering algorithms. In contrast,
algorithms working with the pairwise distance matrix have been studied
rarely for clustering. This is surprising, as in many applications, distances
are directly given, and computing similarities involves another step that
is error-prone, since the kernel has to be chosen appropriately, albeit com-
putationally cheap. This paper proposes a clustering algorithm based on
the SDP relaxation of the max-k-cut of the graph of pairwise distances,
based on the work of Frieze and Jerrum. We compare the algorithm with
Yu and Shi’s algorithm based on spectral relaxation of a norm-k-cut.
Moreover, we propose a simple heuristic for dealing with missing data,
i.e., the case where some of the pairwise distances or similarities are
not known. We evaluate the algorithms on the task of clustering natural
language terms with the Google distance, a semantic distance recently
introduced by Cilibrasi and Vitányi, using relative frequency counts from
WWW queries and based on the theory of Kolmogorov complexity.

1 Introduction

Let a set of n objects or data points, x1, . . . , xn, be given. We might not know
anything about the objects, but assume that their pairwise distances dij =
d(xi, xj) are known. Here, d : M ×M → R is a distance measure over a set M ,
i.e., d(x, y) ≥ 0, d(x, y) = d(y, x) for all x, y ∈ M , and d(x, y) = 0 iff x = y.
Then we can cluster the data, i.e., assign the xi to k distinct groups such that
the distances within groups are small and the distances between the groups are
large. This is done as follows. Construct a graph from the pairwise distances and
choose an algorithm from the large class of recently published methods based
on graph-theoretic cut criteria. As the cuts are usually NP-hard to optimize,
appropriate relaxations have been subject to intensive research. Two types of
relaxations are particularly important:
? This work was supported by JSPS 21st century COE program C01. Additional sup-

port has been provided by the MEXT Grand-in-Aid for Scientific Research on Pri-
ority Areas under Grant No. 18049001

2 Jan Poland and Thomas Zeugmann

(1) Spectral methods, where the top eigenvectors of the graph’s adjacency
matrix are used to project the data into a lower dimensional space. This gives rise
to new theoretical investigations of the popular spectral clustering algorithms.

(2) Semi-definite programming (SDP), where the discrete constraints of the
cut criterion are replaced by continuous counterparts. Then convex solvers can
be used for the optimization.

Surprisingly, all of the clustering approaches suggested so far work on a graph
of similarities rather than distances. This means that, given the distances, we
need one additional step to obtain similarities from distances, e.g., by applying a
Gaussian kernel. This also involves tuning the kernel width, a quantity which the
clustering algorithm is quite sensitive to. Hence, it is natural to avoid this step
by using a cut criterion that directly works with the distance graph, e.g., max-
cut. We follow Frieze and Jerrum [4] and solve the max-cut problem via an SDP
relaxation. We compare this method with a representative of spectral clustering
algorithms, namely the spectral relaxation of the normalized cut criterion [12].

As a second contribution of this paper, we propose a simple heuristic for
dealing with missing data, i.e., the case where some of the pairwise distances dij

are unknown. Then, our aim is to substitute the missing dij by a value which is
most likely to leave the values of the cuts intact. This turns out to be the mean
of the observed dij .

One motivation for considering missing data is given by the application we
shall use to test the algorithms: Clustering of natural language terms using the
Google distance. The Google distance [2] is a means of computing the pair-
wise distance of any searchable terms by just using the relative frequency count
resulting from a web search. The Google API provides a convenient way for
automating this process, however with a single key (which is obtained by prior
registration) the maximum amount of daily queries is currently limited to 1000.
Hence, by querying an incomplete sparse distance matrix rather than a full one,
one can speed up considerably the overall process, as we shall demonstrate.

The paper is structured as follows. In the next two sections, we introduce
the two algorithms based on max-k-cut and norm-k-cut relaxations, respectively,
and recall some theory. In Section 4 we address the missing data problem. Sec-
tion 5 confronts the two algorithms, looking on the exact cut criteria rather than
the relaxations, and compares the computational resources required. Section 6
describes the Google distance. In Section 7 we present experimental results with
the Google distance. Relation to other work is discussed and conclusions are
given in Section 8.

2 Max-k-cut

Given a fully connected, weighted graph G=(V,D) with vertices V ={x1, . . . , xn}
and edge weights D = {dij ≥ 0 | 1 ≤ i, j ≤ n} which express pairwise distances,
a k-way-cut is a partition of V into k disjoint subsets S1, . . . , Sk. Here k is as-
sumed to be given. We define the predicate A(i, j) = 0 if xi and xj happen to
be in the same subset, i.e., if ∃`[1 ≤ ` ≤ k, 1 ≤ i, j ≤ n and i, j ∈ S`], and

Clustering Pairwise Distances with Missing Data 3

A(i, j) = 1, otherwise. The weight of the cut (S1, . . . , Sk) is defined as

n∑
i,j=1

di,jA(i, j) .

The max-k-cut problem is the task of finding the partition that maximizes the
weight of the cut. It can be stated as follows: Let a1, . . . , ak ∈ Sk−2 be the
vertices of a regular simplex, where

Sd = {x ∈ Rd+1 | ‖x‖2 = 1}

is the d-dimensional unit sphere. Then the inner product ai ·aj = − 1
k−1 whenever

i 6= j. Hence, finding the max-k-cut is equivalent to solving the following integer
program:

IP : maximize k−1
k

∑
i<j

dij(1− yi · yj)

subject to yj ∈ {a1, . . . , ak} for all 1 ≤ j ≤ n.

Frieze and Jerrum [4] propose the following semidefinite program (SDP) in order
to relax the integer program:

SDP : maximize k−1
k

∑
i<j

dij(1− vi · vj)

subject to vj ∈ Sn−1 for all 1 ≤ j ≤ n and
vi · vj ≥ − 1

k−1 for all i 6= j (necessary if k ≥ 3).

The constraints vi · vj ≥ − 1
k−1 are necessary for k ≥ 3 because otherwise the

SDP would prefer solutions where vi · vj = −1, resulting in a larger value of the
objective. We shall see in the experimental part that this indeed would result
in invalid approximations. The SDP finally can be reformulated as a convex
program:

CP : minimize
∑
i<j

dijYij (1a)

subject to Yjj = 1 for all 1 ≤ j ≤ n and (1b)
Yij ≥ − 1

k−1 for all i 6= j (necessary if k ≥ 3) and (1c)
Y = (Yij)1≤i,j≤n satisfies Y � 0. (1d)

Here, for the matrix Y ∈ Rn×n the last condition Y � 0 means that Y is
positive semidefinite. Efficient solvers are available for this kind of optimization
problems, such as CSDP [1] or SeDuMi [10]. In order to implement the con-
straints Yij ≥ − 1

k−1 with these solvers, positive slack variables Zij have to be
introduced together with the equality constraints Yij − Zij = − 1

k−1 .
Finally, for obtaining the partitioning from the vectors vj or the matrix Y ,

Frieze and Jerrum [4] propose to sample k points z1, . . . , zk randomly on Sn−1,

4 Jan Poland and Thomas Zeugmann

representing the groups, and assign each vj to the closest group, i.e., the clos-
est zj . They show approximation guarantees generalizing those of Goemans and
Williamson [5]. In practice however, the approximation guarantee does not neces-
sarily imply a good clustering, and applying the k-means algorithm for clustering
the vj gives better results here. We use the kernel k-means (probably introduced
for the first time by [9]) which directly works on the scalar products Yij = vi ·vj ,
without need of recovering the vj . We recapitulate the complete algorithm:

Algorithm. Clustering as an SDP relaxation of max-k-cut
Input: Distance matrix D = (dij) .
1. Solve the SDP via the CP (1a) through (1d).
2. Cluster the resulting matrix Y using kernel k-means.

3 Normalized k-cut

The normalized cut criterion has emerged as one of the most widely accepted cut
criteria for clustering. It is defined on a graph G = (V,W) of pairwise similarities
rather than distances: W = {wij | wij ∈ [0, 1], 1 ≤ i, j ≤ n}. Here, we identify
the edges of G with their weights given by the similarities. For a k-way-cut, i.e.,
a partition of V into k disjoint subsets S1, . . . , Sk, the norm-k-cut criterion is
defined as (cf. Yu and Shi [12])

1
k

k∑
`=1

∑
i∈S`,j /∈S`

wij∑
i∈S`,j∈V wij

=1− 1
k

k∑
`=1

∑
i∈S`,j∈S`

wij∑
i∈S`,j∈V wij

=: 1−knassoc(S1, . . . , Sk), (2)

where knassoc(S1, . . . , Sk) is called the k-way normalized associations criterion.
Therefore, minimizing the norm-k-cut value is equivalent to maximizing the
norm-knassoc value. Following [12], this is the task we consider. For a vector
v = (v1, . . . , vn) we write Diag(v) to denote the matrix M = (mij)1≤i,j≤n with
mii = vi and mij = 0 for all i 6= j. Furthermore, for a matrix M = (mij)1≤i,j≤n

we write diag(M) to denote the vector (m11, . . . ,mnn).
Optimizing (2) can be restated as solving the following integer program

IP : maximize 1
k tr(ZT WZ)

subject to Z = X(XT ΣX)−
1
2 , (3)

Σ = Diag
((∑n

i=1
wij

)
1≤j≤n

)
, and

X ∈ {0, 1}n×k such that
k∑

`=1

X(j, `) = 1 for all 1 ≤ j ≤ n.

Relaxing the constraints on Z and passing to continuous domain, we need to
solve the following continuous program

ContP : maximize 1
k tr(ZT WZ) (4)

subject to ZT ΣZ = Ik,

Clustering Pairwise Distances with Missing Data 5

where Ik is the k-dimensional identity matrix and Σ is defined as above. The
space of all optima of (4) can be described with the help of a spectral decompo-
sition of the Laplacian L = Σ− 1

2 WΣ− 1
2

L = Σ− 1
2 WΣ− 1

2 = UΛUT , (5)

where U is orthogonal and Λ is diagonal. Let Λ∗ ∈ Rn×k denote the part of Λ
containing the largest k eigenvalues (such that Λ∗(i, j) = 0 unless i = j), and
U∗ ∈ Rn×k be the corresponding eigenvectors, then

Z = {Σ− 1
2 U∗R | RT R = Ik} (6)

describes the space of solutions of (4).
For some relaxed solution Z ∈ Z, the corresponding X ∈ Rn×k can be

obtained by inverting (3):

X̃ = Diag
(
diag(ZZt)

)
Z.

Then one can reconstruct an integer solution X by applying an EM procedure
and alternatingly optimizing the rotation matrix R and the discretization X:

1. For given R and resulting Z and X̃, let X(i, `) = 1, if X̃(i, `) ≥ X̃(i,m) for
all 1 ≤ m ≤ k, and let X(i, `) = 0, otherwise.

2. For given X and X̃, compute a singular value decomposition XT X̃ = Ũ Λ̃ŪT

and let R = Ũ Ū t.

We recapitulate the algorithm:
Algorithm. Clustering as a spectral relaxation of norm-k-cut [12]
Input: Similarity matrix W = (wij) .
1. Solve the eigenvalue problem (5).
2. Use the described EM procedure to optimize the discretization.

Note that the EM procedure used in this algorithm is different from, but
nevertheless closely related to the k-means algorithm used in the algorithm based
on max-k-cut and many other spectral clustering algorithms.

4 Missing data

Assume that either the distance matrix D or the similarity matrix W is not fully
specified, but a portion of the off-diagonal entries is missing. One motivation
for considering this case could be the desire to save resources by computing
only part of the entries (e.g., for the Google distance discussed below, normal
user registration permits only a limited amount of queries a day). Suppose that
M ∈ {0, 1}n×n is a matrix such that diag(M) = 0 and M(i, j) = 1 if and only if
D(i, j) (or W (i, j), respectively) is not missing. Assume that the diagonal of D
is zero and that of W is one, and denote the ith column of a matrix X by X[i].
Define the mean of the observed values,

D̄ =
1∑

i,j M(i, j)

n∑
i=1

D[i]T M [i] or W̄ =
1∑

i,j M(i, j)

n∑
i=1

W [i]T M [i].

6 Jan Poland and Thomas Zeugmann

Then, replacing the missing entries in D with the value D̄, the resulting distance
matrix D is an unbiased estimate for the original full matrix, if the positions of
the missing values are sampled from a uniform distribution. Hence, the resulting
max-k-cut criterion for each partition is an unbiased estimate for the criterion
respective to the original matrix, and this is the best we can do to achieve our
goal that the optimal k-way-cuts of the original and the completed matrix are
the same.

Also in the case of a similarity matrix W , the missing values should be
replaced by the mean of the observed values. Asymptotically for n →∞, this also
yields an unbiased estimate for the norm-k-cut criterion. However, the reasoning
is more difficult here, since the norm-k-cut criterion is a sum of quotients, and for
two random variables X and Y , we have E[X/Y] 6= E[X]/E[Y]. Still, the actual
values of numerator and denominator are close to their expectations, as one can
verify using concentration inequalities, e.g., Hoeffding’s inequality. Then, for
large n, with high probability the quotient is close to the corresponding quantity
for the original (full) similarity matrix.

5 Max-k-cut versus norm-k-cut

In this section, we compare the max-cut and norm-cut criteria on distance and
similarity matrices that are small enough to allow for a brute-force computation
of the exact criteria. We start from 10 × 10 matrices D0 and W0 consisting of
two blocks of each size 5,

D0 =

0BBBBBBBBB@

0 · · · 0 1 · · · 1

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 · · · 1 0 · · · 0

1CCCCCCCCCA
and W0 =

0BBBBBBBBB@

1 · · · 1 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · 0 1 · · · 1

1CCCCCCCCCA
.

From these matrices, distance matrices D and similarity matrices W are ob-
tained by (1) perturbing the value by Gaussian noise of varying amplitude, (2)
making the matrices symmetric and rescaling them to the interval [0, 1], (3) re-
moving a fraction of the off-diagonal values and replacing them by the mean
of the remaining values. Another matrix we use for the norm-cut criterion is
a kernel matrix obtained from the distance matrix using a Gaussian kernel,
WD = exp(− 1

2σ2 D2) (all operations are meant in the pointwise sense here).
Since the values of the distance matrix are normalized to [0, 1], we use a fixed
σ = 1

3 . The missing values of WD are replaced by the mean of the observed
values in WD.

All values displayed in Figures 1 through 3 below are means of 1500 indepen-
dent samples. Figure 1 shows that, when using the max-cut criterion, the relative
number of experiments that result in a different clustering than the originally
intended one, grows if either the noise amplitude or the fraction of missing val-
ues increases. Of course this was expected. The max-cut criterion even yields
always the correct clustering if both noise amplitude and missing data fraction
are sufficiently low.

Clustering Pairwise Distances with Missing Data 7

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.2

0.4

0.6

0.8

1

noise
amplitude

missing
values fraction

fra
ct

io
ns

 o
f i

nc
or

re
ct

 c
lu

st
er

in
gs

Fig. 1. Average fraction of in-
correct clusterings by max-k-
cut on a noisy distance matrix
with missing data.

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.2

0.4

0.6

0.8

1

noise
amplitude

missing
values fraction

di
ffe

re
nc

e
fra

ct
. o

f i
nc

or
r.

cl
us

t.

Fig. 2. Difference of the average fraction
of incorrect clusterings by norm-k-cut rela-
tive to max-k-cut, where the similarity ma-
trix W D was obtained from the distance
matrix D as W D = exp(− 1

2σ2 D2).

0

0.5

1

0
0.2

0.4
0.6

0.8
−0.5

0

0.5

noise
amplitude

missing
values fraction

di
ffe

re
nc

e
fra

ct
. o

f i
nc

or
r.

cl
us

t.

Fig. 3. Average fraction of incorrect clus-
terings by norm-k-cut: Difference of a
W D = exp(− 1

2σ2 D2) matrix to a directly
generated similarity matrix W .

The same holds in principle for the norm-cut criterion, both for the directly
generated similarity matrices W and for those matrices WD derived from the
distance matrix by means of the Gaussian kernel. However, in Figure 2, where
the average difference of the error rates of the norm-cut clustering of WD to the
max-cut clustering of D is displayed, we can see: The norm-cut clustering always
produces a higher error rate. The error rate is even more significantly higher for
large fractions of missing values.

Did we introduce this increased error artificially by the additional transfor-
mation with the Gaussian kernel? Figure 3 indicates that this is not the case, as
it shows nowhere a significantly positive value. Precisely, Figure 3 displays the
difference of the error rates of the norm-cut clusterings of WD relative to the
directly generated matrices W .

8 Jan Poland and Thomas Zeugmann

Next, we turn to the computational resources required by the algorithms.
Both max-cut and norm-cut are NP-hard to optimize, so let us look at the
relaxations. The spectral decomposition of a n × n matrix can be done in time
O(n3), and if only the top k eigenvectors are desired, the effort can be even
reduced to O(kn2) by an appropriate Lanczos method. Therefore the norm-
cut/spectral algorithm has quadratic or (depending on the implementation) at
most cubic complexity.

On the other hand, solving the SDP in order to approximate max-cut is
more expensive. The respective complexity is O(n3 + m3) (see [1]), where m is
the number of constraints. If k = 2, then m = n and the overall complexity
is cubic. However, for k ≥ 3, we need m = O(n2) constraints, resulting in an
overall computational complexity of O(n6).

Finally, we remark that the analysis of the eigenvalues of the similarity matrix
can yield a quite useful criterion to automatically determine the number k of
clusters, in case that k is not known. We do not know of a corresponding method
based on the distance matrix. We shall not further discuss this issue here and
assume in the following that k is known.

6 The Google distance

Our sample application for the subsequent simulations will be clustering of nat-
ural language terms using the Google distance. This distance has been suggested
by Cilibrasi and Vitányi [2] as a semantical distance function on pairs of words or
terms. For instance, for most of today’s people, the terms “Claude Debussy” and
“Béla Bartók” are much tighter related than “Béla Bartók” and “Michael Schu-
macher”. The World Wide Web represents parts of the world we live in as a huge
collection of documents, mostly written in natural language. We briefly describe
the derivation of the Google distance, starting with concepts from Kolmogorov
complexity (Algorithmic Information Theory).

Let us fix a universal Turing machine (which one we fix is not relevant, since
each universal machine can interpret each other by using a “compiler” program
of constant length). For concreteness, we assume that its program tape is binary,
such that all subsequent logarithms referring to program lengths are w.r.t. base 2
(which is also not relevant for our algorithms). The output alphabet is ASCII.
Then, the (prefix) Kolmogorov complexity of a character string x is defined as

K(x) = length of the shortest self-delimiting program generating x,

where by the requirement “self-delimiting” we make sure that the programs form
a prefix-free set and therefore the Kraft inequality holds:∑

x

2−K(x) ≤ 1 , where x ranges over all ASCII strings

The Kolmogorov complexity is a well-defined quantity regardless of the choice
of the universal Turing machine, up to an additive constant.

Clustering Pairwise Distances with Missing Data 9

If x and y are ASCII strings and x∗ and y∗ are their shortest (binary) pro-
grams, respectively, we can define K(y|x∗), which is the length of the short-
est self-delimiting program generating y where x∗, the program for x, is given.
K(x|y∗) is computed analogously. Thus, we may follow [8] and define the uni-
versal similarity metric as

d(x, y) =
max

{
K(y|x∗),K(x|y∗)

}
max

{
K(x),K(y)

} (7)

This can be interpreted as (approximately) the ratio by which the complex-
ity of the more complex string decreases, if we already know how to gener-
ate the less complex string. The similarity metric is almost a metric accord-
ing to the usual definition, as it satisfies the metric (in)equalities up to order
1/max

{
K(x),K(y)

}
.

Given a collection of documents like the World Wide Web, we can define the
probability of a term or a tuple of terms just by counting relative frequencies.
That is, for a tuple of terms X = (x1, x2, . . . , xn), where each term xi is an
ASCII string, we set

pwww(X) = pwww(x1, x2, . . . , xn) =
web pages cont. all x1, x2, . . . , xn

relevant web pages
. (8)

Conditional probabilities can be defined likewise as

pwww(Y |X) = pwww(Y �X)/pwww(X) ,

where X and Y are tuples of terms and � denotes the concatenation. Although
the probabilities defined in this way do not satisfy the Kraft inequality, we may
still define complexities

Kwww(X) = − log
(
pwww(X)

)
and Kwww(Y |X) = Kwww(Y �X)−Kwww(X). (9)

Then we use (7) in order to define the web distance of two ASCII strings x and y,
following Cilibrasi and Vitányi [2], as

dwww(x, y) =
Kwww(x � y)−min

{
Kwww(x),Kwww(y)

}
max

{
Kwww(x),Kwww(y)

} (10)

We query the page counts of the pages by using the Google API, so we call
dwww the Google distance. Since the Kraft inequality does not hold, the Google
distance is quite far from being a metric, unlike the universal similarity metric
above.

The “number of relevant web pages” arising in (8) will be estimated by hand
for all of the subsequent simulations. Actually, the clustering is not very sensitive
to this value. On the other hand, Google no longer publishes its database size,
and the full database size would not be the most appropriate value anyway for
many applications. E.g., if we cluster words in a not so common language, then
the index size relative to this language might be more appropriate.

10 Jan Poland and Thomas Zeugmann

7 Experimental results with the Google distance

We evaluate both clustering algorithms from Sections 2 and 3 on a set of natural
language terms clustering tasks. We used the following datasets, which are all
available at http://www-alg.ist.hokudai.ac.jp/datasets.html .

data set information clustering errors and comp. time

name size #clusters missing data max-cut/SDP norm-cut/spectral

people2 50 2 0% 0 (4 sec) 0 (0.07 sec)
people3 75 3 0% 0 (∼ 90 sec) 2 (0.13 sec)
people4 100 4 0% 1 (∼ 876 sec) 5 (0.2 sec)
people5 125 5 0% 4 (∼ 2544 sec) 8 (0.35 sec)
alt-ds 64 2 0% 1 (3 sec) 1 (0.1 sec)
math-med-fin 60 3 0% 1 (∼ 36 sec) 1 (0.1 sec)
finance-cs-j 30 2 0% 4 (1.8 sec) 1 (0.05 sec)
phil-avi-d 198 2 50% 5 (12 sec) 6 (2 sec)
math-cuisine 600 2 70% 23 (137 sec) 22 (16.6 sec)

Table 1. Empirical comparison of the algorithms on the basic data sets (without
removing additional data).

The dataset people2 contains the names of 25 famous classical composers
and 25 artists (i.e., two intended clusters), people3 contains all names from
people2 plus 25 bestseller authors, people4 is extended by 25 mathematicians,
and people5 additionally contains 25 classical composers. The dataset alt-ds
contains not terms in natural language, but rather titles and authors’ last names
from (almost all of) the papers from the ALT 2004 and DS 2004 conferences.
Furthermore we use the datasets math-med-fin containing 20 terms each from
the mathematical, medical, and financial terminology, finance-cs-j contains
20 financial and 10 computer science terms in Japanese, phil-avi-d has 98
terms from philately and 100 terms from aviation in German, and math-cuisine
has 254 mathematical and 346 cuisine-related terms (in English). The distance
matrices of the last two data sets are not fully given: in phil-avi only 50% of
the entries are known, in math-cuisine it is only 30%.

For the norm-cut based algorithm, we need to convert the distance matrix to
a similarity matrix. We do this by using a Gaussian kernel WD = exp(− 1

2σ2 D2)
and set the width parameter σ = D̄/

√
2, which gives good results in practice.

Another almost equally good choice is σ = 1
3 , which can be justified by the fact

that the Google distance is scale invariant and mostly in [0, 1].
Table 1 shows the number of clustering errors, i.e., the number of data points

that are sorted to a different group than the intended one, respectively, on the
data sets just described. One can see that both algorithms perform well in prin-
ciple, in fact many of the “errors” displayed are in reality ambiguities of the
data, e.g., the only misclustering in the math-med-fin data set concerns the

Clustering Pairwise Distances with Missing Data 11

0.25

0.5

0.75

5
4

3
2

0

5

10

15

20

missing data

#clusters

av
er

ag
e

cl
us

te
rin

g
er

ro
rs

Fig. 4. Comparison of the max-cut/SDP
(dark bars) and the norm-cut/spectral algo-
rithm (light bars) with variable fraction of
missing data and variable number of clus-
ters and data set size, on the data sets
people2-people5.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

missing data fraction

av
er

ag
e

nu
m

be
r o

f c
lu

st
er

in
g

er
ro

rs

max−k−cut/SDP
norm−k−cut/spectral

Fig. 5. Comparison with
variable fraction of missing
data on the math-med-fin

set.

term “average” which was intended to belong to the mathematical terms but
ended up in the financial group.

We remark that the constraints (1c) and the resulting huge SDP size were
really necessary in order to get reasonable results: Without these constraints,
e.g., clustering the people5 data set with the SDP algorithm, the resulting
average number of errors is 36.

Looking on the computation times in Table 1 (measured on a 3 Ghz Pentium
IV), the spectral method is clearly much faster than the SDP, in particular for
k = 3 or more clusters. Here the quadratic number of constraints in the SDP
and the resulting 6th order computation time are really expensive. Actually, the
available SDP software (CSDP, SeDuMi) do not even work at all with much
larger problems if k ≥ 3.

Next we consider a situation with varying fraction of missing data, shown in
Figure 4 for the data sets people2-people5. Here the max-cut/SDP algorithm
consistently outperforms the norm-cut/spectral algorithm, in particular if the
number of clusters or the fraction of missing data grows. The same can be
observed on the math-med-fin as shown in Figure 5. Note that both algorithms
work quite well until about 70% missing data, after that the error increases
sharply. Both figures are based on 20 independent samples of missing data each,
where the missing data locations were sampled in a balanced way such that
each row and column of the distance matrix has the same fraction of missing
values. Figure 5 also displays 95%-confidence bars based on the standard normal
assumption.

12 Jan Poland and Thomas Zeugmann

8 Relations to other work and Conclusions

There are many papers on clustering based on similarity matrices, in particular
spectral clustering. It seems that norm-(k-)cut is quite established as an ideal
criterion here, but there are different, such as min-max cut [3]. But also SDP
has been used in connection with spectral clustering and kernels: [11] propose a
SDP relaxation for norm-k-cut clustering based on a similarity matrix, while [6]
and [7] use SDP for completion and learning of kernel matrices, respectively.

To our knowledge, the present work is the first one to use a distance matrix
and a max-(k-)cut criterion for similar clustering tasks, which is natural in many
applications where distances are given instead of similarities. We have seen that
a SDP relaxation works quite well and yields results which tend to be superior
to the spectral clustering results, in particular if the fraction of missing values
grows. However, the SDP relaxation is expensive for k = 3 or more clusters. Thus
we conclude with the open question of how to obtain a more efficient relaxation
of max-k-cut, for instance a spectral one.

References

[1] B. Borchers and J. G. Young. Implementation of a primal-dual method for sdp
on a shared memory parallel architecture. March 27, 2006.

[2] R. Cilibrasi and P. M. B. Vitányi. Automatic meaning discovery using Google.
Manuscript, CWI, Amsterdam, 2006.

[3] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm
for graph partitioning and data clustering. In ICDM ’01: Proceedings of the 2001
IEEE International Conference on Data Mining, pages 107–114. IEEE Computer
Society, 2001.

[4] A. Frieze and M. Jerrum. Improved algorithms for MAX k-CUT and MAX BI-
SECTION. Algorithmica, 18(1):67–81, 1997.

[5] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for MAX
CUT and MAX 2SAT. In STOC ’94: Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 422–431. ACM Press, 1994.

[6] T. Graepel. Kernel matrix completion by semidefinite programming. In ICANN
’02: Proceedings of the International Conference on Artificial Neural Networks,
pages 694–699. Springer-Verlag, 2002.

[7] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semidefinite programming. JMLR, 5:27–72, 2004.

[8] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similarity metric. IEEE
Transactions on Information Theory, 50(12):3250–3264, 2004.

[9] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[10] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11(12):625–653, 1999.

[11] E. P. Xing and M. I. Jordan. On semidefinite relaxation for normalized k-cut and
connections to spectral clustering. Technical Report UCB/CSD-03-1265, EECS
Department, University of California, Berkeley, 2003.

[12] S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV ’03: Proceedings of
the Ninth IEEE International Conference on Computer Vision, pages 313–319.
IEEE Computer Society, 2003.

