
Text Mining Using Markov Chains of Variable

Length

Björn Ho�meister1 and Thomas Zeugmann2

1 RWTH Aachen, Lehrstuhl für Informatik VI, Ahornstr. 55, 52056 Aachen
hoffmeister@i6.informatik.rwth-aachen.de

2 Division of Computer Science, Hokkaido University, N-14, W-9, Sapporo 060-0814,
Japan

thomas@ist.hokudai.ac.jp

Abstract. When dealing with knowledge federation over text docu-
ments one has to �gure out whether or not documents are related by
context. A new approach is proposed to solve this problem.
This leads to the design of a new search engine for literature research and
related problems. The idea is that one has already some documents of
interest. These documents are taken as input. Then all documents known
to a classical search engine are ranked according to their relevance. For
achieving this goal we use Markov chains of variable length.
The algorithms developed have been implemented and testing over the
Reuters-21578 data set has been performed.

1 Introduction

When one is aiming at knowledge federation over the web, one is often looking
for information around a speci�c topic. In a �rst step, one may �nd one or
more papers dealing with the topic of interest. Then, the next task is to �nd
related papers. Another situation to which our research may apply is to enable
documents to communicate to one another when trying to form a knowledge
federation over the web. Again, in such cases it may be very important to answer
a question like �is document A on the same subject as document B?� If the answer
is a�rmative, then a federation is made, otherwise it is rejected.

For dealing with such problems, we propose an approach based on Markov
Chains of variable length. We exemplify this approach by constructing a search
engine taking as inputs papers and returning a list of semantically related papers.

Currently used search engines do not take documents as input. They rely on
queries of one or a few words describing the desired information. Basically, there
are two di�erent search strategies.

The �rst concept is based on catalogues. A catalogue contains similar objects,
e.g., web-sites about machine learning. Hence, a query to such a catalogue system
is answered with a certain set of catalogues. Each of them ideally carries objects
relevant to the query. Search engines in libraries and web directories like Yahoo!1

1 http://www.yahoo.com

2 B. Ho�meister and T. Zeugmann

are based on this approach. The quality depends on the quality of the catalogues.
Producing good catalogues is still time consuming and expensive.

The second strategy is to perform a full-text search over all available doc-
uments. Common web search engines like Google2 and AltaVista3 are based
on this concept. The disadvantage of a full-text search is the large number of
matches. Therefore, a ranking is introduced and only the top ranked documents
are returned. Google's main ranking criterion is the linkage rate of a web-site,
that is, the more pages link to the document or web-site the higher the rank.

AltaVista uses a syntactical concept. It ranks the results depending on crite-
ria like the positions of and distances between the queried words in the document.
So, the alignment of the words should re�ect the relevance of the document.

Both strategies have their advantages and disadvantages. Moreover, both
approaches fail, for example, if the query allows ambiguities (cf. [13]). And the
ranking criteria may overlook relevant documents or give them a low ranking,
since simple queries do not allow a �ne-grained ranking of relevance.

Now, the idea is to combine the advantages of both approaches. Our search
engine takes a set of documents as query, classi�es them, and ranks all the
documents known by the search engine according to their relevance. To receive
a ranking based on semantical relevance we use a model, which can keep more
of the meaning of a document than common data representation models.

Following Ron et al. [18], we tried to use the variable memory Markov model
de�ned as a prediction su�x tree (abbr. PST). So, we arrive at a Markov model
with variable memory, or n-gram VMM model for short which is used for text
representation. The n-gram VMM model is learned by statistical inference, a
special form of inductive learning. Then we combine text retrieval and text
classi�cation.

We shortly outline the underlying mathematical background, describe the
work�ow of the resulting search engine, and report experimental results.

2 Preliminaries

Natural language is the most common form to exchange information between
human beings, e.g., news stories are published in natural language as well as
scienti�c papers. These documents often contain additional information encoded
in structured text, like tables or formulas, or in graphical form. However, we shall
only use the text in a document. Such a reduction may waste information. But
for the particular setting we study within this paper, i.e., the Reuters Data set,
it is su�cient. Additionally, all documents in this data set are written in English.
Therefore, we restrict ourselves to deal with English texts.

We assume familiarity with formal language theory (cf., e.g., [9]). The word is
used as smallest unit. In the literature, one also �nds many other possible atomic
units. Research has been done using sub-word units like letters or morphemes

2 http://www.google.com
3 http://www.av.com

Text Mining Using Markov Chains of Variable Length 3

on the one hand and multi-word units, i.e., combinations of one or more words,
on the other hand, e.g., see [13], [10], and [19].

We continue with technical notations. N = {0, 1, 2, . . .} denotes the set of all
natural numbers, and N+ = N \ {0}. By Σ we denote a �xed �nite alphabet, Σ∗

denotes the free monoid over Σ, and Σ+ = Σ∗ \ {ε}, where ε is the empty word.
An n-gram is a string of n ∈ N+ concatenated letters. The set of all n-grams
over Σ is denoted by Σn, where Σ0 = {ε}. We use Σ≤n to denote

⋃n
i=1 Σi.

Our alphabet is the set of all English words, i.e., a suitable subset of the
English vocabulary which we denote by V. Thereby we have to assure that V is
a set of indivisible symbols such that there exist an one-to-one mapping between
the symbols in V and the words in the English dictionary. The words of the
vocabulary are written in another alphabet which we denote by A. The relation
between a word symbol in V and its representation in A+ is expressed by a
mapping ω : V → A+, where ω(·) is injective. This can be easily achieved by
introducing a delimiter symbol β such that β /∈ A.

Note that we use the term word to refer to member of V. Therefore, an n-
gram s = σ1 . . . σn, σi ∈ V, 1 ≤ i ≤ n, is a concatenation of n words and a string
refers to any n-gram, n ∈ N. A phrase is a meaningful concatenation of two or
more words; technically any n-gram, n > 1, occurring in a document is a phrase.
And �nally, a term is either a word or a phrase. A document is then a sequence
of sentences, where a sentence is a concatenation of words from V.

For dealing with document classi�cation and retrieval we use probabilistic
language models. The idea is that documents dealing with di�erent subjects
also use a di�erent subset of the vocabulary V and even di�erent phrases over
these subsets. For example, a document about stock exchange might contain
words like �hausse� and �baisse�, which will almost never appear in a text about
machine learning. So, the observation is that texts about di�erent subjects di�er
in the used words. Furthermore, terms like �machine learning� or �conditional
mutual information� are surely not part of texts about stock markets, but the sin-
gle words �machine�, �learning�, �conditional�, �mutual�, and �information� may
occur in such a text. Moreover, the idea is to look at how likely a word is, if the
previous words are known. In a text about machine learning it is very likely that
�machine� is followed by �learning�, where in a text about stock market exchange
it is probably followed by �manufacture� or �supplier�, but not by �learning�.

The task of predicting the next word given the previous words is called lan-
guage modeling task and a model solving the task is called a generative model,
see [13] and [8]. Therefore, we continue with the following de�nitions.

De�nition 1 (Stochastic model). A stochastic model or process is a sequence
of random variables (Xt)t∈N.

Let us assume every random variable in (Xt)t∈N has the same range X . Thus,
the statistical properties of (Xt)t∈N are completely determined by the nth-order
probability distribution p(x0, x1, . . . , xn) := P (X0 = x0, X1 = x1, . . . , Xn = xn),
xi ∈ X , 0 ≤ i ≤ n, n ∈ N, see [16].

Moreover, we use L to denote the language used by subject S, i.e., L ⊂ V∗. We
then expect two documents to be about the same subject and hence semantically

4 B. Ho�meister and T. Zeugmann

related, if the subjects of the documents use the same language. But we shall use
probabilities instead of absolute statements. That is, we do not wish to decide
whether or not a string or a sentence is in L. Instead the language model we are
aiming at returns for every string s ∈ V∗ the probability for s to be in L.

Let S be a subject, let L be the language of S, and let pS be the probability
distribution underlying L. Furthermore, let M be a generative model for S. Thus,
M solves the language modeling task for S, if pS(σ|s) = pM (σ|s) for every σ ∈ V
and for every s ∈ V∗, where s is the sequence of all preceding words. Obviously,
if M solves the language modeling task for S, the strings generated by M are
distributed according to pS and hence M is a probabilistic language model for S.

How many of the previous words are necessary for making a good prediction
for the next word? The surprising answer is: most often only a few. For example,
if we see the word �machine� in a text about machine learning, �learning� is very
likely to be the next word, and knowing the words previous to �machine� does
not provide much additional information about the likeliness. Manning et al.
[13] claim that it takes quite a big e�ort to beat a generative model for natural
language, which predicts the next word on the previous two words.

In general, good estimations for the next word in natural language are context
dependent. An example is provided by this text. As mentioned before, the word
�machine� is very likely to be followed by �learning�; but what about �Markov�?
In the following, the words �model� and �chain� occurs after �Markov�, but the
3-gram �variable memory Markov� is always followed by �model�. Hence, we want
a model, which can capture this property of natural language.

The model which has the desired properties, is an n-gram Markov model
with variable memory, n-gram VMM model for short, which is de�ned by a
variable memory Markov model, VMM model for short. A VMM model in turn
is a special kind of the well-known Markov model. So, �rst Markov models are
shortly repeated, followed by the de�nition of the VMM model, from which we
derive the n-gram VMM model. In addition, the classical n-gram Markov model
is presented and compared to our model, which proves to be superior.

If we regard generative models as stochastic processes, any random variable
of the process has the property of only depending on the previous variables.
A special kind of those dependencies is captured by the Markov model, where
a random variable depends only on its direct predecessor. We shall see that,
despite this restriction, the Markov model is a suitable base for a generative
model for a language. In terms of a Markov model we call the value of a random
variable a state and its range state space.

De�nition 2 (Markov model). Let (Xt)t∈N be a stochastic model and let X
be the state space for all random variables Xt, t ∈ N. (Xt)t∈N is a Markov model,
i� it meets the Markov assumption

P (Xt+1 = xt+1|X0 = x0, . . . , Xt = xt) = P (Xt+1 = xt+1|Xt = xt) . (1)

Let p(·|·) be a function p : X × X → [0, 1]. The Markov model (Xt)t∈N is
homogeneous, i� it ful�lls the time invariance assumption

P (Xt+1 = xt+1|Xt = xt) = p(xt+1|xt), for every t ∈ N. (2)

Text Mining Using Markov Chains of Variable Length 5

p is the Markov core, where p(x|y) ≥ 0 and
∑

x∈X p(x|y) = 1 for all x, y ∈ X .

If a random variable depends only on its predecessor, the question remains
of how to predict the state of the initial random variable X0. This is done by a
special initial distribution. A Markov model together with an initial distribution
for X0 leads to the de�nition of a Markov chain. We follow the de�nition given
by [4], because it �ts our purpose best. Other de�nitions do not restrict Markov
chains to be homogeneous, e.g., see [2].

De�nition 3 (Markov chain). A Markov chain is a homogeneous Markov
model (Xt)t∈N with state space X , Markov core p and initial probability distri-
bution π, where X0 is distributed according to π.

Before we continue with the de�nition of the variable memory Markov model,
we use the Markov chain to de�ne a �rst probabilistic language model, the
classical n-gram Markov model. It shows how to use a Markov model to derive a
language model; the n-gram VMM model will be de�ned analogously. We shall
also use it to point to the advantages of our model.

The n-gram Markov model is a generative model predicting the next word
in dependence on the previous n words. Since a Markov chain, by its de�nition,
predicts the value of a random variable only on the value of its direct predecessor
the following construction is necessary which uses overlapping random variables.

Let (Σt)t∈N be a sequence of random variables, where each random variable
in (Σt)t∈N has range V. We de�ne a second sequence of random variables (St)t∈N,
where each random variable in (St)t∈N has range Vn, n ∈ N+. The relation be-
tween (Σt)t∈N and (St)t∈N is given by the de�nition of the following equivalence.
Let s be an n-gram and let s = σ0σ1 . . . σn−1, σi ∈ V, 0 ≤ i < n. Then,

St = s
def⇐⇒ Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1, (3)

for every t ∈ N. Thus, the random variables St overlap, i.e., St depends on
its predecessors, where the dependency is completely described by the direct
predecessor St−1, t ∈ N+.

St contains the information about n words and hence, for predicting the
value of Σt+n given the previous n words, the knowledge of the value of St is
su�cient. We express the probability of the value of Σt+n in terms of St and
St+1 as follows. Let St = s0, let St+1 = s1, and let s0 = σ0σ1 . . . σn−1, where s0

and s1 in Vn, σi ∈ V, 0 ≤ i < n. From (3) it follows that s1 = σ1 . . . σn−1σn,
σn ∈ V, and hence

P (St+1 = s1| St = s0)
=P (Σt+1 = σ1, . . . , Σt+n−1 = σn−1, Σt+n = σn

|Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1)
=P (Σt+n = σn| Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1)
=P (Σt+n = σn| St = s0), for every t ∈ N .

(4)

6 B. Ho�meister and T. Zeugmann

Obviously, (St)t∈N ful�lls the Markov assumption and thus we see how a
Markov chain can be used to predict a word in dependence on the previous
n words. Thus, we arrive at the following de�nition.

De�nition 4 (n-gram Markov model). Let S denote a subject and let pS

be the probability distribution of the language of S. Furthermore, let (St)t∈N
be a Markov chain with state space Vn, Markov core p and initial probability
distribution π. (St)t∈N is called n-gram Markov model for S, i�

pS(σ0σ1 . . . σm−1) = π(s0)p(s1|s0)p(s2|s1) . . . p(sm−n|sm−n−1), (5)

where si ∈ Vn, si = σiσi+1 . . . σi+n−1, 0 ≤ i ≤ m − n, for all m-grams
σ0σ1 . . . σm−1 ∈ Vm, m ∈ N, m ≥ n.

Because pS is to ful�ll Kolmogorov's consistency condition the initial probability
distribution π must have the following property, see [1].

Let s = σ1σ2 . . . σn, σi ∈ V, 1 ≤ i ≤ n, be an n-gram. Furthermore, let su�(s)
denote the longest proper su�x of s, i.e., su�(s) = σ2 . . . σn. Then π must ful�ll
the equation

π(su�(s) σ) =
∑
σ′∈V

p(σ|σ′su�(s)) π(σ′su�(s)),

for every s ∈ Vn, where σ ∈ V. We get the desired property, if we de�ne
π(σ1 . . . σn) as P (S1 = s), where s = σ1 . . . σn for all n-grams σ1 . . . σn ∈ Vn.

Now, we have a �rst probabilistic language model. But the size of the state
space is by de�nition |V|n. This will lead to problems if n ≥ 2 when one wants to
learn such a model and the documents are too short (cf., e.g., [2]). For seeing the
problem, note that a normal vocabulary of natural language has a size of more
than 20.000 words. So, in order to estimate all probabilities described above for
an 2-gram Markov model one needs a sample of more than 20.0003 = 8 × 1012

words. Obviously, we normally do not possess such a large sample.
Therefore, we want to use the variable memory Markov model which has been

de�ned in a di�erent context by Ron et al. [18]. A variable memory Markov model
is de�ned as a prediction su�x tree(PST).

De�nition 5 (su�x tree). Let Σ be an alphabet, let T be a tree and let E
denote the set of edges between the nodes in T . Furthermore, let each edge be
labeled by a symbol σ ∈ Σ and each node by a string s ∈ Σ∗. The two functions
lE : E → Σ and lT : T → Σ∗ return the label of an edge and of a node,
respectively. T is a su�x tree over Σ, i� it has the following properties:

i) T has degree |Σ|.
ii) The root node n0 of T has label ε.
iii) For every node nl ∈ T , l ∈ N, and n0 → n1 → . . . → nl−1 → nl, the walk

from the root node n0 to node nl, the label of nl equals the concatenated labels
of the passed edges, i.e., lT (nl) = lE(e0,1) lE(e1,2) . . . lE(el−1,l)

iv) Neither two edges of one node nor two nodes have the same label.

Text Mining Using Markov Chains of Variable Length 7

De�nition 6 (next symbol probability function). Let Σ be an alphabet and
let γs, s ∈ Σ∗, be a function. The function γs is called next symbol probability
function over Σ, i� it de�nes a probability distribution over Σ.

De�nition 7 (prediction su�x tree). Let Σ be an alphabet and let T be a
su�x tree over Σ. T becomes a prediction su�x tree by expanding the label of
every node in T to (s, γs), where s is the label of the node in the su�x tree and
γs is a next symbol probability function over Σ.

For the sake of readability, we use the string s ∈ Σ∗ synonymously for the
label of a node and for the node itself. Ron et al. [18] proved the following for
VMM models. Every VMM model can be described by a Markov chain, whose
size grows exponentially in the maximum depth of the VMM model. And almost
every Markov chain can be described by an VMM model. In particular, an n-
gram Markov model can be simulated by a VMM model.

Let T be a VMM model over Σ with maximal depth n. A similar VMM
model T̃ over Σ with maximal depth n can be learned with arbitrary precision
from an example generated by T in linear time in the length of the example.
The su�cient length of the example is bounded by a polynomial function, which
depends on the number of nodes |T |, where we assume |T | ≥ |Σ| and |T | ≥ n,
and on the desired precision.

Using the terminology of Markov models, we call the set of nodes in an VMM
model state space and a single node state.

Now we have the desired model, which uses a variable amount of memory.
The last step is to de�ne a language model, the n-gram VMM model, which is
based on a VMM model.

De�nition 8 (n-gram Markov model with variable memory). Let S de-
note a subject and let pS be the probability distribution of the language of S.
Furthermore, let T be a VMM model over V having maximal depth n.

T is called n-gram Markov model with variable memory, or n-gram VMM
model for short, for S i�

pS(σ0σ1 . . . σm−1) = γs0(σ0)γs1(σ1)γs2(σ2) . . . γsm−1(σm−1), (6)

where si, 0 ≤ i ≤ m− 1, is the longest su�x of σ0σ1 . . . σi labeling a node in T ,
for all m-grams σ0σ1 . . . σm−1 ∈ Vm, m ∈ N, m ≥ n.

So, the state space of the n-gram VMM model is a subset of Vn, whereas, by
De�nition 4, the state space for the n-gram Markov model is the full set Vn.

Here again, we can derive a special property, which T must have for pS to
ful�ll Kolmogorov's consistency condition.

Lemma 1. Let T be an n-gram VMM model over V. Then the next probability
function γs must ful�ll the equation

γsu�(s)(σ) =
∑
σ′∈V

γσ′su�(s)(σ), (7)

for each s ∈ V+ labeling a node in T and for every σ ∈ V.

8 B. Ho�meister and T. Zeugmann

From the de�nition of the conditional probability it follows that p(σ|s) equals
γs′(σ) for every σ ∈ V and every s ∈ Vn, n ∈ N, where s′ is the longest su�x
of s labeling a node in T , and p(s) > 0. This notation immediately shows that
we have a probabilistic language model, where the prediction of the next word
depends on a variable number of previous words.

Let us assume that we want to learn the n-gram VMM model TS , which
describes the probability distribution of the language of the subject S. Learning
is done from sample strings, where a sample string t for S, t ∈ V∗, is just a
�nite string generated by TS . According to De�nition 8, the value γs(σ) equals
pS(σ|s), which in turn equals approximately P̃t(σ|s) for every σ ∈ V and every
s ∈ V≤n, if only t is su�ciently large. P̃t(σ|s) denotes the conditional empirical
probability of σ given s achieved from t.

In order to derive the conditional empirical probabilities we need to count
(n + 1)-grams. The function #n+1

t (·) counts the number of occurrences of a
certain (n + 1)-gram in the sample string t and is de�ned as

#n+1
t (s) := the number of occurrences of s in t ,

where s ∈ Vn+1. Furthermore, let Nt be the number of all (n + 1)-grams in t.
Now, we are able to de�ne the empirical probabilities for (n+1)-grams and from
there we derive the desired conditional empirical probabilities:

P̃t(sσ) :=
#n+1

t (sσ)
Nt

, P̃t(σ|s) =
P̃t(sσ)∑

σ′∈V
P̃t(sσ′)

=
#n+1

t (sσ)∑
σ′∈V

#n+1
t (sσ′)

,

where s ∈ Vn and σ ∈ V. The conditional empirical probabilities of lower order
are derived by the following recursion:

P̃ (σ|su�(s)) =
∑
σ′∈V

P̃ (σ|σ′su�(s))

So,
∑

s∈Vn+1 P̃t(s) = 1 holds and therefore Lemma 1 is ful�lled by construction.
A catalogue or class is a collection of related subjects, e.g., if the subject

of a document is �pruning algorithms for decision tree learning�, it might be
part of the classes �decision tree learning� and �machine learning�. Obviously,
most classes can be divided into subclasses yielding a hierarchy of classes, e.g.,
�decision tree learning� is a subclass of �machine learning�. Hence, a subject can
be viewed as the indivisible element on the bottom of a class hierarchy.

A class c is a set of documents, i.e., c = {d0, d1, . . . , dq}, q ∈ N. Let Si be
the subject of document di, let LSi

be the language of Si, and let pSi
be the

probability distribution underlying LSi , 0 ≤ i ≤ q. So, the language of c is given
by Lc =

⋃q
i=0 LSi

. We denote the probability distribution underlying Lc by pc.
Obviously, if each probability distribution pSi

can be described by an n-gram
VMM model, pc can be described by an n-gram VMM model, too.

The problem of �nding the class a document is part of is known as the text
classi�cation task. The text classi�cation task consists of a set of classes C =

Text Mining Using Markov Chains of Variable Length 9

{c0, c1, . . . , cr}, r ∈ N, a set of documents D, and a function k : D → {0, 1, . . . , r}
called classi�cation rule. D is the set all documents such that each document
d ∈ D belongs to exactly one class in C. Then, one wants to �nd a classi�cation
rule kopt approximating ktrue best, where ktrue returns the correct class label
for each document in D, i.e., if d ∈ D belongs to ci ∈ C, then ktrue(d) = i.

The de�nition of the best approximation varies; often one tries to minimize
the error rate de�ned as the ratio of misclassi�cations to the total number of
classi�cations. We follow this de�nition, because there exists a classi�cation rule
known as Bayes' classi�cation rule that achieves the minimal error rate, if p(c|d)
is known for every c ∈ C and for every d ∈ D.

Normally, the classi�cation rule does not work on the documents and classes
themselves, but on a model for either the classes or for both, classes and doc-
uments. A text classi�er is de�ned as a 3-tuple (C,M, k) consisting of a set of
classes C, a model M , and a classi�cation rule k, where k is performed on M .
If k is optimal for every set of classes with respect to M , (C,M, k) is called an
optimal text classi�er. If k is optimal on the documents and classes themselves,
i.e., k does not use a model, then k is called a perfect text classi�er, see [5].

Finally, we formalize a search engine. In general, a search engine works as
follows. The users states a query, the search engine estimates the relevance of each
document to the query, the documents are sorted according to the estimates, and
�nally the list of the sorted documents are returned to the user. In practice, the
list is usually truncated but it should contain the maximal possible number of
relevant documents. We use the key concepts of text retrieval for the de�nition of
a search engine. Note that our search engine uses queries consisting of documents.

Let Q be a nonempty, �nite set of documents, we call Q a query. Let D be
a �nite, nonempty set of documents, where D is split into two sets R and N.
R is the set of all documents in D being relevant to query Q and N = D \R
is the set of all irrelevant documents. A text retrieval system is an algorithm
which assigns a rank r ∈ {1, 2, . . . , |D|} to each document in D such that no two
documents get the same rank, where we refer to 1 as the highest rank. A search
engine is just a text retrieval system.

Let Dn ⊂ D be the set of the n documents having the highest ranks. A text
retrieval system is called optimal, if

|Rn| is maximal for all n ∈ {1, 2, . . . , |D|} for every query Q .

Similar to text classi�cation, we distinguish between an optimal and a perfect
text retrieval system. An optimal text retrieval system performs the ranking task
on models of the documents in D. A perfect text retrieval system achieves the
optimal result on the documents themselves. Since we use n-gram VMM model
as a model for a document we have probabilistic text retrieval system. For a
probabilistic text retrieval system the optimum criterion becomes

E[|Rn|] =
∑

d∈Dn

P (R|d) is maximal for all n ∈ {1, 2, . . . , |D|},

where P (R|d) is called probability of relevance. Robertson [17] has shown that
such an optimal probabilistic text retrieval system exists and that it can be

10 B. Ho�meister and T. Zeugmann

derived by the probability ranking principle(PRP). A short de�nition of the PRP
is given in [13], p. 538.

Probability Ranking Principle. Ranking documents in order of de-
creasing probability of relevance is optimal.

Therefore, our goal in a probabilistic text retrieval system is to �nd a suitable
model for estimating the probabilities of relevance.

We use the following two observations. First, if d and the documents in Q
are about the same subject, d is with high probability relevant to Q. Note that
we model d and each document in Q by a n-gram VMM model and compare
these n-gram VMM models. If the n-gram VMM models are similar, we expect
d to be in R.

Second, normally d and the documents in Q belong to the same class, if d
is relevant to Q and vice versa. We shall use a text classi�er based on n-gram
VMM models to determine whether or not d and Q belong to the same class.

3 Learning the N-Gram VMM Model

A language learner is an algorithm learning the probability distribution under-
lying a language. We de�ne it as 5-tuple (TS , V, n,H, L). TS = {d0, d1, . . . , dq},
q ∈ N, is a set of documents called training set for S. V = {w0, w1, . . . , wk},
k ∈ N, is an alphabet; in our setting we use the English vocabulary. n ∈ N+ is
the order of the model to be learned, i.e., we will learn n-gram VMM models,
and H = {T : T is an n-gram VMM model} is the hypothesis space.

L : TS → H is the learning algorithm. Let L ⊂ V∗ be the language of subject
S and let p the probability distribution underlying L. The aim of L is to map the
training set TS to the n-gram VMM model T̃S ∈ H approximating p best. Often,
TS consists only of a single document d. In that case, we denote the outcome of
L equally as T̃d. We present two algorithms for learning T̃S , the CPR-principle
and the LLR-principle. Both algorithms de�ne di�erent success criteria.

Next, we de�ne a discriminative learner for a multiclass model. In terms of
natural language processing discriminative learning consists of solving the text
classi�cation task, i.e., to �nd that multiclass model having most discriminative
power among C, where C is a set of classes.

In particular, we use a collection of n-gram VMM models, one for each class
in C, as multiclass model. Bayes' classi�cation rule is used for classi�cation
(cf. Mitchell [15]). The learner is called multiclass learner. We de�ne it as a
6-tuple (C,TC, V, n,H, L). Here C = {c0, c1, . . . , cr}, r ∈ N is a set of classes
or categories. Furthermore, TC = {Tc0 ,Tc1 , . . . ,Tcr

, } is the training set for C
and consists of a training set for each class in C, where Tci

= {d0, d1, . . . , dqi
},

qi ∈ N, is a training set for class ci, ci ∈ C.
V, n, and H are de�ned in the same way as for the language learner.
L : TC → Hr is the learning algorithm. The result of L is an n-gram VMM

model for each class in C. That is, L maps TC to (T̃c0 , T̃c1 , . . . , T̃cr), T̃ci ∈ H,

Text Mining Using Markov Chains of Variable Length 11

0 ≤ i ≤ r, where T̃ci
is the model for class ci. We refer to T̃ci

as discriminative
class model or just as class model.

Both, the language learner and the multiclass learner, learn by statistical in-
ference. Here we have to approximate the probability distribution of a language.

Let L ⊂ V∗ be a language and let p be the probability distribution underlying
L. Let T = {d0, d1, . . . , dq}, q ∈ N, be a sample or training set for L. Therefore,
each document di ∈ T, 0 ≤ i ≤ q, consists of samples taken from L. Formally, a
document di = (tij)o

j=0, o ∈ N, is a list of sentences, where each sentence is in
L, i.e., tij ∈ L for every i ∈ {0, 1, . . . , q} and for every j ∈ {0, 1, . . . , o}.

Furthermore, we assume that the sentences are mutually independent. The
goal is to learn p from the samples in T. Without prior knowledge the relative
frequencies in T, i.e., the empirical probability distribution, are most likely to
equal p. We gain the empirical probability P̃ (s) for an n-gram s ∈ Vn by com-
puting the ratio between the number of occurrences of s in T and the total
number of n-grams in T. The number of occurrences of s in training set T is
denoted by #T(s), where

#T(s) :=
q∑

i=0

#di
(s), T = {d0, d1, . . . , dq},

#di(s) :=
o∑

j=0

#tij (s), di = (tij)o
j=0,

#tij
(s) := the number of occurrences of s in tij , tij ∈ V∗.

(8)

The number of all n-grams is denoted by NT =
∑

s∈Vn #T(s).
With the help of the counts we can calculate the empirical probabilities for all
l-grams, 1 ≤ l ≤ n. Let σi ∈ V, 1 ≤ i ≤ n, the empirical probabilities are
calculated as

P̃ (σiσi+1 . . . σn) =

#T(σ1σ2...σn)

NT
, if i = 1,∑

σ∈V
P̃ (σσiσi+1 . . . σn), if 1 < i ≤ n, (9)

where P̃ (ε) := 1.
Unfortunately, the empirical probability distribution is not a good estimator

for the distribution of natural language, because of the sparse data problem. To
overcome the problem we smooth the empirical probabilities, i.e., we assign a
probability greater than zero to every l-gram, 1 ≤ l ≤ n. We use a common
smoothing technique known as Lidstone's law, see [13]. The smoothed empirical
probability PLid(s) for an l-gram s, 1 ≤ l ≤ n, is calculated as

PLid(s) := µP̃ (s) + (1− µ)
1
|V|l

, µ =
NT

NT + λ|V|
, (10)

where PLid(ε) := 1. The parameter λ ∈ (0,∞) is a constant, which is most often
set to 0.5. Obviously, P̃ (s) equals PLid(s) for n →∞.

For learning an n-gram VMM model we need to estimate conditional prob-
abilities. We derive the estimate for the conditional probability σ ∈ V given

12 B. Ho�meister and T. Zeugmann

s ∈ V≤n in the following way. Let σi ∈ V, 1 ≤ i ≤ n + 1. The conditional
empirical probabilities of σn+1 given the previous up to n words is computed as

PLid(σn+1|σiσi+1 . . . σn) =
PLid(σiσi+1 . . . σnσn+1)∑
σ∈V

PLid(σiσi+1 . . . σnσ)
, (11)

where PLid(σn+1|ε) = PLid(σn+1).
Now, we are ready to present the learning algorithms. We use two already

known algorithms and a new one. The existing algorithms are the CPR-principle
and the MMI-principle. The CPR-principle has been introduced for learning the
probability distribution of a language and the MMI-principle has been intro-
duced for learning class models.

The new one is the LLR-principle. There are two instances of the LLR-
principle, one for learning the probability distribution of a language and one for
learning class models.

3.1 The CPR-Principle

The CPR-principle was introduced by Ron et al. [18] for learning a probabilis-
tic language model. The learner consists of (TS , V, n,H, LCPR). The goal is to
approximate p, the probability distribution of L ⊂ V∗, where L is the language
used by subject S.

Ron et al. [18] make the simplifying assumption that p can be described by
an n-gram VMM model TS ∈ H. Henceforth, let T̃S ∈ H denote the n-gram
VMM model learned by LCPR from training set TS . LCPR aims to minimize
the divergence between TS and T̃S , where the divergence is measured in terms
of the Kullback-Leibler (KL) divergence de�ned as

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

, where p and q (12)

are two probability distributions de�ned over the �nite, nonempty set X .
Ron et al. [18] proved that the KL divergence between TS and T̃S converges

to zero for su�cient large training sets.
The main idea of the algorithm introduced by [18] is to add a node s ∈ V≤n

into T̃S , if P̃ (σ|s) > P̃ (σ|su�(s)) for any σ ∈ V. More precisely, s is added if

P̃ (σ|s)
P̃ (σ|su�(s))

≥ ε2, s ∈ V≤n, ε2 ∈ [1,∞), (13)

for any σ ∈ V. Because of the equation, we termed the algorithm the condi-
tional probability ratio (CPR) principle.

The next symbol probabilities for each node in T̃S are set to the corresponding
smoothed conditional empirical probabilities. If we would use the unsmoothed
probabilities, the divergence between TS and T̃S would not converge to zero.
This is caused by the fact that the KL divergence between TS and T̃S becomes
in�nite if TS assigns a probability greater than zero to an n-gram s, while T̃S

assigns zero probability to s; see [18] for further details.

Text Mining Using Markov Chains of Variable Length 13

3.2 The MMI-Principle

The MMI-principle has been introduced by Slonim et al. [19]. In contrast to
the CPR-principle the MMI-principle aims to learn class models. Therefore, the
learner consists of (C,TC, V, n,H, LMMI).

The result of LMMI is a multiclass model consisting of an n-gram VMM
model for each class in C. The class model for class c ∈ C is used to calculate the
probability that a document belongs to c. Thus, the goal is to learn those class
models minimizing the classi�cation error rate. More precisely, the algorithm
proposed by [19] aims to minimize Bayes' error rate. For information about
Bayes' classi�cation rule and Bayes' error rate see e.g., [15].

Let D be a random variable whose range is the set of all documents and let C
be a random variable with range C. From the de�nition of Bayes' classi�cation
rule it follows that Bayes' error rate decreases, if the uncertainty in p(C|D) is
reduced, for details see [7].

The uncertainty of the probability distribution underlying a random variable
is measured in terms of the entropy, see e.g., [16]. Let X and Y be two random
variables. Henceforth, we denote the entropy of X by H(X) and the mutual
information between X and Y by I(X;Y), where I(X;Y) := H(X)−H(X|Y).
Thus, what we need is a way to minimize H(C|D). We can model a document
as a sequence of random variables (Si)o

i=1, o ∈ N+, where each Si, 1 ≤ i ≤ o,
has range V+. We assume the random variables Si, 1 ≤ i ≤ o, to be equally
distributed and mutually independent.

Let us assume that every sentence has exactly length m. Consequently, Si =
Σ1, Σ2, . . . , Σm for every i ∈ {1, 2, . . . , o}, where Σj , 1 ≤ j ≤ m, is a random
variable with range V.

If we assume that all documents have exactly o sentences, we derive the
following equation, see [16].

H(D) = H((Si)o
i=1)

= oH(Σ1, Σ2, . . . , Σm)
= moH(Σn+1|Σ1, Σ2, . . . , Σn),

(14)

where the last step follows from the fact that Σ1, Σ2, . . . , Σm is distributed ac-
cording to an n-gram VMM model which in turn ful�lls the Markov assumption.
We simplify the notation by introducing two extra random variables, Σ := Σn+1

and S := (Σ1, Σ2, . . . , Σn). Now, we obtain our main result.

H(C|D) = H(D|C) + H(C)−H(D)
= H(C)−mo (H(Σ|S)−mo H(Σ|S, C))
= H(C)−moI(Σ;C|S),

(15)

where the equality of H(D) and moH(Σ|S) as well as the equality of H(D|C)
and moH(Σ|S, C) follows from (14).

We conclude, maximizing I(Σ;C|S) minimizes H(C|D) and therefore mini-
mizes Bayes' error rate, too.

14 B. Ho�meister and T. Zeugmann

We call the resulting algorithm the maximum mutual information (MMI)
principle, as it tries to maximize I(Σ;C|S). Further details are omitted due to
the lack of space.

3.3 The LLR-Principle

The LLR-principle is a new way either to learn an n-gram VMM model for a
subject or to learn n-gram VMM models serving as class models. The main mo-
tivation of the LLR-principle is a common drawback of the CPR- and the MMI-
principle. Both make the assumption that the training set is always su�ciently
large in order to get reliable estimates for the unknown probability distribution.
Let p be an unknown probability distribution and let us assume p is described
by the n-gram VMM model T . Furthermore, |T | denotes the number of nodes
in T . The size of the needed sample set for achieving reliable results for p is
bounded by a polynomial function over |T |, for details see [18]. In our setting
we have no knowledge about |T |, besides the fact that |T | is upper-bounded by
|V|n, but in general we do not possess a sample set larger than |V|n. Hence, we
normally cannot determine, whether or not the training set is su�ciently large.

So, what can happen if the training set is not large enough? Dependencies
might be preserved, which are true for the training set, but not for p, i.e., the
learned n-gram VMM model over�ts. Over�tting in turn can reduce classi�cation
and retrieval performance, see e.g., [15] and [12].

Thus, the idea of the LLR-principle is to add a node s only, if there is strong
evidence that s is an indispensable node in T . In particular, we use a statistical
test to determine whether or not s is indispensable.

First, we use the idea to learn the probability distribution of the language
of a subject S. Let (TS , V, n,H, LLLR) be the learner and let LLLR(TS) = T̃S .
Furthermore, let p be the probability distribution of the language used by subject
S. Thus, our goal is to approximate p.

Formally, we want to add a node s ∈ V≤n into T̃S , if p(σ|s) > p(σ) for any
σ ∈ V. In other words, we add s into T̃S , if the probabilities of some of the words
following s are not independent of s.

Since we do not know p(σ|s), we use the conditional empirical probability
achieved from TS as estimator for p(σ|s). Furthermore, we use a statistical test
to decide whether or not a dependency occurring in TS exists in p. Thus, we use
the following two hypotheses for the test:

H0: p(σ|s) = p = p(σ)
H1: p(σ|s) = p1 > p2 = p(σ) (16)

If the null hypotheses H0 is rejected for any σ ∈ V, we add s to T̃S .
As statistical test we use the log-likelihood ratio (LLR) test proposed in [3].
Dunning [3] applied the LLR-test on the task of �nding dependencies between

words in texts written in natural language and compared it to Pearson's χ2-test.
Especially for small word counts, i.e., for short samples, the LLR-test performed
superior to Pearson's χ2-test.

Text Mining Using Markov Chains of Variable Length 15

The LLR-test seems to be the statistical test �tting best for �nding depen-
dencies between words when dealing with small word counts (cf. [13, 20]).

[3] used p(σ|s) = p(σ|¬s) as null hypothesis, where p(¬s) := 1− p(s). How-
ever, Dunning's null hypothesis is equal to H0:

p(σ|s) = p(σ|¬s)
⇐⇒ p(σ|s) = p(¬s σ)

p(¬s)

⇐⇒ p(σ|s) =
P

s′∈V|s| p(s′ σ)−p(s σ)

1−p(s)

⇐⇒ (1− p(s))p(σ|s) = p(σ)− p(s σ)
⇐⇒ p(σ|s) = p(σ)

Computing the test statistic proposed in [3] for H0, is done using the counts:

k1 := #TS
(sσ), n1 := #TS

(s), k2 := #TS
(σ)− k1, n2 := NTS

− n2

As estimates for the tested probabilities we simply use the empirical probabili-
ties. In terms of the above counts the estimates can be expressed as

p̃1 =
k1

n1
, p̃2 =

k2

n2
, p̃ =

k1 + k2

n1 + n2
.

Now, the test statistic for hypothesis H0 is calculated as

ξ = −2 log λ = 2 (log L(p̃1, k1, n1) + log L(p̃2, k2, n2)
− log L(p̃, k1, n1)− log L(p̃, k2, n2)), (17)

where L(p, k, n) := pk(1 − p)(n−k). For further details about the LLR-test and
the derivation of the LLR-test statistic, see [3].

The value λ is the ratio between the likelihood of H0 and the likelihood of H1.
So, λ decreases and thus ξ increases, if H1 is more likely than the null hypothesis
H0. Moreover, ξ approximates the χ2-distribution with one degree of freedom.

Putting it all together, we add s ∈ V≤n to T̃S , if ξσ|s ≥ (χ2
1)
−1(1 − α), α ∈

(0, 1), for any σ ∈ V. ξσ|s denotes the value of the LLR-test statistic computed
for σ and s. The complete algorithm is given in Figure 1.

In the algorithm, the parameter ε is the critical value for the χ2
1-distribution

for a chosen signi�cance level α ∈ (0, 1), i.e., ε = (χ2
1)
−1(1− α).

The advantage of the LLR-principle is that a node is only added, if it is with
high probability an indispensable node in an n-gram VMM model describing p.
Unfortunately, some nodes may not be added even when they are necessary for
modeling a dependency in p. So, the question is if the learned n-gram VMM model
still �ts for solving the text retrieval and text classi�cation task, respectively.

In the worst case the learned n-gram VMM model T̃S consists only of the
root node, i.e., words are regarded as to be independent to one another. Hence,
T̃S can be described by a 0-gram VMM model. Bayes' classi�cation rule applied
to the 0-gram VMM model yields the naive Bayes classi�er, which shows an
excellent performance for the text classi�cation task, see e.g., [14, 15].

16 B. Ho�meister and T. Zeugmann

First step (prediction su�x tree)
// initialize the prediction suffix tree T̃S

T̃S := {ε};
// build the prediction suffix tree T̃S

for (i = 1 to n) {
foreach (s ∈ Vi) {

ξmax := 0;
foreach (σ ∈ V) {

// test for a dependency in the language of S
k1 := #TS (sσ); n1 := #TS (s);
k2 := #TS (σ)− k1; n2 := NTS − n1;
p̃ := (k1 + k2)/(n1 + n2); p̃1 := k1/n1; p̃2 := k2/n2;
ξ := llr_test(p̃, p̃1, p̃2; k1, n1, k2, n2);
// find the maximal value for ξ

ξmax := max{ξ, ξmax};
}
// add only those nodes, which pass the test

if (ξmax ≥ ε) {
add s into T̃S;

}
}

}
Second step (next symbol probabilities)

// compute the next symbol probabilities
foreach (s ∈ T̃S) and (σ ∈ V) {

γ̃s(σ) := PLid(σ|s);
}

Fig. 1. Pseudo-code for the LLR-principle (subject case).

In fact, other classi�ers and text retrieval systems assuming independence
between words got good results in text classi�cation and text retrieval, see [10,
12, 13]. So, we expect the n-gram VMM model T̃S learned by the LLR-principle
to yield good results, even if some dependencies in p are not modeled by T̃S .

Next, we apply the LLR-test to the task of learning class models. The learner
consists of (C,TC, V, n,H, LMMI). Similar to the MMI-principle we aim to �nd
the su�x tree T̃ containing all the nodes, which have discriminative power among
C. Thus, we add a node s ∈ V≤n to T̃ , if s ful�lls the following two requirements.

First, for some class c ∈ C there exist a dependency between s and the words
following s. This requirement yields the following hypotheses for a statistical test:

H1
0 : p(σ|s, c) = p = p(σ|c)

H1
1 : p(σ|s, c) = p1 > p2 = p(σ|c) (18)

Therefore, the �rst requirement is ful�lled, if the null hypotheses H1
0 is rejected

for any σ ∈ V and c ∈ C.

Text Mining Using Markov Chains of Variable Length 17

For testing the null hypotheses we apply the LLR-test on the training set TC.
Concretely speaking, for testing H1

0 for s ∈ V≤n, σ ∈ V, and c ∈ C the training
set Tc is used. From Tc we get the following counts needed for calculating the
LLR-test statistic:

k1 := #Tc
(sσ), n1 := #Tc

(s), k2 := #Tc
(σ)− k1, n2 := NTc

− n2

The value of the LLR-test statistic is computed by (17).
The second requirement is that a node s has discriminative power among C.

That is, a dependency between s and the words following s depends on C, too.
In other words, if p(σ|s, c) is equal for every c ∈ C and for every σ ∈ V, s has
no discriminative power among C.

We formalize the second requirement by the following hypotheses for a sta-
tistical test:

H2
0 : p(σ|s, c) = p = p(σ|s)

H2
1 : p(σ|s, c) = p1 > p2 = p(σ|s) (19)

Thus, if H2
0 is rejected for any σ ∈ V and c ∈ C, then the second requirement is

ful�lled.
For computing the LLR-test statistic for s ∈ V≤n, σ ∈ V, and c ∈ C we need

counts over the training set Tc and over TC. The number of occurrences of an
n-gram s ∈ Vn in the training set TC is de�ned as

#TC
(s) :=

r∑
i=0

#Tci
(s), TC = {Tc0 ,Tc1 , . . . ,Tcr}, (20)

and hence NTC
:=

∑r
i=0 NTci

. Consequently, the LLR-test is performed on:

k1 := #Tc
(sσ), n1 := #Tc

(s), k2 := #TC
(σ)− k1, n2 := NTC

− n2

If a node s ∈ V≤n ful�lls both requirements, then s is added to T̃ . We omit
further details.

4 Text Classi�cation and Text Retrieval

The text classi�cation task consists of a set of classes C = {c0, c1, . . . , cr}, r ∈ N,
a set of documents D, and a function k : D → {0, 1, . . . , r} called classi�cation
rule. D is the set of all documents d such that each d ∈ D belongs to exactly one
class in C. The aim of the text classi�cation task is to �nd that classi�cation
rule that approximates ktrue best, where ktrue returns the correct class label for
each document in D, i.e., if d ∈ D belongs to ci ∈ C, then ktrue(d) = i.

Function k only relies on the knowledge about C and hence, if the knowledge
about C is not su�cient for certain classi�cations, k is expected to make some
misclassi�cations. The classi�cation rule theoretically making the least number of
misclassi�cations is called Bayes' classi�cation rule and it is denoted by kBayes.
The ratio of misclassi�cations made on average by Bayes' classi�cation rule is
called Bayes' error rate. For further details see e.g., [15].

18 B. Ho�meister and T. Zeugmann

Let (C,TC, V, n,H, L) be an n-gram VMM model learner for class models,
where L(TC) = (T̃ci

)r
i=0, T̃ci

∈ H, ci ∈ C, 0 ≤ i ≤ r. Furthermore, let k̃Bayes

be Bayes' classi�cation rule for C, where k̃Bayes uses T̃ci to estimate the value
of p(d|ci) for every ci ∈ C, 0 ≤ i ≤ r, and for every d ∈ D. We call the triple
(C, (T̃ci

)r
i=0, k̃Bayes) nst order naive Bayes classi�er, where the 0st order naive

Bayes classi�er is a member of the family of the common naive Bayes classi�ers.
Following McCallum et al. [14] we also look at the commonly used multi-

variate naive Bayes classi�er and the multinomial naive Bayes classi�er. Both
classi�ers use the vector space model of V = {w0, w1, . . . , wk}, k ∈ N, to rep-
resent each document in D. In the multinomial model the likelihood of d ∈ D,
d = (tl)o

l=0, tl ∈ V+, 0 ≤ l ≤ o, given class c ∈ C is

p(d|c) = Nd!
k∏

i=0

p(wi|c)vi

vi!
, Nd =

k∑
i=0

#d(wi), (21)

which is just the multinomial distribution. Let Tc be a training set for c. The
parameter p(wi|c), 0 ≤ i ≤ k, of the multinomial distribution are estimated by
the smoothed conditional empirical probabilities achieved from Tc.

Additionally, we shall use two classi�cation rules relying on the vector space
model over V for comparative reasons, the k-nearest-neighbor (k-nn)-classi�er
and the centroid based classi�er(cf., e.g., [8] and [13]). The most common sim-
ilarity measure used in text classi�cation and text retrieval is the cosine of the
angel between two vectors v and u in V. Therefore, we also use it. For further
details on the cosine function as similarity measure see e.g., [8, 13].

A drawback of the vector space model over V is its limited representation
power, as it only regards single words, i.e., 1-grams. There exist two commonly
used ways for improving the representation power: either to use the vector space
over all n-grams for an n ∈ N, n > 1, or the vector space over all l-grams,
1 ≤ l ≤ n. Both kind of vector spaces have been tested in practical experiments,
see e.g., [12, 6]. The results indicate that classi�cation performance increases for
small n, but decreases for larger n; the reason is over�tting caused by the high
dimensionality of the vector space. The way to overcome the problem of high
dimensionality is to build the vector space only over those l-grams, 1 ≤ l ≤ n,
having relevance for classi�cation. Many di�erent approaches for measuring the
relevance of a single l-gram, 1 ≤ l ≤ n, have been proposed, see e.g., [6, 20].

Here, we examine two approaches, one based on mutual information, which
we derive from the MMI-learning-principle. The other one is based on statistical
tests and it is derived from the LLR-learning-principle.

The measures used for evaluating classi�cation results are micro-averaged
precision/recall.

Last but not least, we use a probabilistic text retrieval system. Recall that
a query Q as a set of documents. For every query Q we split D into two sets,
R (the relevant documents) and N (the irrelevant ones). A text retrieval system
is an algorithm that assigns a rank r ∈ {1, 2, . . . , |D|} to each document in D
such that no two documents get the same rank, where 1 is referred to as the
highest rank. Informally speaking, an optimal text retrieval system makes at

Text Mining Using Markov Chains of Variable Length 19

any time and for every query the least number of wrong assignments of ranks.
A wrong assignment has happened, if a document in N gets a higher rank than
any document in R. Dn ⊂ D is the set of the n documents having the highest
ranks, i.e., the ranks 1 to n, and Rn = Dn ∩ R. A probabilistic text retrieval
system is called optimal, if

E[|Rn|] =
∑

d∈Dn

P (R|d) is maximal for all n ∈ {1, 2, . . . , |D|}, (22)

where P (R|d) is called probability of relevance. Robertson [17] has shown that
such an optimal probabilistic text retrieval system exists and can be derived by
the probability ranking principle(PRP). Thus, the performance of the system
relies on the reliability of our estimates for P (R|d).

In Section 2 we already presented two observations about d, Q, R, and hence
about P (R|d). First, d is probably in R, if d and the documents in Q are about
the same subject. Second, if d and the documents in Q belong to the same class,
we expect d to be in R, too. Both observation can be quanti�ed and the results
are used to get an estimate for P (R|d). We omit details.

5 Implementation

Next, we outline the work�ow of our search engine and take a short look at the
core algorithms used within the single steps of the work�ow. Figure 2 shows the
work�ow of the search engine and the single steps making up the work�ow. Every
document processed by the search engine passes these steps with exception of
documents used for learning a class model, which pass only the �rst six steps.

We distinguish three levels of representation of a document. First, the docu-
ment is a collection of bits. In this step we extract the text of a document. Then
it has to be split into words and sentences for further processing.

On the multi-word level the computer has a more advanced view of the
document. Instead of single words, it regards l-grams, 1 ≤ l ≤ n, i.e., words
are regarded within their local context. In order to be able to receive l-grams
we need the sentences boundaries as we do not want to regard l-grams across
multiple sentences.

The next level is the n-gram VMM model itself. Actually, our hope is to gain
a representation capturing the meaning of the document. However, we do not
aim to represent the semantic of a document in an operational form. That is, we
cannot answer the question �What subject do you deal with?�, but our hope is
that we are able to answer the question �Do you deal with the same subject as
document x?�.

Next, we take a short look at the steps presented in Figure 2. The �rst
task is text extraction. In this step, we extract the parts of natural language
within a document. For documents published in HTML format, we use a simple
HTML-�lter. The �lter just removes all HTML-tags and all the text between
HTML-tags, which are known to mark structured text.

20 B. Ho�meister and T. Zeugmann

−gram counting, l 1 l n+1

word and sentence extraction

text retrieval

text classification

−gram VMM model learning

feature selection on a word level

text extraction

w
or

d
le

ve
l

m
ul

ti−
w

or
d

le
ve

l
"s

em
an

tic
"

le
ve

l
m

od
el

 le
ve

l/

feature selection on a multi−word level

n

< <

Fig. 2. Work�ow of the search engine.

Scienti�c papers published in the Internet are normally encoded as postscript-
�les or as PDF-�les. The postscript- and the PDF-format are strongly related
and were invented to provide a good, platform independent readability of natural
and structured text for an human reader. The result is a format, which makes
automatic text extraction quite complicated.

Here, we use a two-step-process for text extraction. First, the ps2ascii tool
delivered with the ghostscript package4 is used to interpret the postscript-
document and to get a list of word fragments. The second step is done by a
self-written �lter, which combines the fragments into words, �nds paragraphs of
natural text, and removes words belonging to structures like formulas, etc.

In the next step, the extracted text is converted into unicode. Then we cut
the text into words and sentences. In English words are normally separated by
spaces. Hence, we regard every sequence of characters �anked by spaces as a
word. Finding sentences is not trivial mainly due to the fact that a period does
not necessarily mark the end of a sentence. We use an algorithm based on the
sentence boundary detection algorithm proposed in [13]. The algorithm uses
an heuristic approach, is fast and on common texts very reliable. After �nding
sentence boundaries, all punctuation marks are removed.

4 http://www.ghostscript.com

Text Mining Using Markov Chains of Variable Length 21

Up to this point we used the English dictionary as vocabulary. Note that the
large size large size of the vocabulary and the resulting huge number of l-grams,
1 ≤ l ≤ n, can cause serious problems with respect to time and memory re-
quirements. In order to overcome the problem there exist a variety of techniques
to select those l-grams, 1 ≤ l ≤ n, being somehow relevant for learning the de-
sired n-gram VMM models and to discard all irrelevant ones. The general task
is called feature selection and is done as a pre-processing step before inferring
any models, see e.g., [13, 10]. In the work�ow feature selection occurs on two
levels, on the word and on the multi-word level. At both levels, we use stopword
elimination and word frequency thresholding among others.

Then, we count all l-grams, 1 ≤ l ≤ n, in a sample set. After counting, l-
gram frequency thresholding is applied at the result list in order to remove all
l-grams occurring less than two times. The remaining frequencies are used to
compute the normal and the smoothed conditional empirical probabilities. The
probabilities and the counts are required for learning the n-gram VMM model.

Counting is probably the most important step in the work�ow of the search
engine. It is most expensive in time and the structure build up over all l-grams
during the counting step is later on used for a fast �nd, calculation, and compar-
ison of l-gram frequencies and probabilities. Word counting is done by applying
a hash function which uses the single words as key and stores the counts in a
hash map. The resulting algorithm runs in time O(m) and uses O(m) memory,
where m is the number of words in the training set.

We can easily extend the approach for counting all l-grams, 1 ≤ l ≤ n. That
is, we count the number of occurrences of each l-gram, 1 ≤ l ≤ n, separately.
The resulting algorithm has a runtime of O(mn2) and needs O(mn2) memory,
but we can do better. We omit the details here.

The data structure developed for counting �ts in general for a prediction
su�x tree(PST), too. With this in mind the objects stored in the array of hash
maps will serve as nodes and next symbol probabilities at the same time. This
design allows us to store a PST in a very compact manner. For learning, we use
the principles described in Section 3.

6 Experimental Results

We have used the Reuters-21578 data set for testing5. The data set consists of
21578 Reuters newswire stories from the year 1987 all related to �nancial topics.
In order to support retrieval and routing, Reuters de�ned a set of 135 category
labels. The stories have been manually indexed using these labels, where each
story may be indexed by zero, one, or several category labels.

Lewis was the �rst making extensive use of the Reuters data set for evaluating
text classi�cation systems, e.g., see [11]. Henceforth, the data set has become a
standard benchmark for text classi�ers, e.g., see [19, 10].

In general, we use the newswire stories as documents and the categories
as classes for our search engine. However, it is di�cult to make a selection of

5 http://www.daviddlewis.com/resources/testcollections/reuters21578/

22 B. Ho�meister and T. Zeugmann

documents for a training set and a test set, respectively, because many of the
stories are only of limited use or completely unusable. The most common way to
split the data set is the so called modi�ed Apte split6, which we will use, too. It
de�nes a training set of 9603 documents and a test set of 3299 documents. The
remaining 8676 documents are not used, because of one or several of the following
reasons. They have no class label assigned, the assigned class label is obviously
false, or the document contains no text. Furthermore, Reuters allowed multi-
classi�cation. Our text classi�cation system is restricted to single-classi�cation.
Thus, we only use the documents belonging exactly to one class.

A single newswire story is often very short and consists only of one or a few
sentences; a story is on average 152 words long. Therefore, we normally cannot
learn an n-gram VMM model from a single or a few stories, because the limit-
edness of training data does not allow reliable statistical inference. Therefore,
we use only those Reuters categories as classes, where the training set provides
a su�cient large number of training documents. In particular, we only use the
ten most populous categories yielding a minimum number of 90 documents per
category. This approach follows several other studies like [10, 14, 19].

The ten categories are listed in the following table. Additionally, the number
of documents and words per category are given. Word counting is done without
prior feature selection, but every word was converted to lowercase.

number of number
category topic documents of words

earn Earnings and Earnings Forecasts 2840 221992
acq Mergers/Acquisitions 1596 192130
crude Crude Oil 253 50376
trade Trade 251 57693

money-fx Money/Foreign Exchange 206 35014
interest Interest Rates 190 22471

money-supply Money Supply 123 12605
ship Shipping 108 16488
sugar Sugar 97 17012
co�ee Co�ee 90 18757

So, we get a training set of 5754 documents and a test set of 2254 documents.
Without any kind of feature selection the vocabulary of the training set consists
of 37965 words and 2051584 di�erent l-grams, 1 ≤ l ≤ 6, where we will not use
larger l-grams for testing.

The second consequence of the shortness of the newswire stories directly
concerns our text retrieval system. A single document is too small to be used
for learning an n-gram VMM model and hence we cannot use the KL diver-
gence based similarity measure to predict the similarity between two documents.
Therefore, we compute the vector space representation for each document and
use the cosine function as similarity measure. The following example shows the

6 http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt

Text Mining Using Markov Chains of Variable Length 23

di�culties in using such short documents as contained in the Reuters data set.
The example is taken from the used test set and belongs to �interest�.

Bundesbank's Schlesinger says no plan to cut discount rate -
Nihon Keizai newspaper
Blah blah blah.
(Reuters-21578, NEW_ID=17445)

We present here only some text classi�cation results due to lack of space. We
compare the nst order naive Bayes classi�er learned by the MMI-principle with
the one learned by the LLR-principle. Additionally, for both principles we let
the nst order naive Bayes classi�er compete against the centroid based and the
k-nn-classi�er, where both use the vector space Vn

MMI(LLR).
We evaluate the general improvement gained by applying a learning algo-

rithm. Thus, we run Bayes' classi�cation rule without prior learning, i.e., we
build a prediction su�x tree containing a node s for each sσ occurring in the
training set, s ∈ V≤n, σ ∈ V.

We use the following feature selection techniques on a word level. Every word
is converted to lowercase, every number is replaced by the word <NUMBER>,
word frequency thresholding is applied, and stopwords are eliminated. On a
multi-word level l-gram frequency thresholding, 1 ≤ l ≤ n, is applied. We used
this set-up for every text classi�cation and text retrieval task reported here.

n = 0 1 2 3 4 5
no learning

Bayes 0.95874 0.95209 0.9512 0.95164 0.95075 0.9512

MMI-principle

Bayes 0.95874 0.95874 0.95918 0.9543 0.95386 0.9543
centroid 0.48048 0.93966 0.93478 0.9299 0.9339 0.93256
1-nn 0.92902 0.92902 0.93523 0.93833 0.93789 0.937

LLR-principle

Bayes 0.95874 0.95608 0.95519 0.95608 0.95608 0.95563
centroid 0.48048 0.92414 0.90816 0.90595 0.90639 0.90639
1-nn 0.91926 0.92014 0.92103 0.9197 0.92014 0.92014

Table 1. Classi�cation results. The values inside the table are micro-averaged preci-
sion/recall, where the column determines the used n-gram VMM model and the row
determines the used combination of decision rule and learning principle. Here, �Bayes�
is short for nst order naive Bayes classi�er, �centroid� is short for centroid based clas-
si�er, and �1-nn� is short for k-nn-classi�er, where k is set to 1.

Furthermore, we use the micro-averaged precision/recall to measure the clas-
si�cation performance of a single combination of classi�cation rule, learning prin-
ciple, and memory depth n. The micro-averaged precision and recall are equal

24 B. Ho�meister and T. Zeugmann

because of the single classi�cation setting. However, for a single class precision
and recall are normally di�erent.

Table 1 summarizes the results for all combinations of classi�cation rule and
learning principle. All combinations were evaluated for n = 0 to 5.

References

[1] J. L. Doob. Stochastic Processes. Wiley, 1990.
[2] L. Dümbgen. Stochastik für Informatiker. Springer, 2003.
[3] T. E. Dunning. Accurate methods for the statistics of surprise and coincidence.

Computational Linguistics, 19(1):61�74, 1994.
[4] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.

Wiley, third edition, 1968.
[5] N. Fuhr. Probabilistic models in information retrieval. The Computer Journal,

35(3):243�255, 1992.
[6] J. Fürnkranz. A study using n-gram features for text categorization. Technical

report, Austrian Institute for Arti�cial Intelligence, 1998.
[7] A. Garg and D. Roth. Understanding probabilistic classi�ers. In L. D. Raedt and

P. A. Flach, editors, Machine Learning: EMCL 2001, 12th European Conference
on Machine Learning, Freiburg, Germany, September 5-7, 2001, Proceedings, vol-
ume 2167 of Lecture Notes in Computer Science, pages 179�191. Springer, 2001.

[8] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
2002.

[9] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1978.
[10] T. Joachims. Learning to Classify Text using Support Vector Machines: Methods,

Theory, and Algorithms. Kluwer Academic Publishers, 2002.
[11] D. D. Lewis. Feature selection and feature extraction for text categorization.

In Proceedings of Speech and Natural Language Workshop, pages 212�217, San
Mateo, California, 1992. Morgan Kaufmann.

[12] D. D. Lewis and K. S. Jones. Natural language processing for information retrieval.
Communications of the ACM, 39(1):92�101, 1996.

[13] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 2002.

[14] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classi�cation. In Proceedings of the AAAI-98 Workshop on Learning for Text
Categorization, 1998.

[15] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.
[16] A. Papoulis. Probability, Random Variables, and Stochastic Processes.

WCB/McGraw-Hill, third edition, 1991.
[17] S. E. Robertson. The probability ranking principle in ir. Journal of Documenta-

tion, 33:294�304, 1977.
[18] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic

automata with variable memory length.Machine Learning, 25(2�3):117�149, 1996.
[19] N. Slonim, G. Bejerano, S. Fine, and N. Tishby. Discriminative feature selec-

tion via multiclass variable memory markov model. In C. Sammut and A. G.
Ho�mann, editors,Machine Learning, Proceedings of the Nineteenth International
Conference (ICML 2002), University of New South Wales, Sydney, Australia, July
8-12, 2002, pages 578�585. Morgan Kaufmann, 2002.

[20] Y. Yang. An evaluation of statistical approaches to text categorization. Informa-
tion Retrieval, 1(1/2):69�90, 1999.

